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We consider the question of fundamental limitations on the performance of eddy-
viscosity closure models for turbulent flows, focusing on the Leith model for two-
dimensional large-eddy simulation. Optimal eddy viscosities depending on the magnitude
of the vorticity gradient are determined subject to minimum assumptions by solving
PDE-constrained optimization problems defined such that the corresponding optimal large-
eddy simulation best matches the filtered direct numerical simulation. First, we consider
pointwise match in the physical space, and the main finding is that with a fixed cutoff
wave number kc, the performance of the large-eddy simulation systematically improves
as the regularization in the solution of the optimization problem is reduced, and this is
achieved with the optimal eddy viscosities exhibiting increasingly irregular behavior with
rapid oscillations. Since the optimal eddy viscosities do not converge to a well-defined
limit as the regularization vanishes, we conclude that in this case the problem of finding
an optimal eddy viscosity does not in fact have a solution and is thus ill-posed. We argue
that this observation is consistent with the physical intuition concerning closure problems.
The second problem we consider involves matching time-averaged vorticity spectra over
small wave numbers. It is shown to be better behaved and to produce physically reasonable
optimal eddy viscosities. We conclude that while better behaved and hence practically
more useful eddy viscosities can be obtained with stronger regularization or by matching
quantities defined in a statistical sense, the corresponding large-eddy simulations will not
achieve their theoretical performance limits.
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I. INTRODUCTION

The closure problem is arguably one of the most important outstanding open problems in
turbulence research. It touches upon some of the key basic questions concerning turbulent flows
and at the same time has far-reaching consequences for many applications, most importantly, for
how we simulate turbulent flows in numerous geophysical, biological, and engineering settings.
Given the extreme spatiotemporal complexity of turbulent flows, accurate numerical solutions of
the Navier-Stokes system even at modest Reynolds numbers require resolutions exceeding the
capability of commonly accessible computational resources. To get around this difficulty, one
usually relies on various simplified versions of the Navier-Stokes system obtained through different
forms of averaging and/or filtering, such as the Reynolds-averaged Navier-Stokes (RANS) system
and the large-eddy simulation (LES). However, such formulations are not closed, because these
systems involve nonlinear terms representing the effect of unresolved subgrid stresses on the
resolved variables. The “closure problem” thus consists in expressing these quantities in terms of
resolved variables such that the RANS or LES system is closed.
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In general, closure models in fluid mechanics are of two main types: algebraic, where there is
an algebraic relationship expressing the subgrid stresses in terms of the resolved quantities, and
differential, where this relationship involves an additional partial-differential equation (PDE) which
needs to be solved together with the RANS or LES system. Most classical models are usually
formulated based on some ad hoc, albeit well-justified, physical assumptions. There exists a vast
body of literature concerning the design, calibration, and performance of such models in various
settings. Since it is impossible to offer an even cursory survey of these studies here, we refer the
reader to the well-known monographs [1–3] for an overview of the subject. Recently, there has been
significant activity centered on learning new empirical closure models from data using methods of
machine learning [4–9]. It is, however, fair to say that the field of turbulence modeling has been
largely dominated by empiricism, and there is a consensus that the potential and limitations of
even the most common models are still not well understood. Our study tackles this fundamental
question, more specifically, how well certain common closure models can in principle perform if
they are calibrated in a optimal way. We will look for an optimal, in a mathematically precise sense,
form of a certain closure model and will conclude that, somewhat surprisingly, it does not in fact
exist.

On the other hand, from the physical point of view, turbulence closure models are not meant
to capture nonlinear transfer processes with pointwise accuracy, but rather to represent them in a
certain average sense. The ill-posedness of the problem of optimally calibrating a closure model
signaled above can thus be viewed as a consequence of the inability of the closure model to match
the original solution pointwise in space and in time. More precisely, the optimal eddy viscosity
exhibits unphysical high-frequency oscillations. In the present study we will use a mathematically
systematic approach to illustrate this physical intuition and demonstrate how the ill-posedness
arises. We will also show that the model calibration problem is in fact well behaved when the LES
with a closure model is required to match quantities defined in the statistical rather than pointwise
sense.

We are going to focus on an example from a class of widely used algebraic closure models,
namely, the Smagorinsky-type eddy-viscosity models [10] for LES. More specifically, we will
consider the Leith model [11–13] for two-dimensional (2D) turbulent flows. Like all eddy-viscosity
closure models, the Leith model depends on one key parameter, which is the eddy viscosity typically
taken to be a function of some flow variable. Needless to say, performance of such models critically
depends on the form of this function. One specific question we are interested in is how accurately
the LES equipped with such an eddy-viscosity closure model can at best reproduce solutions of
the Navier-Stokes system obtained via direct numerical simulation (DNS). Another related question
we will consider concerns reproducing certain statistical properties of Navier-Stokes flows in LES.
We will address these questions by formulating them as PDE-constrained optimization problems
where we will seek an optimal functional dependence of the eddy viscosity on the state variable.
In the first problem we will require the corresponding LES to match the filtered DNS pointwise in
space over a time window of several eddy turnover times, whereas in the second problem the LES
will be required to match the time-averaged enstrophy spectrum of the Navier-Stokes flow for small
wave numbers. By framing these questions in terms of optimization problems we will be able to
find the best (in a mathematically precise sense) eddy viscosities, and this will in turn allow us to
establish ultimate performance limitations for this class of closure models. We emphasize that the
uniqueness of our approach is that by finding an optimal functional form of the eddy viscosity we
identify, subject to minimum assumptions, an optimal structure of the nonlinearity in the closure
model, which is fundamentally different, and arguably more involved, than calibrating one or more
constants in a selected ansatz for the eddy viscosity. This formulation is also more general than
common dynamic closure models and some formulations employing machine learning to deduce
information about local properties of closure models from the DNS (see, e.g., [14]). Our goal is to
understand what form the eddy viscosity needs to take in order to maximize the performance of the
closure model in achieving a prescribed objective. The emphasis will be on methodology rather than
on specific contributions to subgrid modeling.
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The optimization problem in question has a nonstandard structure, but an elegant solution can be
obtained using a generalization of the adjoint-based approach developed in Refs. [15,16]. In being
based on methods of the calculus of variations, this approach thus offers a mathematically rigorous
alternative to machine-learning methods which have recently become popular [4–9]. As a proof of
the concept applicable to the problem considered here, this approach was recently adapted to find
optimal closures in a simple one-dimensional (1D) model problem by Matharu and Protas [17].
Importantly, this approach involves a regularization parameter controlling the “smoothness” of the
obtained eddy viscosity.

