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In this study based on direct numerical simulations (DNS) of homogeneous bubbly
flows, an analysis of velocity fluctuations is performed and a methodology for the develop-
ment of a bubble-induced agitation (or pseudoturbulence) model is described. This process
is based on the separation of two phenomena causing velocity fluctuations in the liquid:
the agitation resulting from wakes and their collective interactions [wake-induced agitation
(WIA)], which is our main focus, and the nonturbulent fluctuations resulting from averaged
wakes and potential flows around bubbles [potential flow and averaged wake fluctuations
(PWFs)]. We run DNS of fixed bubbles, with random spatial distribution, and compare
the results to free-bubble simulations in order to build a model for those phenomena.
The simulation of motionless bubbles allow the decomposition of the Reynolds stress
transport equation to study WIA and PWFs separately. Then the main characteristics of
bubbly flows are analyzed. The signature of an energy conversion from wake kinetic
energy (PWFs) to turbulent kinetic energy (WIA) is observed, revealing the importance of
nonlinear interactions and transfers between PWFs and WIA. A first proposal of model is
made, which gives satisfactory results on our database for a wide range of bubble Reynolds
numbers and is consistent with experimental observations. It is operational and can be
implemented and assessed in an averaged code.
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I. INTRODUCTION

Fluctuations in two-phase flows are historically divided into bubble-induced agitation (BIA)
and shear-induced turbulence (SIT) [1] (see Fig. 1). SIT arises from the averaged shear produced
for instance in near-wall regions. It is frequently seen as “turbulence in the absence of bubbles”
whereas BIA represents the contribution added by the bubbles. In the broader context of multiphase
flows (gas-particle and liquid-particle flows, droplets, etc.), BIA is often called pseudoturbulence,
as its characteristic quantities are linked to the bubble’s dynamics (slip velocity, bubble diameter).
Following the work of [2], we employ the term bubble-induced agitation as it presents some features
that differ from standard turbulence, which we detail below. To emphasize in particular the fact
that part of the fluctuations induced by the bubbles’ agitation is nothing alike turbulence, note that
BIA and SIT have different characteristic length scales. For turbulence modeling, this distinction is
crucial because it will determine whether or not the length scale must be modeled using a transport
equation (e.g., dissipation rate) or not (i.e., for pseudoturbulence).
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FIG. 1. Scheme of the agitation mechanisms in bubbly flows. The red box represents the foundational work
of Lance and Bataille [1]. Black boxes contain concepts often studied together. The black and orange arrows
respectively symbolize a decomposition and an interaction. Green = homogeneous bubbly flows; blue+green
= inhomogeneous bubbly flows; gray+blue+green = ordinary bubbly flow [1,3–8].

Note that SIT can also be generated by an inhomogeneous distribution of bubbles at high
void fraction. For instance, the velocity difference between populated and empty regions can
produce averaged or local shear which generates turbulence. This phenomenon is studied in the
literature as buoyancy-driven turbulence (BDT) because “The high gas fraction bubbly flow regime
or heterogeneous regime is prone to buoyancy-induced instabilities, which lead to the formation
of heterogeneous bubble flows producing buoyancy driven turbulence” [4]. Nonetheless, all the
velocity fluctuations generated by bubbles are buoyancy-induced, including those not related to
inhomogeneities. Thus, the name cluster-induced turbulence (CIT) is also used in Ref. [9] (see
Fig. 1) for such fluctuations.

Moreover, the BIA/SIT separation implies that BIA is not related to shear. Instead, CIT is the
consequence of a shear generated by bubbles. Being caused by both bubbles and shear, CIT can
be arbitrarily interpreted as SIT or BIA. To scrupulously separate the agitation linked to bubbles
from single-phase turbulence, it is perhaps clearer to speak of single-phase turbulence (SPT) and
bubble-induced agitation (BIA). Note that there is strong interaction between both, for example via
the phenomenon of turbulence reduction [10–13].

In case of a homogeneous distribution of bubbles (low to moderate void fractions), Ref. [2]
proposed a splitting of BIA into spatial and temporal agitations. The spatial agitation corresponds
to the coherent structures around bubbles such as the averaged wake and the potential flow [14–16].
In the present study, it is coined as potential flow and averaged-wake fluctuations (PWFs). These
fluctuations, although stationary in the reference frame of bubbles, are responsible for a part of
the dissipation process in the wakes and interact in a strongly nonlinear manner with the second
contribution coined as wake-induced agitation (WIA). WIA is linked to wake instabilities on
the one hand and to the collective interaction of wakes on the other. Wake instabilities generate
temporal fluctuations as von Kármán alleys; it should be noted that this part of fluctuations is
not necessarily turbulent, as it does not necessarily lead to an energy cascade and to a dissipative
process at the molecular scale. For this reason, the terminology “agitation” is more suited than
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“turbulence.” However, Refs. [7,8,11,17] demonstrate that the collective interaction of wakes is a
turbulent process. Therefore, WIA combines two phenomena.

To apply these concepts to an averaged model (i.e., the Euler-Euler two-fluid model with
interpenetrating media), additional distinctions have to be made. If SIT is the turbulence generated
by the averaged shear, it makes up part of the CIT (because inhomogeneities caused by clusters
induce shear). The larger scales of inhomogeneities (and steady inhomogeneities) are captured by
an averaged model, contrary to homogeneity fluctuations (for instance, within a bubble plume) that
require modeling. From the modeling point of view, this distinction is important even if the physical
mechanism is unchanged. In Fig. 1 we refer to mean cluster-induced turbulence (MCIT) as the part
resolved intrinsically by a Reynolds averaged model, and to fluctuating cluster-induced turbulence
(FCIT) for the part which requires additional modeling. This efficient agitation is significant at high
void fraction (this is not the case in the present study). The other fluctuations (WIA, PWFs) take
place at the bubble scale. In contrast with WIA and PWFs that need to be modeled for any two-fluid
approach, CIT can be either resolved in a two-fluid model that resolves shear and buoyancy-induced
turbulence or modeled in a two-fluid turbulence model that considers statistically a broader range
of scales. In this paper, the focus will be set upon the WIA and PWF modeling.

A proposal is made in Fig. 1 to give names and abbreviations with a clear separation of the
effects mentioned above. Total fluctuations Ri j are defined as the sum of SPT and BIA, and MCIT
is considered only as a product of BIA. In both theory and practice, it is easier to consider SIT as
the combination of both SPT and MCIT. Consequently, there remain only three parts to the BIA
(namely, FCIT, WIA, and PWFs) even though MCIT cannot exist without bubbles (and is therefore
bubble-induced too as indicated by the dashed arrow in Fig. 1). Finally, we consider fluctuations as

Ri j = RSIT
i j + RBIA

i j , (1)

RSIT
i j = RSPT

i j + RMCIT
i j , (2)

RBIA
i j = RFCIT

i j + RW IA
i j + RPW F

i j . (3)

Today, models used by industrial codes are far from taking into account the whole complexity of
two-phase bubbly flows and most of these studies stand for the development of models that include
more physical phenomena. Models for bubbly flows are generally ad hoc extension of single-phase
methods (k − ε, RSM, etc.). Ignoring the specificity of BIA (with respect to single-phase turbu-
lence), interfacial production becomes an additional source term in the transport equation of kinetic
energy [18–20]. Classical models involve only the splitting of turbulence into SIT and BIA. In order
to adapt single-phase turbulence models to two-phase flows, many authors have implicitly assumed
that FCIT, WIA, and PWFs may be modeled together [18,19]. The reader is referred to the review
[20]. Generally, the most common models in CFD use an additional production term in the turbulent
energy transport equation related to the bubble impact, and add a sink term in the dissipation
equation to take into account the additional dissipation induced by bubble wakes [21]. The latter
is simply taken as the additional interfacial production introduced in the turbulent kinetic energy
transport equation scaled by a characteristic timescale. This timescale be either expressed as the
turbulence integral timescale τ = k/ε, which amounts to the SPT scale, or follow a more advanced
formulation based on a blending of the turbulence integral timescale and the bubble/turbulence
interaction timescale [22]. Mostly, the velocity fluctuations, bubble-generated or not, are dissipated
with a single characteristic frequency generally based on single-phase turbulence. These models are
thus suitable for high-Reynolds number simulations, in which the impact of BIA can be negligible.
For low-Reynolds flows, large improvements are still possible.

Although there have been several attempts to use other decompositions based on physical
considerations, to the best of our knowledge, most of the turbulence models are still based on a
coarse vision of two-phase flow. We can note some exceptions like the work of [23], who proposed
to distinguish the dissipative and nondissipative parts of BIA. More recently, Ref. [4] offered an
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adaptation of the two-fluid model centered on FCIT modeling. Thus, a “classical” two-fluid model
can generally resolve SIT (and potentially FCIT), but it does not resolve BIA (or pseudoturbulence)
without a specific attention. Thus, the BIA model proposed in this article could be used in any
two-fluid model, including one that already resolves other parts of turbulence.

