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It is well known that the reversibility of Stokes flow makes it difficult for small mi-
croorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms
of propulsion and feeding. Therefore it is important to understand the effects of unsteady
and fluid inertia on the dynamics of microorganisms in flow. In this work, we show how
to translate known inertial effects for nonmotile organisms to motile ones, from passive to
active particles. The method relies on a principle used earlier by Legendre and Magnaudet
(1997) to deduce inertial corrections to the lift force on a bubble from the inertial drag on
a solid sphere, using the fact that small inertial effects are determined by the far field of
the disturbance flow. The method allows us, for example, to compute the inertial effect of
unsteady fluid accelerations on motile organisms, and the inertial forces such organisms
experience in steady shear flow. We explain why the method fails to describe the effect of
convective fluid inertia.

DOI: 10.1103/PhysRevFluids.7.044304

I. INTRODUCTION

Active-matter research asks, among other questions, how small active particles such as motile
microorganisms move in a fluid, how they interact via hydrodynamic interactions, and how their
motion is affected by obstacles, such as the walls that contain the fluid. It is usually assumed
that the particles are so small that their dynamics is overdamped. In this steady creeping flow or
Stokes limit, fluid accelerations caused by the moving particle can be neglected, and it is well
known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim [1].
How does the particle dynamics change when the particles become larger, so that inertial effects
begin to matter? When fluid inertia is weak, one can compute the inertial dynamics by perturbation
theory around the creeping-flow limit [2–13]. Singular perturbation theory and asymptotic-matching
methods have been used to investigate the effect of fluid inertia upon the motion of small passive
particles. For example, convective fluid inertia enhances the drag in homogeneous [14] and stratified
[15] flows, and it causes a torque on nonspherical particles moving in a spatially uniform flow
[16–19]. Fluid accelerations due to shear result in lift forces [13,20,21]. They modify the angular
velocity of small particles in shear flow [22,23], and in turbulence [24]. Even weak inertial forces
can have a substantial effect on the dynamics, for example, if the unperturbed motion is marginally
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stable [7,25–27]. The results mentioned above apply in the steady limit. Unsteady fluid inertia gives
rise to the BBO history force [28–30] and added-mass effects [31–33].

For active particles less is known. The rich biodiversity of phytoplankton and zooplankton
results in a substantial diversity of propulsion strategies. The associated inertial parameters span
a wide range of values. Fluid inertia matters more for larger organisms, and for those with vigorous
swimming gaits. Inertial effects break the time reversibility of Stokes flow, and may thus provide
new mechanisms of propulsion. Hamel et al. [34], for example, showed that the ciliate paramecium
makes use of inertial effects to escape predators. The clam clione antartica exploits unsteady fluid
inertia for propulsion [35]. Most of our present understanding of such fluid-inertia effects relies
on ab initio computer simulations, and upon perturbation theory in the relevant inertia parameter.
Lauga [36] calculated how much inertia is needed to allow for significant motion with reciprocal
strokes. Khair and Chisholm [37] and Wang and Ardekani [38] computed the effect of convective
inertia on a small spherical swimmer by perturbation theory in the particle Reynolds number. The
ab initio simulations of Chisholm et al. [39] confirm these results, and demonstrate how the theory
fails for larger particle Reynolds numbers. Ishimoto [40,41] studied how unsteady inertial effects on
the dynamics of a microswimmer depend upon its swimming stroke. Convective fluid inertia also
affects the amount of fluid an active particle moves around [42]. Finally, feeding strategies of many
marine organisms rely on unsteady inertial effects [43,44]. Last but not least, artificial swimmers
are usually larger than millimeters, because it is challenging to construct reliable and controllable
propulsion mechanisms for very small robotic swimmers. As a consequence, fluid inertia tends to
matter for such self-propelled robots [45,46].

The motion of copepods, in particular, illustrates the importance of fluid inertia for the swimming
of marine microorganisms. During their life cycle, these organisms grow and change their gait.
The steady creeping-flow approximation may hold for early life stages [47], but not necessarily
for grown organisms [48–50], and certainly not for the large accelerations generated when these
organisms escape predators by jumping [49,51], as mentioned above. For such jumps, the unsteady
term ∂w/∂t in the Navier-Stokes equations matters (w is the velocity of the disturbance flow created
by the particle). In the simplest case, the inertial effect of this unsteady acceleration is described by
the unsteady time-dependent Stokes equation, resulting in the above-mentioned history force. For
time-dependent but spatially homogeneous flows, it is understood how weak convective fluid inertia
changes the history force for passive particles [3,4,10]. But it is not known in general how the
different inertial effects compete to determine the unsteady motion of microswimmers.

Wang and Ardekani [52] solved the time-dependent Stokes equation to describe how history
effects delay the decay of the velocity of a copepod after a jump. The authors found that the history
force is essentially that of a passive particle, with a kernel that decays as t−1/2 (a consequence of
the diffusion of vorticity). Fitting the parameters of their theory, the authors found agreement with
earlier measurements by Jiang et al. [51], despite the fact that the Reynolds number for jumping
copepods is not small. The agreement is surprising because one might expect convective inertia to
cause the kernel to decay more rapidly, as it does for passive particles [3,4,10].

The results of Wang and Ardekani [52] raise further questions. First, is there a principle dictating
that the history force for an active particle is essentially that of a passive one? Second, how does the
history force depend on the shape of the swimming particle? After all, not all motile microorganisms
are spherical. Third, since natural environments are rarely perfectly quiescent, how do fluid-velocity
gradients affect the inertial dynamics? Does a small swimmer in a shear flow experience a lift force,
analogous to Saffman’s lift force on a passive particle in shear? Can we predict the motion of an
active particle in a rotating or in a stratified fluid, mirroring what a passive particle experiences?
Does fluid inertia give rise to drag reduction for a swimmer in an elongational flow? More generally,
how important are unsteady effects for swimmers in time-dependent, spatially inhomogeneous flow?

