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As one of the canonical flow problems in compressible wall-bounded turbulence, com-
pressible turbulent channel flow (CTCF) with symmetric isothermal boundaries has been
studied a lot in the past. In the present work, an empirical scaling for the central mean
temperature in CTCFs is proposed. The scaling originates from the generalized Reynolds
analogy (GRA) theory, and it depends on the Mach number, Prandtl number, and ratio
of the central mean velocity to the bulk mean velocity. The available direct numerical
simulation data with the bulk Reynolds number ranging from 3000 to 34 000 and Mach
number ranging from 0.5 to 4.0 are used to assess the proposed scaling. It is found that the
empirical scaling is quite accurate and most of the relative errors are below 1.5%. With the
scaling of the central mean temperature and the GRA theory, the mean temperature profile
can be quantitatively obtained through the mean velocity in CTCFs.

DOI: 10.1103/PhysRevFluids.7.044606

I. INTRODUCTION

Compressible wall-bounded turbulent flows are of great importance in many aerospace applica-
tions. In such flows, the heat transfer is also an important quantity of concern in addition to the
aerodynamic force [1–4]. Due to the nonlinear coupling between the kinetic and thermal quantities
and the influence of various flow conditions, accurate estimations of the velocity and temperature
fields are needed in order to ensure reliable and efficient structures. Since the pioneering work
by Reynolds [5], plenty of effort has been devoted to establish quantitative relationships between
temperature and velocity based on the similarity between the Reynolds-averaged momentum and
energy equations—the so-called Reynolds analogy—in compressible wall-bounded flows [6–12].
For the compressible turbulent boundary layer flows (CTBLs) with zero-pressure gradient (ZPG),
Van Driest [8] proposed a temperature-velocity relation with the assumption of unity Prandtl number
Pr, which reads
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Here and thereafter, T is temperature, u is the streamwise velocity component, (.) stands for the
Reynolds-average operator, γ is the ratio of the specific heats, and the subscript w refers to the
wall, while the subscript δ denotes the boundary layer edge, or the center of the channel or pipe for
compressible channel or pipe flows, respectively. Ma∞ is the ratio of the free-stream velocity to the

*xiazh@zju.edu.cn

2469-990X/2022/7(4)/044606(10) 044606-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9351-9498
https://orcid.org/0000-0002-5672-5890
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.044606&domain=pdf&date_stamp=2022-04-28
https://doi.org/10.1103/PhysRevFluids.7.044606


SONG, ZHANG, LIU, AND XIA

sound velocity in the free stream. From the above equation (1), the mean temperature profile can be
obtained if the mean velocity profiles, T δ and T w, are known.

Walz [10] also obtained a similar quadratic function of the mean velocity for the mean tempera-
ture for ZPG-CTBLs,
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where Tr = Tδ{1 + r[(γ − 1)/2]Ma2
∞} is the adiabatic (recovery) temperature, with r ∼ 0.9 being

the recovery factor, which was introduced to account for the deviation of Pr from unity. Although
the commonly used Walz’s equation (2) was verified to match very well with the direct numerical
simulation (DNS) data in adiabatic CTBLs [12–14], its performances in diabatic CTBLs are rather
poor, where it apparently deviated from the DNS data [12]. By introducing a general recovery factor
rg, Zhang et al. [14] proposed a general Reynolds analogy (GRA) for compressible wall-bounded
turbulent flows, which is independent of Pr, wall temperature, Mach number, Reynolds number,
and pressure gradient. The mean temperature-velocity relation coming from the GRA theory, which
reads
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was verified in CTBLs, compressible turbulent channel and pipe flows. Here, T rg = T δ +
rgu2

δ/(2Cp), where Cp is the specific heat at constant pressure, and the general recovery factor rg

is estimated as

rg = T w − T δ
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with qw and τw being the mean heat flux and skin friction at the wall, respectively. If the well-known
Reynolds analogy factor s = 2Ch/Cf is introduced, where Cf and Ch are the skin-friction coefficient
and the heat transfer coefficient, respectively, rg could also be calculated as

rg = r

[
sPr + (1 − sPr)

T w − T δ

T r − T δ

]
. (5)

For general compressible wall-bounded turbulence, it is seen from the above mean velocity-
temperature relation (3) that the mean temperature depends on the mean velocity profile, T δ , T w,
and s. In CTBLs, T δ and T w are usually the input parameters, making s the key parameter in the
temperature-velocity relation. However, in compressible turbulent channel flows with symmetric
isothermal boundaries (CTCFs), the mean temperature in the channel center is no longer the
input parameter, while the Reynolds analogy factor s can be easily obtained through the overall
energy balance argument, i.e., qw = −ubτw [15,16], where ub = ∫ h