In the first problem, which involves matching the filtered DNS solution in the pointwise sense,
we find optimal eddy viscosities for the Leith closure model in the LES systems with different filter
cutoff wave numbers kc. As this wave number increases and the filter width vanishes, the optimal
eddy viscosity is close to zero, and the match between the predictions of the LES and the filtered
DNS is nearly exact, as expected. On the other hand, for smaller cutoff wave numbers kc the optimal
eddy viscosity becomes highly irregular, whereas the match between the LES and DNS deteriorates,
although it still remains much better than the match involving the LES with the standard Leith model
or with no closure model at all. Interestingly, the optimal eddy viscosity reveals highly oscillatory
behavior with alternating positive and negative values as the state variable increases. When the
regularization in the solution of the optimization problems is reduced and the numerical resolution
is refined at a fixed cutoff wave number, the frequency and amplitude of these oscillations are
amplified, which results in an improved match against the DNS. Thus, in this limit the optimal eddy
viscosity becomes increasingly oscillatory as a function of the state variable, which suggests that
in the absence of regularization the problem of finding an optimal eddy viscosity does not in fact
have a solution as the limiting eddy viscosity is not well defined. On the other hand, an arbitrarily
regular eddy viscosity can be found when sufficient regularization is used in the solution of the
optimization problem, but at the price of reducing the match against the DNS. While such smooth
eddy viscosities may be more useful in practice, the corresponding LES models will not achieve
their theoretical performance limits. In addition to this observation, our results also demonstrate
how the best accuracy achievable by the LES with the considered closure model depends on the
cutoff wave number of the filter, which sheds light on the fundamental performance limitations
inherent in this closure model.

In our second problem, which involves matching the time-averaged vorticity spectrum of the
filtered DNS, the obtained optimal eddy viscosity is more regular, and its key features remain
essentially unchanged as the regularization in the solution of the optimization problems is reduced
and the numerical resolution is refined. This demonstrates that the problem of optimally calibrating
the closure model is better behaved when a suitable statistical quantity is used as the target. This is
not surprising as such a formulation is in fact closer to the spirit of turbulence modeling.

The structure of the paper is as follows: in the next section we formulate our LES model and state
the optimization problem defining the optimal eddy viscosity; in Sec. III we introduce an adjoint-
based approach to the solution of the optimization problem and in Sec. IV discuss computational
details; our results are presented in Sec. V whereas final conclusions are deferred to Sec. VI; some
additional technical material is provided in the Appendix.

II. LARGE-EDDY SIMULATION AND OPTIMAL EDDY VISCOSITY

We consider 2D flows of viscous incompressible fluids on a periodic domain � := [0, 2π ]2 over
the time interval [0, T ] for some T > 0 (“:=” means “equal to by definition”). Assuming the fluid
is of uniform unit density ρ = 1, its motion is governed by the Navier-Stokes system written here
in the vorticity form

∂tw + ∇⊥ψ · ∇w = νN�w − αw + fω in (0, T ] × �, (1a)

�ψ = −w in (0, T ] × �, (1b)

w(t = 0) = w0 in �, (1c)
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where w = −∇⊥ · u, with ∇⊥ = [∂x2 ,−∂x1 ]T and u the velocity field, is the vorticity component
perpendicular to the plane of motion, ψ is the streamfunction, νN is the coefficient of the kinematic
viscosity (for simplicity, we reserve the symbol ν for the eddy viscosity), and w0 is the initial
condition. System (1) is subject to two forcing mechanisms: a time-independent forcing fω which
ensures that the flow remains in a statistical equilibrium and the Ekman friction −αw describing
large-scale dissipation due to, for example, interactions with boundary layers arising in geophysical
fluid phenomena. The forcing term is defined to act on Fourier components of the solution with
wave numbers in the range [ka, kb] for some 0 < ka < kb < ∞, i.e.,

[ f̂ω]k :=
{

F, ka � |k| � kb,

0, otherwise, (2)

where [ f̂ω]k is the Fourier component of fω with the wave vector k (hereafter hats “ ·̂ ” will denote
Fourier coefficients) and F > 0 is a constant parameter.

The phenomenology of 2D forced turbulence is described by the Kraichnan-Batchelor-Leith
theory [11,18,19], which makes predictions about various physical characteristics of such flows.
Their prominent feature, distinct from turbulent flows in three dimensions (3D), is the presence of
a forward enstrophy cascade and an inverse energy cascade [20–24]. Here we will chose ka and
kb such that the forcing term (2) will act on a narrow band of Fourier coefficients to produce a
well-developed enstrophy cascade towards large wave numbers and a rudimentary energy cascade
towards small wave numbers. The parameters νN , α, and F will be adjusted to yield a statistically
steady state with enstrophy E (t ) := ∫

�
w2(t, x) d� fluctuating around a well-defined mean value

E0. The initial condition ω0 in (1c) will be chosen such that the evolution begins already in this
statistically steady state at time t = 0.

A. The Leith closure model

The LES is obtained by applying a suitable low-pass filter Gδ , where δ > 0 is its width, to the
Navier-Stokes system (1) and defining the filtered variables w̃ = Gδ ∗ w and ψ̃ = Gδ ∗ ψ (“ ∗ ”
denotes the convolution operation and hereafter we will use tilde “ ·̃ ” to represent filtered variables).
For simplicity, we will employ a sharp low-pass spectral filter defined in terms of its Fourier-space
representation as

[Ĝδ]k :=
{

1, |k| � kc,

0, otherwise, (3)

where kc is the largest resolved wave number such that the filter width is δ = 2π/kc. Since we
normally have kb < kc, it follows that f̃ω = fω. Application of filter (3) to the vorticity equation (1a)

yields ∂t w̃ + ˜∇⊥ψ̃ · ∇w̃ = νN�w̃ − αw̃ + fω + M, where the term M represents the effect of the
unresolved subgrid quantities

M = ˜∇⊥ψ̃ · ∇w̃ − ˜∇⊥ψ̃ · ∇w̃. (4)

Since expression (4) depends on the original unfiltered variables w and ψ , to close the filtered
system the term M must be modeled in terms of an expression involving the filtered variables only.
We will do this using the Leith model [11–13], which has a similar structure to the Smagorinsky
model [10] widely used as a closure for 3D flows, but is derived considering the forward enstrophy
cascade as the dominant mechanism in 2D turbulent flows. There is evidence for good performance
of the Leith model in such flows [25,26]. Its preferred form is

M ≈ M̃ = ∇ · (˜νL∇ω̃), (5)
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in which ω̃ is the solution to the LES system [cf. (8)] and the eddy viscosity is assumed to be a
linear function of the magnitude of the vorticity gradient, i.e.,

νL(s) := (CLδ)3 √
s with s := |∇ω̃|2 ∈ I := [0, smax], (6)

where the Leith constant CL = 1 and smax > 0 is a sufficiently large number to be specified later.
We will refer to I as the “state space” domain.