The point of the present paper is to show that certain results regarding the inertial dynamics of
active particles can be directly inferred from the corresponding results for passive particles, making
use of a fundamental principle employed by Legendre and Magnaudet to determine the inertial lift
on a small bubble in shear flow [53]. This allows us to answer at least some of the above questions.
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The remainder of this paper is organized as follows. In Sec. II we briefly summarize the standard
squirmer model, an idealized model for a motile microorganism. Section III recapitulates how
small inertial effects can be treated in perturbation theory. In Sec. IV we describe the fundamental
principle that allows us to translate known results on the inertial dynamics of passive particles to
active ones. Section V describes an example, and answers some of the questions raised above. We
also discuss that the principle fails under certain circumstances, and speculate about the possible
reasons for this failure. We summarize our results in the conclusions, Sec. VI.

II. SQUIRMERS: MODELS FOR SWIMMING AT LOW REYNOLDS NUMBERS

Swimming at low Reynolds numbers is commonly studied using the squirmer model originally
developed by Lighthill [54] and Blake [55]. In the simplest version of this idealized model, the
effect of beating cilia is represented in terms of a boundary condition, in the form tangential flow
components on the surface of a spherical swimmer [38,39,49,56,57]

vs(θ ) = B1 sin θ + B2 sin θ cos θ. (1)

The dynamics is usually discussed in terms of the parameter β = B2/B1, where B1 is defined to be
positive. One distinguishes pullers (β > 0) from pushers (β < 0), reflecting the form of the fluid
disturbance caused by the swimmer. The first term in Eq. (1) has dipole symmetry, the second term
is a stresslet with quadrupolar symmetry. Higher-order contributions are neglected in Eq. (1), but
may matter for artificial swimmers, for instance, for Janus particles [58–60].

Blake’s solution for the disturbance flow assumes a steady swimming velocity ẋ (the dot stands
for the time derivative) and makes use of the fact that the total force on the particle vanishes because
drag must equal thrust for a steady swimmer [39]. In other words, to compute the steady swimming
velocity ẋ, one solves the steady Stokes equation for arbitrary ẋ to find the hydrodynamic force
[54,55]

f (0)
h = 6πμa

(
2
3 B1n − ẋ

)
. (2)

Here the superscript “(0)” denotes the leading-order steady Stokes contribution. Furthermore, n is
the swimming direction of the spherical swimmer. Its radius is denoted by a, and μ is the dynamic
viscosity of the fluid. The first term in Eq. (2) is the active force produced by the beating cilia, and
6πμa is the resistance coefficient of the spherical particle. For a passive particle, B1 = 0, Eq. (2)
reduces to force on a passive sphere. Setting f (0)

h = 0 in Eq. (2) yields the swimming velocity

ẋ = 2
3 B1n (3)

in the steady Stokes limit. This expression is independent of β or any higher multipole corrections
to Eq. (1).

Oseen corrections to Eq. (3) describe how steady convective fluid inertia affects the steady
swimming speed. Khair et al. [37] found that

ẋ = 2
3 B1n

(
1 − 3β

20
Rep

)
. (4)

Here Rep is the particle Reynolds number, measuring the effect of steady convective fluid inertia
(see Sec. III for the nondimensional parameters of the problem). Equation (4) corrects an earlier
result of Wang and Ardekani [38] who obtained the value 0.11 for the numerical coefficient in front
of Rep, instead of 3/20. Khair et al. [37] also computed the Re2

p correction. Their results are in good
agreement with those of numerical simulations [39].

Strictly speaking, beating cilia cause time-dependent perturbations, resulting in time-dependent
coefficients Bl (t ) in Eq. (1) and thus a time-dependent swimming speed ẋ(t ). To take into account
such time-dependent boundary conditions, Wang and Ardekani [52] solved the time-dependent
Stokes equation for a spherical squirmer, neglecting the effect of convective fluid inertia. They
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showed that the unsteady acceleration in the time-dependent Stokes equation gives rise to a history
force, much like the history force [28–30] experienced by a passive sphere in a quiescent fluid.

III. SINGULAR PERTURBATIONS AND THEIR NONDIMENSIONAL PARAMETERS

The swimmer accelerates the surrounding fluid as it moves, and this causes the fluid-inertia
correction in Eq. (4), as well as the history force mentioned above. When such inertial corrections
are small, one can use perturbation theory to analyze their effects. To determine the relevant
nondimensional parameters, one expresses the Navier-Stokes equations for the disturbance velocity
in nondimensional form. It is customary to nondimensionalize lengths by the size of the swimmer
(its radius a, say); time by a characteristic time τc over which the slip velocity varies over surface
of the swimmer; velocities by a characteristic slip velocity uc; and fluid-velocity gradients by a
characteristic strain rate sc. This leads to three independent nondimensional parameters

Rep = auc

ν
, Res = a2sc

ν
, Sl = a

ucτc
. (5)

Here ν = μ/ρ is the kinematic viscosity of the fluid with mass density ρ. First, the particle Reynolds
number Rep describes how convective terms based on the slip velocity affect the dynamics of the
fluid disturbance. This is the Oseen problem. Convection can make a qualitative difference because
it can carry the disturbance away from the swimmer more rapidly than diffusion alone. Second, for
swimmers in spatially inhomogeneous flows, the shear Reynolds number Res quantifies how the
imposed fluid-velocity gradients affect the disturbance caused by the swimmer (Saffman problem).
Third, the magnitude of unsteady effects is determined by the product RepSl = a2/(ντc) where Sl
is the Strouhal number. Unsteady fluid accelerations are described by the time-dependent Stokes
equation. Nevertheless, they are essentially an inertial effect, describing how the hydrodynamic
forcing decays after a perturbation.