0 ρudy/
∫ h

0 ρdy is the bulk mean
velocity with h being the channel half width. Therefore, the mean temperature in the channel center
becomes the key parameter in the temperature-velocity relation in CTCFs since the mean velocity
profile is assumed to be prescribed. Furthermore, the central mean temperature is the highest mean
temperature in the channel flow with symmetric isothermal boundaries. Its value can also be used
to guide the numerical setups for compressible turbulent channel flow with symmetric isothermal
boundaries, since at least the central mean temperature could not exceed the upper limit of the
Sutherland’s law. A similar conclusion can be drawn for compressible pipe flows.

The central mean temperature in CTCFs has rarely been studied in the past, although a lot
of DNSs have been carried out. Brun et al. [17] derived the mean temperature-velocity relation
for laminar channel flows with symmetric isothermal walls by assuming constant viscosity, and
reported an increase in the central mean temperature with Mach number according to their large
eddy simulation data, which was attributed to the direct heating effect of the compressibility.
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Gerolymos and Vallet [18,19] argued that the viscous heating increases with Mach number, and
thus inferring the increase in the central mean temperature, scaled with the temperature at the wall,
with the centerline Mach number. They reported that the increase is nonlinear, and the ratio of the
centerline to wall mean temperature rises sharply when the centerline Mach number exceeds 2.
Nevertheless, the results are rather qualitative, and no quantitative scaling has been reported.

In this paper, we propose an empirical scaling for the central mean temperature in compressible
turbulent channel flows based on the GRA theory [14]. DNS databases from different groups are
used to determine the parameter in the scaling and confirm its accuracy. Combining this scaling and
the temperature-velocity relation deduced from the GRA theory, the mean temperature profile can
be estimated directly from the mean velocity without any additional information.

II. SCALING OF CENTRAL MEAN TEMPERATURE IN CTCFs

In the GRA theory proposed by Zhang et al. [14], the mean temperature in compressible wall-
bounded turbulence under the quasiparallel flow approximation and the small turbulence intensity
assumption (uiui ≈ u2 ≈ u2 + 2uu′) satisfies a differential equation as
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]
= T w, (6)

and the authors further assumed that the effective turbulent Prandtl number Pre = 1. By integrating
Eq. (6), the analytical relation between the mean temperature and the mean velocity was deduced,
and the relation was well verified a priori by Zhang et al. [14] in CTBLs, CTCFs, and compressible
pipe flows, where T δ , T w, and s were obtained from the DNS data.

As mentioned above, Huang et al. [15] reported in CTCFs that qw = −ubτw based on the overall
energy balance argument, i.e., the total heat generation across the channel and the heat transfer into
the walls are the same. Therefore, we may have

∂T

∂u

∣∣∣∣
w

= [∂T /∂y]|w
[∂u/∂y]|w = ub

Pr

Cp
. (7)

By taking Eq. (6) at the center of CTCF and using the above Eq. (7), one may have

T c − uc

2

[
ub

Pr

Cp
+ 1

Pre

∂T

∂u

∣∣∣∣
c

]
= T w, (8)

which may provide an estimation of the central mean temperature. However, it should be noted that
due to the symmetry of the channel with the thermal and velocity boundary conditions, ∂T /∂u|c
cannot be determined analytically. Nevertheless, considering the fact that T c, uc, ∂T /∂u|w, and T w

are all finite for certain cases, we can assume

1
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∣∣∣∣
c

= T w
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with C being a dimensionless parameter to be determined. It should be noted that the above Eq. (9)
does not imply anything on the functional form of C, but introduces a dimensionless parameter to
denote 1

Pre

∂T
∂u |c with the help of T w and ub. C will be determined by using the available DNS data

later.
By using Eq. (9), Eq. (8) can be rearranged as
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With the relation u2
b/(CpT w ) = (γ − 1)u2

b/c2
w = (γ − 1)Ma2, where Mach number Ma = ub/cw

is the ratio of the bulk mean velocity to the velocity of sound at the wall, Eq. (10) can then be
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FIG. 1. The distribution of parameter C/[(γ − 1)Ma2Pr] with different Reb from Table I.

rewritten as

T c

T w

= 1 + Pr
γ − 1

2
Ma2 uc

ub

(
1 + C

(γ − 1)Ma2Pr

)
, (11)

which can be used to calculate the central mean temperature using Mach number Ma, Prandtl
number Pr, central velocity ratio uc/ub, and the parameter C. Equivalently, Eq. (11) can also be
rewritten as
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uc
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(13)

can be named as a recovery factor for the channel’s central mean temperature, where ∂T /∂y = 0. If
rc is known, then the central mean temperature T c can be easily estimated through Eq. (12).

