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We use the linearized Navier-Stokes equations to study the large-scale flow structures
in unstably stratified turbulent channel flows. The impulse response of the linear operator
at bulk Richardson numbers from Ri, = 0.001 to Ri, = 1.0 are considered, corresponding
to the increasing influence of buoyancy relative to shear. We compare the streamwise-
constant flow structures predicted by the linear model to the quasistreamwise rolls that
emerge with increasing Ri, in direct numerical simulations (DNSs) [e.g., Pirozzoli et al.,
J. Fluid Mech. 821, 482 (2017)]. The linearized Navier-Stokes equations augmented with
eddy-viscosity and eddy-diffusivity capture the emergence of the quasistreamwise rolls
well. With increasing Ri,, the temperature fluctuations of the streamwise-constant flow
structures transition from having a peak in intensity at the channel centerline to having two
peaks, one at each wall, consistent with DNS.
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I. INTRODUCTION

Streamwise-elongated large-scale flow structures are ubiquitous in wall-bounded shear flows, and
they play a significant role in the transport of momentum within these flows (e.g., Refs. [1-15]).
Hence a number of studies have concentrated on modeling these structures (e.g., Refs. [16-24]).
In addition to shear, buoyancy can also play an active role. Direct numerical simulations (DNSs)
in which both shear and buoyancy are active have revealed that large-scale flow structures are
also present in these flows, and they impact the transport of heat and momentum within the
flow (e.g., Refs. [25-28]). An example of such flow structures in atmospheric flows are streets of
cumulus clouds (e.g., Refs. [29-31]). The modeling of the large-scale structures in these flows have
received less attention. Hence in the current work we use a linearized Navier-Stokes—based model
to investigate the flow structures that emerge from competing shear-driven and buoyancy-driven
mechanisms in fully turbulent unstably stratified channel flows.

Linear analysis of the Navier-Stokes equations has shown that the streamwise-constant struc-
tures are the most amplified features in turbulent wall-bounded flows (e.g., Refs. [16-18,20,21]).
Recently, Illingworth [32] used a linear analysis to show that Couette flow can efficiently leverage
the mean wall-normal shear to produce channelwide streamwise-constant rolls, consistent with
DNS and experiments [33—42]. In the case of unstably stratified channel flows, Jerome et al.
[43] analyzed the linearized Navier-Stokes equations in the laminar regime. They showed that the
streamwise-constant structures are again the most amplified features and that these features are
sensitive to buoyancy.

Such streamwise-constant flow structures also appear in unstably stratified turbulent flows as
seen in direct numerical simulations of Pirozzoli et al. [25] and Blass et al. [26]. Let us concentrate
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Ri, = 0.001

FIG. 1. Data from Pirozzoli et al. [25]. Streamwise-averaged temperature fluctuations (contours) and cross-
stream velocities (streamlines) in the spanwise wall-normal plane at bulk Richardson numbers (a) Ri, = 0.001
and (b) Ri, = 1.0. These figures correspond to Figs. 5(j) and 5(f) from Pirozzoli et al. [25]. Negative values
are shown in blue and the positive values in red. The spanwise y and the wall-normal z coordinates have been
nondimensionalized by the channel half-width.

on the direct numerical simulation dataset of Pirozzoli et al. [25]. They considered a turbulent
channel flow and heated the bottom wall and cooled the top wall, thereby introducing unstable
stratification into the flow. Where the effect of buoyancy relative to shear was low, they observed
large-scale flow structures in temperature, but no discernible large-scale pattern in the cross-stream
velocity fields [see Fig. 5(j) of Pirozzoli et al. [25] shown here in Fig. 1(a)]. As they increased the
effect of buoyancy, channelwide rollers emerged, with two peaks in the intensity of temperature
fluctuations, one at each wall [see Fig. 5(f)5 of Pirozzoli et al. [25] shown here in Fig. 1(b)]. These
peaks correspond to the plume-ejecting region on one wall, and the corresponding plume-impacting
region directly opposite to it on the second wall, that were identified in turbulent Rayleigh-Bénard
flows [44,45]. Within unstably stratified channel flows, these two-peaked intensity features are also
as long as the channel length (see Fig. 3(f) of Pirozzoli ef al. [25], not shown here). Hence the DNS
study of Pirozzoli et al. [25] showed that we obtain streamwise-constant channelwide two-peaked
intensity features as we increase the effect of buoyancy in unstably stratified turbulent channel flows,
and these are the quasistreamwise rolls of these flows.

In the current work we build a linearized Navier-Stokes—based model for unstably stratified
turbulent channel flows. We consider bulk Richardson numbers (Ri;) from 0.001 to 1.0 (Ri, =
ZﬁgAQh/u,f indicates the relative importance of buoyancy and shear, and is defined using the
thermal expansion coefficient 8, the acceleration due to gravity g, temperature difference A6
maintained across the walls, the channel half-height # and the bulk velocity u,). The aim is to
understand to what extent the model can capture the quasistreamwise rolls observed in these flows.
There are many techniques that can be used to analyze the linearized Navier-Stokes equations. For
instance, the resolvent analysis framework (e.g., Refs. [19,21,46,47]) or the stochastically forced
operator (e.g., Refs. [20,21,48,49]) can be used. In both these cases the forcing to the linear model
is considered to be a superposition of Fourier modes in the streamwise and the spanwise directions.
In the case of the resolvent analysis, the forcing is also taken to be a superposition of Fourier modes
in time, while for the stochastically forced operator a random forcing in time and in the wall-normal
direction is assumed. The resolvent analysis framework has been used to study passive scalar
transport [50-52], and recent work by Ahmed er al. [53] extended this framework to study stably
stratified turbulent flows. An alternative technique that can be used to analyze the linear operator
is to consider its impulse response, where the forcing is taken to be a superposition of impulses
in space and time. In this approach we do not choose the Fourier mode to analyze and instead
choose the location of the impulse in space and time. For the case of the quasistreamwise rolls that
we are interested in, from DNS we know that these structures have length scales comparable to
the channel length [25] and we can therefore concentrate on the streamwise-constant structures to
model them. In contrast, it would be interesting to analyze these structures without a priori selecting
their spanwise length scales or their temporal frequencies. We therefore use the impulse response of

044601-2



NAVIER-STOKES-BASED LINEAR MODEL FOR UNSTABLY ...

the linear operator to study these structures, thereby eliminating the requirement to a priori choose
a spanwise wavelength or a temporal frequency.

In one of the earliest works on the impulse response of the linearized equations, Huerre and
Monkewitz [54] used the response to distinguish between absolutely unstable and convectively
unstable flows. Jovanovi¢ and Bamieh [55] and Jovanovi¢ [56] considered the impulse response
in the context of laminar channel flows, and they were able to show that streamwise streaks,
similarly to those experimentally observed in both transitional and fully turbulent flows, emerged
as the dominant response to the impulse. Hariharan et al. [57] extended this analysis technique to
study viscoelastic fluids. In a related but different approach, Luchini et al. [58] and Codrignani [59]
analyzed the response of a fully developed turbulent channel flow to impulsive forcing, with the goal
of developing control strategies based on the observed responses. Of more direct relevance to the
current work is the study by Vadarevu et al. [60] where they showed that the impulse response of the
linearized Navier-Stokes equations for a turbulent channel flow predicts wall-attached self-similar
structures, consistent with the observations from experiments. In the current work, to analyze the
linear model for an unstably stratified turbulent channel flow, we compute its response to an impulse
located at a streamwise and spanwise location (0,0) and at some prescribed wall-normal location and
study the response as a function of time. We will see that, as observed in the DNS study of Pirozzoli
et al. [25], the relative effect of shear and buoyancy in the model, characterized by the Richardson
number Ri,, has a significant impact on the predicted coherent structures.