From now on we use the nondimensional variables described above, and expand the hydrody-
namic force in a small parameter ε:

f h = f (0)
h + ε f (1)

h + . . . . (6)

When convective effects dominate the inertial correction, the perturbation parameter is ε = Rep.
When fluid-velocity gradients are more important, the parameter is instead ε = √

Res. When
unsteady effects matter most, ε = √

Sl Rep is the natural parameter. In general it is challenging

to compute the first inertial correction, ε f (1)
h , in Eq. (6). Regular perturbation theory fails when

perturbations, which are small close to the particle dominate far from it. In this case, singular
perturbation theory is required. Masoud and Stone [61] used the reciprocal theorem to compute
such inertial corrections (a particular example is given in the Appendix of Ref. [37]). This approach
relies upon the fact that the disturbance flow decays as r−2 far from the swimmer, faster than the
Stokeslet, which decays as r−1. This follows from the fact that the lowest-order dynamics is obtained
by setting f (0)

h to zero, and it allows us to apply the reciprocal theorem in its simplest form.
Here we use the method of matched asymptotic expansions instead, a standard scheme to

compute small fluid-inertia effects on the dynamics of passive particles in a fluid. For a passive
sphere in uniform flow, for example, Proudman and Pearson [2] computed the correction f (1)

h due to
convective fluid inertia, obtaining the Oseen correction [62] to Stokes force, with ε = Rep. Childress
[5] computed the hydrodynamic force on a light sphere rising in a solid-body rotating fluid, to order
ε. Saffman [7] derived the lift force on a passive sphere in shear flow to order ε = √

ReS . Note that
the time-dependent term ∂w/∂t in the time-dependent Stokes equation is an inertial perturbation to
the steady Stokes equation. This term gives rise to the BBO history force at order ε = √

RepSl. So
the history force is essentially an inertial effect, just like the inertial Oseen and Saffman corrections
to the hydrodynamic force. The advantage of matched asymptotic expansions is that it allows us to
translate much of what is known for passive particles to active swimmers, as we show below.
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IV. A FUNDAMENTAL PRINCIPLE OF ASYMPTOTIC MATCHING

The method of matched asymptotic expansions can be used when the disturbance flow w

produced by the swimmer is given by Stokes equation plus inertial corrections that are small near the
particle. In this inner region, the disturbance velocity can simply be expanded in the small parameter
ε. Far from the particle, in the outer region, the perturbation may be substantial. In this case regular
perturbation theory fails. To obtain the outer solution, far from the particle, the boundary conditions
on the particle surface are approximated by a source term in the form of Dirac δ function [63]. As a
consequence, the outer problem can be solved in closed form by Fourier transform. Inner and outer
solutions are matched in the matching region, at r ∼ ε−1 [7]. In practice this means that one needs
to solve the inner problem with an ε-dependent boundary condition in the matching region [23],
determined by the ε-dependent outer solution. Note that this solution may depend on time if the
boundary conditions on the surface of the particle are time dependent, such as the time-dependent
coefficients Bl (t ) mentioned in Sec. II.

The calculations are greatly simplified because the boundary condition for the inner solution far
from the particle is just a uniform flow [7]. In order to illustrate how this uniform flow may arise,
we disregard the details and consider only the schematic form of an outer solution, namely

w(r, t ) = exp[−εU (t )r]

r
. (7)

Here r is the distance from the particle, and U (t ) is a time-dependent velocity. Recall that Eq. (7) is
written in nondimensional form (Sec. III). For small values of ε, Eq. (7) can be expanded as

w(r, t ) = 1

r
− ε U + O(ε2r) + . . . . (8)

In this expansion, the first term r−1 corresponds to the Stokeslet, decaying as r−1 far from the
particle. The presence of this slowly decreasing term makes the perturbation problem singular. The
next term, of order ε, is the uniform flow mentioned above, a uniform velocity that does not depend
on the spatial coordinate r. This term becomes an outer boundary condition for the inner problem
that must be solved to obtain the ε correction to the hydrodynamic force. Note that all terms in
Eq. (8) are of the same order in the matching region, for r ∼ ε−1, which reveals that the problem is
singular.

An important feature of the uniform boundary condition at order ε is that it depends on the shape
of the swimmer in a simple way. The shape of the swimmer is encoded in the amplitude of this
δ function mentioned above, in terms of the Stokes resistance tensor R of the swimmer [13], and
through the known propulsive force produced by the particle in Stokes limit, the first term in Eq. (2).
As a consequence, only the resistance tensor R and the propulsion force are needed to determine the
leading-order inertial correction to the hydrodynamic force. This elegant trick appears to be due to
Legendre and Magnaudet [53] who used it to determine the lift force on a bubble in shear flow. In
short, the resistance tensor of a solid sphere is R = 6πI, with identity tensor I, whereas the resistance
tensor for a bubble is smaller by a factor of 2

3 . This implies that the amplitude of the uniform flow
far from the bubble equals 2

3 that of a solid sphere. This uniform flow in turn generates an inertial
correction of the same form as the Saffman lift force on a solid sphere, but scaled by a factor of
2
3 . Taken together this means that the inertial lift force on a bubble equals that for a solid sphere
multiplied by a factor 4