To the best of our knowledge, Chahed’s model [23] is yet the only model in the two-phase flow
literature to offer a distinction between PWFs and WIA. The challenge of the present paper is to
analyze the physics, propose a methodology in order to develop models and give a first proposal.
For this, we study the case of homogeneous bubbly flows at low void fractions. The idea for
homogeneous conditions as considered here is to model the whole DNS by a single cell. Thus,
local variations are statistically averaged. The analysis reveals that the homogeneous assumption
stands, even when variations of volume fraction are observed in the computational domain. In this
configuration, there is neither MCIT nor FCIT (or negligible), and the agitation of the liquid phase
contains mostly WIA and PWFs (see Fig. 1).

Dissociating WIA and PWFs is an arduous task, as it often relies on calculations in the reference
frame of bubbles (see [8,17,24] for more details). The experiment proposed in Ref. [8] makes it
possible to separate these two contributions by studying the turbulent fluctuations behind a swarm
of bubbles. Alternative works [14,15] succeeded in studying PWFs alone in a Hele-Shaw cell by
preventing the appearance of WIA with a strong containment. Amoura, Besnaci, and Risso [17] also
observed that nonlinear interactions leading to WIA production do not occur for bubble Reynolds
numbers Reb = ρl dbur/μl less than 200. In [13], for small bubble Reynolds numbers encountered
in low gravity conditions, BIA is composed of PWFs exclusively, thus allowing the study of PWFs
through the analysis of its Reynolds stress transport equation. These techniques enable only the
study of PWFs alone, but in the current state of knowledge, the only way to isolate WIA is the fixed-
bubble configuration. WIA cannot be studied in DNS of channel flows because it is inseparable from
SIT. Hence, following Ref. [17], we propose in this article a configuration in which WIA and PWFs
can be studied more rigorously than in a plane channel: the comparison of freely evolving bubbles
to the fixed random equivalent distribution. In addition, studying bubbly flows in the reference
frame attached to the bubbles allows the separation of WIA and PWFs [8,17], to the purpose of
separate effect analysis. The counterpart of this method is the inherent suppression of the relative
motion between bubbles and its effect. Several numerical studies have already addressed similar
configurations with regular arrays of fixed solid spheres [25] or bubbles [26]. We propose here the
study of fixed bubbles with random spatial distribution.

As suggested by numerical works [13,27–29], budgets of averaged equations can be used to
improve turbulence modeling. The Reynolds stresses transport equation for two-phase flows [21,30]
contains, in addition to classical terms (production, dissipation, etc.), an interfacial production term
related to the kinetic energy transfer between liquid and vapour phases at the bubble interface. Even
with optical methods, the measurement of this interfacial production involving interfacial pressures
and interfacial velocities is hardly attainable with the current measuring techniques [31,32]. On the
other hand, this quantity can be measured from DNS numerical experiments [29,33], leading to an
improvement of turbulence models [22,27–29,34–40].

We wish here to reiterate the attempt in Ref. [23] to propose a BIA model separating the transport
equation of the Reynolds stresses into two contributions. We propose to build an agitation model for
homogeneous bubbly flows from the DNS study. For such a flow, the Reynolds stresses transport
equation can be written as

RBIA
i j = RW IA

i j + RPW F
i j , (4)

DαlRW IA
i j

Dt
= φW IA

i j − 2εW IA
i j + �W IA

i j − Ti j, (5)

DαlRPW F
i j

Dt
= φPW F

i j − 2εPW F
i j + �PW F

i j + Ti j, (6)
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where PWFs and WIA have their own transport equations. The theory behind this decomposition is
presented in Sec. III. D

Dt is the material derivative and αl is the liquid volume fraction. R, �, φ, ε,
and T are, respectively, the Reynolds stress, interfacial production, redistribution, dissipation, and
energy transfer from WIA to PWFs. Because of the zero averaged shear in a flow of homogeneous
bubbles, there are no production and diffusion operators.

It may be surprising to express the evolution of PWFs with a transport equation. Indeed, these
fluctuations are stationary in the reference frame of bubbles. They result from the potential flow
and the average wake around them; there is nothing turbulent in this phenomenon [41,42]. Despite
this, these fluctuations are a part of the Reynolds stress in bubbly flows. Thus, they follow the same
transport equation, but the physical interpretation of the different terms must be revised. It should be
noted that models for PWFs already exist in Refs. [13,16] (with algebraic relation from Wijngaarden
[43]). Other methodologies propose to model this part of the velocity fluctuations as an additional
viscosity (see [42,44]). The present study will then be focused on the modeling of WIA.

The article is structured as follows. Section II presents the DNS and the numerical method, in
particular the forcing of the bubble positions for fixed-bubble simulations. To define the different
terms of Eqs. (5) and (6), we explain in Sec. III how the flow configuration of fixed bubbles allows a
rigorous writing of the Reynolds stress transport equations for PWFs and WIA separately. Then each
of these terms is estimated using our DNS database. Section IV analyzes the main characteristics
of bubbly flows and compares free-bubble with fixed-bubble configurations. It is followed by a
statistical analysis of WIA and PWFs. The purpose of this part is to verify the statistical properties
of fluctuations generated by the bubbles and to understand the impact of fixing them. Section V uses
fixed and free bubbly flows to complete a first modeling of the WIA transport equation (5).

II. DIRECT NUMERICAL SIMULATIONS

This section presents the simulations of bubbly flows (fixed and free), their physical and numer-
ical parameters, as well as the numerical methods used to fix bubbles and to find the flow rates
corresponding to the statistically stationary states.

A. Physical setup

Physical behavior of two-phase bubbly flows is strongly related to local phenomena occurring in
bubble surroundings. Classical experiments struggle to isolate their individual roles, justifying the
use of DNS as a numerical experiment. In the present work, ten calculations of bubbly flows are
studied. The computational domain is 2 × 0.5 × 0.5 [cm]. Periodic boundary conditions are set on
the axial (x, streamwise) and transversal (y, z, spanwise) directions. An influence of the size of the
computational domain can be expected to some extent (artificial length scales may be induced by
the computational box), especially at low Reynolds numbers. However, for particle-resolved DNS, a
compromise must be achieved due to computational limits. The domain size and number of bubbles
considered are similar to the current state of the art [29,34,45]. Pandey, Ramadugu, and Perlekar [45]
argue that these dimensions are sufficient to prevent the wake from interacting with itself. Moreover,
the effect of the domain size is expected to be of minor consequence on the purpose of this article,
where most of the modeling is performed by comparing cases with identical domains and meshes.
The tendencies illustrated in the article are mostly illustrative of the physical insight gained by this
analysis. Trends, behaviors, and relative magnitudes are commented. They are expected to remain
true with finer or larger simulations.

The flow is initially at rest before being driven by the action of buoyancy. We simulate a
population of 57 bubbles (db = 1 mm) with a void fraction of 6%. Because of the moderate void
fraction in our simulations, coalescence is neglected. Breakup is not observed for the range of Eötvös
and bubble Reynolds numbers considered. Since the present focus is on dynamical aspects, the flow
is considered isothermal with no phase change and constant physical properties for each phase.
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TABLE I. Common parameters to all bubbly flow calculations (fixed and free). g, db, Nb, σ , αv , μ, and ρ

are, respectively, the gravity, bubble diameter, number of bubbles, surface tension, void fraction, viscosity, and
density. The common Eötvös number is then Eo = 0.59. μl varies depending on the case (see Table II)

g db Nb ρl/ρv αv σ μv Domain
[m/s2] [mm] [kg/m3] [N/m] [Pa s] (×10−2 m)

9.81 1 57 1171/87 6% 0.018 1.35 × 10−5 2 × 0.5 × 0.5

Initially, bubbles are randomly distributed in the domain. Then two different configurations are
considered:

(1) Fixed-bubble simulations: bubbles are held at their initial positions by the addition of an
external force. The downward motion of the liquid phase creates the relative velocity between
phases. These simulations neglect the chaotic motion of bubbles, namely, their relative movements
with respect to each other. In addition, they assume a relatively homogeneous distribution of
bubbles. These cases allow WIA/PWF separation.

(2) Free-bubble simulations: bubbles are free to move under the action of buoyancy and other
interfacial forces. No hypothesis is made on the distribution nor on bubble movement. In this
configuration, WIA/PWF separation is complicated, if not impossible.

The physical properties of the liquid and gas listed in Table I are taken from the DEBORA
experiments [46], in which liquid R12 Freon at 16 bar and at saturation temperature is used to
represent a water/steam reactor flow at 100 bar (see R12 fluid at the NIST website [47]). In
particular, this simulating fluid allows an approximate conservation of the density ratio between
phases of a pressurized water reactor flow. We increase surface tension in order to prevent any
fragmentation of bubbles (including by the effect of the control force).

In a bubbly flow, several parameters can impact the BIA: the bubble Reynolds number Reb =
ρl dbur/μl , the Eötvös number Eo = gd2

b (ρl − ρv )/σ , and the void fraction αv . We chose to carry out
a parametric study on the bubble Reynolds number. To observe trends, ten calculations are proposed
between Reb = 100 and Reb = 800 (five with fixed bubbles and five with free bubbles). Below
Reb = 100, the flow is laminar. Beyond Reb = 800, Ref. [17] showed that statistical results converge
to an asymptotic limit; moreover, such calculations require too much computational ressource. To
vary the bubble Reynolds number, the liquid viscosity is modified from μl = 1.8 × 10−4 Pa s up to
μl = 1.5 × 10−3 Pa s (see Table II for the different cases).