Now, we would like to use the DNS data to give an estimation of the rc. First, the parameter
C/[(γ − 1)Ma2Pr] was calculated from the available DNS data by utilizing Eq. (11) and the related
results are listed in Table I. Here, Reb, Ma, Pr, and T c/T w are obtained directly from the references
(which will result in different precision of the data, as shown in Table I), where Reb = ρbubh/μref

is the bulk Reynolds number with ρb = ∫ h
0 ρdy/h being the bulk-averaged density, and uc/ub is

calculated using the parameters in the references. The DNS database has a bulk Reynolds number
Reb ranging from 3000 to 34 000 and a Mach number Ma ranging from 0.5 to 4.0 [20–25,27]. The
distribution of the parameter C/[(γ − 1)Ma2Pr] with different Reb and Ma is shown in Figs. 1 and
2, respectively. At least two observations could be made from Fig. 1 and Fig. 2. On the one hand,
the parameter C/[(γ − 1)Ma2Pr] varies in the range of ∼0.005–0.071 for the present available
DNS data, and it is small as compared to 1 in Eq. (13). Therefore, C/[(γ − 1)Ma2Pr] could be
viewed as a small correction for rc. On the other hand, the parameter C/[(γ − 1)Ma2Pr] has no
obvious dependence on Reb or Ma, which inspires us to use a constant to approximate it at different
Reb and Ma. This is equivalent to the simplest assumption that the parameter C/[(γ − 1)Ma2Pr] is
insensitive to Reb and Ma. An average of all the data listed in Table I gives a value 0.034 for C/[(γ −
1)Ma2Pr], resulting in an approximation of rc = 1.034Pruc/ub and the central mean temperature
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TABLE I. Parameters of different DNS data, calculated C/[(γ − 1)Ma2Pr] utilizing Eq. (11), estimated
T c/T w utilizing Eq. (14), and the corresponding relative errors.

Case Reb Ma Pr uc/ub T c/T w C/[(γ − 1)Ma2Pr] T c,cal/T w Error(%)

Coleman et al. [20] 3000 1.5 0.70 1.175 1.378 0.021 1.383 0.36
4880 3.0 0.70 1.171 2.490 0.010 2.526 1.45

Yao and Hussain [21] 3000 0.8 0.72 1.172 1.11 0.018 1.112 0.18
7667 0.8 0.72 1.146 1.11 0.042 1.109 0.09
17000 0.8 0.72 1.133 1.11 0.053 1.108 0.18
34000 0.8 0.72 1.119 1.11 0.067 1.107 0.27
3000 1.5 0.72 1.171 1.39 0.028 1.392 0.14
7667 1.5 0.72 1.155 1.39 0.042 1.387 0.22
17000 1.5 0.72 1.140 1.39 0.056 1.382 0.58
34000 1.5 0.72 1.124 1.39 0.071 1.377 0.94

Modesti and Pirozzoli [22] 4880 3.0 0.72 1.153 2.570 0.051 2.545 0.97
3000 1.5 0.72 1.158 1.387 0.031 1.388 0.07
7667 1.5 0.72 1.137 1.372 0.010 1.381 0.66
17000 1.5 0.72 1.115 1.368 0.019 1.374 0.44

Trettel and Larsson [23],Trettel [24] 7500 0.7 0.70 1.189 1.082 0.005 1.084 0.18
11750 0.7 0.70 1.189 1.082 0.005 1.084 0.18
4500 1.7 0.70 1.146 1.483 0.042 1.479 0.27
10000 1.7 0.70 1.145 1.481 0.038 1.479 0.14
15500 1.7 0.70 1.145 1.480 0.036 1.479 0.07
7500 3.0 0.70 1.156 2.487 0.021 2.506 0.76
15000 3.0 0.70 1.156 2.486 0.020 2.506 0.80
24000 3.0 0.70 1.157 2.491 0.023 2.507 0.64
10000 4.0 0.70 1.144 3.637 0.029 3.650 0.36

Tang et al. [25] 7813 1.56 0.72 1.146 1.42 0.046 1.415 0.35
4438 3.83 0.72 1.191 3.64 0.049 3.601 1.07

Zhang et al. [26,27] 6000 0.5 0.72 1.153 1.043 0.036 1.043 0.00
6000 1.5 0.72 1.158 1.389 0.037 1.388 0.07
4880 3.0 0.72 1.186 2.624 0.057 2.589 1.33

γ

Coleman et al.
Yao and Hussain
Modesti and Pirozzoli
Tang et al.
Trettel and Larsson
Zhang et al.