9 , to order ε. Harper and Chang [8] used related considerations to determine
the lift force on a dumbbell in a shear flow. More recently, the same principle was employed by
Candelier, Mehlig, and Magnaudet [13] to determine inertia effects on a passive particle of arbitrary
shape in steady linear flow.
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V. INERTIAL CORRECTIONS TO THE HYDRODYNAMIC FORCE ON AN ACTIVE PARTICLE

The main point of the present paper is to note that the principle outlined in the previous
section can be applied to active particles. This allows us to infer inertial corrections to the hydrody-
namic force and torque on an active particle moving through a fluid. As we will show, the principle
applies provided that the equations for the disturbance flow close to the swimmer are essentially
Stokes equations, perturbed by small terms that scale as εn with n > 1. More precisely, consider an
inertial problem of the form

−∇p + �w = L (w, ε), (9)

a Stokes problem for the disturbance velocity w, perturbed by an inertial correction L (w, ε) with
perturbation parameter ε. An example is the Saffman problem, describing a particle moving with a
steady velocity in a time-independent linear undisturbed flow with fluid-velocity gradients A. In this
case, L (w, ε) = ε2(A · w + (A · r) · ∇w), and the perturbation parameter is given by ε = √

Res.
A second example is the unsteady Stokes equation, where L (w, ε) = ε2∂w/∂t with ε = √

SlRep.
Now, if the perturbation is of the order

L ∼ εn with n > 1, (10)

then the two first terms of the inner expansion—the first two terms in the expansion of Eq. (9) in the
parameter ε—are both solutions of the steady Stokes equation. This is the key fact that allows us to
apply the principle.

As an example, consider the second case, the unsteady inertial perturbation. Since the perturba-
tion parameter is ε2, one might expect that only terms even in ε occur in the perturbation expansion
for the disturbance velocity. For singular perturbation problems, however, other terms may appear:
in the present case terms that are odd in ε, in other cases even terms that contain log ε [64]. This
is well known, and such additional terms are sometimes called switchback terms. Our point here is
that the leading switchback term, of order ε, has a very simple form.

In order to flesh out these arguments, consider first the expansion of the disturbance velocity
close to the particle

win = w
(0)
in + εw

(1)
in + . . . . (11)

Here w
(0)
in obeys Stokes equation with boundary condition w

(0)
in = ẋ + vsn on the surface of the

swimmer. Under condition (10), the first-order correction w
(1)
in too obeys Stokes equation, but now

with boundary condition w
(1)
in = 0 on the swimmer surface. To solve these two Stokes problems,

boundary conditions far from the swimmer are needed. They are obtained by matching the inner
solution to an outer solution for the disturbance velocity, evaluated in the matching region. This outer
solution, wout (r, t ), is obtained by solving the full inertial problem (9), including the perturbation
L . This becomes possible if one replaces the boundary condition on the surface of the swimmer by
a source term that represents the presence of the swimmer. This source term is of the form D(t ) δ,
where δ is the Dirac δ function, and the amplitude D remains to be determined. To this end, wout is
expanded as

wout (r, t ) = T (0)(r, t ) + εT (1)(t ) + . . . (12)

To lowest order, the outer solution is [23]

T (0)(r, t ) = G(r)D(t ) with [G]i j = 1

8π

(
δi j

r
+ rir j

r3

)
. (13)

When condition (10) holds, the first order is given by [23]

T (1)(t ) = −
∫ t

0
dτ K(t − τ )

dD(τ )

dτ
≡ U (t ), (14)
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where it is assumed that D(0) = 0 [13], otherwise the lower bound of the integral extends to −∞.
It is important to note that T (1)(t ) is a uniform flow, U (t ), just like the second term in Eq. (8). The
nature of the inertial perturbation, L , is encoded in the temporal behavior of the kernel K(t ), which
does not depend on particle shape. The kernel is known for the Saffman problem (see Ref. [13] and
references cited therein), when the undisturbed problem is a shear, solid-body rotation, or a two-
dimensional elongational flow. For the unsteady problem, K(t ) is just the BBO kernel I/[6π

√
πt]

[28–30].
Equations (13) and (14) provide the desired boundary conditions for w

( j)
in , namely w

( j)
in = T ( j)

at r ∼ ε−1 for j = 0 and 1. Consider first the Stokes problem at order ε0. Since w
(0)
in is the Stokes

disturbance velocity, we infer that D must equal the Stokes force exerted by the swimmer upon the
fluid:

D(t ) = − f (0)
h (t ) = −[ f a(t ) − R(t )ẋ(t )]. (15)

Equation (15) reflects the fact that the velocity over the surface of the organism can be written as a
sum of two terms. The first one is the active contribution [65], written in terms of the active force
produced by the swimmer, f a(t ). The second term is the passive part of the disturbance force. It
depends upon the instantaneous shape of the particle encoded in the resistance tensor R(t ).

Since U (t ) is a uniform flow, the order-ε Stokes problem for w
(1)
in is just the Stokes problem

for a frozen particle (a particle kept at fixed position and orientation in the uniform flow U (t ) at
infinity). The desired inertial correction ε f (1)

h (t ) is thus simply given by the hydrodynamic force
such a particle experiences,

f (1)
h (t ) = R(t )U (t ). (16)

Taking Eqs. (14), (15), and (16) together we find the following expression for the inertial correction
to the hydrodynamic force for an active particle:

f (1)
h (t ) = R(t )

∫ t

0
dτ K(t − τ )

d

dτ
[ f a(τ ) − R(τ )ẋ(τ )]. (17)

This is the main result of the present paper. Note that the active part f a(t ) in f (0)
h (t ) contributes

linearly to the inertial correction at order ε, whereas the resistive part appears in the form of two
possibly time-dependent factors R(t ), one inside the integral, and one outside.