The outline of the paper is as follows. The linearized Navier-Stokes—based model for unstably
stratified turbulent channel flows is described in Sec. II. Details concerning the calculation of the
impulse response is given in Sec. III, and the coherent flow structures that appear in these impulse
responses are shown in Sec. IV. In Sec. V the impact of varying the influence of buoyancy relative
to shear on these structures is considered. Further, in Sec. VI the model is used to compute the
mean temperature variance profiles as a function of Ri,, which are then used to provide a more
direct comparison of the model with DNS. We will see that the streamwise-constant linearized
Navier-Stokes equations capture pertinent features of the quasistreamwise rolls in unstably stratified
turbulent channel flows. In Sec. VII the role of the streamwise-varying modes on the modeling of
the quasistreamwise rolls is discussed and in Sec. VIII we consider the influence of changing the
impulse location relative to the wall. We briefly analyze the role of the different components of the
linear model in capturing these flow structures in Sec. IX, which is then followed by a summary of
the results in Sec. X.

II. LINEAR MODEL

A statistically steady, incompressible turbulent channel flow is considered, with the streamwise,
spanwise, and wall-normal directions denoted by x, y, and z, respectively, and the corresponding
velocity components by u, v, and w. The temperature is denoted by 6. A temperature difference
A6 maintained across the walls gives rise to unstable stratification. Velocities are normalized by
the friction velocity u, = /(1 /p), where 1, is the wall shear stress and p is the density. The
spatial variables are normalized by the channel half-height # and the temperature by Af. The
nondignensional channel half-height is therefore unity. The pressure fluctuations p are normalized
by puz.

Thé nondimensional numbers that define the problem are (i) the bulk Reynolds number Re, =
2huy, /v where v is the kinematic viscosity, (ii) the Rayleigh number Ra = (8 8gA60h%)/(av) where a
is the thermal diffusivity, and (iii) the Prandtl number Pr = v/«. These nondimensional numbers are
used to define a bulk Richardson number Ri, = Ra/ (ReiPr) that indicates the relative importance
of buoyancy and shear. This Richardson number Ri, will be used extensively in the later sections of
this work as an indicator of the relative influence of buoyancy and shear. Additionally, the friction
Reynolds number is defined as Re, = u.h/v, and a corresponding friction Richardson number is
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FIG. 2. (a) The mean streamwise velocity profile U and (b) the mean temperature profile © from Pirozzoli
et al. [25] that are given as inputs to the linear model. The profiles are shown for the different Richardson
numbers considered in this work. The Gaussian profiles (11) used to approximate the delta functions are also
shown in (c) for two impulse locations of z; = 0 (solid line) and —0.9 (dashed-dotted line). The markers (e)
indicate the grid points used for discretizing the wall-normal direction.

defined as Ri, = BgAOh/u?. The equations nondimensionalized by u,, /1, and A6 are as follows:

9 9 du, )
M W Vp— V. Vu) —Ri0k=d, V-u=0,
ot 0x dz

900, O e
ot oax " Vdz oryv) =,

)

where u = (u, v, w) are the velocity fluctuations, U (z) is the turbulent mean-velocity profile, and
O(z) is the mean-temperature profile. The terms Z, j, and k denote the unit vectors along x, y, and
z, respectively. It should be noted that z is the wall-normal distance measured from the channel

centerline, i.e., z = 0 represents the channel centerline and the walls are at z = —1 and z = 1. Here
d = (d,d,,d;) = —u - Vu + u - Vu represents the nonlinear terms in the momentum equation and
dy = —u - VO + u - VO represents the nonlinear terms in the equation governing the temperature.

The mean-velocity and the mean-temperature profiles required as input to the model are obtained
from the DNS dataset of Pirozzoli et al. [25] and are shown here in Figs. 2(a) and 2(b).

From the literature we know that the linearized Navier-Stokes equations augmented with an
eddy-viscosity correctly predicts the length scales of the coherent structures in turbulent wall-
bounded flows without stratification [16,17,21,61]. Inspired by this, here the viscosity and the
thermal diffusivity are augmented by wall-normally varying dimensionless eddy-viscosity v;(z)
and dimensionless eddy-diffusivity o, (z), respectively. Hence in (1), vr(z) = 1/Re; + v,(z) and
ar(z) = 1/(Re.Pr) + «,(z). The Cess [62] profile that is generally used to compute vy for turbulent
channel flows (e.g., Refs. [17,21]) cannot accurately model vy for the case of a stratified turbulent
channel flow. Therefore, the profiles for vy and oy are computed from the mean profiles of Pirozzoli
et al. [25] using [63]

1

dO+/dz’ @

vr(z) = ar(z) =

_t
du/dz’
Here ©OF =®/(9,/A0), where the friction temperature 6, is given by 6,/Af =
(Re.Pr)~1(d®/dz)|yan. It should be noted that, although d©/dz < 0, (6,/A8) is also a negative

quantity, thereby making d®* /dz > 0 and hence ar > 0. The computation of eddy-viscosity and
eddy-diffusivity is further discussed in Sec. II B.
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A. Orr-Sommerfeld-Squire form

The model in (1) can now be written in Orr-Sommerfeld Squire form [64], augmented with
the equation for the temperature fluctuations. We consider u, 9, d, and dy in terms of their two-
dimensional (2D) Fourier transforms in the homogeneous streamwise and spanwise directions:

I(x,y,2,1) = f / [(z, t;ky, ky)e ™0 gk dk,, (3)
—0oQ —00 i :

where [ represents the variable u, 6, d, or dy and * represents the Fourier transform. Here (k,, k,)
are the streamwise and spanwise wave numbers and (A, A,) the corresponding wavelengths. The
wave numbers are nondimensionalized by (1/%) and the wavelengths by /. In terms of these Fourier
transforms, the Orr-Sommerfeld Squire form of the model in (1) is [43]

§=Aq+Bd,

u=0aq.

“4)

The vector ¢ = (o, 7, 9) is composed of the wall-normal velocity, wall-normal vorticity (i) =
ikyit — ik,D), and temperature in Fourier space (it should be noted that, according to the coordinate
system adopted here, 7j points in the —z direction). We therefore have an additional variable, 6, when
compared to the standard Orr-Sommerfeld Squire equations. The boundary conditions enforced on
both walls are @(%1) = dw/dz(£1) = fj(£1) = (£1) = 0 (e.g., Refs. [43,65]). The definitions
of the matrices A, B, and C are

~1

A 0 O Los 0 —Ri, k?
Ak k)=|0 I 0| |-kl Lso o |, (5)
0 0 I -0 0 LsoT
A 0 0] '[-ikD —ikkD —k> 0
Bl k)=|0 1 0 ik,  —ike 0 0], (6)
0 0 1[I 0 0 0 1
kD —ik, 0
1 |ikD ik, 0
C(kx’ ky) - k_2 k2 0 0 (7)
0 0 k?

Here D and ' represent differentiation in the wall-normal direction, and A = D? — k2 where k? =
k2 + kf The matrices Log and L in (5) are the Orr-Sommerfeld and Squire operators, respectively.
The operators Los, Lso and Lso7 are defined as

Los = —ikUA +ikU" + vr A* + 20, DA + v[(D* 4+ k),
Lso =—ikU+vrA+1,D, ®)
LsoT = —ikU +arA + Ol,T'D.

The definitions of the operators A, B, and C closely follow the definitions of the eddy-viscosity—
based operators in literature (see, for example, the operators in Refs. [21,60,66,67]). The main
difference is the presence of an additional operator Lsor that appears in A due to the equation for
0 in (1). The matrices B and C also each have an additional row and column that accounts for the
response in temperature 6 and the additional forcing component dy.

B. Computation of v; and oy from DNS

The computation of the eddy-viscosity and the eddy-diffusivity profiles are sensitive to any noise
in the mean profiles used in (2). This is especially true when (i) the value of Ra is high and (ii) toward
the channel center where the profiles of U and © plateau, and hence have very small derivatives,
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TABLE I. The table provides the details of the four cases considered. The color scheme shown here is used
throughout this paper.

