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In this paper, we present three-dimensional direct numerical simulations (3D DNS) of
vortex-induced vibrations of an elastically mounted circular cylinder near a stationary wall
at a subcritical Reynolds number of 500. The circular cylinder can oscillate in both the
streamwise and transverse directions. A typical gap of 0.8D between the cylinder surface
and the stationary wall was selected to evaluate the characteristics of the responses and
vortex dynamics in the presence of a stationary wall and boundary layer. We observe
that the vibration response is two-branched, with two desynchronization regions lying
at the ends of the simulated Ur range. Because of the wall proximity, the dominant
vibration frequencies in the two directions are generally identical, and the trajectories of
the displacement significantly differ in each branch. Figure-eight, combined figure-eight
and raindrop, raindrop, and chaotic trajectories appear successively with increasing Ur ,
dominating the first desynchronization region, initial branch, lower branch (LB), and
second desynchronization region (DS-II), respectively. In addition, the phase lag between
the lift and displacement jumps from 0° to 180° at the transition between the LB and DS-II.
Furthermore, we evaluated the three-dimensionality of the wake through the instantaneous
vortical structures, spanwise-averaged vorticity contours, and statistics of the enstrophies.
We found that the three-dimensionality increases linearly with the amplitude, leading to
substantial variations in the vortex dynamics. The statistics of the gap flow indicates that
the mean gap flow velocity is determined by only the time-averaged gap, whereas the
fluctuating gap flow velocity is governed by the amplitude. Finally, the flow physics behind
the response was analyzed using the time histories of the displacement, gap flow velocity,
drag and lift coefficients, and vorticity contours in one vibration period. We observed that
the interactions of the vortices with the wall-generated boundary layer play significant roles
in altering the cylinder vibration. In the small-amplitude case, the boundary layer merges
with the freestream-side vortex of the cylinder, forcing the gap-side vortex to pair with the
freestream-side vortex. In contrast, in the large-amplitude case, the gap-side shear layer
collides with the boundary layer and disintegrates into small parts, resulting in negative
vortices in the wake.

DOI: 10.1103/PhysRevFluids.7.044607

I. INTRODUCTION

The vortex-induced vibration (VIV) of a circular cylinder in unbounded flow has been extensively
investigated in the past several decades due to its scientific and practical significance. The theory
behind this fluid-structure interaction (FSI) issue has been established. Relevant studies have been
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reported in several review papers and books [1–7]. However, engineering applications, such as
marine pipelines above the seabed, heat exchanger tubes adjacent to walls in a nuclear reactor, and
chimneys near tall buildings, are frequently encountered. Compared to the wall-free configuration,
the wall confinement and boundary layer can drastically alter the vibration and vortex dynamics
of cylindrical structures. In this study, we focus on the three-dimensional flow characteristics and
vibration behaviors of a circular cylinder near a stationary wall in the subcritical flow regime, and
we explore the flow physics of near-wall VIV.

Both the vibration and vortex dynamics of a circular cylinder close to a stationary wall are
significantly altered by the wall confinement and interactions with the boundary layer. Tsahalis and
Jones [8] found that unlike the figure-eight trajectories of an unbounded cylinder, the trajectories of
a cylinder near a flat plane are oval-shaped. Similar results were reported by Kozakiewicz et al. [9].
Chern et al. [10] numerically observed that the presence of a boundary layer can lead to increased
streamwise amplitude and decreased transverse amplitude. Fredsøe et al. [11] showed that when
the reduced velocity Ur = U∞/ fnD (U∞ is the incoming flow velocity, fn is the natural frequency
of the cylinder, and D is the cylinder diameter) is less than 3 and the gap ratio G/D (G is the
distance between the cylinder surface and the stationary wall) is larger than 0.3, the transverse
vibration frequency is close to the vortex shedding frequency of a stationary cylinder but deviates
when 3 < Ur < 8 and G/D < 1. Raghavan et al. [12] found that at G/D < 3.0, the wall-generated
boundary layer has a strong impact on the vibration response, vortex shedding frequency, and
onset of lock-in. Moreover, they observed that the vibration amplitude also depends strongly on the
Reynolds number Re (=U∞D/ν, where ν is the kinematic viscosity) and the normalized boundary
layer thickness δ/D (δ is the boundary layer thickness). Yang et al. [13] experimentally discovered
that with increasing G/D, the vibration amplitude increases, but the vibration frequency varies
slightly when G/D > 0.66. In addition, the cylinder vibration is easier to initiate in the presence
of the plane boundary. Fu et al. [14] experimentally observed that wall effects can accelerate vortex
shedding and force the occurrence of lock-in at a higher frequency. Li et al. [15] numerically found
that in near-wall VIV, the streamwise amplitude is significantly amplified. Similar results were
reported by Chen et al. [16,17]. Tham et al. [18] found that with decreasing G/D, the lock-in
width increases, and a third branch, between the initial branch (IB) and the lower branch (LB),
appears at G/D � 0.6. Barbosa et al. [19] observed that at a large G/D (>2.0), the vibration
amplitude of the lock-in region is not affected by the wall proximity. At an intermediate G/D
(=0.75–2.0), the vibration amplitude decreases while the oscillation remains symmetric to the
equilibrium position. At a small G/D (<0.75), asymmetric vibration appears, and the cylinder
may collide with the stationary wall in some cases. Zhao and Cheng [20] numerically observed
that VIV can be excited even when G/D is 0.002, at which the vortex shedding of the inner shear
layer is completely suppressed in the stationary case. Chung [21] numerically studied the transverse
VIV of a circular cylinder near a stationary wall at G/D = 0.06, 0.3, and 31.5, and found that with
increasing G/D, the lock-in width increases while the maximum vibration amplitude decreases. In
addition, the time-averaged lift is positive for all three G/D cases, suggesting repulsive cylinder-wall
interactions.

Regarding the vortex-shedding patterns, Wang et al. [22] conducted a series of water channel
experiments on the near-wall VIV of a circular cylinder at G/D = 0.05–2.5 and Ur = 1.53–6.62
with a mass ratio m∗ (=m/m f , where m is the cylinder mass and m f is the displaced fluid mass)
of 1.0. They found that at small values of G/D, the vortices are only shed from the freestream
side, leading to a single-side vortex shedding pattern. However, at large G/D, two rows of vortices
occur due to the weak wall effects. Li et al. [23] identified four vortex-shedding patterns from the
near-wall VIV, referred to as W2S(A) (comparable vortices shed from both sides of the cylinder),
W2S(B) [similar to W2S(A) but with weaker gap-side vortices], 1S (no vortex shed from the gap
side), and NS (no vortex shed from both sides). Daneshvar and Morton [24] experimentally found
that the cylinder amplitude increases as G/D decreases. When G/D is smaller than a critical value, a
collision between the cylinder and the stationary wall occurs. Six different types of vortex-shedding
patterns were found, namely 2S, 2P, 2S+S, 2P+S, S, and P. The latter two arise when significant

044607-2



THREE-DIMENSIONAL DIRECT NUMERICAL …

suppression of the gap-side shear layer occurs. In the 2S pattern, one vortex is shed from each side
of the cylinder in one vibration period, while in the 2P pattern, two vortices are shed from each
side of the cylinder [25]. The 2S+S and 2P+S patterns are similar to the 2S and 2P patterns with
an extra vortex separated from the uplifted boundary layer. When the vortex shedding at the gap
side is suppressed, one or two vortices are shed from the freestream side of the cylinder, leading to
the occurrence of the S or P pattern. Gao et al. [26] numerically studied surface roughness effects
on near-wall VIV and found three vortex-shedding patterns, i.e., 2S, P+S, and 2P, with the former
dominating a major part of the simulated parametric range. Here, P+S indicates the wake mode
with a vortex pair shed from the freestream side while a single vortex is shed from the gap side.
Chen and Wu [27] numerically observed that the gap-side vortices of the cylinder are completely
suppressed at G/D < 0.5, resulting in the 1S pattern. Peter and De [28] observed from a forced
near-wall system that when the forced vibration frequency is close to the stationary vortex-shedding
frequency, the vortices are shed from both sides at a larger gap distance. In contrast, when a higher
frequency is applied, multiple interconnected vortices appear in the wake.

