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Flow-induced fluttering has a significant role in aircraft stability, renewable energy
extraction, animal locomotion, and many other applications. While being a ubiquitous
phenomenon, the control of the flutter response has been primarily limited to simplified
systems and, often, with the help of linear inviscid flow theories. In this paper, we numer-
ically investigate how the plunging response of a foil can be regulated using an active flap
to improve structural safety or enhance the energy extraction efficiency of the foil with a
tightly coupled fluid-structure interaction algorithm. A broad range of foil and flap settings
was tested, and their flow dynamics have been investigated. A multiscale modal analysis
technique suitable for fluid-structure interaction systems is employed to systematically
isolate the active flap-induced and flow-induced modes. It is observed that the competition
between these two modes dictates the plunging response of the foil. The active flap can
modulate the leading edge vortex shedding with larger flapping amplitude and regulate the
foil heaving motion. The ratio of the competing modal energy is proposed to evaluate the
control efficacy of the morphing surface, and the onset of the lock-in is associated with
the ratio approaching unity. It is shown that the morphing flap is a good candidate for
active flow control.
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I. INTRODUCTION

Flow-induced flutter has been the subject of continual fluid dynamic research since the failed at-
tempt to fly a monoplane by Samuel P. Langley in 1903. Bisplinghoff et al. [1] defined aeroelasticity
as “the phenomenon which exhibits appreciable reciprocal interactions (static or dynamic) between
aerodynamic forces and the deformations induced in the structure.” The physics of flow-induced
flutter is composed of interactions between the flow and elastic or inertial structures [2]. Two
primary mechanisms that specify the fluttering status of a foil are the coupling of the torsional and
heaving modes of the airfoil and the flow separation and reattachment on the foil surface [3]. Under
the right conditions, the fluttering response can lead to a self-sustained limit cycle oscillations and
even cause instabilities [4–6]. In the case of instability, the fluttering motion due to the aeroelastic
interaction presents a severe threat to the airfoil structural integrity. The aeroelastic instability has
become even a more critical design factor with the development of faster and lighter airplanes [7,8].
Structures other than aerial systems can also be affected by aeroelasticity [9]. An example is the
aeroelastic response of wind turbine blades in turbulent atmospheric flows [10]. Another famous
instance is the collapse of the Tacoma Narrows bridge due to stall flutter [11].

Flow-induced elastic oscillation is also a critical physical mechanism in many biological systems.
Oscillating foils are often applied as a prototype model of animal locomotion. For example, the
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beating of the caudal fins of thunniform fishes such as tuna has been studied using pitching and
heaving foil configurations [12–14]. The hovering motion of insects or miniature flying systems is
often mathematically described with rapidly oscillating foil-shaped wings. This model has been
adopted to study the efficiency of the flapping foils [15–19]. Similarly, in the past decade, the
potentials of utilizing the flow-induced elastic response for energy harvesting have been explored for
various conditions [20–22]. Energy-generating devices, such as a piezoelectric component attached
to a foil, can harvest energy from the flow through the self-sustained vibration. Flapping foils as
energy harvesters are environmentally friendly with fewer maintenance requirements and can be
easily integrated into existing designs [23,24].

Different flow control techniques have been proposed to suppress the vibration or regularize the
airfoil’s dynamic stall response. Passive control methods have been suggested to suppress vibration.
As an example among many other studies, Lee et al. [25] explored whether the redistribution of the
mechanical energy with nonlinear energy sinks could postpone the cascade of heaving and pitching
modes of the airfoil, and Fatimah et al. [26] demonstrated that the vibration of the structure could be
alleviated by adjusting the stiffness between the oscillating object and an absorbing mass. Recently
smart materials have been used to produce continuous surface deflection of an airfoil and modify
aerodynamic characteristics of the system [27–29]. Although many diverse flow control techniques
have been proposed, it is fair to say that conceivably, the most feasible engineering solution is
still an active flap at the leading edge or trailing edge. Block et al. [30] employed Theodorsen’s
flow theorem [31] to identify a controlling action that can stabilize the system by adjusting the
angle of the trailing edge flap. Wang et al. [32] further used a multi-input system with active
control surfaces at both leading and trailing edges and designed a full-state feedforward/feedback
controller with a high-gain observer. Experimentally, Platanitis et al. [33] employed a geometrically
nonlinear controller designed via Lie algebraic methods on a dual-control surface airfoil to suppress
the oscillation under optimal conditions. Medina et al. [34] experimentally investigated the physics
of flow separation at the leading edges due to rapid trailing-edge flap deflection.

Many fundamental questions remain unsettled despite previous research on using control sur-
faces to modulate flow-induced flutter. The model-based control methods developed for active
control surfaces are often centered around inviscid flow models such as Theodorsen’s theory, in
which a foil is represented with a two-dimensional inviscid plate [35–37]. These control algorithms
consider the fluid-structure interaction (FSI) dynamics as a change in the flow momentum due to
small-amplitude motion around the structure’s mean position. Therefore, they cannot capture the
flow change associated with the large structural deformation, unsteady vortex separations, and non-
linear vortex-body interaction. Furthermore, few reduced-order modeling techniques are available
that simultaneously consider both structure and fluid responses. For example, Goza and Colonius
[38] combined fluidic and structural energy to construct hybrid proper orthogonal decomposition
(POD) modes to correlate the structural motion and the induced flow features. Liberge et al. [39]
interpolate the time-variant grid to a fixed grid to perform POD on a global velocity field. Menon
and Mittal [40] fixed the moving frame and correct the dynamic mode decomposition (DMD)
modes with the frequency spectrum of the fixed shape foil motion. Still, certain limitations apply
to these methods, such as that the solid and fluid modes are not correlated or the requirement of
the knowledge about the periodic structural behavior. Here we propose a more general method to
inspect the modal content of the flow-induced fluttering response of morphing bodies. A conformal
mapping technique is used to generate unique energy-based geometrical weights, which enable the
modal analysis to be employed for the FSI problems with morphing bodies [41]. The method has
no assumption on the geometry and can be applied posterior to the data.