Re, Ra Pr Ri,
—_— 10%3 100 1.0 0.001
—_— 1043 107 1.0 0.01
—_— 10%3 108 1.0 0.1
—_— 1043 10° 1.0 1.0

as seen in Figs. 2(a) and 2(b) (that are reproductions of Figs. 12(a) and 12(b) in Pirozzoli et al.
[25]). The profiles of vy and ar can therefore become unphysical in the presence of noise in this
region of the channel. (Some noise may be present since the DNS mean profiles are not always
perfectly converged.) This noise is well appreciated in the atmospheric sciences, which is why the
scalar-flux is modelled with a prescribed eddy-diffusivity profile in conjunction with a mass-flux
plume-entrainment model (e.g., Ref. [68]).

To avoid this problem of working with unphysical viscosity and diffusivity profiles, here we use
the method of interpolating the profiles used by Cossu et al. [18] for the case of a boundary layer.
For this purpose, we construct the profiles of vy and o7 using the mean profiles obtained from DNS
up to some specified wall-normal distance z* measured from the channel centerline. To obtain the
profiles in the remaining regions —z* < z < z* we use linear interpolation. This is equivalent to
setting the value of vy and ar constant in the region —z* < z < z*. The value of z* is chosen so as
to avoid evaluating (2) in the region where the derivatives of U and ® are too small. For the purposes
of this work vy and a7 are constructed for four cases with different Ri;, (the parameters for these
cases are shown in Table I). The profiles of vz for all four cases are computed with z* = 0.05. That
is, to compute vy we use interpolation only very close to the channel centerline where dU /dz goes
to zero. For the case of oy we choose z* = 0.5, thereby considerably extending the interpolated
region. In other words, oy is assumed to be constant between —0.5 < z < 0.5. In Appendix C
we look at the effect of this choice on the results obtained and thereby show that the conclusions
derived here remain largely unaffected if z* > 0.3. We also consider the linear model with a constant
eddy-diffusivity profile a7 in Appendix A, and show that this assumption cannot be used to model
the quasistreamwise rolls.

III. COHERENT FLOW STRUCTURES FROM THE IMPULSE FORCING

We now assess the linear model’s ability to capture the quasistreamwise rolls observed in the
DNS of unstably stratified channel flows [25,26]. By the very definition of these structures we know
that only the largest streamwise length scales are important for their modeling, and we therefore
choose to analyze only these scales. In contrast, it would be convenient not to choose a priori the
spanwise length scales or the temporal frequencies of these structures. Vadarevu et al. [60] looked at
the impulse response of the linearized Navier-Stokes equations for the flow in a turbulent channel,
thereby removing this requirement to select a Fourier mode to analyze. To study the linear model for
unstably stratified turbulent channel flows, we therefore compute the response of the linear operator
(4) to impulsive forcing. In this case an impulse in physical space is used to force the linearized
equations and the response to this impulse is computed.

To compute this impulse response, an impulse centered at a wall-normal location z; is introduced
in the linearized equations at x = y = ¢ = 0. The spatiotemporal impulse is denoted by a Dirac delta
function §(x — xo, t). This impulse can be factored into impulses in x, y, z, and ¢, i.e.,

3(x —xp,1) = 8(x)8(¥)8(z — z7)8(2). )
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A Fourier decomposition of §(x — x, ) in x and y gives Fourier transforms of equal magnitude for
all k, and k,. Hence (4) can now be written as

§=Aq+Bds@),

(10)
u=Cq.
where d(z) = [m,8(z — z7), my8(z — z5), m.8(z — z¢), mp8(z — z¢)]. The values of m,, m,, m,, and
mg set the amplitude of the forcing (independent of k. and k) in each direction. The delta function
in the wall-normal direction is approximated by a Gaussian function of the form

(z— Zf)2:|

€2

8e(z —z7) = K exp [— (11
The value of z; sets the wall-normal location at which the impulse is centered and € sets the width
of the impulse which is here taken to be constant independent of z; and €2 = 1073 (e is set large
enough such that there is a sufficient number of grid points to resolve the Gaussian at the channel
centerline, where the density of the grid points is the minimum on the Chebyshev grid used to
discretize the wall-normal direction). Figure 2(c) shows the Gaussian profiles (along with the grid
points used to resolve them) used to approximate the two impulses, one at z; = 0 and the other at
zr = —0.9, that are used in this work. We have confirmed that decreasing this value of € does not
have any significant impact on the results obtained here. The constant K is chosen such that the area
under the Gaussian function (11) is unity. To compute the impulse response, the code developed by
Vadarevu et al. [60] has been modified to include the effect of stratification (1).

The response to the forcing d(z) at each time 7 can be calculated (independently of all other
times) using the matrix exponential:

i(z,1) = CA'Bd(2). (12)

Since the model (1) is linear, the impulse response can be computed independently for each
streamwise and spanwise wave number of interest. An inverse Fourier transform is then used
to obtain the three-dimensional velocity and temperature fields of the response at different time
instances ¢ > 0. The responses are computed for time instances between ¢ of 0.1 and 8 in increments
of 0.05. The wall-normal direction is discretized using a Chebyshev grid with N = 302 grid points.
Convergence has been verified by reproducing the results with more than double the number of grid
points.

A. Impulse response of k, = 0 modes

Since the flow structures of interest are quasistreamwise rolls that have streamwise extents com-
parable to the length of the channel, it would be interesting to determine if these quasistreamwise
rolls can be modelled using the streamwise-constant (k, = 0) modes alone. Therefore in this work
we use the impulse response of the streamwise-constant modes to model these structures. In Sec. VII
it is shown that including streamwise-varying (k, # 0) modes does not have a significant impact on
the trends discussed here. We consider a spanwise domain size of 37, with spanwise Fourier modes
varying in integer multiples of k,o = 2/3. The spanwise Fourier modes are further truncated such
that 0 < ky < 60k, (/20 ~ 0.15 < Ay < 00). At the time instances that we consider here, the
excluded larger wave numbers (corresponding to the smallest structures) contribute less than 0.1%
of the energy of the most energetic streamwise-constant Fourier mode in the impulse response.

In Sec. V the coherent structures observed in these impulse responses are characterized for four
different values of Ri, = 0.001, 0.01, 0.1, and 1.0, with Re, = 10*> and Pr = 1 fixed (Table I).
The impulse location zy is set to be the channel centerline (i.e., zy = 0), where the influence of
buoyancy-driven mechanisms (relative to shear-driven mechanisms) reach their maximum [63].
Before analyzing the model at different Rip, in Sec. IV we first consider a fixed Ri, = 0.1, and
look at the response obtained from the four different components of the impulse d(z) in (1).
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Response to dy

FIG. 3. The response of the streamwise constant modes (k, = 0) to an impulse at (x, y, z,¢) = (0, 0,0, 0)
for the case of Ri, = 0.1 computed at time t = 1.0. Normalized (by the maximum) temperature fluctuations 6
(contours) and cross-stream velocity components v and w (streamlines) are shown. (The streamwise component
of the velocity u is not shown.) Three components of forcing are considered: (a) dy, (b) dy, and (c) d.. The
component d, does not force a response in temperature for streamwise-constant (k, = 0) modes (see Sec. IV).
The red and blue contours represent positive and negative temperature fluctuations, respectively.

IV. THE RESPONSE TO d,, d, d., AND d,

In this section we first consider the case of Ri, = 0.1 and compute the response to an impulse
centered at the channel centerline (z; = 0). The effects of changing Ri, and z; are discussed in
Sec. V and Sec. VIII, respectively. There are four components of the impulse d(z) in (10): dy, d,,
dy, and d,. Rather than look at an arbitrary superposition of responses to the four components of the
impulse, here we consider each forcing component separately.