As an example, consider how to obtain the history force upon a spherical squirmer moving with
velocity ẋ(t ) in direction n(t ) in a fluid at rest [52]. Assuming that convective and shear inertia
are negligible, Stokes equations are perturbed only by the unsteady term. In this case, the small
parameter is ε =

√
a2/(ντc) and the uniform flow is given by

U (t ) = 1

6π

∫ t

0
dτ

1√
π (t − τ )

d f (0)
h (τ )

dτ
. (18)

The t−1/2 decay of the kernel describes how disturbance-velocity gradients relax due to viscous
diffusion [28–30]. The resistance tensor is simply that of a sphere, 6πI, and the active force is
f a(t ) = 6π 2

3 B1(t ) n(t ). Using Eqs. (6), (17), and (18), immediately gives

f h(t ) = −6π (ẋ(t ) − 2

3
B1(t )n(t )) − 6πε

∫ t

0
dτ

1√
π (t − τ )

d

dτ

[
ẋ(τ ) − 2

3
B1(τ )n(τ )

]
(19)

for the unsteady hydrodynamic force on a squirmer (the added-mass term is a higher-order contri-
bution to the force of order ε2). In the special case where n is a constant vector, Eq. (19) reduces to
a result obtained earlier by Wang and Ardekani [52] using the method of Laplace transforms. This
expression was first derived by Morrison [66], describing the electrophoretic force upon a dielectric
sphere in a transient electric field.

Equation (17) explains why the hydrodynamic force on an unsteady spherical squirmer must be
of the form (19), and it demonstrates how to generalize the result to arbitrary shapes. Since motile
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aquatic microorganisms exhibit a rich variety of shapes and swimming gaits [67,68], it is useful that
Eq. (17) separates the contributions to the hydrodynamic force due to particle shape, through the
tensor R, from those due to the time dependence of the fluid disturbance, through the kernel K.

Equation (17) implies that the inertial correction vanishes in the steady limit, for example for a
steady squirmer with ẋ = 2

3 B1n. In this case f (0)
h vanishes, so that there is no inertia-induced force

at order ε (see, for example, Refs. [69,70]). As a consequence, the disturbance flow produced by
the swimmer is a stresslet. For transient dynamics, on the other hand, f (0)

h (t ) is nonzero, resulting
in transient inertial corrections. Such corrections arise for sudden starts or stops, and also when
B1(t ) is a smooth but rapidly varying time-dependent function, so that a difference between ẋ(t )
and 2

3 B1(t )n(t ) is maintained.
The above example concerns unsteady inertia effects, and answers two questions raised in Sec. I,

namely why is the history force the same for active and passive particles? How does it depend on
the shape of the swimmer? There are several other situations where Eq. (17) may help to determine
the influence of fluid inertia on the dynamics of active particles, for example active particles in shear
flows. The amoeba Naegleria Fowleri, for example, thrives in water-discharge flows from industrial
plants, which can have shear rates as high as 85000 s−1 [71]. For a μm-sized organism this results in
a shear-Reynolds number of the order of Res ∼ 0.1, so that ε ∼ 0.3, which means that fluid inertia
should matter. The equation of motion for a spherical squirmer in a shear flow follows directly from
Eq. (17). In nondimensional form it reads:

R
4π

3
ε2ẍ(t ) = −6π

[
ẋ(t ) − U∞(x) − 2

3
B1(t )n(t )

]
− 6πε

∫ t

0
K(t − τ )

d

dτ

[
ẋ(τ ) − U∞(x)

− 2

3
B1(t )n(τ )

]
dτ + Fext. (20)

Here R is the particle-to-fluid density ratio, U∞(x) is the undisturbed shear flow at distance x from
the particle center [13], and Fext is an external force. In the steady limit, when B1n tends to a steady
vector, the velocity of the particle approaches

ẋ = U∞(x) + 2

3
B1n + 1

6π
Fext − ε

1

6π
K̄ · Fext. (21)

Here K̄ is the steady-state limit of the kernel. In this limit, the ε-inertia correction induced is the
same as for a passive particle. However, the time required to reach the steady state is usually very
long (typically much larger than the inverse shear rate). During this transient, the inertial effects on
passive and active particles differ. The last term of Eq. (21) shows that an active particle moving
with a steady velocity in a shear flow may experience a lift force, but only if there is an external
force. Also note that if B1(t )n(t ) varies rapidly, then K simplifies to the BBO kernel. In this limit,
convective inertia effects induced by shear do not matter.

Finally, Eq. (17) can be used to describe active particles in density-stratified fluids, provided
that convective inertia does not matter. Equation (17) shows that there may be important inertial
corrections even for Rep = 0, when the particle density exceeds the fluid reference density, resulting
in an external force Fext due to gravity. In Refs. [72,73], by contrast, inertial effects due to convective
fluid inertia were considered. As explained below, the principle does not apply in this case.

Last but not least let us discuss when and how the principle may fail. We encountered one exam-
ple where the principle does not work, an active particle moving with a large enough slip velocity
so that convective inertia cannot be neglected. This is the Oseen problem mentioned in Sec. V. In
this case, the perturbation in the perturbed Stokes problem (9) takes the form L = −ε ẋ · ∇w in
a quiescent fluid, with ε = Rep. This perturbation is of order ε, so the above condition needed to
justify the principle is not fulfilled. As a consequence, the inner solution is no longer governed by a
Stokes equation, as assumed above, but by an inhomogeneous differential equation including terms
arising from the solution at leading order in ε. This explains why the inertial Rep corrections to
the force acting on a spherical squirmer described in Refs. [38,39] are not entirely recovered by
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the principle. Returning to the results of Legendre and Magnaudet [53], note that the principle does
give the correct Oseen correction to the drag force on a bubble: setting f a = 0 in Eq. (17), and
inserting the resistance tensor of a spherical bubble, R = 4πI, gives the correct result, namely that
convective-inertial correction to the drag force on a bubble is 4

9 times that for a solid sphere. We
speculate that the result is correct for a spherical bubble because the additional terms mentioned
above vanish due to spherical symmetry.