TABLE II. Simulation parameters. For each column, a fixed-bubble calculation and a free-bubble calcu-
lation are performed. The resolution used in all calculations is 25.6 cells per diameter. The relative velocity

ur = Uv

v − Ul
l

is a result of the simulations that varies slightly. Uv

v
and Ul

l
are the phase-averaged velocities

in each phase. ur ≈ 0.1 m/s for free bubbles, ur ≈ 0.13 m/s for fixed bubbles. This difference is discussed in
Sec. IV A. Then the Weber number We = ρl u2

r db/σ varies slightly in the range Web ∈ [1.04, 1.6] for fixed
bubbles and Web ∈ [0.61, 0.79] for free bubbles.

μl [Pa s] 1.578 × 10−3 7.058 × 10−4 3.5289 × 10−4 2.379 × 10−4 1.886 × 10−4

Refixed
b 118 229 438 630 786

Refree
b 72 171 345 539 684

Wefixed
b 1.65 1.23 1.13 1.06 1.04

Wefree
b 0.61 0.69 0.71 0.78 0.79
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B. Numerical setup

TrioCFD through its Front-Tracking algorithm [48] resolves the one-fluid equations of Kataoka
[49]:

∇ · U = 0, (7)

∂ρU
∂t

+ ∇ · (ρUU) = −∇P + ρg + ∇ · τk + σκnvδ
i, (8)

where each of the one-fluid variables is defined as a mixture of phase variables: φ = ∑
k χkφk . φk

can be Uk , ρk , μk , or Pk , respectively, the velocity, density, viscosity, or pressure in phase k. The
viscous stress tensor is defined as τk = ∑

k μkχk (∇Uk + ∇T Uk ). χk is the phase indicator function,
which is equal to 1 in phase k and 0 otherwise. The transport equation is then ∂χv/∂t + Ui · ∇χv =
0, where Ui is the interfacial velocity of the front. Here, in the absence of phase change, the velocity
is continuous across the interface and Ui = U. σ is the surface tension, κ = −∇S · nv is the local
curvature, usually negative for bubbles, and nv is vector normal to the interface defined by ∇χv =
−nvδ

i, where δi is the Dirac impulse at the interface i.
Following the proposal of Tryggvason et al. [50], a front-tracking method [48] is used to solve

this set of equations in the whole computational domain, including both the vapor and liquid phases.
The interface is followed by moving connected marker points. The Lagrangian markers are advected
by the velocity field then interpolated from the Eulerian grid. In order to preserve the mesh quality
and to limit the need for remeshing operations, only the normal component of the velocity field is
used in the marker transport. After the transport step, the front is used to update the phase indicator
function, the density, and the viscosity at each Eulerian grid point. The Navier-Stokes equations are
then solved by a projection method [51] using fourth-order central differentiation for evaluation
of the convective and diffusive terms on a fixed, staggered cartesian grid. Fractional time stepping
leads to a third-order Runge-Kutta scheme [52] (see [53]). In the two-step prediction-correction
algorithm, a surface tension source is added to the main flow source term and to the evaluation of
the convection and diffusion operators in order to obtain the predicted velocity (see [48]). Then, an
elliptic pressure equation is solved by an algebraic multigrid method to impose a divergence-free
velocity field. TrioCFD has already been widely used for two-phase [13,22,54–60] and single-phase
[61–64] flow studies. Validations of the code are provided in Ref. [13].

The ensemble average is taken as an average in space and time, by application of the ergodicity
hypothesis to periodic directions:

φ = φ
X

T

= 1

tave

∫ t+tave/2

t−tave/2
φ

X
dτ (9)

with

φ
X = 1

LxLyLz

∫ Lx

0

∫ Ly

0

∫ Lz

0
φ dx dy dz, (10)

where Lx, Ly, and Lz are, respectively, the length of the domain in the (x, y, z) direction. tave is the
time interval of the average expressed in time unit t .u. = Lx/ur .

The mesh resolution should ideally integrate the smallest scales of bubble-induced turbulence.
For bubbly flows, the Kolmogorov scale can be estimated using the relation: η = (ν3/ε)1/4 where
ε is estimated by the power of the buoyancy force: ε = αvg〈ur〉 [7]. According to this criterion, a
greater bubble Reynolds number requires a greater resolution, because wakes become increasingly
turbulent. However, the resolution required for high Reynolds numbers is too expensive in terms of
numerical resources. The resolution used in the present calculations is 25.6 cells per bubble diameter
(note that Ref. [45] used 24 cells/diameter with the front-tracking algorithm of the PARIS simulator
up to Reb = 546). We demonstrate that it is sufficient for Reb = 438 (see Fig. 2). Consequently, a
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FIG. 2. Mesh convergence study for the relative velocity (a) and Reynolds stresses (b) for the case Reb =
438. The averaging time interval is 1 s after the steady-state establishment.

moderate deviation from converged results is possible for the cases at Reb = 630 and Reb = 786,
which presumably require greater resources. We observe convergence of both first-order statistical
quantities such as the relative velocity and second-order quantities such as the Reynolds stresses
(see Fig. 2).

C. Control algorithms for fixed bubbles

For fixed-bubble simulations, an artificial control force is implemented in order to maintain
bubbles at their initial positions. This tool is based on the work of Thomas et al. [65] who used
a control force Fi on bubble i to measure interfacial forces. This force is applied as an additional
source term on the vapor phase in the r.h.s. of Eq. (8) as

S1 = ρv

∑
i

χv,iFi, (11)

where χv,i and Fi are, respectively, the phase indicator function of the bubble i and the associated
force. Therefore, Fi is an acceleration and its intensity can be compared to gravity. Thomas
et al. [65] noted that bubbles have a stronger tendency to deformation with this force. It can be
quantified by the instantaneous modified Eötvös number: Eoi = ρd2

b (||g + Fi||)/σ where ||X|| is
the norm of X. At a given time, a fixed bubble subjected to turbulent motion may be impacted by
significant control forces (of the order of magnitude of g). In our cases, for instance, the modified
Eötvös number covers a range of Eoi ∈ [0:2Eo]. The disturbance induced by the force Fi may
lead to an unwanted destabilization of the interface. Anticipating this effect, the surface tension
in the simulations has been increased to avoid fragmentation or excessive deformation. However,
imposing an individual and time-dependent surface tension for each bubble is not permitted by our
front-tracking algorithm, and it would be subject to difficult physical interpretation. In this study,
the surface tension as been chosen heuristically to σ = 0.018N/m to avoid bubble breakup. The
same value is also taken for free bubbles. Preliminary simulations with the actual surface tension of
Freon showed moderate deformations without breakup for free-bubble simulations. Surface-tension
has been increased in order to avoid spurious deformations induced by the artificial spring force in
fixed-bubble configurations. Then it seems a closer parallel if the surface tension is increased for
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free cases too. The effect of stronger bubble deformations encountered for higher Eötvös or Weber
numbers could be the focus of dedicated studies in the future.

The control force is defined at time step n for the bubble i as

Fn
i = k1

(
xn

i − x0
i

) + k2
xn

i − xn−1
i

t
, (12)

where xn, xn−1, and x0 are, respectively, the positions of the center of mass of the bubble i at time
steps n, n − 1 and at the initial time. k1 is a spring parameter. k2 is a damping parameter that can
attenuate the oscillating behavior of the system. t is the time step. The appropriate values for
these two parameters are heuristically chosen to ensure damped oscillator behavior. The values
k1 = 1.9 × 107 s−2 and k2 = 3 × 103 s−1 have been selected and are used in all the simulations. For
the present cases, these values minimize oscillations of the bubble center.

When bubbles are fixed, it is necessary to impose a new source term S2 in the r.h.s. of Eq. (8)
to obtain the good relative velocity between phases (i.e., the good liquid flow rate). The expression
∂S2/∂t = −k3〈F〉 reaches a stationary state where S∞

2 = Cte while 〈F〉∞ = 0. Indeed, the dynamic
equilibrium of bubbles is reached when the averaged drag force compensates for buoyancy. The
source term S2 thus compensates the additional momentum induced by the work of F and the mean
pressure gradient. In the code, it is calculated as

Sn+1
2 = Sn

2 − k3t〈F〉n; S0
2 = 0. (13)

The coefficient k3 = 2 × 104 kg m−3 s−1 is chosen to minimize flow-rate fluctuations.

III. TURBULENCE DECOMPOSITION

The purpose of this section is to explain the decomposition of the fluctuations in WIA and PWFs
in the case of fixed bubbles and to adapt this decomposition to the Reynolds stresses transport
equation.

A. WIA/PWF decomposition

Velocity fluctuations defined with the phase average (ul = Ul − Ul
l

with Ul
l = χlUl/αl and

αl = χl ) oscillate around zero in the interstitial region and the distribution of the fluctuations is
symmetrical. Their behavior is chaotic as classical turbulence (WIA). On the other hand, in volumes
located in the neighborhood of bubbles (mainly wakes), streamwise fluctuations are shifted towards
positive values because of the liquid entrainment caused by bubbles. They are not turbulent but
rather due to the velocity shift related to the bubble wake (PWFs).