Let us first concentrate on a forcing in the streamwise direction d,. For streamwise-varying (k, #
0) modes, d, induces a response in the wall-normal velocity w through the nonzero term —ik, D
in the matrix B in (6) [row 1, column 1 in (6)]. This response in w further feeds back onto the
temperature fluctuations because of the nonzero term —®’ in the matrix A in (5) [row 3, column
1 in (5)]. Now consider the case of the streamwise-constant (k, = 0) modes, which are what we
are interested in here. In this case the term —ik,D in B is zero, and therefore d, does not produce
a response in w. This in turn means that d, does not effect the temperature fluctuations. In short,
for streamwise-constant modes, the streamwise component of the forcing d, does not produce a
response in the temperature fluctuations. This therefore indicates that, when using the streamwise-
constant model, d, cannot model the quasistreamwise rolls that are characterized by the two peaks
in intensity in the wall-normal distributions of their temperature fluctuations. The forcing d, is
therefore not considered further.

Figure 3 shows the response obtained from the other three components of forcing: dy, d,,
and d,. The figure shows the temperature fluctuations 6 (contours) and the cross-stream velocity
components v and w (streamlines) along a wall-perpendicular plane. Let us first consider the
response to dy shown in Fig. 3(a). From the streamlines we observe the presence of channelwide
rolls. Additionally, the temperature fluctuations associated with these rolls are channelwide and have
two peaks that are located close to the walls. These rolls are reminiscent of the quasistreamwise rolls
observed in DNS. Now consider the response to d, in Fig. 3(c). As in the case of the response to dj,
we observe that d, generates channelwide structures with two peaks in the intensity of temperature
fluctuations that are located close to the walls.
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Finally consider Fig. 3(b) which plots the response to d,. From the streamlines in this figure, we
observe that the response is coherent only across one half of the channel height, with the temperature
fluctuations changing sign across the channel centerline. Hence these structures are not channelwide.
From matrix B in (6), we note that the derivative of d, is what effects the response in the wall-normal
velocity w [row 1 column 2 in (6)]. This response in w in turn effects the response in temperature
0 through the matrix A (5) [row 3, column 1 in (5)]. The derivative of an impulse localized at
a wall-normal location zy is antisymmetric with respect to this wall-normal location zy [69]. The
derivative of d, is therefore antisymmetric with respect to the impulse location, which in Fig. 3 is
the channel centerline. This therefore explains why the response in Fig. 3(b) is antisymmetric with
respect to the channel centerline. It should be possible to consider a superposition of impulses for
d, that may model the quasistreamwise rolls of this flow. However, this complicates the model used
here, and is therefore left as a topic for future investigation.

We can therefore make two conclusions: (i) The response of streamwise-constant modes to an
impulse d; and d, does not faithfully model the large-scale channelwide structures in unstably
stratified turbulent channel flows and (ii) the responses to dg and d, show qualitative agreement with
DNS. We therefore concentrate on the responses of the linear model to dy and d; in the remaining
sections.

V. EFFECT OF RICHARDSON NUMBER

In the previous section we considered the impulse response at a fixed Ri,. Now we analyze
the effect of varying Ri, on the impulse response. In other words, we would like to characterize the
influence of buoyancy on the structures obtained and thereby assess the model’s ability to capture the
flow structures that emerge from the competition of shear-driven and buoyancy-driven mechanisms.
We consider four different values of Ri, = 0.001, 0.01, 0.1, and 1.0, while keeping Re;, = 10%3
and Pr = 1 fixed. The details of the four cases are given in Table I. As discussed in Sec. IV, the
streamwise and spanwise forcing components d, and dy gives rise to structures that are not consistent
with the quasistreamwise rolls observed in DNS. Hence we compute the responses to forcing in the
scalar component dy and the wall-normal component d, only. In the current section the impulse
location is kept fixed throughout at z; = 0 (i.e., the channel centerline).

To compare the responses across different Ri,, we need to decide on a time #.(Ri, z¢) at which
the structures are compared. This time will be a function of both Ri, and the forcing location z¢
(which is kept constant in this section). One method to determine a suitable time would be to choose,
for each Ri,, a time based on the trends of a defined norm. For this purpose we choose the kinetic
energy norm defined using & = (i, 0, W) as

</’>uu(t)=// / a’ (ky, ky, 2)* (ky, ky, 2)dk.dkydz, (13)
2 Jke Jky

where (-)7 represents transpose and (-)* represents complex conjugate. In Appendix B we show that
other choices of norm do not significantly effect the conclusions made here. In Figs. 4(a) and 4(b)
the kinetic energy norm ¢,, normalized by its maximum value in time is plotted as a function of
t. The responses to dy and d, are considered in Figs. 4(a) and 4(b), respectively, for all four values
of Ri,. Figures 4(c) and 4(d) show the responses that are obtained from the model that includes
streamwise-varying modes (k, # 0) and will be discussed in Sec. VII (the profiles are included here
for ease of comparison later in Sec. VII).

First consider Fig. 4(a) which plots the norm ¢,,, computed from the response to dy. For the cases
with Ri, = 0.001, 0.01, and 0.1 the response shows transient growth before an eventual decay. In
this case, the time at which the norm peaks is used as the time #.(Ri, zy) at which the responses
are later compared in Fig. 5. When Ri, = 1.0 the norm follows an increasing trend. In this case,
the time #.(Riy, zr) is taken to be the maximum time considered, i.e., #.(1.0, 0) = 8.0. The trend
of ¢,, computed from the response to d, that is shown in Fig. 4(b) is slightly more complicated.
The plot of ¢,, for all Ri, first shows a decaying trend, followed by an increasing trend and then
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FIG. 4. The norm ¢,, obtained from the responses to an impulse located at (x,y, z,¢) = (0,0, 0, 0). The
norm computed from [(a) and (b)] the model including only the streamwise-constant (k, = 0) modes, as well as
[(c) and (d)] the model including streamwise-varying (k, # 0) modes are shown. The norm for the response to
[(a) and (c)] dy and [(b) and (d)] d, are plotted as a function of 7. The colors indicate four values of Ri, = 0.001
(red), 0.01 (green) 0.1 (black), and 1.0 (blue). The dashed lines indicate the values of 7.(Ri,, z¢) used in Figs. 5
and 6.

again an eventual decay. This is explained by the combination of the slower transient growth in u,
and the more rapid energy decay in v and w. The peak that appears after the initial decay is the
time at which the transient growth in u attains a maximum, and this time is chosen as the value of
t.(Rip, zy) at which the responses are later compared. In general, when there is transient growth,
the time at which the norms peaks is chosen as 7.(Ri, z¢), when the norm does not show a peak
we take 7.(Ri, zr) = 1.0 and when the norm monotonically increases #.(Riy, z) is taken to be the
maximum time considered.

We can now compute the response to dy and d; at the times f.(Rip, zy) computed from Figs. 4(a)
and 4(b). This response is plotted in Fig. 5 for the four values of Ri, = 0.001, 0.01, 0.1, and 1.0.
The response to dy is shown in the first column and the response to d; is shown in the second column.
Temperature fluctuations (contours) and the cross-stream velocity components (streamlines) along
a spanwise wall-normal (y-z) plane for each Ri, are shown. (We do not plot the streamwise velocity
component in this figure. This is to enable a more direct comparison with the trends observed by
Pirozzoli et al. [25].)

Let us first consider the response to dy. The value of Ri,, and hence the effect of buoyancy,
increases as we move down the rows in Fig. 5. For all values of Ri, considered, the cross-stream
velocities (streamlines) indicate the presence of channelwide structures. However, the distribution
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Response to dy

Ri, =0.01 [

FIG. 5. Normalized (by the maximum) temperature fluctuations € (contours) and cross-stream velocities
v and w (streamlines) obtained as the response of the streamwise constant modes (k, = 0) to an impulse
at (x,y,z,t)=1(0,0,0,0). (The streamwise velocity u is not shown.) The response is shown at the times
1.(Ri,, zy) computed from Fig. 4. The forcing is either [(a), (c), (), and (g)] dy or [(b), (d), (f), and (h)] d.. Four
cases [(a) and (b)] Ri, = 0.001, [(c) and (d)] Ri, = 0.01, [(e) and (f)] Ri, = 0.1, and [(g) and (h)] Ri, = 1.0
are considered, with Re, = 10*3 and Pr = 1 fixed.

of the temperature field changes with increasing Ri,. For the case of Ri, = 0.001 [Fig. 5(a)],
the temperature is concentrated at the location of the impulse, i.e., at the channel centerline.
At the intermediate case of Ri, = 0.01 [Fig. 5(c)] we observe that the structure has started
to transition to having two peaks in intensity. At the higher Richardson numbers considered,
Ri, = 0.1 and 1.0 [Figs. 5(e) and 5(g)], we see the presence of channelwide structures with two
peaks in the intensity of the temperature fluctuations that are concentrated at the channel walls.