From the above literature review, it is clear that although the VIV of a circular cylinder near a
plane boundary has been widely investigated, three-dimensional (3D) wake structures, providing
detailed information regarding the spatiotemporal variations of the near-wall VIV, are still scarce.
In this study, we focus on the vibration response and vortex dynamics of the near-wall VIV
with varying Ur by performing 3D direct numerical simulations (DNSs). Both the wake three-
dimensionality and the flow physics are elucidated. A subcritical Re of 500 is adopted and the
gap ratio is constant at G/D = 0.8, at which the interaction between the vibrating cylinder and the
stationary wall is violent [16,18,19]. The remainder of this paper is structured as follows. In Sec. II,
the details of the adopted numerical methodology and validation cases are given. In Sec. III, the
hydrodynamic forces, vibration amplitude, spectral frequencies, trajectories of the displacement,
wake three-dimensionality, gap flow velocity, time-averaged flow fields, and flow physics for each
region are presented. In Sec. IV, the main findings of this study are summarized.

II. NUMERICAL METHODOLOGY AND VALIDATION CASE

The governing equations for the fluid flow are the incompressible Navier-Stokes equations
defined as follows:

∂u
∂t

+ ∇ · (uu) = −∇p + ∇(ν(∇u + ∇ut )), (1)

∇ · u = 0, (2)

where u is the velocity, p is the pressure, ∇ denotes the gradient operator, and ν is the kinematic
viscosity. The two-step predictor-corrector procedure is adopted for the decoupling of the flow
governing equations, and the resultant pressure Poisson equation is solved using the BiCGSTAB
(Biconjugate gradient stabilized method) [29]. The second-order Adams-Bashforth time marching
scheme—a numerical method for solving ordinary differential equations, in particular the initial
value problem, is employed to calculate the new velocity field.

The dynamics of an elastically supported circular cylinder is simplified as a mass-damper-spring
system. In this study, the cylinders are free to oscillate in both the streamwise and transverse
directions, and the governing equations of the cylinder motions are as follows:

mẍ + cẋ + kx = FD, (3)

mÿ + cẏ + ky = FL, (4)

where m is the mass of the cylinder, c is the structural damping, k is the stiffness coefficient, x
and y are the displacement in the streamwise and transverse directions, respectively, and FD and
FL are the drag and lift, respectively. The governing equations for cylinder motion are based on
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FIG. 1. (a) Computational domain and boundary conditions, (b) mesh settings in the x-y plane, and (c)
mesh around the cylinder for the near-wall VIV of a circular cylinder at Re = 500. The rectangular region
(red) in (b) denotes the uniform mesh region. The center of the cylinder is at (x, y) = (−3.5D, −1.7D).

Newton’s second law and are solved using the second-order Newmark-β method—a method of
numerical integration used to solve differential equations and widely used in numerical evaluation
of the dynamic response of structures.

The fluid-structure interaction (FSI) is simulated using the immersed boundary method (IBM),
which was first introduced by Peskin [30] to simulate the blood flow around the flexible leaflet of a
human heart. In the framework of the IB method, the flow governing equations are discretized on a
fixed Cartesian grid which generally does not conform to the geometry of the moving solids. As a
result, the boundary conditions on the fluid-cylinder interface, manifesting the interaction between
the fluid and the structure, cannot be imposed directly. Instead, an extra body force is added to
the momentum equation using interpolation and distribution functions to take such interaction into
account. For the sake of conciseness, the readers are referred to our previous works [31–34] to
obtain further details of the methodology.

In the present 3D DNS, the streamwise and transverse lengths of the computational domain are
Lx (=L1 + L2) = 55D and H = 40D, respectively [Fig. 1(a)]. Here, L1 (=25D) and L2 (=30D)
denote the lengths of the no-slip wall upstream and downstream of the cylinder center, respectively.
To guarantee the accuracy of the numerical results, a rectangular region of 9D × 6D is discretized
using a uniform mesh with a nondimensional grid spacing of �x/D (�y/D) = 1/64 in both the
streamwise and transverse directions. Outside this region, a stretched mesh is adopted to maintain
the total grid number within an affordable range. In the spanwise direction, the cylinder length is
12D with a resolution of �z = 0.0625D. A Dirichlet-type boundary (u = U∞, v = 0, w = 0) is
adopted at the inflow, whereas a Neumann-type boundary (∂u/∂x = 0, ∂v/∂x = 0, ∂w/∂x = 0)
is employed at the outflow; further, the top boundary is free-slip (∂u/∂y = 0, v = 0, ∂w/∂y = 0),
while the bottom boundary is no-slip (u = v = w = 0). The periodic boundary condition is applied
in the z direction. The no-slip boundary condition is applied on the cylinder surface, that is, the fluid
velocity is the same as the vibration velocity of the cylinder.

In the simulations of VIV of a circular cylinder in proximity to a stationary wall, the Reynolds
number based on the incoming flow velocity is Re = 500 and the mass ratio of the cylinder is
m∗ = 2.0. Given the fact that when G/D > 1.0 the proximity wall effects become insignificant
[15,19,22,35], G/D = 0.8 is adopted for exploring the changes in the response and vortex dy-
namics caused by the stationary wall. The reduced velocity is Ur = U∞/ fnD = 1.0–9.0, where
fn (= 1

2π

√
k/m) is the natural frequency of the cylinder. Note that, in this study, Ur is varied by
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TABLE I. Comparison of the amplitude, hydrodynamic forces, and vibration frequency for the VIV of an
isolated circular cylinder at Re = 500, Ur = 6.0, and m∗ = 2.0. The cylinder vibrates in both the transverse
and streamwise directions.

Ax Ay C̄D St

Wang et al. [36] 0.028 0.634 1.647 0.167
Present 0.0277 0.621 1.571 0.162
Difference (%) 1.1 2.1 4.6 3.0

changing the spring stiffness (k). The structural damping ratio is set as zero to achieve larger
vibrations. According to the distance (L1 = 25D) of the inlet boundary to the cylinder center, the
normalized boundary layer thickness is δ/D = 1.12 at the cylinder center if the cylinder is absent.
In this study, the circular cylinder can oscillate in both the streamwise and transverse directions.

The nondimensional amplitudes in two directions are defined as Ax = √
2xrms/D and Ay =√

2yrms/D, respectively, where xrms and yrms are the rms values of the displacement in the stream-
wise and transverse directions. The spanwise-averaged drag (CD) and lift (CL) coefficients are
CD = FD/ 1

2ρU 2
∞DLz and CL = FL/ 1

2ρU 2
∞DLz, respectively, where FD and FL are the drag and

lift forces on the cylinder, and Lz is the cylinder length. C̄D, C̄L, C′
D, and C′

L are the mean drag and
lift coefficients and the rms drag and lift coefficients, respectively. The phase lag (ϕ) between the
lift and the transverse displacement is obtained through the Hilbert transform (HT). The spectra of
the displacement and hydrodynamic forces are obtained through the fast Fourier transform (FFT).