While in the original formulation of the Leith model the eddy viscosity is taken to be a linear
function of |∇ω̃| as in (6) [25,26], here we consider a general dependence of the eddy viscosity on
|∇ω̃| in the form

ν(s) = [νL(s) + ν0]ϕ

(
s

smax

)
, (7)

where ν0 > 0 and ϕ : [0, 1] → R is a dimensionless function subject to some minimum only
assumptions to be specified below. The parameter ν0 is introduced to allow the eddy viscosity
ν(s) to take nonzero values at s = 0, in contrast to Leith’s original model (6). We remark that
defining the eddy viscosity in terms of such a function ϕ ensures that ansatz (7) is dimensionally
consistent. Making ϕ and ν functions of |∇ω̃|2, rather than of |∇ω̃|, in (7) will simplify subsequent
calculations. We add that ansatz (7) is used here to illustrate the approach, and in principle one could
also consider other formulations parametrized by nondimensional functions. With the Leith model
(5)–(7), the LES version of the 2D Navier-Stokes system (1) takes the form

∂t w̃ + ˜∇⊥ψ̃ · ∇w̃ = ∇ · ˜([νN + ν(s)]∇w̃) − αw̄ + fw in (0, T ] × �, (8a)

�ψ̃ = −ω̃ in (0, T ] × �, (8b)

ω̃(t = 0) = ω̃0:=w̃0 in �, (8c)

where the initial condition is given as the filtered initial condition (1c) from the DNS system.
An equivalent form of equation (8a) can be obtained noting that with the form of the filter given in

(3), the decomposition of the subgrid stresses (4) reduces to M = ∇⊥ψ̃ · ∇w̃ − ˜∇⊥ψ̃ · ∇w [2]. As
a result, the advection term in (8a) can be replaced with ∇⊥ψ̃ · ∇ω̃. While our numerical solution
will be based on (8a), this second form will facilitate the derivations presented in Sec. III. We will
assume that for all times t ∈ [0, T ] the filtered vorticity field ω̃ is in the Sobolev space H2

0 (�)
of zero-mean functions with square-integrable second derivatives [27]. We stress the distinction
between the fields w, w̃, ω̃, which represent, respectively, the solution of the DNS system (1), its
filtered version, and the solution of the LES system (8).

B. Optimization formulation for eddy viscosity

We consider two formulations with the DNS field matched pointwise in space and in time, and
in a certain statistical sense. First, the optimal eddy viscosity will be found as a minimizer of an
error functional representing the mean-square error between observations of the filtered DNS, i.e.,
of the filtered solution w̃(t, x) of the Navier-Stokes system (1), and observations the corresponding
prediction ω̃(t, x; ϕ) of the LES model (8) with eddy viscosity ν. These observations are acquired
at points xi, i = 1, . . . , M2, forming a uniform M × M grid in � with operators Hi : H2(�) −→ R
defined as

(Hiω̃)(t ) :=
∫

�

δ(x − xi )ω̃(t, x) d� = ω̃(t, xi ), i = 1, . . . , M2, (9)

where δ(·) is the Dirac delta distribution and observations [Hiω̃(ϕ)](t ) of the LES solution are
defined analogously (an integral representation of the observation operators will be convenient for
the derivation of the solution approach for the optimization problem presented in Sec. III). The
number of the observations points M2 will be chosen such that M � kc, i.e., the observations will

044605-5



PRITPAL MATHARU AND BARTOSZ PROTAS

resolve all flow features with wave numbers slightly higher than the cutoff wave number kc in (3).
The error functional then takes the form

J1(ϕ) := 1

2

∫ T

0

M2∑
i=1

{(Hiw̃)(t ) − [Hiω̃(ϕ)](t )}2 dt (10)

and is understood as depending on the function ϕ parametrizing the eddy viscosity ν = ν(s) via
ansatz (7).

In the second formulation, the optimal eddy viscosity will be found by minimizing the error
between the time-averaged vorticity spectra in the filtered DNS and predicted by the LES. For
simplicity and with a slight abuse of notation, we will treat the wave number k as a continuous
variable, i.e., we will assume that k ∈ R2 rather than k ∈ Z2; in the actual implementation one
needs to account for the discrete nature of the wave vector k. The vorticity spectrum predicted by
the LES is then defined as

Eω̃(t, k) := 1

2

∫
C (k)

|̂̃ω(t, k)|2 dS(k), ∀t, k � 0, (11)

where ̂̃ω(t, k) is the Fourier transform of ω̃(t, x) and C (k) := {k ∈ R2 : |k| = k} a circle with radius
k in the 2D plane. The vorticity spectrum Ew(t, k) in the (filtered) DNS is defined analogously.
Denoting [ f ]T := (1/T )

∫ T
0 f (t ) dt the time average of a function f : [0, T ] → R, the error

functional is defined as

J2(ϕ) := 1

4

∫ kc

k=0
{[Eω̃(·, k; ϕ)]T − [Ew(·, k)]T }2 dk, (12)

with matching performed up to the cutoff wave number kc.
The form of equation (8a) suggests that ν = ν(s), and hence also ϕ = ϕ(s/smax), must be at least

piecewise C1 functions on I and [0,1], respectively. However, as will become evident in Sec. III, our
solution approach imposes some additional regularity requirements, namely, ν = ν(s) needs to be
piecewise C2 on I with the first and third derivatives vanishing at s = 0, smax. Since gradient-based
solution approaches to PDE-constrained optimization problems are preferably formulated in Hilbert
spaces [28], we shall look for an optimal function ϕ parametrizing the optimal eddy viscosity as an
element of the following linear space which is a subspace of the Sobolev space H2(I ):

S :=
{
ϕ ∈ C3([0, 1]) :

d

dξ
ϕ(ξ ) = d3

dξ 3
ϕ(ξ ) = 0 at ξ = 0, 1

}
. (13)

Then the problem of finding an optimal eddy viscosity in the two formulations becomes

qϕ := arg min
ϕ∈S

J j (ϕ), j = 1, 2, (14)

where the optimal eddy viscosity qν is deduced from qϕ via ansatz (7). Our approach to solving this
problem is outlined in the next section.