Now consider the the response to d,. The streamlines again indicate the presence of channelwide
structures for all the Ri, considered. As in the case of the response to dy, with increasing Ri,, the
temperature field transitions from being centered at the wall-normal height at which the impulse was
provided to channelwide structures with two peaks in intensity, one at each wall. However, unlike in
the responses to dy, the concentration of the temperature fluctuations close to the wall is markedly
more pronounced at the higher Richardson numbers of Ri, = 0.1 and 1.0.

We have seen that the impulse response of the linear model to dy and d, predicts the emergence
of channelwide two-peaked intensity features with increasing Ri,. This is consistent with the DNS
results of Pirozzoli et al. [25] who observed the presence of large-scale two-peaked intensity features
as the influence of buoyancy was increased [see Figs. 5(j) and 5(f) of Pirozzoli et al. [25] shown
here in Fig. 1]. Figure 5 therefore suggests that, qualitatively, the linear model is able to capture the
flow structures that emerge from the competition of shear-driven and buoyancy-driven mechanisms.
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FIG. 6. (a) The normalized profiles of 62 from DNS (obtained from Pirozzoli et al. [25]), and [(b) and (c)]
the responses of the streamwise-constant (k, = 0) modes to the impulses (b) dy and (c) d,. Also shown are
the responses of the model that includes streamwise-varying modes (k, # 0) to the impulses (d) dy and (e) d..
The profiles in (b) and (c) are computed from the fields shown in Fig. 5. The colors indicate the four values of
Ri, = 0.001 (red), 0.01 (green), 0.1 (black), and 1.0 (blue).

However, the responses to d, at Ri, = 0.1 and 1.0 display temperature fluctuations that are highly
pronounced at the walls, a trend that is not consistent with the flow structures in DNS for which the
intensity of temperature fluctuations remains high throughout the channel.

VI. VARIANCE FROM THE IMPULSE RESPONSE

From the trends observed in Fig. 5 we were able to make a qualitative comparison of the
large-scale structures from the model with those from DNS. For a more direct comparison, in this
section the normalized variance profiles 62 obtained from the model are compared to DNS. For this
purpose, in Fig. 6 we plot the normalized mean profiles of 8% obtained from DNS and from the
impulse responses. The figure includes the four values of Ri, that were considered in Fig. 5. The
profiles in Fig. 6(a) were obtained from the DNS dataset of Pirozzoli et al. [25]. The profiles from
the model in Figs. 6(b) and 6(c) are computed from the temperature fields shown in Fig. 5. The
responses to dy and d, are shown in Figs. 6(b) and 6(c), respectively. Figures 6(d) and 6(e) show the
responses that are obtained from the model that includes streamwise-varying modes (k, # 0) that
will be discussed in Sec. VII (the profiles are included here for ease of comparison later in Sec. VII).

First consider the profiles from DNS in Fig. 6(a). At Richardson numbers Ri, = 0.001
and 0.01, we see that 62 peaks at the channel center. We also observe the presence of
smaller near-wall peaks at these values of Ri,. At Ri, =0.1 and 1.0 the profiles display
two peaks, one at each wall and no peak at the channel centerline. This trend is consistent
with the emergence of the quasistreamiwse rolls with two peaks in intensity that was observed
with increasing Ri, in Pirozzoli et al. [25].
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Now consider Fig. 6(b) computed from the response to dy. As observed in the DNS, at low Rip,
the profile of 92 peaks at the channel center. With increasing Ri, the profiles transition to having
peaks near the walls. This transition is due to the appearance of the two-peaked intensity structures
that was observed in Fig. 5. A comparison with Fig. 6(a) shows that this trend is consistent with
DNS. However, there are also some important differences. First, the profile corresponding to Ri =
0.01 in Fig. 6(b) considerably flattens out close to the channel centerline. From the corresponding
contours plots of temperature fluctuations at Ri, = 0.01 in Fig. 5(c), we see that the response has
already transitioned to a channelwide feature with two peaks away from the channel centerline,
thereby causing this flattening out of the variance profile at this Ri,. This suggests that the structures
from the model transition to the channelwide two-peaked intensity structures at a lower Ri, than in
DNS. Second, the model is not able to capture the near-wall peaks observed in the profiles from
DNS at the lowest Richardson numbers of Ri, = 0.001 and 0.01. This may be due to the fact that
we have only considered one impulse location of zy = 0 to obtain the variance profiles in Fig. 6(b).

Finally, let us consider Fig. 6(c) which is the variance of the response to d,. With increasing Rip,
the profiles of 62 transition from peaking at the channel center to peaking close to the walls. This
is consistent with the trends from DNS in Fig. 6(a). However, as in the case of dy, the structures
modelled by d, transition to having two peaks in intensity at a lower Ri, than in DNS. This trend
is more pronounced in Fig. 6(c) in comparison to Fig. 6(b). The near-wall peaks that are seen at
lower Ri, in DNS are also not captured in the response to d,. Additionally, at Ri, = 0.1 and 1.0
the profiles in Fig. 6(c) are significantly more concentrated close to the wall than in Figs. 6(a) and
6(b). This is consistent with the observations made from Fig. 5(f) in Sec. V. Hence, the response
to d, captures the transition of the structures to the channelwide two-peaked intensity features as
in DNS. However, the variance profiles that are obtained do not match DNS as closely as the
responses to dy.

VII. THE EFFECT OF INCLUDING MODES WITH k, # 0

We have so far considered only the streamwise-constant modes when computing the impulse
response. In this section we briefly study the influence of including other streamwise wave numbers
on the impulse response. Therefore the impulse response is computed for a range of k, including
streamwise-varying (k, # 0) modes. The spanwise wave numbers for which the impulse response is
computed is kept the same as in the previous sections. We consider a streamwise domain size of 87,
with streamwise Fourier modes varying in integer multiples of k.o = 1/4. The streamwise Fourier
modes are further truncated such that —80k,y < k, < 80k, (/10 = 0.31 < |A,| < 00). For the
time instances that we consider here, the excluded wave numbers (that correspond to the smallest
structures) have less than 0.1% of the energy of the most energetic Fourier mode in the impulse
response.

As performed in Sec. V, here we compare the responses for different Richardson numbers Ri,.
The impulse location is kept fixed at the channel centerline, i.e., zy = 0. The first step is to establish
the time #.(Riy, z5) at which the structures should be compared. To this end, in Figs. 4(c) and 4(d) the
normalized kinetic energy norm (13) is plotted with respect to time. This represents the equivalent
of Figs. 4(a) and 4(b), this time computed for a range of streamwise wave numbers including
streamwise-varying (k, # 0) modes. We can therefore compare the trends observed in Figs. 4(c)
and 4(d) with those that were observed in Figs. 4(a) and 4(b) in Sec. V.

