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The stability of the interface between a low-viscosity fluid and a granular medium in
a horizontal rotating cylinder is experimentally studied. We consider a moderate rotation
when heavy granules are able to form an annular layer near a cylindrical wall under the
action of centrifugal force. The gravitational force acting on the particles of the granular
material fluidizes the granular bed and induces the rotation of the particles at the interface
with a velocity different from that of the rotating fluid. The effect of gravity can be char-
acterized by the ratio of the gravitational force to the inertial centrifugal force � ≡ g

(2π f )2a
,

and it increases with the decrease of the cylinder rotation rate. The observations revealed
previously unobserved regular ripples at the interface in a narrow range of rotation rates. At
a sufficiently low rotation rate, a large number of granules become suspended, and regular
ripples disappear under the action of gravitational force. In the present study, the geometric
characteristics and spatiotemporal dynamics of regular ripples are studied in a wide range
of granular bed thickness, and a possible mechanism of the ripple formation is discussed.
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I. INTRODUCTION

A rotating horizontal cylinder filled with fluid and/or granular medium is an example of an
experimental setup that has been extensively used for investigation of a wide range of physical
phenomena, such as traveling and standing waves, avalanches, segregation, and many others. Studies
on flow regimes are fundamentally interesting and crucial for the optimization of industrial rotating
devices used for mixing, drying, and milling and predicting debris flows, avalanches, etc.

The motion of a suspended dense granule in a rotating fluid is affected by two groups of forces:
radial buoyancy and inertial centrifugal forces and vertical buoyancy and gravitational forces. The
resultant radial force pushes suspended granules towards the rotating cylindrical wall so that these
particles tend to form the annular layer. In the contrast, the resultant vertical force repels the granules
from the surface of the annular layer. The disturbing effect of vertical (gravitational) force on the
background of stabilizing (centrifugal) one can be estimated by the dimensionless acceleration

� ≡ g/(2π f )2a, (1)
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where g is the acceleration of gravity and a is the distance from the rotation axis to the surface of
axisymmetric granular layer.

When � � 1, the fluid and the annular layer of granular material rotate together with the cylinder.
Nevertheless, Dyakova et al. [1] found that free surface waves initiate ripple formation at the
interface between low-viscosity fluid and granular material in a rapidly rotating cylinder. When
� � 1, the disturbing effect of gravity is great so that the annular granular layer collapses, and
heavy granules tend to gather together near the bottom of the cylinder. The results of studying the
multiphase flows in slowly rotating containers are described in detail in the review articles [2–4].
The present study concerns the case of a moderate rotation rate when � ∼ 1. In this range of �, the
disturbing gravitational force is of the same order of magnitude as the inertial centrifugal force.

On the other hand, multiphase systems related to rotating-drum configurations can be distin-
guished by the volume fractions of fluid and granular material. Earlier, a variety of pattern formation
phenomena were observed in experiments with pure fluids in a very slowly rotating cylinder, e.g.,
u-shaped structures [5], shark teeth and fishlike patterns [6], hygrocysts [7], and some others.

Experimentalists inject small amounts of particles into flowing fluids to visualize their velocity
fields, assuming that they do not disturb fluid flows. However, it was reported that some pure
fluid rimming flows significantly differ from those observed in dilute suspensions. For example,
particles that were initially uniformly distributed throughout the fluid were observed to redistribute
themselves into equally spaced circumferential particle-rich regions separated by regions of fluid
devoid of particles [8–10]. A similar effect was found for particles suspended at low volume
concentration in a rotating horizontal cylinder completely filled with a low-viscosity fluid [11,12]. A
theoretical explanation of the phenomenon suggests that the segregation occurs as a result of mutual
interaction between the particles and inertial waves excited in the fluid.

In contrast to the mentioned studies, Konidena et al. [13] numerically studied radial and axial
patterns of positively buoyant particles suspended in a viscous fluid. When � ∼ 1, particles tend
to form a core around the rotational axis. According to simulations, the cross section of the core is
not circular but is of regular polygon geometry with various numbers of edges, including square,
pentagon, and hexagon. A similar granular core geometry was obtained in experiments with a
rapidly rotating cylinder (� < 1) by applying transverse oscillations [14]. It was assumed that the
polygon geometry of the cross section is explained by the action of rotating waves with various
azimuthal wave numbers excited under the conditions of the resonance frequency of the cylinder.