III. ADJOINT-BASED OPTIMIZATION

We focus here on solution of the optimization problem in the first formulation, i.e., for j = 1
in (14), with the error functional given in (10). Essentially the same approach can also be used to
solve the second optimization problem with the error functional (12) and required modifications
are discussed in the Appendix. We formulate our approach in the continuous (“optimize-then-
discretize”) setting [29] and adopt the strategy developed and validated by Matharu and Protas [17].
Here we only summarize its key steps and refer the reader to that study for further details. A local
solution of problem (10), (13), and (14) can be found using an iterative gradient-based minimization
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approach as qϕ = lim
n→∞ϕ(n), where

ϕ(n+1) = ϕ(n) − τ (n)∇ϕJ1(ϕ(n) ), n = 0, 1, . . . ,

ϕ(0) = ϕ0, (15)

in which ϕ(n) is the approximation of the optimal function qϕ at the nth iteration (which can be
used to construct the corresponding approximation ν (n) of the optimal eddy viscosity), ∇ϕJ1(ϕ) is
the gradient of the error functional (10) with respect to ϕ, τ (n) is the step length along the descent
direction, and ϕ0 is an initial guess usually suggested by some form of the eddy viscosity.

A central element of algorithm (15) is the gradient ∇ϕJ1(ϕ). In many problems of PDE-
constrained optimization it can be conveniently expressed using solutions of suitably defined adjoint
equations [29]. However, the present optimization problem (10), (13), and (14) has a nonstandard
structure because the control variable ϕ(s/smax) is a function of the dependent variable s = |∇ω̃|2
in system (8). On the other hand, in its standard formulation adjoint analysis allows one to obtain
expressions for gradients depending on the independent variables in the problem (here t and x).
This difficulty was overcome in Refs. [15,16], which generalized adjoint analysis of PDE systems
to problems of the type (10), (13), and (14) by introducing a suitable change of variables. For
convenience we will denote σ := s/smax.

The Gâteaux (directional) differential of the error functional (10) with respect to ϕ, defined by
J1

′(ϕ; ϕ′) := limε→0 ε−1[J1(ϕ + εϕ′) − J1(ϕ)], is defined as

J1
′(ϕ; ϕ′) =

∫ T

0

∫
�

M2∑
i=1

H∗
i {[Hiω̃(ϕ)](t ) − (Hiw̃)(t )} ω̃′(t, x; ϕ, ϕ′) dx dt, (16)

where ϕ′ ∈ S is an arbitrary perturbation of the control variable ϕ, ω̃′(t, x; ϕ, ϕ′) satisfies the system

K

⎡⎣ω̃′

ψ̃ ′

⎤⎦ :=

⎡⎢⎣ ∂t ω̃
′ + ∇⊥ψ̃ ′ · ∇ω̃ + ∇⊥ψ̃ · ∇ω̃′ + αω̃′

−∇ · [2(∇ω̃ · ∇ω̃′)
(

dν
ds ϕ∇ω̃ + νL+ν0

smax

dϕ

dσ
∇ω̃

)+ (νN + ν)∇ω̃′]
�ψ̃ ′ + ω̃′

⎤⎥⎦
=
⎡⎣∇ · [(νL + ν0)ϕ′∇ω̃]

0

⎤⎦, (17a)

ω̃′(t = 0, x) = 0, (17b)

obtained as linearization of the LES system (8) and H∗
i : R −→ H−2(�), i = 1, . . . , M2, are the

adjoints of the observation operators Hi [cf. Eq. (9)], given by

∀ξ ∈ R, (H∗
i ξ ) := δ(x − xi )ξ, i = 1, . . . , M2. (18)

In order to extract the gradient ∇ϕJ1 from the Gâteaux differential (16), we note that this derivative
is a bounded linear functional when viewed as a function of ϕ′ and invoke the Riesz representation
theorem [30] to obtain

J1
′(ϕ; ϕ′) = 〈∇H2

ϕ J1, ϕ
′〉

H2([0,1])
= 〈∇L2

ϕ J1, ϕ
′〉

L2([0,1])
, (19)

where the inner product in the space H2([0, 1]) is defined as

〈p1, p2〉H2([0,1]) =
∫ 1

0
p1 p2 + �2

1
d p1

dσ

d p2

dσ
+ �4

2
d2 p1

dσ 2

d2 p2

dσ 2
dσ, (20)

in which �1 and �2 are length-scale parameters. While for all values of �1, �2 ∈ (0,∞) the inner
products (20) are equivalent (in the sense of norm equivalence), these two parameters play a very
important role in regularization of solutions to the optimization problem (10)–(14). In (15) we
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require the gradient in the space H2([0, 1]), i.e., ∇ϕJ1 = ∇H2

ϕ J1, but it is convenient to first derive
the gradient with respect to the L2 topology.

Introducing adjoint fields ω̃∗ and ψ̃∗, we can define the following duality-pairing relation:(
K
[
ω̃′

ψ̃ ′

]
,

[
ω̃∗
ψ∗

])
:=
∫ T

0

∫
�

K
[
ω̃′

ψ̃ ′

]
·
[
ω̃∗

ψ̃∗

]
dx dt =∫ T

0

∫
�

[
ω̃′

ψ̃ ′

]
· K∗

[
ω̃∗

ψ̃∗

]
dx dt =

([
ω̃′

ψ̃ ′

]
,K∗

[
ω̃∗
ψ∗

])
, (21)

where integration by parts was performed with respect to both space and time [noting the periodic
boundary conditions and the initial condition (17b)] and the adjoint system has the form

K∗

⎡⎣ω̃∗

ψ̃∗

⎤⎦ :=

⎡⎢⎣ −∂t ω̃
∗ − ∇⊥ψ̃ · ∇ω̃∗ + αω̃∗ + ψ̃∗

−∇ · [2 (∇ω̃ · ∇ω̃∗)
(

dν
ds ϕ∇ω̃ + νL+ν0

smax

dϕ

dσ
∇ω̃

)+ (νN + ν)∇ω̃∗]
�ψ̃∗ − ∇⊥ · (ω̃∗ ∇ω̃)

⎤⎥⎦ =
[
W
0

]
,

(22a)

ω̃∗(t = T, x) = 0, (22b)

with the source term W (t, x) := ∑M2

i=1 H∗
i {[Hiω̃(ϕ)](t ) − (Hiw̃)(t )}. Combining (17), (21), and

(22), we then arrive at

([
ω̃′

ψ̃ ′

]
,K∗

[
ω̃∗

ψ̃∗

])
=

J1
′(ϕ;ϕ′ )︷ ︸︸ ︷∫ T

0

∫
�

W (t, x) ω̃′ dx dt

= −
∫ T

0

∫
�

(νL + ν0) (∇ω̃ · ∇ω̃∗) ϕ′ dx dt, (23)

from which we obtain an expression for the Gâteaux differential

J1
′(ϕ; ϕ′) = −

∫ T

0

∫
�

(νL + ν0) (∇ω̃ · ∇ω̃∗) ϕ′ dx dt,

with the perturbation ϕ′ now appearing explicitly as a factor. However, this expression is still
not consistent with the Riesz form (19), which requires integration with respect to s over [0,1].
In order to perform the required change of variables, we make the substitution ϕ′(∇ω̃ · ∇ω̃) =∫ 1