FIG. 2. The distribution of parameter C/[(γ − 1)Ma2Pr] with Ma from Table I.
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TABLE II. T c,cal/T w with different Pr utilizing Eq. (14) and the corresponding relative errors. The
reference data are from Gerolymos and Vallet [18].

Ma uc/ub T c/T w Pr1 T c,cal/T w Error (%) Pr2 T c,cal/T w Error (%) Pr3 T c,cal/T w Error (%)

1.50 1.286 1.417 0.70 1.419 0.14 0.68 1.407 0.71 0.71 1.425 0.56
1.48 1.198 1.379 0.70 1.380 0.07 0.68 1.369 0.73 0.71 1.385 0.44
1.50 1.176 1.383 0.70 1.383 0.00 0.68 1.372 0.80 0.71 1.389 0.43
1.56 1.154 1.403 0.70 1.407 0.29 0.68 1.395 0.57 0.71 1.412 0.64
0.30 1.142 1.015 0.70 1.015 0.00 0.68 1.014 0.10 0.71 1.015 0.00

scaling

T c

T w

= 1 + 1.034Pr

(
uc

ub

)
γ − 1

2
Ma2. (14)

III. VALIDATION AND APPLICATION OF THE SCALING

By using Eq. (14), we may estimate the central mean temperature. The estimated T c/T w and
the corresponding relative errors to the DNS data are listed in Table I. Here, the relative error is
defined as

error =
∣∣∣∣

T DNS

T w
− T cal

T w

T DNS

T w

∣∣∣∣ × 100%. (15)

According to the data listed in Table I, it is apparent that Eq. (14) can provide excellent estimations
on the central mean temperature at different Reb and Ma, and the relative errors are all within
1.5%. The DNS data from Gerolymos and Vallet [18] are further used to validate our central mean
temperature scaling, and the results are shown in Table II. It should be noted that the Prandtl number
in Gerolymos and Vallet [18] is not constant, but varying with temperature. For the cases with
0.30 � Ma � 1.56, Pr varies within [0.68, 0.71]. With a roughly estimated Pr ≈ 0.7, the estimated
central mean temperature matches with their DNS data very well, with relative errors less than
0.25%. The relative errors will also be less than 0.80% even when Pr = 0.68 or Pr = 0.71. It is
interesting to see that the empirical scaling, given by Eq. (14), can also be used in compressible
pipe flows with isothermal walls. Table III shows the results of the DNS data from Modesti and
Pirozzoli [28] in pipe flows, and it is seen that the predictions of Eq. (14) are quite well and the
largest relative error is around 2.67% at Ma = 3.0. Therefore, we may conclude that Eq. (14) is a
good scaling for the central mean temperature, not only for channel flows but also for pipe flows.

As discussed above, in CTCFs, if we have the central mean temperature, then the mean temper-
ature profile can be easily obtained from the mean velocity field from the GRA theory, i.e., Eq. (3).

TABLE III. The results of T c,cal/T w with pipe flows utilizing Eq. (14) and the corresponding relative errors.

Case Ma Pr uc/ub T c/T w T c,cal/T w Error (%)

Modesti and Pirozzoli [28] 1.5 0.71 1.265 1.434 1.418 1.12
1.5 0.71 1.255 1.414 1.415 0.07
1.5 0.71 1.236 1.413 1.408 0.35
3.0 0.71 1.309 2.805 2.730 2.67
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FIG. 3. Mean temperature profiles obtained using the GRA theory at different Ma and Reb. EA: Eq. (20);
EB: Eq. (19), where T c is prescribed using the DNS data. The reference values are the DNS data from (a) Zhang
and Xia [26] with Ma = 0.5, 1.5, 3.0 and Reb = 6000, 6000, 4880; and (b) Modesti and Pirozzoli [22] with
Ma = 3.0, 1.5, 1.5 and Reb = 4880, 7667, 17 000.

According to the definition of rg and T rg, we have
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Therefore, we have the following mean temperature profile:
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Equivalently, we can rewrite the above equation as
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By using Eq. (14), Eq. (19) can be rearranged as
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, (20)

which depends solely on the mean velocity profile (the ratio between the central mean velocity to
the bulk mean velocity can be estimated from the mean velocity profile), Pr and Ma. For a CTCF
with certain Pr and Ma, if the mean velocity profile is known, which could be obtained through
many experimental strategies such as the particle image velocimetry (PIV), the mean temperature
profile can then be easily obtained by using Eq. (20).