Let us first consider the response to dy. We observe that, in the case of Ri, = 0.001, 0.01, and
0.1, even with the addition of the streamwise-varying (k, # 0) modes, the trends in Fig. 4(c) remain
largely similar to those seen in Fig. 4(a). The most important difference is that the peaks in Fig. 4(c)
occur at slightly earlier times. In the case of Ri, = 1.0, we observe that instead of the monotonic
increase of the profile seen in Fig. 4(a), we observe a peak in the profile in Fig. 4(c). This is because,
within the time frame considered here, there is the combined effect of the decay in the energy of the
streamwise-varying (k, # 0) modes and the increase in the energy of the streamwise-constant (k, =
0) modes. Using the trends in Fig. 4(c), we choose the time #.(Riy, z¢) as the time at which the energy
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norm (13) peaks. Now let us consider the response to d,. In this case the trends seen in Figs. 4(d)
and 4(b) differ. The norm in Fig. 4(d) does not undergo transient growth and instead monotonically
decreases. Hence although the streamwise-constant (k, = 0) modes show transient growth in the
streamwise velocity, the combination of the responses across streamwise Fourier modes leads to
a monotonic decay of the total energy with time. This is likely due to the different timescales at
which each Fourier mode attains its peak energy during its transient response. Using Fig. 4(d) as
a guide, we choose a constant time f.(Ri,, zr) = 1.0 to compare the structures when the forcing is
ind,.

We compute the responses to dy and d, at the times 7.(Rip, zr) computed from Figs. 4(c) and
4(d). The normalized profiles of 62 obtained from the responses are shown in Figs. 6(d) and 6(e).
To analyze the effect of the addition of streamwise-varying modes, the profiles in Figs. 6(d) and
6(e) can be compared to those in Figs. 6(b) and 6(c) (which shows the equivalent profiles computed
for the streamwise-constant modes). We observe that for both the forcing dy and d, the trends
observed from the streamwise-varying and streamwise-constant models are similar. In both cases,
with increasing Ri,, the variance profiles transition from peaking at the channel centerline to having
two peaks, one located at each of the walls, which is consistent with DNS. Hence the addition
of the streamwise-varying modes does not have a significant effect on this trend, and therefore
on the emergence of the channelwide two-peaked intensity structures with increasing Ri,. This
indicates that the streamwise-constant modes are the major contributor to the quasistreamwise
rolls captured by the linear model. However, the streamwise-varying modes contribute toward an
increased variance at the channel center. This can be observed especially in the response to dy at
Ri, = 0.01 (green), where the profiles in Figs. 6(d) and 6(e) are in better agreement with DNS than
the corresponding profiles in Figs. 6(b) and 6(c). We also observe that, even with the inclusion of
streamwise-varying modes, the response to d, at higher Riy is significantly more concentrated at the
walls in comparison to DNS.

VIII. THE EFFECT OF IMPULSE LOCATION

In Sec. V we observed that the response of the linear model to impulses in dy and d, captures
important features of the large-scale quasistreamwise rolls that appear in unstably stratified channel
flows. However, we considered an impulse located at the channel centerline only, i.e., zr = 0. A
stratified channel flow is governed by competing shear-driven and buoyancy-driven mechanisms,
with the relative importance of these mechanisms varying with wall height. More specifically, as
we move away from the wall and toward the channel centerline, the contribution of the buoyancy-
driven mechanisms to the turbulent kinetic energy production increases relative to the contribution
of the shear-driven mechanisms (Sec. 3.4 of Tennekes and Lumley [63]). It is hence important to
consider the effect of the location of the impulse on the response. Therefore, in this section we
analyze the response when the impulse is located closer to the wall. We consider a Richardson
number of Ri, = 0.1, for which we observed the emergence of the quasistreamwise rolls in Sec. V.
Similar conclusions can also be obtained by considering Ri, = 1.0 (not shown here). We choose the
impulse location to be z; = —0.9 (i.e., 0.1 distance above the lower wall) which, in the case of a
turbulent channel flow at similar Re,, falls within the log-layer of the flow. In Sec. V we observed
that an impulse in the scalar component of the forcing (dy) best models the quasistreamwise rolls.
Therefore, in the current section we concentrate on the response to dp.

As performed in Sec. V we first plot the norm ¢, (13) in Fig. 7(a). It is interesting to see that
the norm attains its first peak at an earlier time in comparison to the case of zy = 0 [see Fig. 4(a)].
Let us denote this time as #;. We will also consider the later time #, at which the norm attains its
second peak. The normalized profiles of #2 computed from the responses obtained at these times
t; and #, are shown in Fig. 7(b). Considering first the response at the later time #, [the dot-dashed
line in Fig. 7(b)], we observe that the profile has a peak close to each of the walls, which indicates
the presence of the channelwide two-peaked intensity quasistreamiwise rolls. The larger peak at the
lower wall (close to the impulse location) suggests that other energetic structures that are localized
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FIG. 7. (a) The norm ¢,, obtained from the responses of the streamwise-constant modes to the impulse dy
located at (x, y, t) = (0, 0, 0), plotted as a function of ¢. The wall-normal location of the impulse is z; = —0.9.
The Richardson number is Ri, = 0.1. The two vertical lines indicate the two values of #.(Ri, z5) used in (b).
(b) The profiles of 62 obtained at the times #; and , indicated in (a).

near the impulse location are also present at this time #,. Now considering the profile obtained at the
earlier time #; [the solid line in Fig. 7(b)], we see that the profile is localized at the lower wall, i.e.,
near the impulse location.

From these observations we can conclude that the large-scale quasistreamwise rolls are excited
even when the forcing location is moved close to the wall. However, in this case we also observe
the presence of other energetic modes that are localized closer to the wall. Such modes were not
observed when the impulse was located at the channel centerline (see Sec. V). This suggests that,
to model the quasistreamwise rolls using the linearized equations, the impulse location should be
taken into account. This is consistent with the properties of this flow, where the relative importance
of buoyancy and shear-driven mechanisms changes with wall height.

IX. THE ROLE OF THE RICHARDSON NUMBER AND THE MEAN PROFILES

In this section we consider the question of why the linear model is able to capture the qua-
sistreamwise rolls with their characteristic two-peaked intensity temperature fluctuations? There are
two factors that vary within the linear model with increasing Richardson number: (i) the Richardson
number itself and therefore the feedback term —Ri;k? in the matrix A in (5) and (ii) the mean
profiles that vary with Ri; and are given as input to the linear model (see Fig. 2). Here we consider
two modifications of the model so as to isolate the effect of these terms. The impulse responses from
these modified models are computed, and then compared to the responses from the full model from
Sec. VL. For ease of comparison, the variance of the responses from the full model are reproduced
here again in Figs. 8(a) and 8(b), with the responses to dy in the first column and the responses to d.
in the second column.

For the first modification of the model we artificially set the feedback term —Ri,k? in matrix
A (5) to zero and thereby isolate the effect of the variation of the mean profiles in A. The times
t.(Rip, zy) at which the responses are compared in this section are again chosen based on the trends
of the kinetic energy norm (13) as in Sec. V and for the sake of brevity, the plots of the norm are not
shown here. (With the feedback term —Ri. k> set to zero, the kinetic energy norm of the response
to dy is zero and we choose a constant #.(Riy, zy) = 1.0 in this case.) The responses obtained from
the modified model are shown in Figs. 8(c) and 8(d). From the responses to dy in Fig. 8(c) we see
that the two-peaked intensity features do emerge, albeit at slightly higher values of Ri, than in the
case of the full model in Fig. 8(a). The shape of the responses to d; in Fig. 8(d) are indistinguishable
from those obtained from the full model in Fig. 8(b), and therefore the responses do not seem to be
impacted by the feedback term.

044601-15



ANAGHA MADHUSUDANAN et al.

|—Ri, =1 —Rij, = 0.1 — Rij = 0.01 — Rij = 0.001
()1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
z z

FIG. 8. (a) The normalized profiles of 02 obtained from the responses of the streamwise-constant (k, =
0) modes to the impulses [(a), (c), and (e)] dy and [(b), (d), and (f)] d,. The responses from [(a) and
(b)] the full model as studied in Sec. V, [(c) and (d)] the model where the Richardson number is arti-
ficially set to zero, and [(e) and (f)] the model where the mean profiles are artificially taken to be the
same as in the case of passive scalar transport are shown. The colors indicate the four values of Ri, =
0.001 (red), 0.01 (green), 0.1 (black), and 1.0 (blue). The profiles from the full model in (a) and (b) are
reproductions of Figs. 4(a) and 4(b), and are shown here for ease of comparison.