0 δ( ∇ω̃·∇ω̃
smax

− σ ) ϕ′(σ ) dσ . Fubini’s theorem then allows us to swap the order of integration such
that the Gâteaux differential (16) is finally recast in the Riesz form (19) as an integral with respect
to σ

J1
′(ϕ; ϕ′) =

∫ 1

0

[
−
∫ T

0

∫
�

δ

(∇ω̃ · ∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ · ∇ω̃∗ dx dt

]
ϕ′(σ ) dσ. (24)

The gradient defined with respect to the L2 topology is then deduced from this expression as

∇L2

ϕ J1(σ ) = −
∫ T

0

∫
�

δ

(∇ω̃ · ∇ω̃

smax
− σ

)
(νL + ν0) ∇ω̃ · ∇ω̃∗ dx dt . (25)

The L2 gradient given in (25) may in principle be discontinuous as a function of s and hence
will not ensure the regularity required of the optimal eddy viscosity; cf. Sec. II B. To circumvent
this problem, we define a Sobolev gradient using the Riesz relations (19) to identify the H2 inner
product (20) with expression (24) for the Gâteaux differential. Integrating by parts with respect to
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σ and noting that the perturbation ϕ′ ∈ S is arbitrary, we obtain the Sobolev gradient ∇H2

ϕ J as a
solution of the elliptic boundary-value problem[

Id −�2
1

d2

dσ 2
+ �4

2
d4

dσ 4

]
∇H2

ϕ J1(σ ) = ∇L2

ϕ J1(σ ), σ ∈ [0, 1], (26a)

d (1)
(∇H2

ϕ J1
)

dσ (1)

∣∣∣
σ=0,1

= d (3)
(∇H2

ϕ J1
)

dσ (3)

∣∣∣
σ=0,1

= 0. (26b)

The choice of the boundary conditions in (26b) ensures the vanishing of all the boundary terms
resulting from the integration by parts. There is in fact some freedom in how to cancel these terms,
and the choice in (26b) is arguably the least restrictive. As argued in Sec. II A, we allow the eddy
viscosity ν(s) to take nonzero values at s = 0, so the corresponding Sobolev gradient should not
vanish at σ = 0 such that it can modify the value of ϕ(0), which turns out to be important in practice;
cf. Sec. V. Thus, the choice of boundary conditions at σ = 0 provided in (26b) is necessary. On the
other hand, the choice of the boundary conditions at σ = 1 has been found to have little effect on
the gradient and on the obtained results provided smax is sufficiently large. Therefore, the form of
these boundary conditions given in (26b) is justified by simplicity. The boundary conditions (26b)
are the reason for the presence of additional constraints in the definition of space S in (13).

Determination of the Sobolev gradients ∇H2

ϕ J1 based on the L2 gradients ∇L2

ϕ J1 by solving
system (26) can be viewed as low-pass filtering of the latter gradient using a nonsharp filter (as
discussed by Protas et al. [28], this can be seen representing the operator [Id −�2

1 (d2/dσ 2) +
�4

2(d4/dσ 4)]−1 in the Fourier space). The parameters �1 and �2 serve as cutoff length scales rep-
resenting the wavelengths of the finest features retained in the gradients ∇H2

ϕ J1 such that increasing
�1 and �2 has the effect of making the Sobolev gradient “smoother” and vice versa. Thus, �1 and �2

are “knobs” which can be tuned to control the regularity of the optimal eddy viscosities obtained as
solutions of the problem (10)–(14).

Since by construction ∇H2

ϕ J1 ∈ S , choosing the initial guess in (15) such that ϕ0 ∈ S will ensure
that ϕ(0), ϕ(1), . . . , qϕ ∈ S . At each step in (15) an optimal step size τ (n) can be found by solving the
following line-minimization problem [31]

τ (n) = arg min
τ>0

J1[ϕ(n) − τ ∇ϕJ1(ϕ(n) )]. (27)

Numerical implementation of the approach outlined above is discussed in the next section.

IV. COMPUTATIONAL APPROACH

The evaluation of the Sobolev gradient ∇H2

ϕ J1 requires the numerical solutions of the LES
system (8) and the adjoint system (22) followed by the solution of problem (26). For the first
two systems we use a standard Fourier pseudospectral method in combination with a CN/RKW3
time-stepping technique introduced by Le and Moin [32], which give spectrally accurate results
in space and a globally second-order accuracy in time. The spatial domain is discretized using
Nx = 256 equispaced grid points in each direction. Since the eddy viscosity ν = ν(s) and the
function ϕ(s/smax) are state-dependent, we also need to discretize the state domain I [cf. (7)],
which is done using Ns Chebyshev points (values of Ns are provided in Table I). We use Chebyshev
differentiation matrices to perform differentiation with respect to s and the eddy viscosity ν(s), and
its derivatives are interpolated from state space I to the spatial domain � using the barycentric
formulas [33]. The boundary-value problem (26) is solved using a method based on ultraspherical
polynomials available in the chebop feature of Chebfun [34]. Solution of the 2D Navier-Stokes
system (1) is dealiased using Gaussian filtering based on the 3/2 rule [35]; however, this is
unnecessary for the LES system (8) due to the aggressive filtering applied. To ensure that aliasing
errors resulting from the presence of state-dependent viscosity are eliminated, the adjoint system
(22) is solved using twice as many grid points 2Nx in each direction.
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TABLE I. Summary information about the different cases considered when solving optimization problem
(14) with j = 1.

Case kc Ns �1 �2 ϕ0 J1(ϕ0) J1(ϕ (∞) ) r

A 30 64 104 103 No closure 4.398 × 10−7 1.492 × 10−7 8.999 × 10−8

B 25 64 104 103 No closure 1.951 × 10−5 2.450 × 10−6 1.572 × 10−6

C 20 64 104 103 No closure 3.635 × 10−4 6.217 × 10−5 4.468 × 10−5

D 20 128 103 102 Case C 6.217 × 10−5 2.001 × 10−5 1.239 × 10−5

E 20 256 101 100 Case D 2.333 × 10−5 1.450 × 10−5 8.723 × 10−6

Evaluation of the L2 gradient (25) requires nonstandard integration over level sets as described
by Bukshtynov and Protas [16]. While for simplicity a simple gradient approach was presented in
(15), in practice we use the Polak-Ribière variant of the conjugate-gradient method to accelerate
convergence. For the line minimization problem (27), the standard Brent’s algorithm is used [36].
The consistency and accuracy of the formulation and of the entire computational approach was
validated using a standard suite of tests as was done by Matharu and Protas [17].