This paper employs the proposed FSI algorithm based on conformal geometry mapping to
investigate how an active morphing flap modifies the flow field around a foil. In addition, a
reduced-order model of the flap and foil is developed, which, unlike many other reduced order
methods, can encapsulate the deforming geometry of the bodies, the nonlinear fluid force feedback,
and the flow field created by the motion of the foil. This offers a more refined understanding of
the flow-induced fluttering phenomena and can be employed as a fast surrogate model for future
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controller designs. We also introduce a multiscale modal analysis technique [42] along with the
conformal geometrical weighting [41] to isolate the competing modes in the FSI system. The main
contribution of this work can be summarized as (1) developing a high-fidelity body-conformed FSI
algorithm to investigate foil and flap system, (2) studying the flow-induced plunging response of
a foil with an actively oscillating morphing flap over a wide range of structural parameters, and
(3) extending the multiscale proper orthogonal decomposition (mPOD) to FSI system wherein the
geometrical weighting is used to explain how the mode competition between the flap-induced and
flow-induced modes dictates the fluttering motion of the foil.

The rest of the paper is organized as follows: Section II discusses the fluid-structure interaction
method to model a foil with an active flap system and the geometrically weighted mPOD method.
In Sec. III we present the results of the system followed by a discussion about the flap-induced and
flow-induced flow features in Sec. IV. Finally, in Sec. V we conclude and present potential future
directions.

II. METHODOLOGY

This section will introduce the numerical model and the modal analysis method adopted to
investigate the aeroelastic response of an airfoil with an active flap. A two-dimensional energy
efficient transport (EET) airfoil immersed in uniform ambient flow is chosen as a model structure.
The EET high-lift airfoil [43] was developed by NASA and has been through extensive experimental
tests [44] to understand how the multisectional foil design affects the lift generation. It has also been
employed for studying the controllable leading and trailing edges to improve the performance of the
airfoil using linear models [45,46]. Here we extend these works by incorporating the continuous
shape changes of the morphing foil and its flow-induced plunging motions. As shown in Fig. 1(a),
the flow-induced fluttering characteristics of the foil are represented with a translational spring-
damper system. We focus on the heaving motion of the foil and assume it has a fixed pitching angle.
The heaving displacement of the virtual attachment point of the spring system is h, the geometrical
angle of attack (AoA) of the foil relative to the incoming flow is α, and the angle between the flap
and the mean chord line of the foil is θ . Comparable models have been used previously to study
the flow-induced fluttering response [4,20,47,48]. In the current study, the flap angle θ is actively
adjusted to represent the morphing flap as the simplest method of the geometrical controller.

A. Numerical method

The numerical method comprises three main components: setup of the computational mesh,
calculation of the dynamic forces, and the fluid-structure interaction procedure, which has been
explained in detail and verified in our prior publication [41]. Therefore, we only briefly outline the
key components in the following.

A body-fitted grid with a higher resolution near the body is employed to model the highly
nonlinear flow around the foil. Here a conformal geometrical mapping technique [49,50] is used
to generate a time-variant body-fitted grid. The body contour is segmented in the foil attached
coordinate system into points z j = Xj + iYj . The body exterior is then mapped to the exterior of
a circle with the radius λ. The cylindrical coordinate along the circle is defined as ζ = λeiφ with φ

denoting the azimuth angle. The mapping between the two coordinate systems is described with the
Laurent series expansion,

z(φ) = λeiφ + a0 +
∞∑

n=1

ane−inφ, (1)

where the coefficients an contain the radial terms an ≡ λnbn with bn being constant coefficients. We
can then obtain the mapping coefficients and optimal coordinates by employing the orthogonality
properties of series terms and minimizing the error between the mapped and actual contour points.
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FIG. 1. (a) The cross section of the foil and the model parameters. (b) Sample computational grid around
the foil-flap model and the grid mapping to a unit circle.

The grid is constructed in the transformed domain and then mapped to the physical domain with the
same set of coefficients acquired from the body contour.

A sample grid generated for the foil with this algorithm is illustrated in Fig. 1(b). The grid is
stretched in the radial direction logarithmically to increase its resolution near the surface where
large velocity gradients are anticipated. The cylindrical grid in the ζ plane is shown in Fig. 1(b).
During the simulation, the mesh is updated based on the instantaneous flap angle. The conformal
mapping technique also offers a time-invariant grid in the transformed space, allowing the modal
analysis techniques. This will be discussed later in Sec. II B.