The numerical method is validated through the VIV of an isolated circular cylinder at
Re = 500. According to the comparative study, the circular cylinder is vibrated in both the
transverse and streamwise directions. The computational domain sizes are the same as those
(X × Y × Z = 40D × 20D × 12D) in Wang et al. [36]. As indicated in Table I, the results agree
well with the published data, suggesting a high accuracy of the present simulations.

Further, to ensure that the adopted L2 and H is large enough, simulations with a doubled L2 or
a doubled H were performed for the VIV of a circular cylinder in proximity to a stationary wall at
Ur = 5.0. It is seen from Table II that the results of L2 = 30D and H = 40D agree well with those
of the doubled-L2 and doubled-H cases, indicating that the adopted L2 and H are appropriate for
the simulations. Moreover, the grid convergence study for flow past a circular cylinder at Re = 500
in our previous work [37] proves that the results at �x/D (�y/D) = 1/64 are well within the
asymptotic range of the convergence. For the sake of conciseness, the details are not given here, and
readers are referred to Chen et al. [37].

III. RESULTS AND DISCUSSION

A. Time histories of the displacements, vibration amplitudes, and frequencies

Figure 2 shows the time histories of the displacements in the streamwise and transverse directions
at different reduced velocities. In general, at most reduced velocities, the streamwise displacement

TABLE II. Comparison of the results for VIV of a circular cylinder in proximity to a stationary wall at
L2 = 30D, H = 40D, with those at a doubled L2 or a doubled H . Other parameters are Re = 500, G/D = 0.8,
Ur = 5.0, and m∗ = 2.0. The cylinder vibrates in both the transverse and streamwise directions.

C̄D C
′
D C̄L Ax Ay St

L2 = 30D, H = 40D 1.561 0.153 0.076 0.091 0.407 0.189
L2 = 60D, H = 40D 1.579 0.155 0.076 0.092 0.408 0.187
L2 = 30D, H = 80D 1.559 0.153 0.076 0.091 0.408 0.191
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FIG. 2. Time histories of the streamwise and transverse displacements in the VIV of a circular cylinder in
proximity to a stationary wall at Re = 500 and G/D = 0.8. Note that at Ur = 6.5, t∗ ranges from 500 to 800.
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FIG. 3. Power spectral density (PSD) of the displacements in two directions for the VIV of a circular
cylinder in proximity to a stationary wall at Re = 500 and G/D = 0.8 for (a) the streamwise displacement and
(b) the transverse displacement.

is more irregular than the transverse displacement. As illustrated in Figs. 2(a) and 2(c), the
streamwise displacement at Ur = 1.0–2.0 irregularly fluctuates with a very small range amplitude.
In contrast, although the fluctuation of the transverse displacement at Ur = 1.0–2.0 is also small,
it is approximately periodic [see Figs. 2(b) and 2(d)]. At Ur = 3.0, the displacements in both
directions are slightly increased and resemble a synchronized beating phenomenon [Figs. 2(e) and
2(f)]. At Ur = 3.5, the beating behavior disappears in the displacements in both directions. The
streamwise displacement remains irregular while the transverse displacement is perfectly periodic
[Figs. 2(g) and 2(h)]. At Ur = 4.0–6.5, the displacements in both directions are significantly
amplified [Figs. 2(i)–2(p)]. In this region, the transverse displacement decreases gradually with
increasing Ur , a feature similar to that of a lock-in branch in an isolated circular cylinder. In addition,
the transverse displacement remains periodic in this region, indicating synchronized vortex shedding
along the cylinder span, while the regularity of the streamwise displacement increases slightly with
increasing Ur . However, at Ur = 7.0–9.0, the displacements in both directions become irregular
again, and the fluctuations become insignificant [Figs. 2(q)–2(v)]. Although the fluctuations at the
low (=1.0–2.0) and high Ur (=7.0–9.0) are both minor, the transverse displacement in the low-Ur

case is more regular than that in the high-Ur case. As will be shown later, the low-frequency
components induced by the dislocations of vortex shedding along the cylinder length exhibit
negligible effects on the vibration in the low-Ur case.

Figure 3 depicts the power spectral density (PSD) results of the displacements in both directions
at different reduced velocities. Generally, the dominant frequencies in both directions are identical,
a feature that is considerably different from that of the VIV of an isolated circular cylinder [3,38]. At
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FIG. 4. The modes extracted from the z-vorticity field using DMD analysis at Ur = 3.0 where the beating
phenomenon is observed. (a) Mode 1 at f = 0.234 and (b) mode 2 at f = 0.253.

Ur = 1.0–2.0, the dominant frequencies in both directions are constant at 0.241, which is the same
as the vortex shedding frequency (St = 0.241) of the stationary circular cylinder. The vibration is
desynchronized. At Ur = 3.0, corresponding to the beating phenomenon, two comparable frequen-
cies, i.e., f = 0.234 and 0.253, are observed at the displacements in both directions. The beat-related
frequency is 0.019, which is equal to the difference between the two comparable frequencies. The
phenomenon has been reported in Navrose et al. [39] and Kumar et al. [40] that in the early
stage of the initial branch (IB), the vibration frequency and the vortex shedding frequency are
desynchronized, thus leading to the occurrence of the quasiperiodic behavior [40]. To identify the
natures of the frequency components, the dynamic mode decomposition (DMD) of 500 snapshots
of the z-vorticity ωz at z/D = 6.0 was performed, with each mode consisting of a pure frequency
component [41–43]. As shown in Fig. 4(a), the modal pattern at f = 0.234 shows the features of
the Hopf bifurcation [44], corresponding to the alternate vortex-shedding of a cylinder in proximity
to a plane. However, different from the symmetric DMD mode of an isolated cylinder, the DMD
mode in Fig. 4(a) deflects upward because of the biased gap flow. As shown in Fig. 4(b), the modal
pattern at f = 0.253 shows distinct features from that at f = 0.234, being strong around the cylinder
only. The modal component dissipates quickly downstream, signifying that this mode is related to
the cylinder vibration. At Ur = 3.5, the dominant frequencies in both directions become identical
again. Although the second-harmonic frequency is observed in both directions, its component of the
transverse displacement is much smaller than that of the fundamental frequency, while it becomes
comparable in the streamwise displacement. At Ur = 4.0–6.5, the dominant frequencies in both
directions are identical and decrease gradually with increasing Ur . Similar to that at Ur = 3.5,
the second-harmonic frequency of the transverse displacement has an insignificant amplitude, and
the transverse displacement is approximately periodic. However, in the streamwise displacement,
the component of the second-harmonic frequency is close to that of the fundamental frequency.
At Ur = 7.0–9.0, the dominant frequencies in both directions are constant at 0.241, which is the
same as that at Ur = 1.0–2.0. Therefore, desynchronization dominates again. Similar to that at
Ur = 3.5–6.5, the second-harmonic frequency is evident only in the streamwise displacement.