Now consider the second modification where we artificially set the mean velocity, temperature,
eddy-viscosity, and eddy-diffusivity profiles equal to those in the case of passive scalar transport
(obtained from the simulation of Pirozzoli et al. [25] with Ri, = 0). The feedback term —Ri, k>
increases with Richardson number and therefore in this case, the effect of the variation of the mean
profiles is eliminated, and we isolate the effect of the feedback term —Ri,k” in A. The responses
obtained from the modified model are shown in Figs. 8(e) and 8(f). Both from the responses to dy
and d, we see that the two-peaked intensity features do not emerge.

These observations suggest that the feedback term in A (5), which is the linear coupling from
temperature 6 to wall-normal velocity w, does not have a significant influence on the shape of
the two-peaked intensity features. Alternatively we can say that the lift-up mechanism, which is the
linear coupling from w to streamwise velocity u and temperature 6, has a much more significant role.
We can also conclude that the variations in the mean profiles for different Ri, play a significant role
in the existence of the quasistreamwise rolls. This probably makes intuitive sense when considering
the mean profiles plotted in Figs. 2(a) and 2(b), especially the mean temperature profile ®. With
increasing Riy, the profiles of @ flattens out near the channel centerline, thereby decreasing the
magnitude of the wall-normal gradients of mean temperature d®/dz in this region. This in turn
increases the eddy-diffusivity a7y (2) at the channel centerline, which could cause the responses
from the model to stop peaking at the channel centerline (i.e., damps the large structures at the
channel centerline) and peak closer to the walls where the value of a7 is lower. This could also
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explain why a model with constant oy does not capture the quasistreamwise rolls, as seen in
Appendix A.

X. CONCLUSIONS

In this study we constructed a linearized Navier-Stokes—based model for unstably stratified
turbulent channel flows. The nonlinear terms of the equations for velocity (#, v, w) and temperature
0 were replaced by an impulsive (localized) disturbance term d = (dx, dy, d., dy). The responses to
these impulses were computed, and the coherent flow structures in the responses were compared
to the quasistreamwise rolls observed in the DNS of Pirozzoli et al. [25]. The streamwise-constant
modes (k, = 0) alone were used to characterize these structures [except in Sec. VII where the effect
of adding streamwise-varying (k, # 0) modes was discussed]. It was first determined that, to obtain
the channelwide modes that are characteristic of these quasistreamwise structures from the linear
model, the impulse should either be in the scalar component (dp) or the wall-normal component (d,)
of the forcing (Fig. 3). The effect of buoyancy on the large-scale flow structures from the model was
then considered by analyzing the response of the linearized equations to dy and d,.

To determine the effect of buoyancy, the responses to an impulse located at the channel centerline
(zr = 0) were obtained at different Richardson numbers Ri; (Figs. 5 and 6). The times at which
these structures were compared were determined based on the kinetic energy norm of the responses
(the choice of norm does not significantly alter the conclusions derived here). The flow structures
from the model were channelwide for all Ri, considered. As the effect of buoyancy was increased,
the temperature fluctuations transitioned from being localized at the impulse location to being
channelwide with two peaks in intensity, one at each wall, consistent with the trends in DNS [25].
As a result, the normalized profiles of 82 obtained from the model agree reasonably well with those
obtained from the DNS data [Figs. 6(a) and 6(b)]. The lift-up mechanism, i.e., the linear coupling
from the wall-normal velocity w to the streamwise velocity u and temperature 6 plays a much
more significant role in the emergence of these flow structures than the linear coupling from 6 to
w. We also found that the shapes of the mean streamwise velocity and temperature profiles (that
vary with Ri, and that are given as input to the model) are important for modeling these flow
structures.

The flow structures from the model transition to two-peaked intensity features at lower values
of Ri, than in the case of DNS. We determined that this problem can be resolved by including
streamwise-varying modes in the model [Figs. 6(d) and 6(e)]. We also found that, when the impulse
is located closer to the wall, in addition to the quasistreamwise rolls, other modes that are localized
in the wall-normal direction also become important. Therefore, to model the quasistreamwise rolls
using the linearized equations, the location of the impulse should be carefully considered. This
is consistent with the properties of unstably stratified turbulent channel flows, where the relative
importance of buoyancy-driven and shear-driven mechanisms vary with wall height.

We note that the linear models used in this work require eddy-viscosity and eddy-diffusivity
profiles (Sec. A). In the current study we compute these profiles using the mean profiles obtained
from DNS. As observed in Sec. II B, computing these profiles from the data obtained from DNS
or experiments is challenging. Hence there is the need to obtain a model, such as a modified Cess
profile [62], for the case of stratified channel flows. The modified log-law obtained by Scagliarini
et al. [70] could potentially be useful for this purpose. Any future advancement in this direction will
significantly improve our ability to model these flows.

The observations from this study suggest that the linearized Navier-Stokes equations aug-
mented with an eddy-viscosity profile and an eddy-diffusivity profile capture the trends of the
quasistreamwise rolls that are observed in turbulent channel flows with unstable stratification [25]
reasonably well.
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FIG. 9. Response obtained from the linear model with a constant eddy-diffusivity ay. (a) The norm ¢,
obtained from the responses of the streamwise-constant modes to the impulse dy located at (x, y, t) = (0, 0, 0),
plotted as a function of . The wall-normal location of the impulse is zy = 0 and the Richardson number is
Ri, = 1.0. The vertical line indicates the value of #.(Ri,, z;) used in (b). (b) The variance profile 02 obtained
at the time #.(Rij, zy).
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APPENDIX A: LINEAR MODEL WITH CONSTANT EDDY-DIFFUSIVITY

So far we have analyzed the linear model which has its thermal diffusivity augmented with an
eddy-diffusivity profile that varies in the wall-normal direction. In this section we briefly consider
the effect of using a constant eddy-diffusivity profile o7. For this purpose, the eddy-diffusivity is
kept constant across the channel height, with the constant set equal to the maximum value of the
profile obtained in Sec. II B. The wall-normal derivative of the eddy-diffusivity profile is therefore
zero. (Other values for this constant eddy-diffusivity profile 7 can be considered. However, as will
be shown in this section, this model with a constant o7 does not capture the two-peaked intensity
features. We therefore do not consider this question of finding an optimal constant eddy-diffusivity.)
The case of Richardson number Ri;, = 1.0, forced using the scalar-component of the forcing dy is
considered here. For these parameters we observed the emergence of the quasistreamwise rolls in
Sec. V.

As performed in Sec. V, we first plot the norm ¢,,, in Fig. 9(a). The time at which the norm peaks
is taken as the time #.(Rip, z;) at which the variance profile 62 is computed from the response
and plotted in Fig. 9(b). From the variance profile we see that the structure has a peak at the
channel centerline, and does not resemble the two-peaked intensity features observed in the case
of the model used in Sec. V, which included a wall-normally varying eddy-diffusivity profile. This
observation suggests that the wall-normally varying eddy-diffusivity profiles are necessary to model
the quasistreamwise rolls of these flows.