By application of the ergodicity assumption, the statistical average φ is split into a spatial average

φ
X

and a time average φ
T

such that

φ = φ
X

T

= φ
T

X

. (14)

Riboux and Legendre [8] have shown that in the reference frame of fixed bubbles, PWF and WIA
contributions are easily separable and correspond, respectively, to the spatial fluctuations χlul

T (x)
and to the temporal fluctuations χlu′

l(x, t ) by virtue of the classical mean/fluctuation properties:

χlul(x, t ) = χlul
T (x) + χlu′

l(x, t ) with χlu′
l
T = 0, (15)

χl pl (x, t ) = χl pl
T (x) + χl p′

l (x, t ) with χl p′
l

T = 0. (16)

044604-9



DU CLUZEAU, BOIS, LEONI, AND TOUTANT

FIG. 3. Visualization of nonturbulent PWFs at Reb = 438 (b) [calculated as the time average of the
instantaneous velocity field (a)] and turbulent WIA (c) = (a) − (b). Gravity follows the −x axis.

This decomposition is illustrated in Fig. 3 from DNS results on a fixed bubbly flow. Second-order
correlations are separated according to the previous expression. Let Xl and Yl be two fields defined
on the liquid phase, then

χlXlYl = χlXl
T
χlYl

T
X

+ χlX ′
l Y

′
l + χlY ′

l

T
χlXl

T
X

+ χlX ′
l

T
χlYl

T
X

, (17)

χlXlYl = χlXl
T
χlYl

T
X

+ χlX ′
l Y

′
l . (18)

In particular, for Xl = Yl = ul, Eq. (18) allows the decomposition of the Reynolds stress tensor into
spatial fluctuations RPWF and time fluctuations RWIA:

χlulul︸ ︷︷ ︸
αl RBIA

= χlul
T χlul

T
X︸ ︷︷ ︸

αl RPWF

+χlu′
lu

′
l︸ ︷︷ ︸

αl RWIA.

(19)

It should be noted, however, that triple correlations do not decompose rigorously. In particular,
the triple velocity correlation appearing in the turbulent diffusion term of the Reynolds stress
transport equation reveals a third term that does not cancel out. It is an interaction term between
WIA and PWFs:

χlululul = χlul
T χlul

T χlul
T

X︸ ︷︷ ︸
PW F

+χl u′
lu

′
lu

′
l︸ ︷︷ ︸

W IA

+ 3χl ul
T χlu′

lu
′
l
T

X

︸ ︷︷ ︸
PW F/W IA�=0

. (20)
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B. Decomposition of the Reynolds stress transport equation

Following the process described by Morel [21], we obtain the transport equation of velocity
fluctuations, and then the transport equation of Reynolds stresses:

Dαl ul,iul, j
l

Dt
+ αl ul,iul,b

l ∂Ul, j

∂xb
+ αl ul, jul,b

l ∂Ul,i

∂xb︸ ︷︷ ︸
−Pi j

(21)

= αl
pl

ρl

(
∂ul,i

∂x j
+ ∂ul, j

∂xi

)l

︸ ︷︷ ︸
φi j

−2 αl
μl

ρl

∂ul,i

∂xb

∂ul, j

∂xb

l

︸ ︷︷ ︸
εi j

− ∂

∂xb

(
αl ul,iul, jul,b

l − νl
∂αl ul,iul, j

l

∂xb
+ αl

ρl

(
plul,i

lδb j + plul,b
lδib

))
︸ ︷︷ ︸

Di j

− 1

ρl
(plul, jni + plul,in j )δi

l + νl

[
∂

∂xb

(
ul,iul, jn jδi

l
)

+ ∂ul,iul, j

∂xb
nbδi

l]
︸ ︷︷ ︸

�i j

,

where D/Dt is the material derivative.
Using the correlation decomposition (18) on Eq. (21), we can separate each statistical averaged

term into space and time averaged terms. If bubbles are fixed, space, and time averages are
independent and coincide with WIA and PWFs, respectively. Only the terms �i j and a part of
Di j (turbulent diffusion) cannot be separated this way.

For the decomposition of the interfacial production �i j , we define �PW F
i j as the interfacial

production related to spatial inhomogeneities and �W IA
i j as the turbulent production due to wake

interaction:

�PW F
i j + �W IA

i j = �i j . (22)

Definitions of �PW F
i j and �W IA

i j possibly could be given by introducing new averages on the
interfaces. In this work, they are not directly measured.

Lastly, for the turbulent diffusion, we assume that the interaction between PWFs and WIA related
to the decomposition of the triple correlation [Eq. (20)] is negligible:

χlululul 	 3χlul
T χlu′

lu
′
l
T

X

. (23)

Finally, the aim is to separate the Reynolds stress transport equation in two: an equation with
spatial averages (PWFs), and one with time averages (WIA). However, strong nonlinear interactions
occur between WIA and PWFs and must be taken into account in those equations. To be exhaustive,
we must add an unknown energy transfer term from WIA to PWFs (Ti j) to each equation [note that
the neglected part of the triple correlation in Eq. (23) can be seen as a part of this transfer term].
Thus, we obtain the following two equations:
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1. Transport equation for space fluctuations αl RPW F
i j = χl ul,i

T χl ul, j
T

X

DαlRPW F
i j

Dt
+ αlR

PW F
ib

∂Ul, j

∂xb
+ αlR

PW F
jb

∂Ul,i

∂xb

= χl pl
T

ρl

(
χl

∂ul,i

∂x j

T

+ χl
∂ul, j

∂xi

T )X

−2
μl

ρl
χl

∂ul,i

∂xb

T

χl
∂ul, j

∂xb

T
X

− ∂

∂xb

(
χl ul,i

T χl ul, j
T χl ul,b

T
X − νl

∂αlRPW F
i j

∂xb

)
(24)

− ∂

∂xb

(
1

ρl

(
χl pl

T χl ul,i
T

X
δb j + χl pl

T χl ul,b
T

X
δib

))
+ �PW F

i j + Ti j .

This equation can be used as a support for PWF modeling as in Ref. [13]. It can be reduced to the
following form:

DαlRPW F
i j

Dt
= PPW F

i j + φPW F
i j − 2εPW F

i j

+DPW F
i j + �PW F

i j + Ti j . (25)

PPW F
i j , φPW F

i j , εPW F
i j , and DPW F

i j are directly measured from DNS results and �PW F
i j + Ti j is calculated

as the residue of the equation (see [13] for another use of this method). As previously mentioned, in
the future we may consider giving a definition to the interfacial production to separate production
from transfer. In this work however, a joint modeling of production and transfer terms is sufficient,
as will be illustrated in the following sections.

2. Transport equation for time fluctuations αl RW IA
i j = χl u′

l,iu
′
l, j

DαlRW IA
i j

Dt
+ αlR

W IA
ib

∂Ul, j

∂xb
+ αlR

W IA
jb

∂Ul,i

∂xb

= χl p′
l

ρl

(
∂u′

l,i

∂x j
+ ∂u′

l, j

∂xi

)
−2

μl

ρl
χl

∂u′
l,i

∂xb

∂u′
l, j

∂xb

− ∂

∂xb

(
χl u′

l,iu
′
l, ju

′
l,b − νl

∂αlRW IA
i j

∂xb

)
(26)

− ∂

∂xb

(
1

ρl

(
χl p′

l u
′
l,iδb j + χl p′

l u
′
l,bδib

))
+ �W IA

i j − Ti j .

Note that in this expression, u′ and p′ are temporal fluctuations as defined in Eqs. (15) and (16).
This expression reduces to

DαlRW IA
i j

Dt
= PW IA

i j + φW IA
i j − 2εW IA

i j

+DW IA
i j + �W IA

i j − Ti j, (27)
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where PW IA
i j , φW IA

i j , εW IA
i j , DW IA

i j are directly measured via DNS results and �W IA
i j − Ti j is calculated

as the residue of the equation.
Thus formed, the two equations (25) and (27) amount to an alternative formulation of the total
Reynolds stress transport equation. In the case of a fixed bubbles, these equations can be used to
study WIA and PWFs separately from DNS results, and can be used as a support for the modeling
of the transport equation. This is the purpose of the following sections.

IV. PHYSICAL ANALYSIS OF HOMOGENEOUS BUBBLY FLOWS

The purpose of this section is to describe the main physical mechanisms of a bubbly
flow (Sec. IV A) and to study differences between free-bubble and fixed-bubble configurations
(Sec. IV B). The last section IV C is devoted to the study of PWF and WIA characteristics.

A. General remarks

The instantaneous fields in Figs. 4(a) and 4(b) provide crucial information on the dynamics of
bubbles. As the Reynolds number increases, more turbulent structures and smaller vortices appear.
This observation is valid for both fixed- and free-bubble simulations.

The formation of bubble clusters is observed in the case of free bubbles [Fig. 4(b)]. The clusters
occur at low bubble Reynolds numbers and become less apparent when the Reynolds number is
increased. This attenuation can be interpreted as an increase of the turbulent dispersion effect,
which mixes more effectively the entire flow. At low Reynolds numbers, bubbles form clusters
in horizontal rafts. This is a phenomenon related to pressure effects generated by the potential flow
around spherical bubbles. In experiments, such alignments are rarely observed because bubbles do
not remain sufficiently spherical. There are many shocks between bubbles (bouncing) which cause a
very significant slowdown of bubbles located in the cluster. In addition to bouncing and interactions,
purely hydrodynamical effects decrease the bubble velocity as the cross section for counterflow
decreases. The “local” void fraction clearly influences the average velocity of bubbles. Here the
average void fraction “seen by the bubble” (in the cluster) is high (roughly above 10%), and we
observe a decrease of the relative velocity compared to a random distribution of fixed bubbles which
“see” an average void fraction of 6% (see Fig. 5). These local variations of void fraction can cause
large differences in statistical results, not just in relative velocities. For example, wakes of bubbles
located in a cluster have no space to develop and a significant decrease in s is therefore expected
(see Fig. 5). By decreasing the relative velocity of bubbles, the production of WIA is also decreased.