Figure 5 illustrates the variations in the amplitudes, vibration frequencies, and time-averaged
displacements in the two directions with increasing Ur . According to the characteristics of the am-
plitudes and frequencies, the branches and their corresponding Ur ranges are presented in Table III.
In the desynchronized branch (DS), i.e., Ur = 1.0–2.0 and 7.0–9.0, the amplitude is close to zero
and the dominant frequency exactly follows the vortex shedding frequency (St) of the stationary
case [Figs. 5(a) and 5(b)]. That is, the weak vibration does not affect the vortex shedding process.
In the IB (Ur = 3.0–3.5), the vibration frequency deviates from the vortex shedding frequency of
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FIG. 5. Variations in the amplitudes, vibration frequencies, and shift of time-averaged displacements in the
VIV of a circular cylinder in proximity to a stationary wall with Ur at Re = 500 and G/D = 0.8.

the stationary case, indicating the presence of soft lock-in [45,46]. In this branch, the amplitude in
the transverse direction increases significantly, being much larger than the streamwise amplitude
[Fig. 5(a)]. In the LB (Ur = 4.0–6.5), the normalized frequency ( f / fn) slightly increases from
0.81 (Ur = 4.0) to 0.92 (Ur = 6.5), signifying the occurrence of lock-in [Fig. 5(b)]. Due to the
added mass effects and the low m∗ (=2.0) adopted, f / fn is slightly smaller than unity in the
lock-in region. In the LB branch, the transverse displacement is approximately periodic, while
the streamwise displacement is relatively irregular. The largest transverse amplitude (Ay = 0.48)
is obtained at the beginning of this branch, while the streamwise amplitude continues to increase
until Ur = 5.0 where the peak (Ax = 0.09) occurs, and afterwards it decreases slightly [Fig. 5(a)].
As will be shown later, because of the change in vortex shedding timing, there is a sudden decrease
in the amplitude when transforming to the second desynchronization region (DS-II). Compared to

TABLE III. Branches and their corresponding Ur ranges for the VIV of a circular cylinder in proximity to a
stationary wall at Re = 500 and G/D = 0.8. DS: desynchronized branch; IB: initial branch; LB: lower branch;
DS-I and DS-II are the two subbranches of the DS.

Branch DS-I IB LB DS-II

Ur 1.0–2.0 3.0–3.5 4.0–6.5 7.0–9.0
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the largest vibration amplitude (Ay ∼1.0) in the high-Re VIV of an isolated circular cylinder, the
largest vibration amplitude (Ay = 0.48) is substantially lower in this study, leading to the absence of
the upper branch [47]. This can be attributed to the low Reynolds number (Re = 500) adopted in this
study, where the viscous effect of the fluid is relatively significant. Similar results were presented
in the two-degree-of-freedom VIV of an isolated circular cylinder at the same Reynolds number in
Wang et al. [37], with a comparable largest amplitude of Ay = 0.634 and showing no upper branch.
The smaller largest amplitude in this study, compared to that in Wang et al. [37], is the fallout of the
adjacent bottom wall.

Figure 5(c) shows the shift in the time-averaged displacements in both directions with increasing
Ur . The shift in the transverse displacement is close to zero except at Ur = 3.5 and 4.0, while that
in the streamwise displacement increases gradually with increasing Ur .

Figure 6 presents the trajectories and phase lags of the displacements in the two directions.
Although the displacements are slightly irregular, the trajectories in the DS-I are figure-eight
shaped [Figs. 6(a) and 6(b)]. In the IB, the trajectories show a combination of figure-eight and
raindrop shapes, which are consistent with the presence of multiple frequencies in the streamwise
displacement [Figs. 6(c) and 6(d)]. In the LB, the trajectories are raindrop-shaped, with their heads
towards the upstream except at Ur = 4.0 [Figs. 6(e)–6(h)]. As the low frequencies become evident,
the trajectories in the DS-II become completely chaotic [Figs. 6(i)–6(k)].

From the above discussion, it is clear that significant differences are induced by the presence of
the stationary wall, which suggests distinct flow physics related to the response.

B. Fluid forces and spectral frequencies

Figure 7 depicts the time histories of the drag and lift coefficients at different reduced velocities.
In the DS-I, the drag coefficient shows a small fluctuation, while the fluctuating lift coefficient
increases significantly with increasing Ur [Figs. 7(a) and 7(b)]. In contrast, the variations in the
drag and lift coefficients at Ur = 3.0 and 3.5 in the IB are significantly different. As indicated in
Figs. 7(c) and 7(d), at Ur = 3.0, both the drag and lift coefficients exhibit the beating features,
while at Ur = 3.5 they are relatively regular. Because of the increased amplitude, the fluctuating lift
coefficient at Ur = 3.5 is significantly larger than that at Ur = 3.0. In the LB, consistent with the
periodic displacements, both the drag and lift coefficients are relatively regular [Figs. 7(e)–7(h)].
As the amplitude decreases with increasing Ur , the fluctuating drag and lift coefficients decrease
gradually. In the DS-II, the amplitudes in both directions are close to zero, and correspondingly,
both the drag and lift coefficients display small fluctuations [Figs. 7(i)–7(k)]. Comparing Figs. 7(a)
and 7(b) and Figs. 7(i)–7(k), the fluctuating lift coefficient in the DS-II is smaller than that in the
DS-I.

Figure 8 presents the statistics of the drag and lift coefficients at different reduced velocities. As
shown in Fig. 8(a), both C̄D and C′

D have similar behaviors, i.e., first increasing and then decreasing
with increasing Ur . In the DS-I and DS-II, both C̄D and C′

D are approximately equal to those of the
stationary case. The largest C̄D and C′

D are observed at the same Ur (=4.0), corresponding to the
beginning of the LB. Similarly, both C̄L and C′

L first increase and then decrease with increasing Ur

[Fig. 8(b)]. However, the peaks of C′
L and C̄L are not reached at the same Ur , with the largest C′

L
occurring at Ur = 3.5, while the largest C̄L occurs at Ur = 4.0. This phenomenon has been reported
in Chung [21], Li et al. [15,23], and Chen et al. [16], and it will be explained later.

To illustrate the forcing process and the consequent response, CL is decomposed into two

components, with one (CL,a =
√

2C̃Ly√
y2

) being in phase with the cylinder acceleration and the other

(CL,v =
√

2C̃L ẏ√
ẏ2

) being in phase with the cylinder velocity, where C̃L is the fluctuation of the lift

coefficient, defined as C̃L = CL − C̄L [48,49]. As shown in Fig. 8(c), C̄L,v related with the energy
transfer between the flow and the cylinder maintains at approximately zero in the whole Ur range.
This is expected given the fact that in the self-sustained vibration, without structural damping,
the time-averaged net energy transfer should be zero [49]. However, C̄L,a remains positive until
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FIG. 6. Trajectories of the displacements in both directions in the VIV of a circular cylinder in proximity
to a stationary wall at Re = 500 and G/D = 0.8. The phase lags between the displacements of both directions
are presented. Due to the chaotic displacement at Ur = 7.0–9.0, no phase lags were obtained.

Ur = 7.0, where the phase lag between the lift and displacement changes from 0° to 180°, as shown
later. As stated in [48], since the lift acts in the opposite direction to the body’s motion, the response
is significantly weakened. As indicated in Fig. 5(b), the phase jump occurs at the response transition
from LB to DS-II, where fy/ fn crosses 1.0 from a lower value. However, this is different from the
positive-to-negative transition of C̄L,a, demarcating the upper and lower branches, in the VIV of an
isolated circular cylinder in [48], and it can be attributed to the absence of the upper branch in this
study due to the low-Re effect.