V. RESULTS

The results obtained by solving optimization problem (14) with error functionals (10) and (12)
are presented in Secs. V A and V B. Our computations are based on a flow problem defined by the
following parameters: νN = 1 × 10−2, α = 1 × 10−3, F = 5, and ka = kb = 4. In the first optimiza-
tion problem we fix M = 32 in (10), which is slightly larger than the largest cutoff wave number kc

we consider (cf. Table I) and therefore ensures that the optimal eddy viscosity is determined based
on all available flow information, and T = 20 ≈ 30te, where te := [

∫ T
0 E (t ) dt/(8π2T )]−1/2 is the

eddy turnover time [22]. We emphasize that the key insights provided by our computations do not
depend on the particular choice of T , as long as it remains of comparable magnitude to the value
given above.

A. Matching the DNS pointwise in space and time: Results for the optimization
problem with error functional (10)

Our first set of results addresses the effect of the cutoff wave number kc. They are obtained
by solving problem (14) with j = 1 for decreasing values of kc = 30, 25, 20 while retaining fixed
values of the regularization parameters �1, �2 and a fixed resolution Ns in the state space I; cf.
cases A, B, and C in Table I. In each case the optimization problem is solved using the initial guess
ϕ0(s/smax) ≡ 0 corresponding to no closure model at all. The dependence of the error functional
J1(ν (n) ) on iterations n in the three cases is shown in Fig. 1(a), where we see that the mean-square
errors between the DNS and the optimal LES increase as the cutoff wave number kc is decreased,
and the largest relative reduction of the error is achieved in case C with the smallest kc. While
minimization in problem (14) is performed with respect to the nondimensional function ϕ [cf. (7)],
we focus here on the corresponding optimal eddy viscosities qν = qν(s) shown in Fig. 1(b). Since
small values of s are attained more frequently in the flow [cf. the probability density function (PDF)
of

√
s embedded in the figure], the horizontal axis is scaled as

√
s, which magnifies the region of

small values of s. We see that for the largest cutoff wave number kc = 30 the optimal eddy viscosity
is close to zero over the entire range of s. However, for decreasing kc the optimal eddy viscosity
exhibits oscillations of increasing magnitude. We note that values of s � 50 occur very rarely in the
flow, and hence the gradient (25) provides little sensitivity information for s in this range. Thus, the
behavior of qν(s) for s � 50 is an artifact of the regularization procedure defined in (26) and is not
physically relevant.
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FIG. 1. (a) Dependence of the functional J1(ϕ (n) ) on the iteration n and (b) dependence of the correspond-
ing optimal eddy viscosity qν on

√
s for cases A, B, and C; cf. Table I. Panel (b) also shows the PDF of

√
s in

case C.

In order to provide additional insights about the properties of the optimal eddy viscosity, our
second set of results is obtained as solutions of problem (14) with j = 1 using a fixed kc = 20
and progressively reduced regularization achieved by decreasing the parameters �1, �2 while si-
multaneously refining the resolution Ns in the state space I; cf. cases C, D, and E in Table I.
Optimization problems with weaker regularization are solved using the optimal eddy viscosity
obtained with stronger regularization as the initial guess. From the normalized error functionals
shown as functions of iterations in Fig. 2(a), we see that as regularization is reduced, the mean-
square errors between the optimal LES and the DNS become smaller and approach a certain nonzero
limit; cf. Table I. As is evident from Fig. 2(b), this is achieved with the corresponding optimal eddy
viscosities developing oscillations with an ever increasing frequency. More precisely, each time
the regularization parameters �1, �2 are reduced and the resolution Ns is refined, a new oscillation
with a higher frequency appears in the optimal eddy viscosity qν(s) (in fact, in each case, this is the
highest-frequency oscillation which can be represented on a grid with Ns points).

In order to assess how well the solutions of the LES system (8) with the optimal eddy viscosities qν

shown in Figs. 1(b) and 2(b) approximate the solution of the Navier-Stokes system (1), in Figs. 3(a)
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FIG. 2. (a) Dependence of the normalized functional J1(ϕ (n) )/J1(ϕ0), with J1(ϕ0) from case C, on the
iteration n and (b) dependence of the corresponding optimal eddy viscosity qν on

√
s for cases C, D, and E; cf.

Table I. The inset in panel (b) shows magnification of the region
√

s ∈ [0, 25]. Panel (b) also shows the Leith
model with kc = 20 and the eddy viscosity νL (s); cf. (6).

and 3(b) we show the time evolution of the quantity log10 |1 − C(t )| where

C(t ) := 1

||w̃(t )||L2(�) ||ω̃(t )||L2(�)

∫
�

w̃(t, x) ω̃(t, x) d� (28)

is the normalized correlation between the two flows. For a more comprehensive assessment, these
results are shown for t ∈ [0, 2T ], i.e., for times up to twice longer than the “training window” [0, T ]
used in the optimization problem (14). In Fig. 3(b) we also present the results obtained for kc = 20
with an optimal closure model based on the linear stochastic estimator introduced by Langford
and Moser [37]. Since at early times correlation C(t ) reveals exponential decay corresponding
to the exponential divergence of the LES flow from the DNS, this effect can be quantified by
approximating the correlation as C(t ) ≈ C̄(t ) := C0e−rt , where C0 = 1 follows the fact that ω̃0 ≡ w̃0,
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FIG. 3. Adjusted normalized correlations (28) for the LES with (a) no closure and the optimal eddy
viscosity in cases A, B, and C, and (b) no closure and the optimal eddy viscosity in cases C, D, and E. The
correlation is also shown for the Leith model with kc = 20 and the eddy viscosity νL (s) [ cf. (6)] in (a) and
for an optimal closure model based on the stochastic estimator [37] in (b). Thick and thin lines correspond to,
respectively, time in the “training window” (t ∈ [0, T ]) and beyond this window (t ∈ (T, 2T ]).

whereas the decay rate r is obtained from a least-squares fit over the time window [0, T ]. The decay
rates r obtained in this way are collected in Table I.