There is another limiting case when the volume of dry or wet granular medium is comparable
in order of magnitude with the volume of a container. In rotating containers, binary mixtures tend
to segregate. When a homogeneous binary granular mixture is placed in a two-dimensional (2D)
rotating drum, radial segregation is observed. This is is a relatively fast process and occurs after a
few revolutions of the drum. Depending on particle sizes and densities, radial streaks or a radial core
can occur (see, for example, [15–17] or the recent review article [4]). In three-dimensional drums,
where an axial transport of particles is possible, an initially homogeneous mixture will typically
segregate into regular band patterns, where the concentration of one component is noticeably higher
than that of the other components (see, for example, [18–20]). Axial segregation develops on a much
longer timescale (hundreds or thousands of revolutions).

As particles flow along the cylindrical wall of a slowly rotating cylinder, this granular flow is
similar to that seen on an inclined surface. Numerous studies concern the stability of monodisperse
granular flows along slopes due to applications for geophysical situations: fingering instability
observed during the propagation of a granular front [21], longitudinal vortices [22] and chevron-
shaped traveling waves [23] in chute flows, and others.

The present study focuses on the pattern formation in a multiphase system consisting of a low-
viscosity fluid and a granular medium that is is denser than the fluid. The volume of granular material
varies widely and is comparable with the volume of the fluid. When the cylinder filled with both fluid
and granular medium rotates rapidly about its horizontal axis the interface between the two phases is
axisymmetric. When � ∼ 1, gravitational force disturbs the interface and fluidizes the granular bed.
The resulting suspension and pure fluid rotate at different rates. It is known that velocity difference
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across the interface of two fluids provokes the onset of Kelvin-Helmholtz vortices [24,25]. These
vortices are observed in many environments including oceans [26], clouds [27], volcanic density
currents [28], and the magnetosphere [29].

It is important to note that the Kelvin-Helmholtz instability has a specific feature in a horizontal
rotating container: The particles on the rising and the descending sides of the cylinder rotate at
different angular velocities under the action of gravity, so that the oscillatory Kelvin-Helmholtz
instability may develop. This type of instability has been studied for decades in the case of two
layers of immiscible fluids with different densities and viscosities. Under horizontal oscillations,
stably stratified layers of immiscible fluids are differentially accelerated due to their density contrast.
If the fluids are contained in a container with end walls, the shear flow generated by oscillatory
forcing consists of counterflowing layers, since the fluids are incompressible. This configuration
was first examined by Wolf [30], who observed interface waves frozen in the frame of reference of
the oscillating container. Later, Lyubimov and Cherepanov [31] examined the stability of superposed
layers of inviscid fluids contained between horizontal oscillating plates. Their linear stability
analysis yielded a dispersion relation analogous to the steady inviscid Kelvin-Helmholtz instability.

Subsequent studies of oscillating fluids were aimed at clarifying the role of viscosity. Experi-
mental study [32] with fluids with large viscosity contrast (the ratio of viscosities was 100) showed
a favorable agreement of measurements for the onset of interfacial instability with the inviscid
theory [31]. Another group of authors [33–35] carried out both experiments and a linear stability
analysis of immiscible fluids for a large range of viscosity contrasts. They reported that the inviscid
model underestimates the threshold for fluids of equal viscosities but overestimates the threshold
for fluids with a large viscosity contrast.

An alternative direction of research concerns the study of interfacial stability in the limit of low
surface tension. One of the ways to reduce surface tension between fluids is to carry out experiments
near the critical point. The experimental study [36] examined the liquid-vapor equilibrium of CO2

near its critical point and found that the wavelength of the frozen Kelvin-Helmholtz waves is
consistent with the theory [31]. Later, Gandikota et al. [37] carried out experiments on H2 in order
to study this instability when the temperature is varied near its critical point and also reported that
the measured stability diagram agrees well with the inviscid theory.

Despite a detailed study of various multiphase flows in a wide range of dimensionless acceler-
ation � and a broad range of observed phenomena, there remains a chance to detect new effects.
In this study, we report experimental data on ripple formation at the interface between fluid and
granular medium and discuss the obtained data in the assumption that the observed ripples are due
to the oscillatory Kelvin-Helmholtz instability.