As shown in Fig. 8(b), the largest values of C′
L and C̄L are not achieved at the same Ur . As

a matter of fact, in the near-wall configuration, C̄L depends significantly on the distance between
the cylinder and the stationary wall [16]. Because of the near-wall suppression at G/D = 0.8, the
gap-side shear layer of the cylinder is weaker than the freestream-side one. As a result, the pressure
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FIG. 7. Time histories of the drag and lift coefficients in the VIV of a circular cylinder in proximity to a
stationary wall at Re = 500 and G/D = 0.8. Note that at Ur = 6.5, t∗ ranges from 500 to 800.

is lower on the freestream side than that on the gap side, and C̄L is positive. Moreover, the value of C̄L

is closely related with the vibration amplitude because large-amplitude vibrations further intensify
the shear-layer strength difference and also the pressure difference on the two sides. As shown in
Fig. 8(c), C̄L,v is virtually zero in the whole Ur range, while C̄L,a peaks at Ur = 3.5. As shown in the
VIV results of an isolated cylinder [48], C̄L,a, which is related to the fluid inertia, peaks near the end
of the initial branch and decreases at a larger Ur . This is also true for the near-wall VIV as indicated
in Fig. 8(c). Because C̄L,a dominates C′

L, the largest C′
L is obtained at Ur = 3.5 as C̄L,a.
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FIG. 8. Statistics of the drag and lift coefficients in the VIV of a circular cylinder in proximity to a
stationary wall at Re = 500 and G/D = 0.8: (a) for the drag coefficient, (b) for the lift coefficient, and (c)
the decomposition of the lift coefficient.

Figure 9 displays the PSD results of the drag and lift coefficients at different reduced velocities.
In the DS-I and DS-II, the dominant drag and lift frequencies are identical, with the same values as
those of the stationary case. The second-harmonic frequency is observed in both DS-I and DS-II,
and its amplitude is comparable to that of the fundamental frequency. In the IB, the dominant drag
and lift frequencies become smaller than those of the stationary circular cylinder. With increasing
Ur , the frequencies decrease slightly. Furthermore, corresponding to the beating phenomenon, two
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FIG. 9. PSD results of the drag and lift coefficients in the VIV of a circular cylinder in proximity to a
stationary wall at Re = 500 and G/D = 0.8 (a) for the drag coefficient and (b) for the lift coefficient.

comparable frequencies are observed at Ur = 3.0 in both the drag and lift PSDs, and their values
are identical to those of the displacement PSD. In the LB, the dominant drag and lift frequencies
decrease with increasing Ur , with both the second and third harmonics existing. For the drag
coefficient, the second harmonic has a larger amplitude than that of the fundamental frequency,
while for the lift coefficient, the second harmonic appears only when Ur > 4.0.

C. Phase lags between the lift and displacement

Figure 10 shows the phase lag between the lift and displacement at different reduced velocities. It
should be mentioned that only the fundamental components of the lift and displacement are applied
to obtain the phase difference [49]. It is indicated that the phase lag is maintained at 0° in DS-I,
IB, and LB, while a phase-lag jump from 0° to 180° occurs at the transition from LB to DS-II. A
similar result has been reported in Chen et al. [16]. Contrastingly, in the VIV of an isolated cylinder
at a similar Re, the phase-lag jump appears in the middle of LB [50]. Therefore, the proximity of a
stationary wall leads to the delay of the phase-lag transition in the near-wall VIV [16].

D. Three-dimensionality of the wake structures

The wake three-dimensionality is discussed thoroughly from the aspects of instantaneous vortical
structures, spanwise-averaged vorticity contours, statistics of the enstrophy, and plane vorticity
contours. Figure 11 illustrates the instantaneous vortical structures at different reduced velocities
when the cylinder is at the top. Generally, the vortical structures vary significantly with increasing
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FIG. 10. Phase lag between the lift and displacement in the VIV of a circular cylinder in proximity to a
stationary wall at Re = 500 and G/D = 0.8.

Ur . As shown in Figs. 11(a) and 11(b), at Ur = 1.0, the gap-side vortex shedding of the cylinder is
not synchronized along the span, with the middle part of the cylinder slightly leading the two ends.
Although the shear layers along the span remain two-dimensional, the streamwise vortices appear
but dissipate quickly. From the top view, the freestream-side vortices have higher strengths than the
gap-side ones, therefore they can persist longer downstream [Fig. 11(b)]. At Ur = 2.0, the vortex
shedding along the cylinder span becomes approximately synchronized [Figs. 11(c) and 11(d)].
Similar to that at Ur = 1.0, the stationary wall suppresses the development of the gap-side shear
layer, and correspondingly, the freestream-side vortices are slightly stronger than those of the gap
side.

As shown in Figs. 11(e)–11(h), the spanwise vortices at Ur = 3.0 and 3.5 are more irregular
than those in the DS-I. As the transverse amplitude increases, the gap-side vortices display stronger
interactions with the wall-generated boundary layer. As expected, the gap-side vortices become
irregular at a shorter downstream compared to the freestream-side vortices. Moreover, comparing
Figs. 11(e) and 11(g), the irregularity of the gap-side vortices is significantly intensified from Ur =
3.0 to 3.5 due to the enlarged amplitude and the smaller distance to the stationary wall.

Similar to that in the IB, an obvious feature of the LB caused by the enlarged amplitude is that the
coherence of the shear layer along the cylinder span becomes stronger. However, it should be noted
that the increased amplitude does not lead to the vortices formed along the span being regular in the
wake [Figs. 11(i)–11(p)]. In contrast, the vortical structures in the near wake become more chaotic
with increasing transverse amplitude because of the stronger interactions with the boundary layer
and the interferences by the vortices on both sides of the cylinder. The increased amplitude causes
the cylinder to move closer to the stationary wall, and at the same time, the vortices on both sides of
the cylinder interact at a closer distance downstream. Therefore, the spanwise vortices become wavy
and scattered in the near wake, and the streamwise vortices dissipate quickly after the formation.

In the DS-II, the vibration amplitude reverts to approximately zero again. As depicted in
Figs. 11(q)–11(v), the vortical structures at Ur = 7.0–9.0 are almost the same. As indicated in
Figs. 11(r), 11(t), and 11(v), the freestream-side vortices along the cylinder span are not synchro-
nized, and the dislocations persist as the vortices move downstream. Due to the stabilizing role of
the gap flow, the gap-side vortices along the cylinder span are more synchronized [Figs. 11(q), 11(s),
and 11(u)]. The gap-side streamwise vortices have a hairpin-like shape and are carried by the gap
flow deflecting upward, with the heads slightly higher than the tails. Because of the interactions with
the freestream-side vortices, these hairpin vortices dissipate in the near wake.

From the above discussion, we observe that the vortical structures show obvious three-
dimensional features. In the DS-I and DS-II where the vibration amplitude is approximately zero,
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FIG. 11. Instantaneous vortical structures represented by the isosurface at λ2 = −1 for the VIV of a circular
cylinder in proximity to a stationary wall at Re = 500 and G/D = 0.8. Colors denote the nondimensional
Z-vorticity in the range of −2 to 2 with an increment of 0.2, with blue and red representing the negative and
positive z-vorticity, respectively. The left column shows the wake viewed from the bottom, while the right
column shows the wake viewed from the top. The instant that the cylinder is at the highest position is selected
for each Ur case.
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FIG. 11. (Continued.)

the vortex shedding dislocations along the span are evident. However, in the IB and LB, because
of the enlarged vibration amplitude, the vortex shedding along the cylinder span becomes stronger
and more synchronized. As the cylinder moves closer to the stationary wall, the interactions with
the boundary layer are intensified and, therefore, the gap-side vortices show more irregularity
while quicker dissipation. In addition, the enlarged vibration amplitude also results in stronger
interferences between the vortices shed from the two sides of the cylinder, giving rise to the
increased irregularity of the freestream-side vortices.
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FIG. 12. Spanwise-averaged z-vorticity contours in the VIV of a circular cylinder in proximity to a
stationary wall at Ur = 1.0–9.0. The instants are the same as those in Fig. 11 when the cylinder is at the
highest position.