Another phenomenon is particularly visible by comparing Figs. 4(a) and 4(b) at their respectively
lowest Reynolds number. In the case of fixed bubbles, vortical structures in the wakes are long
and vertically aligned. Observing their time evolution, one realizes that they are almost stationary
(namely, comprising PWFs exclusively). The wake lengths can then reach 3 or 4 times the bubble
diameter. In the case of free bubbles, this behavior disappears in favor of a much more disordered
flow. Structures are no longer stationary and are much shorter than in the case of fixed bubbles
(PWFs much smaller and emergence of WIA), this collective destabilization effect is probably
due to the relative motion of bubbles as it is lacking in the simulations with fixed bubbles. When
bubbles move and cross the wakes of their neighbors, with velocities relative to each other, they
destabilize the flow for Reynolds numbers lower than in the case of fixed bubbles. At low Reynolds
number, we observe different distributions of WIA/PWFs depending on the case considered (free
or fixed). Moreover, it is probable that this effect remains for higher Reynolds numbers but it is
then more difficult to observe from instantaneous fields. Thus, the features observed in fixed-bubble
simulations are affected by the lack of relative bubble motion.

Most of the preceding observations are confirmed in Fig. 5 where the relative velocity and the
Reynolds stresses are compared between fixed- and free-bubble configurations. The relative velocity
is almost constant for all free-bubble simulations with a slight increase with the Reynolds number.
This effect can be related to both an increase in the homogeneity of the bubble distribution with
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FIG. 4. Instantaneous representations of bubbly flows for fixed (a) and free (b) bubbles. The vortical
structures are isovalues of the λ2 criterion with different intensities (weak in blue, medium in green, strong
in orange) [66]. See [67] for additional elements on the simulations.

the Reynolds number (as observed on the instantaneous fields) and a decrease of the viscosity. For
Reb → ∞, we can assume that the two curves (fixed and free) would meet if the distribution of
free bubbles became homogeneous. For fixed bubbles, the relative velocity is higher, reflecting
the impact of their distribution; bubbles are much more interacting in free cases. The relative
velocity obtained for fixed-bubble cases decreases with the Reynolds number. It can be assumed
that this result is due to a transfer from the mean kinetic energy of bubbles towards the turbulent
kinetic energy of the liquid. Thus, differences between the relative velocities of fixed and free
bubbles seem mainly due to the spatial distribution of bubbles. Concerning the Reynolds stresses,
nondiagonal components are zero in the absence of a wall. A similar behavior between fixed and free
bubbles on transversal components is observed (R22 and R33). Note that the perfect equality between
components R22 and R33 reflects a very good convergence of statistics. On these components, PWFs
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FIG. 5. Relative velocity (a) and normalized Reynolds stresses (b) vs bubble Reynolds number for fixed-
bubble and free-bubble configurations.

are weak. This result suggests that WIA does not vary widely between the two configurations in
transversal directions. The present data leads us to think that WIA characteristics in the streamwise
direction are also conserved. This equivalence in WIA between the two configurations is an essential
result because the main interest of these simulations lies in their use for the construction of WIA
model. On the other hand, on the streamwise component, the total Reynolds stresses are twice bigger
in the case of fixed bubbles. PWFs in the case of fixed bubbles are much greater because of a more
homogeneous distribution of bubbles and of the absence of turbulent motions of bubbles which
favor the establishment of large wakes. Despite these differences, PWFs evolve similarly for fixed
and free bubbles.

B. Differences between free- and fixed-bubble flows

In the collective bubble frame and at equilibrium, the drag force and the buoyancy are balanced
and the control force on bubbles oscillates around zero to prevent the relative motion of bubbles.
Two effects can therefore explain the differences observed between fixed-bubble and free-bubble
calculations:

(1) The impact of the spatial distribution of bubbles
(2) The impact of the relative motion of bubbles (linked to the power of the control force).
In order to better understand the respective effects of these two phenomena, a fixed-bubble

calculation was carried out with an inhomogeneous distribution of bubbles taken from a snapshot of
a free calculation.

After reaching the stationary state, the interfaces of the free case at Reb ≈ 400 have been
extracted to be used as an initial condition in a fixed-bubble calculation. Table III relates the
main results of this study. Overall, we observe a better prediction of all the variables in the case
of inhomogeneously distributed bubbles. In particular, the error on the relative velocity falls from
26% to 12%. The decrease in velocity is explained by the influence of the local void fraction as
stated in the previous section. The error on transverse Reynolds stresses decreases dramatically from
13%–20% to 1%. This result is encouraging in the prospect of studying WIA. Indeed, in transverse
directions, fluctuations are mainly composed of WIA, and this result shows that fixing bubbles do
not alter the evaluation of the WIA in these directions. Assuming that WIA is almost isotropic (see
Sec. V C), we can infer that the same occurs in the streamwise direction. Modeling of WIA could
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TABLE III. Average quantities in the case of fixed bubbles (with homogeneous or inhomogeneous bubble
repartition) and free bubbles at Reb ≈ 400. The case with free bubbles is the reference for the calculation of
the relative error.

Free bubbles (Ref.) Fixed bubbles

Homogeneous Inhomogeneous
Value Relative error Value Relative error

ur [m/s] 0.105 0.132 26% 0.118 12%
R11 [m2/s2] 0.00125 0.0036 188% 0.0031 148%
R22 [m2/s2] 0.00075 0.0009 20% 0.000756 1%
R33 [m2/s2] 0.000749 0.00085 13% 0.00075 0%
�11 [m2/s3] 0.075 0.135 80% 0.105 40%

be improved in further studies by running fixed-bubbles simulations with inhomogeneous spatial
distributions, taken from steady-state snapshots of free-bubble simulations.

The error on Reynolds stresses in the streamwise direction is important in both situations
(between 150% and 190% error). In this direction, at a given relative velocity, fluctuations are mainly
related to the size of the averaged wakes. Thus, fixing a bubble increases the size of its wake (and its
relative velocity) regardless of the bubble distribution. We observe that this increase is concomitant
with an increase of the interfacial production term � (see also Fig. 7). Then, the error on � is
important as well. This overproduction of energy is revealed via the increase of the length of the
wakes (namely, of PWFs). Thus, the study of PWFs via a fixed-bubble calculation is compromised
since the wake size is strongly influenced by the bubble artificial force. A PWF model based on such
results would not have strong physical basis. However, no energy transfer from the exceeding PWF
to the WIA is observable; the exceeding energy due to the control force is completely dissipated
in the wakes without creating more turbulent fluctuations. So WIA does not seem unduly impacted
by the bubble artificial force. Therefore, the data on fixed bubbles can be exploited for the purpose
of WIA modeling. Then PWFs can be deduced from free-bubble simulations by subtracting the
contribution of the modeled WIA from the total fluctuations. Final verification of the model as a
whole is performed in Sec. V E.

C. Properties of turbulence

In this section, statistical methods are used to check the main characteristics of bubble-induced
turbulence. The probability density functions (PDFs) of the velocity fluctuations are estimated using
histograms based on the values of the velocity field in each cell of the domain, recorded over
several independent time steps of the statistical equilibrium. In the case of fixed bubbles, we are
able to separate PWF and WIA contributions (see Sec. III) and thereby PDFs corresponding to each
part can be plotted independently. In the case of free bubbles, only PDFs of total fluctuations can
be plotted. These results are gathered in Fig. 6. For both cases, PDFs of total fluctuations show
that the distribution of fluctuations is not symmetrical. The shift towards positive values is due to
the averaged wakes (PWFs) [16]. The shift is more pronounced for fixed bubbles. This result is
consistent with the fact that fixed bubbles generate more PWFs than free bubbles. We also find that
PDFs of total fluctuations have exponentially decreasing tails as in the experimental work [8]. Once
normalized by the variance, it is observed that PDFs of total fluctuations are relatively independent
of the Reynolds number (between 100 and 1000).