VI. CONCLUSIONS

We described a fundamental principle that allows us to infer the effect of fluid inertia on the
dynamics of motile microorganisms moving in a fluid. In its original form, the principle was used by
Legendre and Magnaudet [53] to infer the lift force on a bubble in shear flow from Saffman’s result
for a solid particle. Here we showed how the principle works for active particles. We demonstrated
how it allows us to infer the leading-order inertial corrections to the hydrodynamic force experienced
by the particle, as it swims through the fluid. Our results explain why the history force has essentially
the same form for active and passive particles. We show that particle shape affects the inertial
correction to the hydrodynamic force in a very simple way, making it possible to investigate the
effect of particle shape on the hydrodynamic force in a straightforward manner. As an example
we considered the effect of unsteady inertia on the hydrodynamic force. We also discussed other
situations where the principle applies, namely shear flows and density-stratified fluids.

Naturally, the method has limitations. As presented here, certain conditions must be fulfilled for
the principle to work (Sec. V). These conditions are met for unsteady and Saffman problems, but
not for the Oseen problem (convective fluid inertia). Therefore it remains an open problem how
to compute convective inertial corrections to the history force on an active swimmer, even for a
time-dependent homogeneous flow. One question is how the convective corrections to the history
force differ from those obtained by Lovalenti and Brady [4] for a passive particle. At any rate, such
convective effects must be considered to describe the disturbance velocities generated by jumping
copepods, where unsteady and convective fluid inertia are likely to be equally important.

ACKNOWLEDGMENTS

We thank an anonymous referee for pointing out Ref. [66] to us. B.M. was supported by grants
from the Knut and Alice Wallenberg Foundation, Grants No. 2014.0048 and No. 2019.0079, and in
part by VR Grants No. 2017-3865 and No. 2021-4452. T.R. received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 834238).

[1] E. M. Purcell, Life at small Reynolds number, Am. J. Phys. 45, 3 (1977).
[2] I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and

circular cylinder, J. Fluid Mech. 2, 237 (1957).
[3] T. Sano, Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433 (1981).
[4] P. M. Lovalenti and J. F. Brady, The force on a bubble, drop or particle in arbitrary time-dependent motion

at small Reynolds number, Phys. Fluids 5, 2104 (1993).
[5] S. Childress, The slow motion of a sphere in a rotating, viscous fluid, J. Fluid Mech. 20, 305 (1964).
[6] T. Gotoh, Brownian motion in a rotating flow, J. Stat. Phys. 59, 371 (1990).
[7] P. G. Saffman, On the motion of small spheroidal particles in a viscous liquid, J. Fluid Mech. 1, 540

(1956).
[8] E. Y. Harper and I. D. Chang, Maximum dissipation resulting from lift in a slow viscous shear flow,

J. Fluid Mech. 33, 209 (1968).

044304-9

https://doi.org/10.1119/1.10903
https://doi.org/10.1017/S0022112057000105
https://doi.org/10.1017/S0022112081000499
https://doi.org/10.1063/1.858550
https://doi.org/10.1017/S0022112064001227
https://doi.org/10.1007/BF01015575
https://doi.org/10.1017/S0022112056000354
https://doi.org/10.1017/S0022112068001254


REDAELLI, CANDELIER, MEHADDI, AND MEHLIG

[9] J. B. McLaughlin, Inertial migration of a small sphere in linear shear flows, J. Fluid Mech. 224, 261
(1991).

[10] R. Mei and R. J. Adrian, Flow past a sphere with an oscillation in the free-stream velocity and unsteady
drag at finite Reynolds number, J. Fluid Mech. 237, 323 (1992).

[11] E. S. Asmolov and J. B. McLaughlin, The inertial lift on an oscillating sphere in a linear shear flow,
Int. J. Multiphase Flow 25, 739 (1999).

[12] K. Miyazaki, D. Bedeaux, and J. B. Avalos, Drag on a sphere in slow shear flow, J. Fluid Mech. 296, 373
(1995).

[13] F. Candelier, B. Mehlig, and J. Magnaudet, Time-dependent lift and drag on a rigid body in a viscous
steady linear flow, J. Fluid Mech. 864, 554 (2019).

[14] C. W. Oseen, Über die Stokes’sche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv
Mat., Astron. och Fysik 6, 1 (1910).

[15] R. Mehaddi, F. Candelier, and B. Mehlig, Inertial drag on a sphere settling in a stratified fluid, J. Fluid
Mech. 855, 1074 (2018).

[16] R. G. Cox, The steady motion of a particle of arbitrary shape at small Reynolds numbers, J. Fluid Mech.
23, 625 (1965).

[17] R. E. Khayat and R. G. Cox, Inertia effects on the motion of long slender bodies, J. Fluid Mech. 209, 435
(1989).

[18] V. Dabade, N. K. Marath, and G. Subramanian, Effects of inertia and viscoelasticity on sedimenting
anisotropic particles, J. Fluid Mech. 778, 133 (2015).

[19] F. Candelier and B. Mehlig, Settling of an asymmetric dumbbell in a quiescent fluid, J. Fluid Mech. 802,
174 (2016).