The flow field is modeled with a modified Navier-Stokes equation based on the vorticity-stream
function (ω − ψ ) formulation in the transformed domain. An implicit, second-order finite difference
approach proposed by Guglielmini et al. [47] and Zhu et al. [20] is used to solve the following
system of equations:
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where Re is the Reynolds number and J is the temporally and spatially varying determinant of the
Jacobian of ζ = ξ + iη ⇒ z = X + iY transformation. The radial and azimuthal flow velocities, vr

and vφ , respectively, include the time-dependent effect of the transformation. The no-slip boundary
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condition is applied on the foil surface and uniform flow condition with �v = [U∞, 0]T , and ω = 0
is applied at the far-field boundaries.

After the vorticity and stream function are solved in the transformed domain, the inverse mapping
transformation is used to calculate flow data in the physical domain. The nondimensionalized
pressure, hydrodynamic force, and hydrodynamic moment exerted on the foil are then calculated
using the following equations, integrated along the foil boundary in the transformed domain:

p(φ) = p0 +
∫ φ
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(
∂ p
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+ ∂ p
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∂Y
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)
dφ, (4)
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where U and V are the nondimensional flow velocity components in the X and Y directions in the
body attached coordinate system.

The structural heaving velocity, ḣ, is updated, through a tightly coupled algorithm, using the
calculated forces F in the vertical direction:

m f ḧ + ch ḣ + kh h = F, (7)

where m f is the mass of the foil, and ch and kh are the damping and stiffness coefficients for
heaving motions, respectively. The vibration from the change of center of the mass when the flap
moves is ignored in the current study as its contribution is negligible with small flap mass and
movement. However, for applications with larger deformation or when the flap occupies significant
body weight, this should be taken into account.

The fluid equations are discretized in r, φ, and t and solved in the transformed domain.
A second-order central difference scheme is employed for the vorticity transport equation. The
vorticity field is updated at each time step via the alternative direction implicit technique [51].
The Poisson equation is solved with a semispectral method, wherein the Fourier transformation is
employed along the azimuthal direction, and the second-order finite-difference method is used along
the radial direction.

The proposed procedure can successfully capture the nonlinear interaction between the fluid and
structure. The model has been validated with several canonical problems in the authors’ previous
publication [41]. In Appendix A we present the grid refinement study for the current research.

B. Geometrically weighted multiscale proper orthogonal decomposition

The FSI response of the foil and flap system involves different timescales, including the flap
oscillation, the plunging foil, and the vortex shedding. To analyze this system and compare different
mechanisms, we use the multiscale POD [42] with geometrical weighting [41,52]. This section will
summarize the main components of the method.

Geometrically weighted modal analysis (GW-MD) obtains weighting functions through the
Jacobian of the conformal mapping, which combines the structural motion and flow structure into
a single spatiotemporal basis. GW-MD permits the use of data-driven modal analysis methods for
FSI systems with deforming bodies. The procedure conserves the modal energy content and reveals
how the structure and flow interact. To identify dominant flow modes for active flap cases, GW-MD
is further extended to allow multiscale modal calculation. In particular, multiscale POD (mPOD) is
applied in which a filter bank enables the splitting of the frequency spectrum into different scales.
The frequency spectrum is preserved within each scale, and the corresponding optimal orthogonal
eigenbases are assembled into a single mPOD basis. The following steps are done to perform
geometrically weighted multiscale POD (GW-mPOD):
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(1) Selecting the flow data: in this study, we use vorticity to realize how the coherent structures
form and dissipate. The n snapshots of dimension nr × ns are rearranged into column vectors of
u ∈ Rnr ns×1 and assembled to form the data matrix U ∈ Rnr ns×n.

(2) Computing the correlation matrix: the correlation matrix is calculated using C = (J �
U)+(J � U) wherein the Jacobian is used as the weighting function (J ∈ Rnr ns×n). Here � denotes
Hadamard product defined as (A � B)i j = Ai jBi j with i and j being free indices.

(3) Construction of the filter bank: the filter bank is formed to contain m filters, H1, . . . , Hm. It is
used to split C into m nonoverlapping contributions. The filter bank, in this research, is determined
from the discrete Fourier transform of the correlation matrix. The filter bank consists of a low-pass
filter, a high-pass filter, and a series of band-pass filters. The cutoff frequency of each band-pass
filter is selected so that each filter contains an isolated spectral peak of the correlation matrix. The
filter bank spans the entire spectrum, so the spectral content of the data set is retained through the
partition. The data matrix is filtered in the spectral domain and transformed back to the temporal
domain. POD is then performed on each temporal partition. An example process of applying a filter
bank will be shown in Sec. IV, and readers are referred to the pioneering paper [42] for mathematical
details.

(4) Decomposing the correlation data matrix: Using the m filters, the correlation matrix can
be decomposed as C ≈ ∑m

i=1 �iσ
2
i �

T
i , where � is the temporal structure. Moreover, with the

enforcement of the orthogonality condition, the spatial structures can be written as � = U�σ−1.
The spatial structures � are sorted in descending order based on their contribution to the energy
content.

GW-mPOD has several unique benefits over alternative modal analysis methods for the current
study. POD modes often suffer from spectral mixing. While DMD can produce modes with a single
frequency for each, those modes are not energetically relevant and not orthogonal. mPOD finds
coherent structures with similar energy contents to POD modes, but at the same time, it reduces the
spectral mixing problem. When combined with the geometrical weighting method, the analysis can
identify coherent flow structures related to the structure motion and internal flow dynamics. The
identified flow features can then be compared based on their contribution to the energy content. The
results will be demonstrated in Sec. IV.