Once the fluctuations are divided into PWFs and WIA (for fixed bubbles), we notice that the
majority of the shift towards positive values is due to the PWF. Part of this shift is also found
in the WIA. We have previously shown that WIA consists of two phenomena: the collection of
nonstationary wakes which is not necessarily turbulent and the collective wake instability which
is a turbulent phenomenon. The collective instability of wakes appears only for large Reynolds
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(a) pdfs of total fluctuations (fixed bubbles)
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(b) pdfs of total fluctuations (free bubbles)
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(c) PWF pdfs (fixed bubbles)
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(d) WIA pdfs (fixed bubbles)

FIG. 6. Normalized PDFs of streamwise velocity fluctuations for fixed (a) and free bubbles (b) and
decomposition of PDFs into PWF (c) and WIA (d) for fixed bubbles. See Table IV for the normalization
constants. For the case nomenclature: F = fixed, L = free. The letter is followed by the bubble Reynolds
number.

numbers (see Ref. [17]). In the case F100 at Reb = 100, WIA is therefore a simple collection of
nonstationary wakes. It can be seen in Fig. 6(d) that, in this case, the PDF is not symmetric at
all. We can then assume that the part of asymmetry in WIA PDFs is related to the wakes. Thus,
the collective instability appearing when the Reynolds number is increased is in fact a symmetric
PDF, in accordance with a classical turbulent phenomenon. The asymmetric part of the WIA appears
important in the F100 case because of the normalization of the PDFs, yet it contains only 6.8% of the
total energy (see Table IV). For all the other Reynolds numbers, WIA PDFs are fairly symmetrical,
and almost all the shift towards positive values is absorbed by PWF PDFs in Fig. 6(c). At first order,
we can therefore consider that WIA has a symmetric distribution.

Guaranteeing the properties of bubble-induced turbulence in the case of fixed bubbles, these
results ensure the quality of the simulations.
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FIG. 7. Interfacial production term as a function of the bubble Reynolds number for fixed and free bubbles.
For fixed bubbles, decomposition in WIA and PWF production.

V. BUBBLE-INDUCED AGITATION MODEL FOR BUBBLY FLOWS

Due to the homogeneity assumption, we have: ∂φ
l
/∂xi = ∂φ

T
/∂xi = ∂φ

X
/∂xi = 0 ∀i, which

simplifies the WIA transport equation (27). Besides, at the stationary state, it simplifies to a balance
between redistribution, dissipation, interfacial production, and transfer from WIA to PWF:

φW IA
i j − 2εW IA

i j + �W IA
i j − Ti j = 0. (28)

The purpose of this section is to study each of these terms in order to propose a model for WIA
fluctuations. In the case of fixed-bubble calculations, each of these terms is given by its definition
in Eq. (26). Thus, this section presents a model for the WIA based on its transport equation. We
know from Sec. IV that fixing bubbles significantly alter the estimation of PWFs. The calibration
of an existing PWF model is therefore based on free-bubble calculations (see Sec. V E). Finally, a
complete model of bubble-induced turbulence is proposed at the end of this section.

A. WIA interfacial production and transfer

As seen in Sec. III, the interfacial production and the energy transfer between WIA and PWFs
cannot be separated in this study. We will therefore try to interpret and model them together.

Classically, the total interfacial production (PWF + WIA) is assimilated to the power of the drag
force [21]. It is then assumed that the power of other interfacial forces (lift, turbulent dispersion,
etc.) is negligible compared to that of the drag force. At first order, we consider �i j = �11δi1δ j1.

TABLE IV. PDF normalization for streamwise velocity fluctuations. The coefficients for RPW F
11 and RW IA

11

are expressed as a percentage of the total streamwise velocity fluctuation Rtot
11 .

L100 L200 L400 L600 L800 F100 F200 F400 F600 F800

Rtot
11 [×10−3 m2 s−2] 0.77 1.05 1.22 1.34 1.36 4.16 3.68 3.87 3.73 3.67

RPW F
11 [%] 93.2 88.7 77.7 76.2 73

RW IA
11 [%] 6.8 11.3 22.3 23.8 27
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This hypothesis is corroborated by DNS results and extended to transfer between PWFs and
WIA. Indeed, among the components of the tensor �W IA

i j − Ti j , the component (1, 1) (corresponding
to the streamwise direction) is predominant before the transverse components. Then

�W IA
i j − Ti j = (

�W IA
11 − T11

)
δi1δ j1, (29)

�PW F
i j + Ti j = (

�PW F
11 + T11

)
δi1δ j1. (30)

In Fig. 7, the sum of production and transfer (total, WIA, and PWF) is plotted for fixed
bubbles along with the total production for free bubbles. A difference is observed between the total
production of free bubbles and that of fixed bubbles. The origin of this difference has been discussed
in Sec. IV B. Figure 7 shows that the production in the case of free bubbles is in good agreement
with the power of the drag force given by αv

ρ

ρl
gur . Note that fixing bubbles make the correlation

obsolete due to the influence of the control force.
In the case of fixed bubbles, the interaction between PWF and WIA is interesting. Physically, at

low Reynolds number, bubble wakes are stable and produce PWFs exclusively. With the increase
of the Reynolds number, wakes are destabilized and their interactions lead to the creation of WIA.
This conversion from PWF to WIA is characterized in Fig. 7 by the decrease of the sum of PWF
production and transfer �PW F

fixed + T with increasing Reynolds number and by the concurrent increase
of WIA production and transfer. These two variations compensate one another, in agreement with a
total interfacial production independent of the Reynolds number, as expressed by the correlation for
the power of the drag force. Finally, the total production remains relatively constant. This behavior
is the signature of an energy conversion from wake kinetic energy (PWF) to turbulent kinetic energy
(WIA) and shows the importance of nonlinear interactions and transfers between PWF and WIA.
The phenomenon of wake destabilization involves strongly nonlinear interactions that are difficult to
describe formally. Then we propose to describe these interactions with an empirical method. Based
on our results, we write

�W IA
fixed − T = �fixed

(
0.9 − e

− Reb
Rec

b

)
, (31)

�PW F
fixed + T = �fixed

(
0.1 + e

− Reb
Rec

b

)
, (32)

where the critical Reynolds number Rec
b = 170 characterizes the emergence of the collective wake

instability responsible for the appearance of WIA. The value of 170 is also in agreement with
the instabilities observed experimentally in Refs. [8,17]. As described in Ref. [17], we notice an
asymptotic convergence of the production for the higher Reynolds numbers. For Reb → ∞, the
PWF does not completely disappear (as some wakes remain, and the potential flow as well). The
asymptotic value of PWF scan be assessed from the DNS results as 0.1�fixed while the asymptotic
value of WIA tends to 0.9�fixed for Reb → ∞. This asymptotic behavior explains the form of the
empirical closure given in Eqs. (31) and (32). However, the values 0.1, 0.9, and Rec

b have to be
further confirmed by experimental results.

Assuming that the repartition between PWF and WIA does not depend on the total production,
we extrapolate this closure to any production that verifies � = αvρgur/ρl . Thus, the final model
for WIA production and transfer is

�W IA
i j − Ti j = αv

ρ

ρl
gur

(
0.9 − e

− Reb
Rec

b

)
δi1δ j1. (33)

This relation provides a closure to the two last terms of Eq. (28). The following section addresses
the modeling of the dissipation.

044604-19



DU CLUZEAU, BOIS, LEONI, AND TOUTANT

B. WIA dissipation

In this part, we summarize various works which have led to the proposal of a scaling law for the
WIA dissipation by Risso [7]. This law is then tested on our DNS results.

Let us follow the approach of Lance and Bataille [1] to write the Navier-Stokes equations in
Fourier space. Let E be the turbulent energy density, T the energy transfer between frequencies,
and � the interfacial production. Then the Fourier transform of the kinetic energy transport
equation reads

∂E

∂t
+ 2νκ2E = T + �, (34)

where κ is the wave number. Considering that the production � has a short range of wavelength
(bubbles inject their energy at a particular frequency close to the bubble size), Lance and Bataille
[1] show by dimensional analysis that

� ∝ κ−1ε. (35)

This leads to the following statistical equilibrium:

E ∝ εκ−3

2ν
. (36)

This scaling of the turbulent energy spectrum (∝ κ−3) has been extensively verified, both numeri-
cally and experimentally [8,69]. Once normalized by the variance, Riboux [70] shows empirically
with experimental data that the kinetic energy spectrum is independent of the void fraction such that

E

〈uu〉� ∝ (�κ )−3. (37)

Therefore, the integral length scale � of bubble-induced turbulence can not be characterized by a
mean distance between bubbles. We can note that Eqs. (36) and (37) are equivalent to

ε ∝ ν〈uu〉
�2

. (38)

We find here a classical scaling law for single-phase flows, linking the dissipation rate to the
variance of velocity fluctuations with a Taylor scale. The Taylor scale is here replaced by the integral
length scale �. Reference [7] proposes a verification of this law by using the relation obtained
experimentally for the variance [70]

〈uu〉 ∝ α0.8
v 〈ur〉2 ≈ αv〈ur〉2, (39)

a scaling law of the dissipation rate

ε = αvg〈ur〉, (40)

and the equilibrium between gravity and drag force at steady state

g ∝ Cd〈ur〉2

db
. (41)

Using the definition of the bubble Reynolds number (Reb = 〈ur〉db/ν) and Eqs. (38) to (41), the
integral length scale should verify the following laws:

� ∝
√

ν〈uu〉
ε

∝ db√
Cd Reb

. (42)

Riboux [70] observes that the integral length scale behind a bubble swarm (i.e., in the absence of
PWFs) is proportional to the bubble diameter and to the inverse of the drag coefficient: � ∝ db/Cd .
The expression (42) is in agreement with this result because db/

√
Cd Reb is proportional to db/Cd
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FIG. 8. Integral length scale as a function of the bubble Reynolds number. Markers: measurement of the
integral length scale from the experimental autocorrelation signal (black stars) [17] or from the dissipation
rate and Reynolds stresses from the DNS (red). Line: scaling laws involving a drag coefficient calculated
from the DNS as Cd = 4

3
αvdb(ρl −ρv )g

ρl u2
r

(continuous red) or via the correlation of Schiller and Naumann [68]

Cd = 24
Reb

(1 + 0.15Re0.687
b ) (dashed black).

noting that Reb ∝ Cd [70]. The expression (42) has been obtained behind a swarm. This zone does
not contain any wakes, and only their collective instability remains (no PWFs or nonstationary
wakes); its validity inside the swarm itself has to be demonstrated. Reference [7] compares the
experimental results of Ref. [17] obtained on an array of fixed spheres to this theory (this result is
reported in black in Fig. 8). The scaling law (42) matches their experimental results for a wide
range of bubble Reynolds numbers, even though for the lowest Reynolds number (Reb ≈ 150)
a sudden change is observed. This change can be explained by the fact that WIA then contains
the nonstationary part of the wakes (contrary to the observation behind a bubble swarm). At low
Reynolds number, collective instability tends to disappear and the nonstationary part of the wakes
becomes the principal contribution of the WIA; for this reason, the trend can change because the
integral length scale represents a different phenomenon (a wake collection instead of a collective
instability). Thus, the scaling law (42) seems adequate for WIA modeling when the contribution
of nonstationary wakes is negligible in comparison with their collective instability. We propose to
check this assumption via our DNS calculations.