[20] P. G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22, 385 (1965).
[21] H. A. Stone, Philip Saffman and viscous flow theory, J. Fluid Mech. 409, 165 (2000).
[22] H. A. Stone, J. F. Brady, and P. M. Lovalenti (unpublished).
[23] J. Meibohm, F. Candelier, T. Rosén, J. Einarsson, F. Lundell, and B. Mehlig, Angular velocity of a

spheroid log rolling in a simple shear at small Reynolds number, Phys. Rev. Fluids 1, 084203 (2016).
[24] F. Candelier, J. Einarsson, and B. Mehlig, Angular Dynamics of a Small Particle in Turbulence, Phys.

Rev. Lett. 117, 204501 (2016).
[25] G. Subramanian and D. L. Koch, Inertial effects on fibre motion in simple shear flow, J. Fluid Mech. 535,

383 (2005).
[26] J. Einarsson, F. Candelier, F. Lundell, J.R. Angilella, and B. Mehlig, Rotation of a spheroid in a simple

shear at small Reynolds number, Phys. Fluids 27, 063301 (2015).
[27] I. H. Herron, S. H. Davis, and F. P. Bretherton, On the sedimentation of a sphere in a centrifuge, J. Fluid

Mech. 68, 209 (1975).
[28] J. Boussinesq, Sur la résistance qu’oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié

d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez
faibles pour que leurs carrés et produits soient négligeables, C.R. Acad. Sc. Paris 100, 935 (1885).

[29] A. B. Basset, A Treatise on Hydrodynamics: With Numerous Examples (Deighton, Bell and Company,
London, 1888), Vol. 2.

[30] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft
m. b. H., Leipzig, 1927).

[31] G. I. Taylor, The forces on a body placed in a curved or converging stream of fluid, Proc. Roy. Soc. Lond.
A 120, 260 (1928).

[32] T. R. Auton, J. C. R. Hunt, and M. Prud’Homme, The force exerted on a body in inviscid unsteady
non-uniform rotational flow, J. Fluid Mech. 197, 241 (1988).

[33] J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble.
Part 1. steady straining flow, J. Fluid Mech. 284, 97 (1995).

[34] A. Hamel, C. Fisch, L. Combettes, P. Dupuis-Williams, and C. N. Baroud, Transitions between three
swimming gaits in paramecium escape, Proc. Natl. Acad. Sci. USA 108, 7290 (2011).

[35] S. Childress and R. Dudley, Transition from ciliary to flapping mode in a swimming mollusc: Flapping
flight as a bifurcation in Reω, J. Fluid Mech. 498, 257 (1999).

044304-10

https://doi.org/10.1017/S0022112091001751
https://doi.org/10.1017/S0022112092003434
https://doi.org/10.1016/S0301-9322(98)00063-9
https://doi.org/10.1017/S0022112095002163
https://doi.org/10.1017/jfm.2019.23
https://doi.org/10.1017/jfm.2018.661
https://doi.org/10.1017/S0022112065001593
https://doi.org/10.1017/S0022112089003174
https://doi.org/10.1017/jfm.2015.360
https://doi.org/10.1017/jfm.2016.350
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112099007697
https://doi.org/10.1103/PhysRevFluids.1.084203
https://doi.org/10.1103/PhysRevLett.117.204501
https://doi.org/10.1017/S0022112005004829
https://doi.org/10.1063/1.4921543
https://doi.org/10.1017/S0022112075000778
https://doi.org/10.1098/rspa.1928.0148
https://doi.org/10.1017/S0022112088003246
https://doi.org/10.1017/S0022112095000280
https://doi.org/10.1073/pnas.1016687108
https://doi.org/10.1017/S002211200300689X


UNSTEADY AND INERTIAL DYNAMICS OF A SMALL …

[36] E. Lauga, Continuous breakdown of Purcell’s scallop theorem with inertia, Phys. Fluids 19, 061703
(2007).

[37] A. S. Khair and N. G. Chisholm, Expansions at small Reynolds numbers for the locomotion of a spherical
squirmer, Phys. Fluids 26, 011902 (2014).

[38] S. Wang and A.M. Ardekani, Inertial squirmer, Phys. Fluids 24, 101902 (2012).
[39] N. G. Chisholm, D. Legendre, E. Lauga, and A. S. Khair, A squirmer across Reynolds numbers, J. Fluid

Mech. 796, 233 (2016).
[40] K. Ishimoto, A spherical squirming swimmer in unsteady Stokes flow, J. Fluid Mech. 723, 163 (2013).
[41] K. Ishimoto, Hydrodynamics of squirming locomotion at low Reynolds numbers, Ph.D. thesis, Kyoto

University, 2015.
[42] N. G. Chisholm and A. S. Khair, Partial drift volume due to a self-propelled swimmer, Phys. Rev. Fluids

3, 014501 (2018).
[43] V. Magar and T. J. Pedley, Average nutrient uptake by a self-propelled unsteady squirmer, J. Fluid Mech.

539, 93 (2005).
[44] S. Michelin and E. Lauga, Unsteady feeding and optimal strokes of model ciliates, J. Fluid Mech. 715, 1

(2013).
[45] A. Djellouli, P. Marmottant, H. Djeridi, C. Quilliet, and G. Coupier, Buckling Instability Causes Inertial

Thrust for Spherical Swimmers at All Scales, Phys. Rev. Lett. 119, 224501 (2017).
[46] T. Dombrowski, S. K. Jones, G. Katsikis, Amneet Pal Singh Bhalla, B. E. Griffith, and D. Klotsa,

Transition in swimming direction in a model self-propelled inertial swimmer, Phys. Rev. Fluids 4,
021101(R) (2019).