APPENDIX B: THE EFFECT OF CHANGING THE NORM

The optimal time f.(zy, Ri) at which the responses are plotted in Figs. 5 and 6 depends on the
choice of norm. So far we have only considered the kinetic energy norm (13). In this section we
look at the effect of changing this choice of norm on the observations made in Sec. V and Sec. VI.
We will show that the conclusions derived in those sections are not significantly influenced by the
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FIG. 10. The norm [(a) and (b)] ¢,, and [(c) and (d)] ¢y obtained from the responses of the stream-
wise constant modes to the impulse located at (x,y,z,¢t) = (0,0,0,0). [(a) and (b)] Reproductions of
Figs. 4(a) and 4(b) are shown here for ease of comparison. The norm from the response to [(a) and
(¢)] dy and [(b) and (d)] d, are plotted as a function of z. The colors indicate the four values of Ri, =
0.001 (red), 0.01 (green), 0.1 (black), and 1.0 (blue). The dashed lines indicate the values of #.(Ri,, z;) used
in Fig. 11.

choice of norm. For this purpose we define a new norm ¢y as
boo = / f / b (ky, ky, 2)0% (ky, ky, 2)dk dkydz. (BI)
zJke Jky

Before considering this new norm ¢yg, in Figs. 10(a) and 10(b) the kinetic energy norm ¢,
obtained from the responses to both the scalar component dy and the wall-normal component d, of
the forcing, is plotted with respect to time. These are reproductions of Figs. 4(a) and 4(b) in Sec. V,
shown here again for ease of comparison. In Fig. 10(c) the new norm ¢y (B1) obtained from the
responses to dy is plotted with respect to time and Fig. 10(d) shows the same for the response
to d,. Here the impulse location is kept fixed at the channel centerline, i.e., z; = 0. The trends
of the norm ¢y in Figs. 10(c) and 10(d) are different from those observed for ¢,, in Figs. 10(a)
and 10(b). First considering the response to dy, unlike the transient growth observed in Fig. 10(a)
for ¢,,, in Fig. 10(c) we observe that ¢y shows a decay in energy. A constant value of the time
te(zy, Ri) = 1.0 is therefore chosen from Fig. 10(c). The norm from the response to d; in Fig. 10(d)
indicates transient growth. This trend is similar to that observed for ¢,, in Fig. 10(b), although
without the initial decay of energy observed in Fig. 10(b). The time f.(zy, Ri) from Fig. 10(d) is
chosen to be the time at which the norm attains a peak.
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FIG. 11. (a) The normalized profiles of 62 from DNS (obtained from Pirozzoli et al. [25]), and [(b), (c),
(d), and (e)] the responses of the streamwise constant modes to the impulses [(b) and (d)] dy and [(c) and (e)]
d,. [(b) and (c)] Reproductions of Figs. 6(b) and 6(c) are shown here for ease of comparison. The profiles from
the model are computed at the times 7.(Ri,, z¢) obtained from [(b) and (c)] Figs. 10(a) and 10(b) using the
norm ¢,, and [(d) and (e)] Figs. 10(c) and 10(d) using the norm ¢yy. The colors indicate the four values of
Ri, = 0.001 (red), 0.01 (green), 0.1 (black), and 1.0 (blue).

We compare the responses to dg and d; across different Ri, at the #.(zf, Ri) computed from
Fig. 10. To compare the responses, in Fig. 11 their normalized variance profiles are shown. It should
be noted that the only difference between Figs. 11(b) and 11(c) and Figs. 11(d) and 11(e) is the time
t.(Rip, zy) at which the responses are compared. While Figs. 11(b) and 11(c) are computed at times
t.(Rip, z7) obtained from Figs. 10(a) and 10(b), Figs. 11(d) and 11(e) are obtained at 7. (Rip, z¢) from
Fig. 10(c) and 10(d). [Figures 11(b) and 11(c) are reproductions of Figs. 6(b) and 6(c) in Sec. VI,
shown here again for ease of comparison.] The responses to the scalar component of the forcing dy
are shown in Figs. 11(b) and 11(d) and the responses to the wall-normal component of the forcing
d, are plotted in Figs. 11(c) and 11(e). From the responses to dy in Fig. 11(d) we observe that
the profiles transition to having two peaks in intensity with increasing Ri,. This is consistent with
Fig. 11(b). However, a slight deviation is observed in the profiles close to the channel centerline,
where the variance in Fig. 11(d) is higher in comparison to Fig. 11(b). This is due to the earlier
times chosen as f.(Riy, z¢) from Fig. 10(c), in comparison to those chosen from Fig. 10(a). The
responses to d, in Fig. 11(e), on the other hand, are almost the same as those observed in Fig. 11(c).
This is because the #.(Rip, zy) chosen for this case from Fig. 10(d) are at later times. Hence the
choice of norm does not impact the overall trend of the appearance of the quasistreamwise rolls
with increasing effect of buoyancy. However, in the case of an energy decay as in Fig. 10(c), the
choice of 7.(z, Ri) is more arbitrary than when transient growth is observed [as in Fig. 10(a)]. In
this case, if the time chosen is too early, the two-peaked intensity features will not have developed
in the flow and therefore the conclusions derived will be impacted.
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FIG. 12. [(a) and (c)] The norm ¢,, obtained from the responses to dy of the streamwise constant modes
to the impulse located at (x, y, ) = (0, 0, 0) at Ri, = 0.1. The vertical lines indicate the values of #.(Ri,, zy).
[(b) and (d)] The normalized profiles of 62 obtained from the responses at the obtained #. (Ri,, z;). Four different
values of z* = 0.3, 0.4, 0.5, and 0.6 are considered for computing the profiles of «;. The impulse locations are
[(a) and (b)] zy = 0 and [(c) and (d)] z; = —0.9.

APPENDIX C: SENSITIVITY TO INTERPOLATION OF EDDY-DIFFUSIVITY

The eddy-viscosity and the eddy-diffusivity profiles used in (1) are computed from the mean
profiles obtained from DNS. As discussed in Sec. II B, this introduces the problem of the sensitivity
of v; and «; to the noise in the mean profiles. To account for this problem, we use the method of
interpolating the profiles used by Cossu et al. [18] for the case of a boundary layer. We construct the
profiles of v; and «; using the mean profiles obtained from DNS up to some specified wall-normal
distance z* measured from the channel centerline. To obtain the profiles in the region within z* of the
channel centerline we use linear interpolation (see Sec. II B). In this section we discuss the effect of
this choice of z* on the trends discussed. Specifically, we discuss the choice of z* = 0.5 to compute
o, (see Sec. II B). Here we fix Ri, = 0.1 and concentrate on the response to dy, in which case we
have seen the emergence of the quasistreamwise rolls in Sec. V. Similar conclusions can be derived
at Ri, = 1.0 as well. We vary the value of z* used to compute o, and analyze the changes in the
trends observed.

In Figs. 12(a) and 12(c) the normalized ¢,, profiles shown in Figs. 4(a) and 7(a) are computed
again for four different values of z*. The solid lines corresponding to z* = 0.5 are the same as those
shown in Figs. 4(a) and 7(a). Further, three more values of z* = 0.3, 0.4, and 0.6 are considered.
Values of #.(Ri, zy) are chosen from these profiles of the norm, and the variance profiles obtained
at these times are shown in Figs. 12(b) and 12(d). The responses to impulses located at z; = 0 and
zr = —0.9 are considered in the first and second rows of the figure, respectively. From Fig. 12(a) we
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see that as z* increases, the time at which the norm peaks moves ahead. This time at which the norm
peaks is chosen as 7.(Ri, z7). At z* = 0.6 the operator A(ky, k) is unstable for some (k;, k,) and
hence the norm monotonically increases. In this case #.(Ri, z) is simply chosen to be the maximum
time considered in the figure. Now considering Fig. 12(c), although there is great variation in the
trends of the norm with increasing z*, we observe a peak at an early time for all values of z*. This
peak, which occurs at the same ¢ for all values of z*, is chosen as 7.(Ri, zy) in this case.

Now consider the variance profiles computed at these values of #.(Ri, z;) shown in Figs. 12(b)
and 12(d). First considering zy = 0 [Fig. 12(b)], the overall trend of obtaining a channelwide
structure with a peaks close to each of the two walls is insensitive to the choice of z*. In the case
of zy = —0.9 [Fig. 12(d)] we observe that, again, the choice of z* does not alter the profiles (the
four distinct profiles are not visible in the figure due to their overlap). Hence the value of z* has
a significant impact on the trends of the norm and therefore the choice of #.(Ri, zy). However, for
the values of z; considered in this study, the variance profiles obtained for the different choices of
z* remain similar. From this we conclude that the trends of the channelwide quasistreamwise rolls
discussed in this study are reasonably insensitive to the choice of z*.
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