To further explain the interactions of the vibrating cylinder and the wall-generated boundary
layer, the spanwise-averaged z-vorticity contours are presented in Fig. 12. Generally, in a vibration
cycle, one vortex is shed from each side of the cylinder, signifying the typical 2S mode for all the
simulated Ur . As shown in Figs. 12(a) and 12(b), when the cylinder reaches the highest, the vortices
are only separated from the freestream side of the cylinder, and the gap-side shear layer plays a
cutoff role in the formation of the freestream-side vortices. Accompanied with the uplifted gap flow,
the gap-side vortices are deflected upward and interact with the freestream-side vortices. As a result,
the vortex street dissipates quickly in the wake.

In the IB and LB, the vibration amplitudes are much larger than those in the DS. An obvious
difference is that the vortices form closer to the cylinder base [Figs. 12(c)–12(h)]. Moreover, in these
two branches, the cylinder moves closer to the stationary wall when it reaches the lowest position,
and correspondingly, the interactions of the vortices with the boundary layer are also stronger. As
indicated in Figs. 12(d) and 12(e), the vortices shed from the cylinder move directly towards the wall
and exhibit direct interactions with the wall-generated boundary layer, and then the vortices break
down into small parts in the near wake. Wrinkles form in the boundary layer when the vortices move
slightly closer to the wall [Figs. 12(c)–12(h)].

Because of the change of the lift-displacement phase lag from 0° to 180°, a contrastingly different
vortex shedding is observed in the DS-I and DS-II. Comparing Figs. 12(a) and 12(b) and Figs. 12(i)–
12(k), it can be observed that when the cylinder reaches the top, the freestream-side vortices have
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FIG. 13. Statistics of the enstrophies in the VIV of a circular cylinder in proximity to a stationary wall with
the reduced velocity and the vibration amplitude at Re = 500 and G/D = 0.8.

just separated from the cylinder in the DS-II, while the gap-side vortices have separated from the
cylinder in the DS-I.

The three-dimensionality of the wake can be reflected by enstrophies [51–55]. Here, we investi-
gate the enstrophies to analyze the variations in the vorticity of different rotations [51,56,57]. The
enstrophies (εx, εy, εp, and εz) are defined as

εx = 1

2

∫
V

ω2
x dV, (5)

εy = 1

2

∫
V

ω2
y dV, (6)

εp = 1

2

∫
V

(
ω2

x + ω2
y

)
dV, (7)

εz = 1

2

∫
V

ω2
z dV, (8)

where V denotes the volume of the computational domain, and ωx, ωy, and ωz denote the nondi-
mensional vorticities defined as ωx = D

U∞
( ∂w

∂y − ∂v
∂z ), ωy = D

U∞
( ∂u

∂z − ∂w
∂y ), and ωz = D

U∞
( ∂v

∂x − ∂u
∂y ),

respectively. Figure 13 depicts the variations in the enstrophies, including εx, εy, εz and εp, with Ur

and Ay. As shown in Fig. 13(a), the enstrophies follow the same trend, which is expected given the
fact that the plane vorticities, including εx, εy, and εp, are caused by the instability of the spanwise
vortices [58]. In detail, the enstrophies are approximately constant in the DS-I and DS-II, while in
the IB and LB, they first increase and then decrease with increasing Ur . As illustrated in Fig. 13(a),
in the simulated Ur range, εx is slightly larger than εy, while εz is approximately two times larger
than εp. However, as displayed in Fig. 13(b), the enstrophies show an approximately linear increase
with increasing Ay, which indicates that the vorticities of different rotations are strongly dependent
on the vibration amplitude.

Figure 14 presents the spanwise-averaged secondary enstrophy (εp) contours when the cylinder
is at the highest position. In the DS-I, εp mainly appear at the freestream side of the wake, consistent
with the distribution of the spanwise vortices [see Figs. 11(a) and 11(b) and Figs. 12(a) and
12(b)]. However, because of the change of the vortex shedding timing, εp in the DS-II mainly
appear downstream of the cylinder base [Figs. 14(i)–14(k)]. In IB and LB, εp emerge at a location
closer to the cylinder base, and their strengths are stronger than those of the DS because of the
increased amplitude. In the DS, the amplitudes are insignificant, and εp saturate at approximately
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FIG. 14. Spanwise-averaged secondary enstrophy (εp) contour in the VIV of a circular cylinder in prox-
imity to a stationary wall at Re = 500 and G/D = 0.8. For each Ur case, the instant that the cylinder is at the
highest position is applied.

1D downstream of the cylinder. This agrees well with that of an isolated stationary cylinder [59].
In the near-wall configuration, because of the upward-deflected gap flow, εp move upward slightly,
consistent with the movement of the spanwise vortices.

E. Statistics of the gap flow

The instantaneous streamwise velocity Ug spatially averaged over the gap is defined as Ug =
1

2.5D+yc

∫ 12D
0

∫ yc−0.5D
−3D u dydz, where u is the streamwise velocity and yc is the instantaneous location

of the cylinder center. Figure 15 indicates the variations in the temporal mean Ūg and fluctuation
Ūg,rms of Ug at different reduced velocities. As shown in Fig. 15(a), Ūg remains almost constant with
Ur except at Ur = 3.5–4.0, suggesting the negligible effects of cylinder oscillation on the averaged
gap flow velocity. Furthermore, the Ūg variation with the displacement shift (ȳ/D) illustrated in
Fig. 15(c) clearly indicates that Ūg depends closely on the time-averaged gap space (=G/D + ȳ/D).
When ȳ/D is larger than 0.016, Ūg shows a significant decrease, signifying that a small increase in
the time-averaged gap can lead to a remarkable drop in Ūg. The root-mean-square (rms) streamwise
velocity of the gap flow has contrastingly different behavior. As shown in Fig. 15(b), in the DS,
Ūg,rms is constant at a small value, but it increases in the IB and decreases in the LB. This trend
is similar to that of the amplitude. Furthermore, the linear increase of Ūg,rms with the transverse
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FIG. 15. Time- and spanwise-averaged gap flow velocities in the VIV of a circular cylinder at Re = 500
and G/D = 0.8: (a) mean streamwise velocity and (b) rms streamwise velocity with Ur ; (c) mean streamwise
velocity with the displacement shift; (d) rms streamwise velocity with the amplitude.

amplitude presented in Fig. 15(d) signifies that Ūg,rms depends strongly on the amplitude. Therefore,
it is clear that Ūg and Ūg,rms can be the appropriate metrics for the mean gap and vibration amplitude,
respectively.

F. Time-averaged flow fields

Figure 16 shows the time- and spanwise-averaged streamwise velocity fields at different reduced
velocities. As displayed in Figs. 16(a), 16(c), 16(e), and 16(g), there is an obvious recirculation
bubble for each case in the range of Ur = 1.0–3.5, and as a result of the upward deflected gap
flow, these bubbles are slightly upward. With increasing vibration amplitude, the distance between
the bubble and cylinder decreases gradually. In contrast, as presented in Figs. 16(b) and 16(d), the
fluctuating streamwise velocities in the DS-I mainly occur in the near wake, with lower strength. In
the IB, the fluctuating streamwise velocity becomes larger, particularly around the cylinder. In the
DS-II, the fluctuating streamwise velocity is comparable to that in the DS-I, but it appears slightly
farther downstream [Figs. 16(q)–16(v)]. In the LB, the negative velocity region at the bottom of
the cylinder increases gradually with increasing Ur or decreasing amplitude [Figs. 16(i), 16(k),
16(m), and 16(o)]. As indicated in Figs. 12(e)–12(h), when the amplitude is large, the shear layers
of the cylinder exhibit stronger fluctuations at a shorter distance downstream, and the bubbles
shrink. As the amplitude decreases, the fluctuations occur at a farther distance downstream, and
correspondingly, the negative region is enlarged.