C. Problem setup and summary

The parameter space of the FSI system in the current study includes the structural parameters,
fluid properties, and active flap parameters. We focus primarily on how the active actuation of the
flap affects the flow-induced plunging response of the foil. Sinusoidal oscillatory motions with
different frequencies and amplitudes are imposed on the flap with a particular average angular
position. Simulation parameters are defined as follows:

(1) Flow parameters: The computational domain is extended to 15L around the foil and flap
system, with L being the chord length of the foil. A grid with a resolution of (280 × 256) in radial
and angular directions, respectively, is applied to the fluid domain. The ambient flow velocity U∞
is chosen as the characteristic velocity scale, and the foil chord length L is used as the length scale.
Following previous literature [47,53], the Reynolds number based on the chord length is fixed at
Re = U∞ L

ν
= 1000. This Reynolds number is sufficiently large to allow the complex vortex shedding

that drives the fluttering phenomenon.
(2) Physical parameters of the foil: The mass ratio of the foil is set to m ≡ m f

ρL2 = 0.1. The
rotational degree of freedom of the foil is fixed and only the heaving motion is permitted. The
spring-damper system is considered with the nondimensional stiffness of kh

ρU 2∞
= 1.0 and Rayleigh

stiffness proportional damping of ch = λckh with λc = 0.1U∞
L . The flap length l is selected based on

the NASA design [43] as 0.12L. The roles of structural stiffness and damping on the flow-induced
motion are discussed in Appendix B.

(3) Control parameters of the active flap: A periodic pitching motion is imposed on the flap as
θ = θ0 + A sin(� t ), where θ0 and A are the mean angle and the amplitude of the flap relative to the
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FIG. 2. (a) Dominant frequency of the heaving motion, (b) mean heaving displacement, and (c) rms of
heaving amplitude of the uncontrolled cases.

chord, respectively, and f = �
2π

is the frequency of the flap oscillation. In the rest of this paper, we

use the flap’s Strouhal number, St f = f L
U∞

, to refer to the actuation frequency.

III. FLOW-INDUCED RESPONSE OF A FOIL WITH AN ACTIVE FLAP

The plunging response of a heaving foil subject to ambient flow and forced morphing flap
motion is discussed in this section. Representative cases are inspected to identify the reasons
behind different dynamic responses. The Fourier transform is employed to find the characteristic
frequencies of the heaving motion. We identify how the motion evolves and how the trajectory of
the foil motion changes in each period with the help of the phase portrait plot, a mapping between
the heaving displacement h and heaving velocity dh/dt . In addition to the structural response, the
coherent structures associated with the dominant frequencies are examined with GW-mPOD. We
will primarily consider a small angle of attack of AoA � 10◦ as this is within common operating
conditions.

As a baseline, we consider the uncontrolled case where the flap is fixed at a specified AoA.
Figure 2(a) shows the dominant heaving frequency of the uncontrolled cases. The dominant fre-
quency is highly dependent on the AoA. At low AoA, the flow is attached, and the airfoil has a
minimal mean displacement and oscillation amplitude as shown in Figs. 2(b) and 2(c). When the
flow is attached, the heaving added mass coefficient for a NACA0012 airfoil is a22 ∼ 0.79 [54] as we
fixed the movement to only vertical plunging. The analytical natural frequency can be approximated

as f0 = 1
2π

√
k

m f +ma
∼ 0.19, where k = 1.0 is the nondimensional stiffness and the total virtual mass

m combining foil mass m f and added mass ma is m = m f + ma = 0.1 + a22πρ0.52 ∼ 0.72. The
calculated natural frequency is very similar to what we observed in Fig. 2(a) where the heaving
frequency falls in the range of 0.16 when the flow remains attached with AoA = 0. In the moderate
AoA range, the continuous vortex shedding induces vortex-induced vibration, still with a small
amplitude. In these cases, a narrow-band frequency response appears due to the alternative vortex
shedding from the leading and trailing airfoil edges. The vortex shedding forms a regular vortex
street in the wake and induces a steady periodic heaving motion. Interestingly, for the flap angles
higher than a certain threshold, the apparent foil shape is modified and the periodic vortex shedding
shifts to higher AoA. This response switch occurs at an average flap angle of θ ∼ 30◦. Large mean
heaving displacement and oscillation amplitude are observed at higher AoAs due to the nonperiodic
vortex shedding from the leading and trailing edges and the airfoil stall at AoA ∼ 50◦. The flap angle
is not a decisive factor in this regime. Instead, the vortex-induced vibration is primarily affected by
the AoA.
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FIG. 3. (a) Dominant nondimensional heaving frequency, (b) mean heaving displacement, and (c) unsteady
heaving amplitude (rms) for AoA = 0◦ and different flap positions θ0 and flap frequency St f . Flap amplitude
is fixed at A/θ0 = 1.