Direct measurement of the integral length scale from the autocorrelation signal (method used in
Ref. [17]) leads to significant errors in the case of our DNS. The dissipation rate of the WIA can be
directly assessed through the decomposition presented in Sec. III.

Therefore, we want to verify, for each diagonal component of the Reynolds stress tensor
separately, the following relation:

1

Ckk
�

√
ν

RW IA
kk

εW IA
kk

= db√
Cd Reb

for kk ∈ [11, 22, 33], (43)

where C11
� , C22

� , and C33
� are proportionality constants. The DNS allows direct measurement of

RW IA
i j and εW IA

i j due to the methodology developed in Sec. III. Figure 8 compares the different parts
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FIG. 9. Representation of the isotropy of fluctuations (redistribution + production normalized in the three
directions) for WIA (a) and PWF (b). The gap between the markers and 1/3 characterizes the degree of
anisotropy.

of expression (43) from DNS results (red curves). Using the drag coefficient extracted from the
DNS (obtained from the balance between drag force and buoyancy: Cd = 4

3
αvdb(ρl −ρv )g

ρl u2
r

), we obtain
a very good agreement with expression (43). Even for low Reynolds numbers, good results are
obtained. This result is surprising as it shows that the correlation used to characterize the collective
instability of wakes follows a similar trend to characterize nonstationary wakes. Note that for Reb ≈
100, the WIA is only 7% of the kinetic energy in the liquid phase. These results are supported by
experimental validation and by the theory developed in Ref. [7]. In addition, this expression works
for each component of the Reynolds stresses separately with the same proportionality constants
(C11

� = C22
� = C33

� = C� = 1.7). Note that the difference in the proportionality constant between
the results of Ref. [17] and ours is expected. Indeed, Ref. [17] directly measures the integral length
scale, while we measure

√
νRW IA

i j /εW IA
i j which is proportional to this scale. The ratio between the

two constants is therefore another proportionality constant.
So we write the WIA dissipation model as

εW IA
i j = Cd urRW IA

i j

C2
�db

. (44)

C. WIA redistribution

We seek to show the degree of WIA isotropy to know if a tensor model is necessary or if a scalar
model would be equally effective. The redistribution phenomenon takes energy produced on the
axial component (xx) and redistributes it on transversal components. Thus, to measure the degree
of anisotropy of the flow, we must compare the diagonal components of the sum of production and
redistribution (�i j + φi j ; see Ref. [71]). In Fig. 9 this sum normalized by the axial production is
plotted on the diagonal components of the Reynolds tensor for PWF and WIA. The gap between
the markers and 1/3 shows the degree of anisotropy. Even if the WIA is slightly more energetic
on the axial component, the redistribution phenomenon is extremely efficient and tends towards a
very strong isotropy of the WIA. The difference with the anisotropy of PWFs in Fig. 9(b) is clear.
This observation confirms that the anisotropy of bubble-induced turbulence is mainly due to the
anisotropy of PWFs. At first order, we can consider WIA as isotropic and model production and
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redistribution together as

φW IA
i j + �W IA

i j =

⎛
⎜⎝

1
3 0 0

0 1
3 0

0 0 1
3

⎞
⎟⎠�W IA

11 . (45)

D. A complete model example

Bringing together Eqs. (28), (33), (44), and (45), we get in the present configuration (namely,
without diffusion of the WIA)

D
(
αlRW IA

i j

)
Dt

= 1

3
δi jαv

ρ

ρl
gur

(
0.9 − e

− Reb
Rec

b

)
− 2

Cd urRW IA
i j

C2
�db

= 0.

We can then obtain an algebraic formulation for WIA Reynolds stresses at statistical equilibrium.
To obtain a complete model of bubble-induced turbulence in bubbly flow, a PWF model is also
required. Here we use the one developed in Ref. [16] to obtain

Ri j = RW IA
i j + RPW F

i j , (46)

RW IA
i j = C2

�

6Cd

ρ

ρl
αvgdb

(
0.9 − e

− Reb
Rec

b

)
δi j, (47)

RPW F
i j = αvu2

r

⎛
⎝3/20 0 0

0 3/20 0
0 0 1/5 + 3CV /2

⎞
⎠. (48)

These closures are valid for a bubbly flow without wall where the diffusion is negligible (with
three homogeneous directions). The PWF model involves the contribution of the potential flow
around bubbles and of the averaged wakes. The averaged wakes influence the streamwise component
of the Reynolds stresses and are taken into account via the coefficient CV for the wake volume. The
constant CV can depend on many parameters. On transversal components, the contribution of the
potential flow is very low; then the Reynolds stresses are mainly dominated by the WIA contribution
and by the coefficient C�. These equations form a complete model of bubble-induced agitation for
bubbly flows and can be tested. Knowing the impact of fixed bubbles on PWFs (see Sec. IV B), the
calibration of the model must be done on free bubbles.

E. Calibration of the model on free bubbles

Differences between free and fixed bubbles have been developed in Sec. IV B. Mostly, they
concern the inhomogeneity of bubble distribution and the relative motion of bubbles. The main
consequence of these differences is a clear modification of the wake structure (but it has a negligible
impact on WIA). In Fig. 10 the complete model for bubble-induced turbulence behaves well but
only if the parameter C� (characteristic of the dissipation) is changed from 1.6 (calibrated for a
uniform distribution of fixed bubbles) to 2.7. Increasing C� means a decrease in dissipation. The
modification of the parameter is required because of the homogeneity of bubble distribution in
the case of fixed bubbles (see Sec. IV B). The good trend with the Reynolds number shows that
the hypothesis adopted to model the production term is correct. Moreover, the use of a constant
parameter CV independent of Reb is enough to reproduce the numerical results.
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FIG. 10. Comparison between DNS of free bubbles and the complete model of bubble-induced turbulence
[Eqs. (46), (47), and (48)]. Constants are CV = 0.36 and C� = 2.7.

Finally, the turbulence model for bubbly flows can be written in a more general context than BIA
(including SIT). Taking into account the distinctions presented in the introduction (see Fig. 1):

Ri j = RSIT
i j + RFCIT

i j + RPW F
i j + RW IA

i j ,

DRSIT
i j

Dt
= DSIT

i j,turb + DSIT
i j,mol + PSIT

i j − εSIT
i j + φSIT

i j ,

DRW IA
i j

Dt
= DW IA + ρ

3ρl
δi jαvgur

(
0.9 − e

− Reb
Rec

b

)
− 2

Cd urRW IA
i j

C2
�db

,

RPW F
i j = αvu2

r

⎛
⎝3/20 0 0

0 3/20 0
0 0 1/5 + 3CV /2

⎞
⎠,

C� = 2.7, CV = 0.36, Rec
b = 170,

where the diffusion of WIA DW IA can possibly be estimated from the work in Ref. [11]. RSIT
i j

is the single-phase turbulence classically modeled with a Reynolds stress model [72,73] without
any additional interfacial production. Reference [13] shows that the redistribution tensor φSIT

i j is
disturbed by the presence of bubbles in accordance with the study of [74]. Additionally, diffusion
DSIT is reduced by the near-wall bubble layer. With this type of model, any kind of velocity
fluctuations presented in Fig. 1 should be taken into account separately by dedicated models. As
a reminder, the SIT equation contains both the SPT part and the MCIT part. Here it remains to
model the term RFCIT

i j (see [4]). This system of equations can be used in two-fluid simulations for a
more consistent model of pseudoturbulence (BIA) as the two contributions for WIA and PWF are
modeled by dedicated processes. It could be used either to simulate two-fluid RANS Euler-Euler
(interpenetrating media) bubbly flows in conjunction with an appropriate model for CIT, or to
develop multiphase turbulence models at lower computational cost than DNS in order to study
FCIT. This last approach is applicable wherever there is a clean separation of scales between the
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integral length scale of turbulence and the bubble diameter (as in, for instance, Wang et al. [75]).
With the current knowledge, it is sufficient to model the trace of WIA as it has been shown to be
isotropic. In more complex situations, extradiagonal components may have stronger impact.