Figure 17 illustrates the time-averaged transverse velocity fields at different reduced velocities.
The mean transverse velocity becomes large at three distinct regions, i.e., two at the freestream
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FIG. 16. Streamwise velocities in the VIV of a circular cylinder in proximity to the stationary wall at
Re = 500 and G/D = 0.8. The left and right columns represent the mean and fluctuating velocities,
respectively.
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FIG. 17. Transverse velocities in the VIV of a circular cylinder in proximity to a stationary wall at
Re = 500 and G/D = 0.8. The left and right columns represent the mean and fluctuating velocities,
respectively.
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FIG. 18. Time histories of (a), (b) the transverse displacement, spanwise-averaged gap flow velocity, drag,
and lift coefficients, and (c)–(g) vorticity contours of one period in the VIV of a circular cylinder in proximity
to the stationary wall at Ur = 1.0 (DS-I). Because the vorticity contour at instant vi is the same as that at instant
i, it is not presented here. The color bar for the contour plots is the same as that of Fig. 12.

and gap sides of the cylinder, and one slightly downstream of the gap. The former two are closely
related to the movement of the cylinder, while the latter is caused by the upward motion of the
wall-generated boundary layer. Generally, the three regions in the DS are more noticeable than
those in the IB and LB. As for the fluctuating transverse velocity, it appears mainly at the base of the
cylinder and becomes larger in the IB and LB. Corresponding to the larger vortex formation region,
the fluctuating transverse velocity in the DS-I begins at a slightly longer distance downstream than
that in the DS-II.

G. Flow physics of different branches

In the above sections, the amplitudes, fluid forces, spectral frequencies, wake three-
dimensionality, and statistics of the gap flow are examined thoroughly. In this section, the flow
physics of each branch associated with the instantaneous vorticity contours, time histories of the
displacement, gap flow velocity, and drag and lift coefficients are elucidated. In each region, one
reduced velocity, i.e., Ur = 1.0 (DS-I), 3.0 (IB), 4.0 (LB), and 8.0 (DS-II), is selected.

As shown in Figs. 18(a) and 18(c), when the cylinder moves back from the top in the DS-I,
the freestream-side vortex has just separated from the cylinder, while the gap-side shear layer is
developing. Attracted by the freestream-side vortex, the boundary layer of the wall moves upward
and will exhibit direct interactions later. From Fig. 18(a), we can further observe that although the
cylinder is at the top, the gap flow velocity decreases when the cylinder moves toward the stationary
wall (from instant i to ii). Because the displacement of the cylinder is negligible, the variation in
the gap flow is determined by the vortex shedding. When the cylinder moves towards the wall, both
the gap-side shear layer of the cylinder and the wall-generated boundary layer develop; therefore,
the flow through the gap is delayed. In addition, when the cylinder is at the top, the lift coefficient
reaches its peak, suggesting an in-phase behavior between the displacement and lift coefficient,
while the drag coefficient has just reached the lowest value [Fig. 18(b)].

As depicted in Figs. 18(a), 18(d), and 18(e), when the cylinder moves towards the bottom (from
instant ii to iii), the gap-side shear layer of the cylinder develops, while the boundary layer merges
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FIG. 19. Time histories of (a), (b) the transverse displacement, spanwise-averaged gap flow velocity, drag,
and lift coefficients, and (c)–(g) vorticity contours of one period in the VIV of a circular cylinder in proximity
to a stationary wall at Ur = 3.0 (IB). Instants from i to vi are marked in (a), (b) from left to right. Because the
vorticity contour at instant vi is similar to that at instant i, it is not presented here. The color bar for the contour
plots is the same as that of Fig. 12.

with the freestream-side vortex of the cylinder. Due to the coalescence of the freestream-side
vortex with the boundary layer, the gap-side vortex moves upward. Furthermore, because of the
development of the gap-side shear layer, the lift coefficient decreases monotonically, while the drag
coefficient only displays a small variation [Fig. 18(b)]. When the cylinder moves toward the top from
the bottom (from instant iv to vi), the gap-side vortex has just separated from the cylinder; it then
moves toward the freestream side of the negative vortex [Figs. 18(a), 18(f), and 18(g)]. The vortices
from both sides of the cylinder pair in the near wake and move downstream abreast. However,
because of the low strength, the gap-side vortex dissipates more quickly than the freestream-side
vortex. From instant iv to vi, the gap flow velocity first increases and then decreases, with the
peak occurring at the middle of instants iv and v. That is, the gap flow velocity reaches its peak
at the instant when the gap-side vortex is shed from the cylinder. Furthermore, from instant iv to
vi, the lift coefficient increases monotonically while the drag coefficient decreases from the peak
[Fig. 18(b)]. At instant iv, the gap-side vortex has just separated from the cylinder and the remaining
shear layer comes closer to the cylinder because of the pushing effects of the freestream-side shear
layer, resulting in the largest drag.

In the IB, the displacement at Ur = 3.0 is similar to beating, and its fluctuation varies. When
the fluctuation is approximately zero, the vortex dynamics are the same as those in the DS-I.
Therefore, in this branch, only the vortex dynamics of the transition from small to large fluctuations
are explored. As shown in Fig. 19, although the displacement is remarkably larger than that in the
DS-I, the vortex dynamics and variations in the drag and lift coefficients and gap flow velocity
are similar to those in the DS-I. As displayed in Figs. 19(a) and 19(c), when the cylinder is at the
top (instant i), the freestream-side vortex has just separated from the cylinder, and because of the
attraction of the freestream-side vortex of the cylinder, the boundary layer moves upwards gradually.
At this instant, the gap flow velocity is approaching the lowest value. A slight difference from that in
the DS-I is that when the cylinder is at the top, the lift coefficient does not reach the peak, which is
mainly caused by the presence of the beating component [Fig. 19(b)]. As the cylinder moves toward
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FIG. 20. Time histories of (a), (b) the transverse displacement, spanwise-averaged gap flow velocity, drag,
and lift coefficients, and (c)–(g) vorticity contours of one period in the VIV of a circular cylinder in proximity
to the stationary wall at Ur = 4.0 (LB). Because the vorticity contour at instant vii is the same as that at instant
i, it is not presented here. The color bar for the contour plots is the same as that of Fig. 12.

the bottom, the gap-side shear layer of the cylinder develops, and the boundary layer merges with
the freestream-side vortex [Figs. 19(a), 19(d), and 19(e)]. In this process (from instant ii to iii), the
gap flow reaches the lowest value at instant ii when the cylinder is around the mean position. In
contrast, the lift coefficient reaches its peak at instant ii and afterward decreases [Fig. 19(b)].

When the cylinder moves towards the top (from instant iv to vi), the gap-side vortex of the
cylinder pairs with the coalesced vortex, and they move downstream abreast, with the positive one at
the freestream side [Figs. 19(a), 19(f), and 19(g)]. Similar to that in the DS-I, the vortex from the gap
side of the cylinder dissipates more quickly. In this half-period, the gap flow velocity reaches its peak
when the cylinder has just passed through the bottom and begins to decrease when the cylinder is
close to the mean position [Fig. 19(a)]. Furthermore, as the fluctuation of the displacement increases,
the drag coefficient increases as well. Compared to the drag coefficient, the fluctuating lift increases
more significantly. When the displacement has a larger fluctuation, vortices form in the closer wake,
and correspondingly, both the drag and lift coefficients become larger. In addition, because of the
large amplitude, the vortices in the IB become stronger than those in the DS-I.