Figure 3 shows how the foil heaving frequency fh, average heaving displacement h/L, and
unsteady heaving motion of the foil vary with mean flap angle and flap frequency when the foil
is at AoA = 0◦. Here it is assumed that A/θ0 = 1. When the amplitude is small, the flap motion
does not lead to the plunging motion of the foil. At larger amplitudes, on the other hand, the foil
starts to vibrate at the exact flap frequency. No significant change in vortex shedding pattern is
observed even at larger flap amplitudes, and the heaving displacement remains very small. From the
uncontrolled case, we can extract the average heaving displacement at AoA = 0◦ and compare the
difference between flap angle θ = 0◦ and θ = A. It is seen that this value matches with the heaving
amplitude in the active flap case with flap frequency St f = 0.1. This implies that when the flap is
moving slowly, the change of the lift coefficient determines the heaving motion. However, when the
flap frequency increases, we see a small heaving amplitude indicating almost no vibration. What
happens is that the flap moves too fast and the induced motion from the change of lift is damped
out. The cause of the small heaving motion at a higher flap frequency, with the same frequency as
the flap motion, is the added mass effect due to the flap motion.

An increase in AoA prompts substantial changes. Figure 4 plots the heaving response with
AoA = 10◦ and a small flap amplitude of A = 1.5◦. At low flap frequencies, the foil heaves at

FIG. 4. (a) Dominant nondimensional heaving frequency, (b) average heaving displacement, and (c) heav-
ing amplitude (rms) for AoA = 10◦ with flap amplitude A = 1.5◦ at different average angle θ0.
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FIG. 5. The (a) heaving motion time histories, (b) power spectra, and (c) the phase portraits of St f = 0.0,

0.1, 0.9, 1.2. It is assumed that AoA = 10◦, θ0 = 24◦, and A = 1.5◦.

the flap frequency, while at higher flap frequencies, the foil switches its dynamic response and
instead oscillates at a terminal fixed frequency. Interestingly, a low-frequency band around the
natural vortex-induced heaving frequency ( fhL/U∞ ∼ 0.96) separates these two dynamic regions.
The amplitude plot shows that this low-frequency band coincides with the large vibration amplitude.
We will take a deeper look at this region later. Also, similar to the zero AoA case, a narrow large
heaving amplitude band is located at St f ∼ 0.1. This amplitude is similar to the difference of the
heaving displacement with different static flap angles (uncontrolled cases). The slow flap movement
changes the lift coefficient, which causes a large-amplitude vibration. This effect is damped out at
higher flap frequencies, but the flap-induced vortex street creates another large-amplitude peak, as
will be explained. The mean heaving displacement is only proportional to the mean flap angle,
whereas the larger mean flap deflection results in a higher lift force on the foil and larger mean
displacement.

To further explain the characteristic dynamics of these two regions, three representative cases are
discussed below. All of these three active flap cases have the same AoA of 10◦, flap average position
θ0 = 24◦, and flap amplitude A = 1.5◦, but with different flap frequencies of St f = {0.1, 0.9, 1.2}.
The selected cases are also marked in Fig. 4(a). Figure 5 shows the heaving displacement over a
certain time interval, the power spectrum of the heaving displacement calculated from 10 flapping
cycles, and the phase portrait of these cases. The phase portrait trajectories are marked with white
to black based on its temporal state. The uncontrolled case St f = 0.0 is also included for cross-
comparison.

The uncontrolled case with no flap motion undergoes a periodic oscillation with a frequency of
0.96 due to the vortex-induced vibration. This response mode is referred to as the flow-induced mode
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FIG. 6. Instantaneous vorticity fields over four active flap periods of St f = 0.1 and St f = 0.9. T is the flap
motion period.

from now on. When the actuation is activated, we can see that torus-like trajectories emerge for all
three selected cases. The heaving time history involves large-scale oscillation and small-amplitude
unsteady fluctuation. Furthermore, the spectrum clearly shows multiple distinct peaks indicating
that the system is quasiperiodic, and the observed dynamics are from mode competition between
different mechanisms. In particular, the St f = 0.1 case has distinct peaks at the flap frequency 0.1
and flow-induced frequency 0.96, while the other case with St f = 0.9 shows two peaks at the
frequencies of 0.9 and 0.06. Although they share a very similar heaving response and flow field
(shown in Fig. 6), in a previous study [41] we highlighted that other mechanisms are involved
in these two cases. The results will be confirmed in Sec. IV using the GW-mPOD analysis with
extra knowledge of the energy content and the competition between the modes. In the low flap
frequencies, the flap motion does not substantially modify the downstream wake and mainly adjusts
the exit angle of the vortex wake. On the other hand, the flap motion of St f = 0.9 creates a wake
structure that interferes with the flow-induced mode. The other case of St f = 1.2 exhibits a much
smaller heaving amplitude similar to the nonactuated case and delivers a larger heaving movement
closer to quasiperiodic motion.

A very different foil-fluid interaction response is observed for the flap with a large oscillation
amplitude of A = θ0 (Fig. 7). Here the low-frequency band narrows, while the foil still undergoes
a substantial heaving motion at the flap frequency outside of this band. Interestingly, two branches
of the low-frequency band are observed. Furthermore, the average heaving displacement does not
increase monotonically with the average flap angle when the flap amplitude is small. Instead, it
displays a unique peak near the natural frequency range. The heaving amplitude peak at the slow

FIG. 7. (a) Dominant nondimensional heaving frequency, (b) mean heaving displacement, and (c) unsteady
heaving amplitude (rms) for AoA = 10◦ with the large-amplitude flap motion of A/θ0 = 0.
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FIG. 8. The heaving displacement time history, power spectrum, and phase portrait plot of St f = 0.0, 0.1,

1.0, 1.1, respectively, from the top to bottom row. The results are for AoA = 10◦ and A = θ0 = 24◦.

flap frequency emerges again for the same reason as before: the slow transition of the overall lift
coefficient.