[47] J. Qiu, N. Mousavi, K. Gustavsson, C. Xu, B. Mehlig, and L. Zhao, Navigation of micro-swimmers in
steady flow: The importance of symmetries, J. Fluid Mech. 932, A10 (2022).

[48] N. Wadhwa, Zooplankton hydrodynamics: an investigation into the physics of aquatic interactions, DTU
Orbit (2015).

[49] A. Visser, Small, Wet & Rational. Individual Based Zooplankton Ecology (DTU Denmark, Copenhagen,
2011).

[50] K. B. Catton, D. R. Webster, J. Brown, and J. Yen, Quantitative analysis of tethered and free-swimming
copepodid flow fields, J. Exp. Biol. 210, 299 (2007).

[51] H. Jiang and T. Kiorboe, The fluid dynamics of swimming by jumping in copepods, J. R. Soc. Interface.
8, 1090 (2011).

[52] S. Wang and A. M. Ardekani, Unsteady swimming of small organisms, J. Fluid Mech. 702, 286 (2012).
[53] D. Legendre and J. Magnaudet, A note on the lift force on a spherical bubble or drop in a low-Reynolds-

number shear flow, Phys. Fluids 9, 3572 (1997).
[54] M. J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very

small Reynolds numbers, Commun. Pure Appl. Math. 5, 109 (1952).
[55] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971).
[56] T. J. Pedley, Spherical squirmers: models for swimming micro-organisms, IMA J. Appl. Math. 81, 488

(2016).
[57] O. S. Pak and E. Lauga, Fluid-Structure Interactions in Low-Reynolds-Number Flows. (The Royal

Society of Chemistry, London, 2016), Chap.: Theoretical Models in Low-Reynolds-Number Locomotion,
pp. 100–167.

[58] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Active particles in
complex and crowded environments, Rev. Mod. Phys. 88, 045006 (2016).

[59] T. Bickel, A. Majee, and A. Würger, Flow pattern in the vicinity of self-propelling hot Janus particles,
Phys. Rev. E 88, 012301 (2013).

[60] Z. Shen, A. Würger, and J. S. Lintuvuori, Hydrodynamic interaction of a self-propelling particle with a
wall, Eur. Phys. J. E 41, 39 (2018).

[61] H. Masoud and H. A. Stone, The reciprocal theorem in fluid dynamics and transport phenomena,
J. Fluid Mech. 879, P1 (2019).

[62] J. Veysey and N. Goldenfeld, Simple viscous flows: From boundary layers to the renormalization group,
Rev. Mod. Phys. 79, 883 (2007).

044304-11

https://doi.org/10.1063/1.2738609
https://doi.org/10.1063/1.4859375
https://doi.org/10.1063/1.4758304
https://doi.org/10.1017/jfm.2016.239
https://doi.org/10.1017/jfm.2013.131
https://doi.org/10.1103/PhysRevFluids.3.014501
https://doi.org/10.1017/S0022112005005768
https://doi.org/10.1017/jfm.2012.484
https://doi.org/10.1103/PhysRevLett.119.224501
https://doi.org/10.1103/PhysRevFluids.4.021101
https://doi.org/10.1017/jfm.2021.978
https://doi.org/10.1242/jeb.02633
https://doi.org/10.1098/rsif.2010.0481
https://doi.org/10.1017/jfm.2012.177
https://doi.org/10.1063/1.869466
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/PhysRevE.88.012301
https://doi.org/10.1140/epje/i2018-11649-0
https://doi.org/10.1017/jfm.2019.553
https://doi.org/10.1103/RevModPhys.79.883


REDAELLI, CANDELIER, MEHADDI, AND MEHLIG

[63] L. Schwartz, Théorie des distributions (Hermann, DL, Paris, 1966).
[64] E. J. Hinch, Perturbation Methods. (Cambridge University Press, Cambridge, 1995).
[65] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72,

096601 (2009).
[66] A. F. Morrison, Transient electrophoresis of a dielectric sphere, J. Colloid Interface Sci. 29, 687 (1969).
[67] S. Childress, Mechanics of Swimming and Flying (Cambridge University Press, Cambridge, 1981).
[68] B. S. Beckett, Biology: A Modern Introduction (Oxford University Press, Oxford, 1981).
[69] A. Choudhary, S. Paul, F. Rühle, and H. Stark, How inertial lift affects the dynamics of a microswimmer

in Poiseuille flow, Commun. Phys. 5, 14 (2022).
[70] V. A. Shaik and A. M. Ardekani, Squirming in density-stratified fluids, Phys. Fluids 33, 101903 (2021).
[71] A. Perrin, P. Herbelin, F. P. A. Jorand, S. Skali-Lami, and L. Mathieu, Design of a rotating disk reactor

to assess the colonization of biofilms by free-living amoebae under high shear rates, Biofouling 34, 368
(2018).

[72] R. V. More and A. M. Ardekani, Motion of an inertial squirmer in a density stratified fluid, J. Fluid Mech.
905, A9 (2020).

[73] A. Doostmohammadi, R. Stocker, and A. M. Ardekani, Low-Reynolds-number swimming at pycnoclines,
Proc. Natl. Acad. Sci. USA 109, 3856 (2012).

044304-12

https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1016/0021-9797(69)90221-5
https://doi.org/10.1038/s42005-021-00794-y
https://doi.org/10.1063/5.0065958
https://doi.org/10.1080/08927014.2018.1444756
https://doi.org/10.1017/jfm.2020.719
https://doi.org/10.1073/pnas.1116210109