In the LB, the amplitude is much larger. As shown in Figs. 20(a) and 20(b), the time histories
of the displacement, gap flow velocity, and drag and lift coefficients exhibit significant variations
within one period. When the cylinder is at the top, the shear layers surround the cylinder closely,
with the freestream side being slightly stronger than the gap side [Fig. 20(c)]. Furthermore, the
vortex from the gap side of the cylinder collides with the wall and breaks down into small parts.
Therefore, no positive vortices are observed in the wake. When the cylinder moves toward the
bottom (from instant ii to iv), the freestream-side shear layer saturates gradually and rolls up
into a vortex at instant iii before the cylinder reaches the bottom [Figs. 20(a) and 20(d)–20(f)].
Meanwhile, the gap-side shear layer closely envelopes the bottom side of the cylinder. Therefore,
in this process, the drag coefficient reaches the peak at instant iii and afterward decreases, whereas
the lift coefficient decreases monotonically to the lowest value [Fig. 20(b)]. Furthermore, because
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FIG. 21. Time histories of the (a), (b) transverse displacement, spanwise-averaged gap flow velocity, drag,
and lift coefficients, and (c)–(g) vorticity contours of one period in the VIV of a circular cylinder in proximity
to the stationary wall at Ur = 8.0 (DS-II). Because the vorticity contour at instant vi is similar to that at instant
i, it is not presented here. The color bar for the contour plots is the same as that of Fig. 12.

the gap-side shear layer moves toward the cylinder bottom, more space appears for the passage of
the gap flow, and therefore, the gap flow velocity increases until instant iii [Fig. 20(a)]. When the
cylinder is sufficiently close to the stationary wall, the gap flow velocity decreases.

When the cylinder moves toward the top from the bottom (from instant iv to vii), the gap-side
shear layer develops [Figs. 20(a), 20(g), and 20(h)]. However, because the cylinder is close to the
stationary wall, the gap-side shear layer crashes into the wall before it is completely separated from
the cylinder. Consequently, the gap-side shear layer splits into small vortices, dissipating quickly.
In this half period, the gap flow velocity first decreases and then increases, with the lowest value
appearing at instant vi, where the cylinder is near the mean position [Fig. 20(a)]. Concerning the
forces, the drag coefficient exhibits a relatively small variation, whereas the lift coefficient increases
gradually, which is related to the development of the freestream-side shear layer.

In the DS-II, the fluctuations in the displacement revert to negligible values, and correspondingly,
the drag and lift coefficients display small variations [Figs. 21(a) and 21(b)]. As expected, the
gap flow velocity varies slightly. Because of the change in the vortex shedding timing, the vortex
dynamics are significantly different from those in the DS-I [Figs. 21(c)–21(g)]. When the cylinder
is at the top (instant i), the gap-side shear layer separates into a vortex and pairs with the freestream-
side vortex that formed a half-period earlier [Figs. 21(a) and 21(c)]. At this instant, the lift coefficient
reaches its lowest value, while the drag coefficient is around the peak [Fig. 21(b)]. When the
cylinder moves toward the bottom (from instant ii to iii), the freestream-side shear layer develops
and saturates at instant iii [Figs. 21(a), 21(d), and 21(e)]. As for the forces, the drag coefficient
decreases from the peak, whereas the lift coefficient increases monotonically. Furthermore, as the
cylinder moves toward the wall, both the gap-side shear layer of the cylinder and the boundary layer
develop, decreasing the passage of the gap flow from instant ii to iii. Correspondingly, the gap flow
velocity decreases.

When the cylinder moves back from the bottom (from instant iv to vi), the freestream-side shear
layer has just separated from the cylinder and shows direct interactions with the boundary layer. In
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contrast to that in the LB, the coalescence of the freestream-side vortex with the boundary layer is
weaker [Fig. 21(g)]. In this half-period, the gap flow increases slightly, while an opposite behavior
occurs for the drag and lift coefficients. As depicted in Fig. 21(b), the drag increases while the lift
decreases monotonically.

IV. CONCLUSIONS

In this study, the VIV of a circular cylinder in proximity to a stationary wall was studied using
3D DNS at a subcritical Reynolds number of 500 and a gap ratio of 0.8. The cylinder could vibrate
in both the transverse and streamwise directions. To explore the influences of the stationary wall
and boundary layer, we studied the characteristics of the vibration response and vortex dynamics
varying with the reduced velocity. Furthermore, we evaluated the wake three-dimensionality through
instantaneous vortical structures, spanwise-averaged vorticity contours, and statistics of the enstro-
phies. Finally, the flow physics covering the response was analyzed through the time histories of the
displacement, gap flow velocities, drag and lift coefficients, and vorticity contours in one vibration
period. The main findings of this study are summarized as follows:

In the simulated Ur range, the vibration response can be divided into four regions: IB, LB, DS-I,
and DS-II. The two DS regions appear at the two ends of the simulated Ur range, and because of
the negligible amplitude, the vibration frequencies in these two regions closely follow the vortex
shedding frequency (St) of the stationary case. In the IB, the amplitude increases sharply, and the
vibration frequency lies between the natural frequency of the cylinder and the vortex shedding
frequency of the stationary case, resulting in soft lock-in. In the LB, the amplitude increases
further, and the vibration frequency approaches the natural frequency, leading to the presence of
lock-in.

Because of the wall proximity, the dominant vibration frequencies in the two directions become
identical, and the trajectories of the displacement differ contrastingly in each region. Figure-eight,
combined figure-eight and raindrop, raindrop, and chaotic trajectories appear successively with
increasing Ur , dominating DS-I, IB, LB, and DS-II, respectively. In addition, due to the presence of
the stationary wall and boundary layer, the phase lag between the lift and displacement remains at 0°
in DS-I, IB, and LB, while it jumps to 180° when transforming into the DS-II. This is significantly
different from the VIV of an isolated circular cylinder, where the phase jump occurs in the middle
of the LB.

In each region, the wake three-dimensionality and vortex dynamics vary considerably. The
statistics of the enstrophies positively confirm that the wake three-dimensionality increases linearly
with the amplitude. In the DS, the cylinder remains approximately stationary, and the vortex
shedding of the cylinder is significantly influenced by the dynamics of the boundary layer and gap
flow, resulting in dislocations along the span. In the IB and LB, the enlarged amplitude synchronizes
the vortex shedding along the span and strengthens the vortex. As the cylinder moves closer to
the stationary wall, the interactions of the vortices with the boundary layer become stronger. The
gap-side shear layer becomes more irregular, while the vortices dissipate more quickly. The statistics
of the gap flow indicate that its mean streamwise velocity is determined by the time-averaged
gap, while the fluctuating streamwise velocity of the gap flow is governed by the amplitude.
This suggests that through these two metrics we can predict the gap flow passage and structural
vibration.

The flow physics of each region is also different. In the small-amplitude case, including the DS
and IB, the boundary layer merges with the freestream-side vortex of the cylinder and forces the gap-
side vortex to pair with the freestream-side vortex. The vortices go upward slightly when moving
downstream. However, because of the suppression of the gap-side shear layer by the stationary
wall and boundary layer, the gap-side vortices have gap strengths and dissipate more quickly in
the wake. In the large-amplitude case, the gap-side shear layer collides with the boundary layer
before separating from the cylinder and disintegrates into small parts directly. These small vortices
dissipate very quickly, and as a result, only negative vortices exist in the wake.
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