The time history, power spectrum, and phase portrait of the heaving motion are shown in Fig. 8.
Rows are associated with different flap actuation frequencies of St f = {0, 0.1, 1.0, 1.1}. When
St f = 0.1, the larger flap oscillation amplitude creates a stronger pressure gradient over the flap.
During the downsweep flap motion, the pressure gradient creates a new vortex behind the trailing
edge. The newly formed vortical structure then separates from the flap during the upsweep phase
and merges into the wake. The leading-edge vortex shedding is locked onto the same period due to
the large suction pressure caused by the flap, which results in the purely periodic motion at the flap
frequency St f = 1.0. This can be identified from the clear resonance peaks in the power spectrum
and periodic orbit in the phase portrait. A similar lock-in phenomenon has been reported in several
recent studies of airfoils with morphing surfaces [55–57].

When the flap frequency increases to St f = 1.1, the vortex shedding from the trailing edge
becomes chaotic (Fig. 9). The leading-edge vortex shedding mode is controlled by the foil geometry,
while at the trailing edge, the flow separation is dictated by the flap motion. Since there is a
discrepancy between the flap frequency and natural vortex shedding frequency at the trailing
edge, an intermittent wake structure is formed. The heaving motion is consequently chaotic, as
demonstrated by the never-repeating trajectory in the phase portrait.

The large heaving amplitude of St f = 0.1 originates from the low-frequency and large-amplitude
lift forces changes driven by the continual geometrical changes. When the flap slowly varies
its angle, it modifies the lift force at different vibration stages. Consequently, the fluid-structure
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FIG. 9. Instantaneous vorticity field over four active flap periods of (a) St f = 1.0 and (b) St f = 1.1 with
AoA = 10◦ and flap motion A = θ0 = 24◦.

interaction of the foil is quasistatic, where the flap movement does not create a new vortical
structure, but it still affects the foil heaving motion by modifying the instantaneous lift force. This is
supported by the presence of a spectrum peak at flap frequency f L/U∞ = 0.1. This peak is present
in all three cases discussed so far, and the mechanism behind it can be related to the uncontrolled
benchmark cases.

In summary, the flap oscillating with a larger amplitude impacts the flow and heaving motion
more than the smaller amplitude cases. The larger flap amplitude substantially modifies the flow
at the flap location and plays a controlling role in determining system response compared to the
smaller amplitude cases. When the flap frequency approaches the natural frequency, there is a lock-
in condition, and the foil heaves at the same frequency as the flap movement. On the other hand,
when the flap frequency increases further, there is substantial vortex shedding from the flap and foil
surfaces resulting in a chaotic heaving motion of the foil. Finally, at a specific low frequency, the
slowly changing geometry leads to quasistatic relocation of the foil through a readjustment of the
flow. After observing such a diverse interaction between the flap-induced and flow-induced modes, a
question arises: is there an index that can classify the competition between these two characteristic
modes and represent the system behavior? This is achieved using the GW-mPOD analysis in the
next section.

IV. MODE COMPETITION BETWEEN FLAP-INDUCED AND FLOW-INDUCED MODES

We now apply the GW-mPOD analysis to the observed vorticity field and investigate the
interaction between different fluid dynamic modes that drive the foil’s heaving motion. More than
30 flap oscillation cycles with at least 10 snapshots per cycle are used to perform the modal analysis
for all the following cases.

Figure 10 demonstrates the GW-mPOD procedure for the foil-flap case of AoA = 10◦ and St f =
0.1. Here flap actuation is fixed at A = 1.5◦ and θ0 = 24◦. Figure 10(a) shows the discrete Fourier
transform of the geometrically weighted temporal correlation matrix, and based on the intensity
(spectral power), the correlation matrix is partitioned with the filter bank as shown in Fig. 10(b).
A conventional snapshot POD procedure [58] is then applied to each partition. The flow vorticity
modes are sorted based on their enstrophy contribution. All the leading modes contain pure spectral
contents and are associated with different dynamic responses.

The GW-mPOD is employed for representative cases identified in the previous section. The first
case is with a small-amplitude flap motion and St f = 0.1 [Fig. 10(c)]. Here mode 2 has the same
pattern and frequency as the uncontrolled case; thereby, it is called the flow-induced mode. On
the other hand, mode 4 has the same frequency as the flap oscillation and is denoted as the flap-
induced mode. We can see that there is little extended wake in this mode, so it affects only the
area close to the trailing edge. The trailing edge vorticity field shows two nonconvective vortical
structures formed through the slow flap sweeping motion. The slower motion does not create enough

044701-12



MODE COMPETITION IN A PLUNGING FOIL WITH AN …

FIG. 10. (a) The discrete Fourier transform (DFT) of the normalized temporal correlation matrix; (b) par-
titioned correlation matrix. (c) The spatial structure and spectrum of the leading modes of the case AoA = 10◦

with flap frequency St f = 0.1, amplitude A = 1.5◦, and average angle at θ0 = 24◦. The modes are normalized
based on their respective largest vorticity, which is the same for the following figures.

pressure change to force vortex shedding but can adjust the exit angle of the flow-induced wake at
the trailing edge. This is why the foil undergoes quasiperiodic motion, with two distinctive modes
superimpose upon each other. The slow modulation of the flap changes the direction of the steady
vortex shedding, modifies the lift force, and results in a low-frequency, high-amplitude heaving
motion.