Finally, in order to provide insights about how the closure model with the optimal eddy viscosity
acts in the physical space, in Figs. 4(a), 4(b), and 4(d) we show the vorticity field ω̃(T, x), the
corresponding state variable s(T, x) [cf. (7)], and the spatial distribution qν(s(T, x)) of the optimal
eddy viscosity obtained in case E; for comparison, the spatial distribution of the eddy viscosity
νL(s(T, x)) in the Leith model [cf. (6) with δ = 0.02] is shown in Fig. 4(c) (the fields are shown in
the entire domain, i.e., for x ∈ �, at the end of the training window). We see that while the vorticity
and state-variable fields vary smoothly, this is also the case for the spatial distribution of the eddy
viscosity νL(s(T, x)) in the Leith model. On the other hand, the spatial distribution of the optimal
eddy viscosity qν(s(T, x)) exhibits rapid variations, which is consistent with the results presented
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FIG. 4. For case E we show (a) the vorticity field ω̃(T, x), x ∈ �, (b) the corresponding state variable
s(T, x) [cf. (7)], and the spatial distribution of (c) the eddy viscosity νL (s(T, x)) in the Leith model [cf. (6)]
with δ = 0.02, and (d) the optimal eddy viscosity qν(s(T, x)) [cf. Fig. 2(b)], all shown at the end of the training
window for t = T . For better comparison the same color scale is used in panels (c) and (d).

in Fig. 2(b). In particular, positive and negative values of qν(s(T, x)), corresponding to localized
dissipation and injection of enstrophy, tend to form concentric bands in some low-vorticity regions
of the flow domain. The time evolution of the vorticity field in the DNS, LES with no closure model,
and LES with the optimal eddy viscosity (case E) are available together with an animated version
of Fig. 3(b) in the Supplemental Material as Movie 1 [38]. An animation representing the time
evolution of the fields shown in Fig. 4 for t ∈ [0, 2T ] is available in the Supplemental Material as
Movie 2 [38].

B. Matching the DNS in an average sense: Results for the optimization problem
with error functional (12)

Now we review the results obtained by solving optimization problem (14) for j = 2 with a fixed
cutoff wave number kc = 20 and with two sets of parameters determining regularization (�1 and
�2) and the resolution in the state space I (Ns); cf. cases F and G in Table II. We remark that the
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TABLE II. Summary information about the different cases considered when solving optimization problem
(14) with j = 2.

Case kc Ns �1 �2 ϕ0 J2(ϕ0) J2(ϕ (∞) ) r

F 20 256 101 100 No closure 6.736 × 10−2 8.876 × 10−3 2.882 × 10−4

G 20 512 10−1 10−2 No closure 6.736 × 10−2 6.286 × 10−3 1.685 × 10−4

regularization performed in the present problem is less aggressive than in the problem discussed in
Sec. V A. As shown in Fig. 5(a), the normalized error functional converges to a local minimum in
only a few iterations, and, as the regularization is reduced, a larger reduction of the error functional
is obtained. However, as is evident from Fig. 5(b), this is achieved with optimal eddy viscosities
much better behaved than the optimal eddy viscosities found by solving the optimization problem
discussed in Sec. V A, even though a weaker regularization is now applied (cf. Table II; the obtained

FIG. 5. (a) Dependence of the normalized functional J2(ϕ (n) )/J2(ϕ0) on the iteration n and (b) dependence
of the corresponding optimal eddy viscosity qν on

√
s for cases F and G; cf. Table II. Panel (b) also shows the

PDF of
√

s in case G.

044605-15



PRITPAL MATHARU AND BARTOSZ PROTAS

FIG. 6. The difference between time-averaged vorticity spectra (11) in the filtered DNS and in the LES
with no closure and with the optimal eddy viscosity qν obtained in cases F and G (cf. Table II) as function of
the wave number k.

optimal eddy viscosity exhibits more small-scale variability in case G than in case F, but the
difference is not significant).

The difference between the time-averaged vorticity spectra (11) is the LES with no closure, LES
with the optimal closure qν (cases F and G), and the filtered DNS is shown in Fig. 6 as a function of
the wave number k [this quantity is related to the integrand expression in the error functional (12)].
We see that when the optimal eddy viscosity qν is used in the LES, this error is reduced, especially
at low wave numbers k. On the other hand, the evolution of the quantity log10 |1 − C(t )| [cf. (28)],
shown for the same cases in Fig. 7, demonstrates that, in contrast to Fig. 3, in the present problem
the LES flows equipped with the optimal eddy viscosity do not achieve a better pointwise-in-space
accuracy with respect to the DNS than the LES flow with no closure model.

Finally, we show the vorticity field ω̃(T, x), the corresponding state variable s(T, x) [cf. (7)], the
spatial distribution qν(s(T, x)) of the optimal eddy viscosity obtained in case G, and for comparison,

FIG. 7. Adjusted normalized correlations (28) for the LES with no closure and the optimal eddy viscosity
in cases F and G. Thick and thin lines correspond to, respectively, time in the “training window” (t ∈ [0, T ])
and beyond this window (t ∈ (T, 2T ]).
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FIG. 8. For case G we show (a) the vorticity field ω̃(T, x), x ∈ �, (b) the corresponding state variable
s(T, x) [cf. (7)], and the spatial distribution of (c) the eddy viscosity νL (s(T, x)) in the Leith model [cf. (6)]
with δ = 0.02, and (d) the optimal eddy viscosity qν(s(T, x)) [cf. Fig. 5(b)], all shown at the end of the training
window for t = T . For better comparison the same color scale is used in panels (c) and (d).

the spatial distribution of the eddy viscosity νL(s(T, x)) in the Leith model; cf. (6), in Figs. 8(a), 8(b),
8(d), and 8(c), respectively. We remark that the spatial distribution of the optimal eddy viscosity in
Fig. 8(d) is now significantly smoother than the distribution of the optimal eddy viscosity obtained
in the first formulation by solving optimization problem (14) with j = 1; cf. Fig. 4(d). An animated
version of Fig. 8 illustrating the evolution of the fields for t ∈ [0, 2T ] is shown in the Supplemental
Material as Movie 3 [38].

VI. DISCUSSION AND CONCLUSIONS

In this study we have considered the question of fundamental limitations on the performance of
eddy-viscosity closure models for turbulent flows. We focused on the Leith model for 2D LES for
which we sought optimal eddy viscosities that subject to minimum assumptions would result in the
least mean-square error between the corresponding LES and the filtered DNS. Such eddy viscosities
were found as minimizers of a PDE-constrained optimization problem with a nonstandard structure
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which was solved using a suitably adapted adjoint-based gradient approach [17]. A key element of
this approach was a regularization strategy involving the length-scale parameters �1 and �2 in the
Sobolev gradients; cf. (26). The approach proposed is admittedly rather technically involved, which
may limit its practical applicability to construct new forms of the eddy viscosity, but its value is in
making it possible to systematically characterize the best possible performance of different types of
closure models.