VI. CONCLUSION

In this paper, DNS of bubbly flows have been performed to analyze velocity fluctuations and
to propose a new strategy for bubble-induced agitation model development. To this end, a method
to separate the transport equation of Reynolds stresses has been developed based on fixed-bubble
simulations. This work starts with a distinction between the diverse origins of velocity fluctuations in
the liquid, proposing a new interpretation of traditional concepts in the two-phase flows literature.
Total fluctuations are divided into two categories. The first one called shear-induced turbulence
(SIT) gathers all the fluctuations induced by mean velocity gradients, thus including both classical
turbulent fluctuations [single-phase turbulence (SPT)] and mean cluster-induced turbulence (MCIT).
In the second category, fluctuations due to two-phase intermittency are collected under bubble-
induced agitation (BIA); they include the fluctuating part of cluster-induced turbulence (FCIT), the
agitation resulting from wakes and their collective interactions [wake-induced agitation (WIA)],
and the nonturbulent fluctuations resulting from averaged wakes and potential flows around bubbles
[potential flow and averaged wake fluctuations (PWFs)].

In this work, our attention is set on homogeneous bubbly flows where CIT is negligible based
on DNS with a void fraction α = 6%. Our goal is to make progress in the understanding of
the repartition between WIA and PWFs and to better model their interactions. To do so, we
compare freely evolving bubbles at bubble Reynolds numbers ranging from 100 to 800 to their
counter-part where bubbles are rendered motionless with an external artificial force. Flow dynamics
have been discussed to understand, in particular, the differences observed between fixed-bubble
and free-bubble simulations. It has been shown that fixing bubbles has a significant influence
on PWFs, while WIA is very similar between free-bubble and fixed-bubble cases. The statistical
analysis confirmed the good quality of the results concerning WIA. Moreover, the signature of
an energy conversion from wake kinetic energy (PWF) to turbulent kinetic energy (WIA) has
been observed. It shows the importance of nonlinear interactions and transfers between PWFs
and WIA. Then, the simulations have been used to propose an algebraic closure of WIA based
on the different terms of its transport equation. This model was extended to total fluctuations
for freely evolving bubbles. The results are encouraging and allow accurate predictions on our
database over a wide range of bubble Reynolds numbers. The strategy is complete and can be
used for two-phase BIA model development. Due to its mechanistic construction, the validity
domain is expected to be wider than the range of dimensionless numbers on which it has been
created, in particular on the range of void fractions as long as the flow regime is dispersed bubbles
(α ∈ [0, 0.3]). The model is theoretically suited for any Reynolds number, but we do not expect a
clear influence on high Reynolds flows (ReL = ULDh/νL > 100 000 on the liquid phase, based on
the liquid bulk velocity UL and hydraulic diameter Dh), in which the SPT part will be much larger
than the BIA fluctuations (and therefore where a more classical model would give similar results).
On the other hand, in low Reynolds number flows (pool boiling, liquid at rest, low convection),
BIA contribution (and its subparts PWF and WIA) seems necessary. However, there are still
some limitations:

(1) The WIA model has been developed from calculations in tri-periodic bubbly flow without
walls. Therefore, nondiagonal components of WIA Reynolds stresses are null. It is likely that the
presence of wall redistributes a part of the energy on the cross-correlation. This is challenging to
study, because it requires the analysis of WIA in the case of a channel, but in that configuration we
cannot separate WIA from single-phase turbulence in the current state of knowledge.

(2) PWF and WIA models require additional validation with numerical simulations. The depen-
dence of the model on the void fraction or on the bubble deformation must be investigated further.
More experimental validation would also be welcome.
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(3) CIT is not addressed in this work. It should be considered in the future. It is an important
prospect for future studies.

(4) The impact of bubble clustering on the PDFs requires further study, for instance, by using
local bubble volume fraction.

(5) Following Wang et al. [75], the measurement of the particle-fluid-particle stress tensor could
be assessed on our DNS, by separating the interaction of particles between themselves, from the
interaction of a particle with the “undisturbed” flow.

Raw data were generated at the CINES large-scale facility. Derived data supporting the findings
of this study are available from the corresponding author upon reasonable request.
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Gvozdić, E. Alméras, V. Mathai, X. Zhu, D. P. M. van Gils, R. Verzicco, S. G. Huisman, C. Sun, and
D. Lohse, J. Fluid Mech 845, 226 (2018).

[6] A. Shaikh and M. H. Al-Dahhan, A review on flow regime transition in bubble columns, Int. J. Chem.
Reactor Eng. 5, 1 (2007).

[7] F. Risso, Agitation, mixing, and transfers induced by bubbles, Annu. Rev. Fluid Mech. 50, 25 (2018).
[8] G. Riboux and D. Legendre, A model of bubble-induced turbulence based on large-scale wake interac-

tions, J. Fluid Mech. 719, 362 (2013).
[9] M. C. Baker, R. O. Fox, B. Kong, J. Capecelatro, and O. Desjardins, Reynolds-stress modeling of cluster-

induced turbulence in particle-laden vertical channel flow, Phys. Rev. Fluids 5, 074304 (2020).
[10] C. Colin, J. Fabre, and A. Kamp, Turbulent bubbly flow in pipe under gravity and microgravity conditions,

J. Fluid Mech. 711, 469 (2012).
[11] E. Alméras, V. Mathai, D. Lohse, and C. Sun, Experimental investigation of the turbulence induced by a

bubble swarm rising within incident turbulence, J. Fluid Mech. 825, 1091 (2017).
[12] M. Cisse, E.-W. Saw, M. Gibert, E. Bodenschatz, and J. Bec, Turbulence attenuation by large neutrally

buoyant particles, Phys. Fluids 27, 061702 (2015).
[13] A. du Cluzeau, G. Bois, and A. Toutant, Analysis and modeling of Reynolds stresses in turbulent bubbly

up-flows from direct numerical simulations, J. Fluid Mech. 866, 132 (2019).
[14] E. Bouche, V. Roig, and F. Risso, Homogeneous swarm of high-Reynolds-number bubbles rising within

a thin gap. Part 1: Bubble dynamics, J. Fluid Mech. 704, 211 (2012).

044604-26

https://doi.org/10.1017/S0022112091001015
https://doi.org/10.1098/rsta.2008.0002
https://doi.org/10.1016/j.ces.2020.115546
https://doi.org/10.1016/j.ces.2018.09.040
https://doi.org/10.1017/jfm.2018.213
https://doi.org/10.2202/1542-6580.1368
https://doi.org/10.1146/annurev-fluid-122316-045003
https://doi.org/10.1017/jfm.2013.12
https://doi.org/10.1103/PhysRevFluids.5.074304
https://doi.org/10.1017/jfm.2012.401
https://doi.org/10.1017/jfm.2017.410
https://doi.org/10.1063/1.4922241
https://doi.org/10.1017/jfm.2019.100
https://doi.org/10.1017/jfm.2012.233


ANALYSIS AND MODELING OF BUBBLE-INDUCED …

[15] E. Bouche, V. Roig, and F. Risso, Homogeneous swarm of high-Reynolds-number bubbles rising within
a thin gap. Part 2: Liquid dynamics, J. Fluid Mech. 758, 508 (2014).

[16] F. Risso, Physical interpretation of probability density functions of bubble-induced agitation, J. Fluid
Mech. 809, 240 (2016).

[17] Z. Amoura, C. Besnaci, and F. Risso, Velocity fluctuations generated by the flow through a random array
of spheres: A model of bubble-induced agitation, J. Fluid Mech. 823, 592 (2017).

[18] M. Colombo and M. Fairweather, Multiphase turbulence in bubbly flows: RANS simulations, Int. J.
Multiphase Flow 77, 222 (2015).

[19] S. Hosokawa and A. Tomiyama, Bubble-induced pseudo turbulence in laminar pipe flows, Int. J. Heat
Fluid Flow 40, 97 (2013).

[20] A. Vaidheeswaran and T. Hibiki, Bubble-induced turbulence modeling for vertical bubbly flows, Int. J.
Heat Mass Transf. 115, 741 (2017).

[21] C. Morel, Mathematical Modeling of Two-Phase Flow (Springer, Stuttgart, Germany, 2015).
[22] G. Bois, Direct numerical simulation of a turbulent bubbly flow in a vertical channel: Towards an improved

second-order Reynolds stress model, Nucl. Eng. Des. 321, 92 (2017).
[23] J. Chahed, V. Roig, and L. Masbernat, Eulerian-Eulerian two-fluid model for turbulent gas-liquid bubbly

flows, Int. J. Multiphase Flow 29, 23 (2003).
[24] K. Haase, U. D. Kück, J. Thöming, and C. J. Kähler, Emulation of bubble-induced turbulence using

randomly moving particles in a grid structure, Chem. Eng. Technol. 40, 1502 (2017).
[25] A. W. Vreman and J. G. Kuerten, Turbulent channel flow past a moving array of spheres, J. Fluid Mech.

856, 580 (2018).
[26] A. Loisy, A. Naso, and P. D. Spelt, The effective diffusivity of ordered and freely evolving bubbly

suspensions, J. Fluid Mech. 840, 215 (2018).
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