Similar behavior can be observed for other flap frequencies with St f � 0.8 [Figs. 11(a) and
11(b)]. However, when the flap frequency reaches St f = 0.9 [Fig. 11(c)], the flap-induced vortices
propagate into the wake. At higher frequencies, the flap-induced mode has a clear extended wake
as demonstrated for St f = 1.2 [Fig. 11(d)]. There will be subsequent interference between the
flap-induced and flow-induced modes when the flapping frequency increases. Here a stronger
pressure gradient from the flap motion induces a new convective wake structure, and, consequently,
the interference between two energetically similar wakes promotes quasiperiodic motion of the foil.

The large flap oscillation amplitude of A = θ0 = 24◦ is considered next. Figure 12 shows the
leading flap-induced and flow-induced modes along with the frequency spectrum of the repre-
sentative cases. We observed that St f = 0.1 [Fig. 12(a)] exhibits large-amplitude, low-frequency
plunging motion similar to the case with small flap amplitude. The flap-induced mode also shows
a comparable spatial pattern, indicating that both cases are alike at modifying the exit angle of the
trailing edge wake. However, the vorticity intensity is much stronger here, and the flap-induced
mode contributes more to the enstrophy than the flow-induced mode. Once the flap frequency
increases beyond St f = 0.3, an extended wake develops. At the higher flap frequency of St f = 0.8
[Fig. 12(c)], the flap-induced and flow-induced modes share the same frequency, and the system
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FIG. 11. The spatial structures and spectra of the leading flap-induced and flow-induced modes of the case
AoA = 10◦ with flap amplitude A = 1.5◦, average angle θ0 = 24◦, and different flap frequency St f .

FIG. 12. The spatial structures and spectra of the flap-induced and flow-induced modes of the case
AoA = 10◦ with flap amplitude A = θ0 = 24◦ and different flap frequency St f . The modes are normalized
based on their respective largest vorticity.
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FIG. 13. Ratio of the leading flap-induced and flow-induced modal energy of AoA = 10◦ case with
(a) small flap amplitude A = 1.5◦ and average angle θ0 = 24◦ and (b) large amplitude A = θ0 = 24◦. See text
for explanation of the Roman numbers.

is in a perfect lock-in state. This is different from the small-amplitude case where the flow pattern
is similar, but the frequencies of these modes are different. By increasing the flap frequency to
St f = 1.2 [Fig. 12(d)], the flap- and flow-induced modes separate again.

We calculated the modal enstrophy ratio between the leading flap-induced (E f p) and flow-
induced (E f l ) modes for the small and large flapping amplitude and different flapping frequencies
(Fig. 13). In both cases, the enstrophy ratio can be divided into three regions. First, we consider the
small-amplitude case in Fig. 13(a). At low flap frequencies, E f p/E f l ∼ 0.8, but it suddenly jumps to
much larger values of E f p/E f l ∼ 1.2 when flap oscillation approaches the flow-induced vibration
frequency. The enstrophy ratio eventually drops gradually after St f > 1 to E f p/E f l ∼ 0.85. At a
much higher St f range, the ratio increases with a much milder slope. Although the plunging motion
could be classified as quasiperiodic with multiple distinct peaks in all cases, the three regions
indicate three different physical mechanisms, denoted with Roman numbers in Fig. 13. When the
flap oscillation amplitude and frequency are both small (I), the flap-induced mode is limited to
adjusting the exit angle of the flow-induced wake. At large flap frequency (III), the flap motion
induces extended wake, which has higher enstrophy and interferes with the flow-induced wake.
Finally, when the flap frequency approaches the flow-induced frequency (II), the two modes have
comparable enstrophy and similar spatial structure, which indicates the lock-in phenomenon where
the flow-induced mode transports enstrophy to the flap-induced mode and hence are correlated.
Recall that in Fig. 4(a) we also saw three different regions in the heaving frequency, and the reason
behind that is now clear: the flow-induced and flap-induced modes each have a different controlling
role at different flap frequencies.

The enstrophy ratio of the large-amplitude case shown in Fig. 13(b) reveals a different story
compared to the small-amplitude case. Now the flap-induced mode is always more energetic than the
flow-induced mode. Again, three distinct regions can be identified. The first region is associated with
a large dissimilarity of the flap-induced and flow-induced modal frequencies and E f p/E f l ∼ 4 (IV).
In this region, the flap-induced and flow-induced modes coexist, leading to quasiperiodic motion.
When the frequencies become closer, the enstrophy ratio increases to E f p/E f l > 5 (V), implying
that the flap-induced mode overpowers the flow-induced mode. The flap-induced vortex shedding
dominates the flow, but the slightly mismatched leading-edge vortex shedding results in an unsteady
lift force that eventually destabilizes the heaving motion. This explains why there are two branches
of low-frequency bands in Fig. 7(a): the flap-induced mode is dominant, and the flow-induced mode
is not locked in due to the larger frequency gap between them, leading to a chaotic foil heaving
behavior. Within the lock-in region we see that the enstrophy ratio drops to E f p/E f l ∼ 2 (VI). Once
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locked in, the leading edge vortex shedding is now guided by the trailing edge flap motion, and the
two modes excite the same flow modes. In both small- and large-amplitude cases, we observe that
the energy is transported from the more energetic to less energetic mode. Hence, the enstrophy ratio
is closer to unity. Due to the more energetic flap-induced mode, the lock-in region is wider for larger
flap amplitude cases.