Figure 3 shows the mean temperature profiles T c obtained using our empirical equation (20) and
the GRA equation (19), where T c is obtained from the DNS data directly. The DNS data T DNS

from Zhang and Xia [26] with Ma = 0.5, 1.5, 3.0 and Reb = 6000, 6000, 4880 and Modesti and
Pirozzoli [22] with Ma = 3.0, 1.5, 1.5 and Reb = 4880, 7667, 17 000 are shown as the references.
It is apparent that the mean temperature profiles at different Ma and Reb obtained using our empirical
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FIG. 4. The corresponding relative errors of the profiles shown in Fig. 3.

equation (20) match very well with those of the reference DNS data and the a priori estimations
using the GRA equation (19) with the DNS value of T c. The corresponding relative errors at
different cases are also shown in Fig. 4. It is evident that the relative errors are quite small, and
they are all within 1.5% across the channel for the six cases, either for the empirical equation (20)
or for the GRA equation (19). This again confirms that the prediction of the mean temperature
profile by using the empirical equation (20) in CTCFs is acceptable.

At last, we would like to make several remarks:
(i) As pointed out by one of the anonymous reviewers, the central mean temperature could be

nearly identical to the recovery temperature based on the bulk Mach number of the channel. The
present empirical scaling indeed confirms this conjecture [see Eqs. (12) and (14)] and also provides
an empirical relation for the recovery factor rc = 1.034Pruc/ub. This recovery factor, which is
obtained by following the GRA theory and the data calibration, is different from the commonly used
one, i.e., r = Pr1/3, in compressible turbulent boundary layers. Furthermore, the present empirical
scaling can predict T c with a higher accuracy, especially at higher Ma cases. The largest error of
the present scaling is around 1.45%, while the one with r = Pr1/3 can result in an error as large
as 5.61%.

(ii) In rc = 1.034Pruc/ub, it is evident that rc depends on uc/ub. Therefore, if we want to predict
T c, uc/ub should be given besides the information of Pr, Ma, and Tw. From this point, the present
empirical scaling is not a priori one as compared to the recovery temperature in ZPG-CTBLs, where
the recovery factor depends solely on Pr. Nevertheless, in the mean temperature-velocity relation,
the mean velocity profile is assumed to be given, and thus uc/ub could also be estimated in advance.

(iii) The small correction 0.034Pruc/ub is quite small as compared to the rest of the empirical
scaling in the right-hand side of Eq. (14). If this correction is neglected, the scaling is more concise.
However, the prediction error will also increase, especially for the cases with higher Ma, and the
largest error is around 3.41%, which is more than twice the largest error with the small correction.
Since the present scaling is an empirical one, we prefer to keep the small correction due to its higher
accuracy.

(iv) In all the DNS data cited in the present work, Pr varies in the small range [0.7, 0.72].
Therefore, the applicability of the present scaling should be restricted to the small vicinity of
Pr = 0.7. We have carried out an extra DNS with Pr = 1, Ma = 1.5, and Reb = 6000, and the
relative error of the prediction for this case is 3.63%.

(v) Although the present empirical relation can be applied to CTCFs as well as the compressible
pipe flows, it is invalid for compressible channel flows with asymmetric isothermal boundary
conditions [29] and the compressible channel flows with fixed bulk temperature, where a cooling
term is added in the energy equation, as was done in Yu et al. [30]. The underlying reason is that the
hypotheses under which the empirical scaling was derived were broken at such flow problems.
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IV. CONCLUSION

To summarize, we propose an empirical scaling, given by Eq. (14), for the central mean temper-
ature in compressible turbulent channel flows with symmetric isothermal boundaries by following
the GRA theory and the DNS data. Our scaling shows that the central mean temperature depends
on Pr, Ma, and the ratio between the central mean velocity to the bulk mean velocity. The scaling
is quite accurate, with relative errors less than 1.5% at Reynolds number Reb ranging from 3000 to
34 000 and Mach number Ma ranging from 0.5 to 4.0. With the empirical scaling of the central mean
temperature and the GRA theory, an empirical mean temperature profile, Eq. (18) scaled with the
central mean temperature and Eq. (20) scaled with the wall mean temperature, can also be derived.
The one scaled with the wall mean temperature depends solely on the mean velocity profile, Pr and
Ma, and it is quite accurate according to the comparisons with the DNS data at different Reb and
Ma. Further evaluations at higher Reb and Ma as well as higher Pr are necessary when data become
available.
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