Our main finding in Sec. V A is that with a fixed cutoff wave number kc the LES with an optimal
eddy viscosity qν matches the DNS increasingly well as the regularization in the solution of the
optimization problem is reduced; cf. Fig. 2(a). This is quantified by a reduction of the rate of
exponential decay of the correlation between the corresponding LES and the DNS; cf. Fig. 3(b)
and Table I. This optimal performance of the closure model is achieved with eddy viscosities qν(s)
rapidly oscillating with a frequency increasing as the regularization parameters are reduced. From
this we conclude that in the limit of vanishing regularization parameters and an infinite numerical
resolution the optimal eddy viscosity would be undefined as it would exhibit oscillations with an
unbounded frequency. Thus, from the mathematical point of view, the problem of finding an optimal
eddy viscosity in the absence of regularization is ill-posed. In practical terms, this means that the
“best” eddy viscosity for the Leith model does not exist.

The optimal performance of the LES is realized by a rapid variation of the eddy viscosity qν(s)
which oscillates between positive and negative values as s changes [cf. Fig. 2(b)], resulting in the
dissipation and injection of the enstrophy occurring in the physical domain in narrow alternating
bands; cf. Fig. 4(d). We note that a somewhat similar behavior was also observed in [14] where the
authors used machine learning methods to determine pointwise estimates of eddy viscosity which
exhibited oscillations between positive and negative values. This behavior can be understood in
physical terms based on relations (4)–(5), which can be interpreted as defining the eddy viscosity
in terms of the space- and time-dependent DNS field, but the problem is severely overdetermined.
Thus, some form of relaxation is needed to determine ν, and the proposed optimization approach
with its inherent regularization strategy is one possibility.

In addition, the optimal eddy viscosities found here have the property that qν(0) > 0, in contrast
to what is typically assumed in the Leith model where ν(0) = 0 [26]. In contrast to the behavior
observed in Fig. 4(d), standard eddy viscosity closure models are usually assumed to be strictly
dissipative [39], which is reflected in the fact that the eddy viscosity is nonnegative as in Fig. 4(c).
We add that we have also considered finding optimal eddy viscosities by matching against the
unfiltered DNS field, i.e., using w(t, x) in the error functional (10) instead of w̃(t, x); however,
this approach produced results very similar to the ones reported above. As is evident from Fig. 3(b),
the performance of the LES with optimal eddy viscosities compares favorably to the LES with an
optimal closure model proposed by Langford and Moser [37] based on a stochastic estimator, which
has a less restrictive structure than the Leith model.

The optimal eddy viscosities constructed in Sec. V A to maximize the pointwise match against
the filtered DNS are unlikely to be useful in practice due to their highly irregular behavior, which
is difficult to resolve using finite numerical precision. On the other hand, the second formulation
studied in Sec. V B where optimal eddy viscosities were determined by matching predictions of the
LES against the time-averaged vorticity spectrum of the DNS for small wave numbers leads to a
much better behaved optimization problem and produced results easier to interpret physically. In
particular, the general form of the optimal eddy viscosity obtained in this case was found to have
little dependence on regularization; cf. Fig. 5(b).

The main question left open by the results reported here is whether the optimal eddy viscosity
for the Smagorinsky model in 3D turbulent flows would exhibit similar properties. It can be studied
by solving an optimization problem analogous to (14), a task we will undertake in the near future.
In addition, it is also interesting to analyze the optimal performance of other closure models using
the framework developed here.
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APPENDIX: GRADIENT OF THE ERROR FUNCTIONAL J2

Here we discuss computation of the gradients ∇L2

ϕ J2 and ∇H2

ϕ J2 of the error functional (12). The
difference with respect to the formulation used in Sec. III is that functional (12) is defined in the
Fourier space, and we adopt with suitable modifications the approach developed in [40]. Proceeding
as in Sec. III, we first compute the Gâteaux differential of the error functional (12) with respect to
ϕ,

J ′
2(ϕ; ϕ′) = 1

2T

∫ T

t=0

∫ kc

k=0

(
[Eω̃(·, k; ϕ)]T − [Ew(·, k)]T

)(∫
C (k)

̂̃ω̂̃ω′ + ̂̃ω̂̃ω′
dS(k)

)
dk dt, (A1)

where · denotes the complex conjugate and ̂̃ω′
is the Fourier transform of the solution ω̃′ to (17).

We note that the gradients ∇L2

ϕ J2 and ∇H2

ϕ J2 satisfy Riesz identities analogous to (19). Next we
introduce new adjoint fields ω̃∗ and ψ̃∗ assumed to satisfy the same adjoint system (22), but with a
different source term W whose form is to be determined. Utilizing Parseval’s identity and the fact
that all fields are real-valued in physical space, we rewrite the duality relation (21) as([

ω̃′

ψ̃ ′

]
,K∗

[
ω̃∗

ψ̃∗

])
= 1

2

([̂
ω̃′

ψ̃ ′

]
,

̂

K∗
[
ω̃∗

ψ̃∗

])
+ 1

2

([̂
ω̃′

ψ̃ ′

]
,

̂

K∗
[
ω̃∗

ψ̃∗

])
,

= 1

2T

∫ T

t=0

∫ kc

k=0

∫
C (k)

[̂
ω̃′

ψ̃ ′

]
·

̂

K∗
[
ω̃∗

ψ̃∗

]
+
[̂
ω̃′

ψ̃ ′

]
·

̂

K∗
[
ω̃∗

ψ̃∗

]
dS(k) dk dt .

(A2)

Combining (17), (21), (22), (A1), and (A2) results in

([
ω̃′

ψ̃ ′

]
,K∗

[
ω̃∗

ψ̃∗

])
=

J ′
2 (ϕ;ϕ′ )︷ ︸︸ ︷

1

2T

∫ T

t=0

∫ kc

k=0

(
[Eω̃(·, k; ϕ)]T − [Ew(·, k)]T

)(∫
C (k)

̂̃ω̂̃ω′ + ̂̃ω̂̃ω′
dS(k)

)
dk dt,

from which we deduce the form of the source term in the adjoint
system as

Ŵ (t, k) = ([Eω̃(·, k; ϕ)]T − [Ew(·, k)]T ) ̂̃ω(t, k). (A3)

Once the adjoint system (22) with the source term (A3) is solved, the L2 gradient ∇L2

ϕ J2 can be

computed using expression (25). The Sobolev gradient ∇H2

ϕ J2 is then obtained as discussed in
Sec. III by solving system (26). In summary, the difference in the computation of the gradients
of the error functionals J1 and J2 is confined to the form of the source term W in the adjoint
system (22).
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