We now summarize the findings from the GW-mPOD analysis. There are two competing modes:
flap-induced and flow-induced modes. When the flap oscillation amplitude is small, the two modes
have a similar energy level and coexist to create quasiperiodic heaving motion. When the flap
frequency is small, the flap quasistatically modifies the exit angles of the flow-induced wake, while
at higher flap frequencies, the flap induces an extended wake that interferes with the flow-induced
mode. On the other hand, when the flap oscillation amplitude is large, the flap-induced mode
contains considerably higher energy and is the dominant mechanism. Mainly, when the frequencies
of the two modes approach each other, a strong lock-in effect is observed. The trailing edge motion
guides the leading edge vortex shedding, and the two competing modes share a similar energy
content. The observations can also explain why, in the smaller flap amplitude cases, the flow
fields look similar throughout different actuation (Fig. 6), but in the larger flap amplitude cases,
flow changes significantly (Fig. 9). Basically, in the larger flap amplitude case, the flap-induced
modes have higher enstrophy and can strongly interfere with the flow-induced modes. GW-mPOD
successfully reveals how these two passive and active modes bring rich dynamics to the system. The
modal enstrophy ratio between these modes is identified as a predictive indicator of the nature of
plunging motion.

V. CONCLUSION

In this paper, we employed a strongly coupled FSI algorithm to study the flow around a deforming
geometry. Different analysis methods, including a geometrically weighted multiscale modal analysis
technique, are adopted to dissect the flow field. We explored dominant dynamic interaction modes
that could be useful for designing control strategies to regulate the flow-induced fluttering response.
Deployment of the GW-mPOD method leads to valuable observations of this complex FSI system,
summarized as follows: (1) when the flap amplitude and AoA of the foil are small, the flap and
flow-induced modes are equally important and the interaction between them primarily creates
quasiperiodic motion; (2) at larger flap amplitudes, the flap-induced vortex shedding dominates the
foil heaving motion, causing the heaving motion to lock onto the flap oscillation frequency; (3) the
ratio of the flap-induced and flow-induced GW-mPOD modal energy is a discriminative indicator of
the flow field and flow-induced vibration of the system. For the AoA considered, the active control
surface is an effective mechanism in modulating the flow and regulating the foil motion.

The proposed methodology utilizes multiscale analysis that considers both flow and structural
motion. It can be used to dissect the flow over other actively deforming bodies to differentiate the
potential role of competing modes. The energy content of the competing modes can be used to
evaluate the effectiveness of different active control methods and determine the optimal geometry
morphing.

Although it is shown that the observed dynamic response is robust with respect to the structural
stiffness and damping values, other aspects of the active flap-foil interaction such as flap size or
foil geometry require further investigation before their roles in the geometry-induced fluttering
phenomena can be thoroughly explained. Another improvement would be to expand the current
study to 3D setup using differential geometry techniques. Quasiconformal mapping techniques are
proper candidates for shape recognition and surface mapping. Methods like the discrete conformal
mapping (DCM) preserve the angle of the mesh while ensuring Laplacian conservation [59–61],
which are required ingredients to extend the proposed method to three dimensions. In addition,
advanced tracking techniques can be employed to handle transient deforming structures [62,63].
Finally, the proposed modal analysis can be adapted to develop reduced-order models for studying
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FIG. 14. (a) Instantaneous snapshot of the vorticity field with the resolution of 140×128, 280×256, and
560×512 in the radial and azimuthal directions, respectively. (b) Comparison of the heaving time histories with
three different grid resolutions.

different control strategies for morphing systems to achieve better mobility or achieve higher energy
extraction efficiency in nonuniform flow conditions.
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APPENDIX A: GRID REFINEMENT STUDY

A grid refinement study is performed by employing coarse (140×128), fine (560×512), and
medium (280×256) grid resolutions. Figure 14(a) compares the instantaneous snapshots of these
resolutions at the same time instance and the same simulation parameters (AoA = 20◦, θ0 = 22.5◦,
A = 22.5◦, St f = 0.4). Similar vortex fields are obtained for the medium and fine grids. The heaving
displacement time history plotted in Fig. 14(b) confirms that the medium resolution can capture the
foil movement accurately. Based on this, the medium resolution grid is selected for the current study.
We refer to [41] for the validation of the algorithm.

APPENDIX B: EFFECT OF STRUCTURAL STIFFNESS AND DAMPING

Figure 15 shows the average heaving displacement and oscillatory amplitude for different
flap frequencies and varied stiffness and damping values. As anticipated, the average heaving
displacement reduces inverse proportionally with the increase of kh. On the other hand, increasing
the damping does not change the average displacement much but merely decreases the heaving
amplitude. Changing the stiffness or damping does not significantly impact the dominant frequen-
cies, implying that the flap-induced and the flow-induced vortex shedding are still the main driving
force of the plunging motion. Hence, the observation discussed in the current paper could be drawn
to a wide range of structural parameters. However, from the preliminary analysis, the structural
properties profoundly impact the power generated when the damper is used as the energy harvesting
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FIG. 15. The average heaving displacement and heaving amplitude of (a) varied stiffness with fixed unity
damping and (b) varied damping with fixed unity stiffness.

mechanism. The subject of ongoing work is to identify optimal combinations of structural design
and active control to achieve the highest energy harvesting efficiency.
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