II. EXPERIMENTAL SETUP

The scheme of the experimental setup is shown in Fig. 1. It consists of a hollow transparent
cylinder with an inner radius R = 7.2 cm and length L = 2.2 cm. The cylinder is filled with a water-
glycerol solution carrying solid particles. According to preliminary experiments, regular ripples
appear only if the interface is made up of a low-viscosity fluid and granules with a density slightly
different from that of the fluid. For this reason, a low-viscosity aqueous glycerol solution and ion-
exchange resin particles Lewatit S 1567 were used in the experiments. The kinematic viscosity ν =
3 cSt was measured by a capillary viscometer, and the fluid density ρl = 1.10 g/cm3 was measured
by a hydrometer. The diameter was determined by microscopy for a few hundred particles. The
measurements were made both in the dry state and after immersion for several hours in water-
glycerol solution. The mean particle diameter is 0.54 mm in the dry state and 0.60 mm in the
solution. Particle density was measured by hydrostatic weighing: The density of dry particles is
equal to 1.28 g/cm3, and the density of wetted grains is 1.33 g/cm3. Hereinafter, we will use the
characteristics of only wetted grains, namely, ds = 0.60 mm and ρs = 1.33 g/cm3.
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FIG. 1. Photo of the experimental setup

In a rapidly rotating cylinder, grains form an annular layer near the cylindrical wall of the
cylinder. Therefore, it is convenient to characterize the amount of a granular medium by the
thickness of the annular layer. In various experiments, the thickness h varied from 2 to 33 mm.

The cylinder 1 was supported by roller bearings and mounted on a massive horizontal platform.
The stepper motor 2 was managed by the driver 3 and coupled to the cylinder and provided rotation
about its horizontal axis with a rotation rate f up to 5 rps and accuracy of 0.05%. The rotating
cylinder filled with water-glycerol solution and the granular medium was illuminated by two LED
panels 4.

In terms of dimensionless numbers, we have explored the following ranges: the dimensionless
acceleration � = g/(2π f )2a ∈ [0.3; 3], where a = R − h is the distance from the rotation axis to
the surface of the granular layer and the ratio of the thickness of the annular granular layer to the
particle diameter h/ds ∈ [3; 55].

Each experiment followed a standard protocol. The cylinder was slowly accelerated from rest
to several revolutions per second. After a solid body rotation was reached, the granular medium
developed an annular layer near the cylindrical wall. Then, the rotation rate was slowly decreased
with a step of 0.005 rps to 0.1 rps to determine the conditions required for the ripple formation.
As soon as the axisymmetric sand surface became disturbed, photoregistration was initiated using a
DSLR camera Canon EOS 60D and lenses Canon EF Lens 50 mm 1:1.8 STM.

It was also found that the ripples migrate along the cylindrical wall. The migration rate was
measured with a high-speed camera CamRecord CL600×2 and lenses Nikon AF-S Nikkor 50 mm
1:1.4 G.

III. EXPERIMENTAL RESULTS

In a rapidly rotating cylinder, heavy granules form an axisymmetric annular layer near the
cylindrical wall under the action of the centrifugal force [Fig. 2(a)]. With decreasing rotation rate,
relief appears in the form of ripples with ridges oriented parallel to the axis of rotation [Fig. 2(b)].
According to the observations, a thin annular layer of the granular medium becomes completely
fluidized, i.e., all granules can move relative to the cylinder. The ripples rotate together with
the cylinder, wherein their shape depends on the azimuthal coordinate φ. The ripples are rather
symmetric around the top point of the cylinder (azimuthal angle φ = 0). On the descending (right)
wall, the peaks of the ripples rotate faster than their bases, so that granules form vortices around the
peaks. Then, the ripple slopes become symmetric around the bottom point of the cylinder (φ = π ).
On the ascending (left) wall, the ripple height decreases, and the slopes become asymmetrical:
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(a) (b)

FIG. 2. Photograph of the granular medium in the cylinder rotating at different rates: f = 3.50 (a) and 1.15
(b) rps. The thickness of the granular bed h = 2 mm. The cylinder rotates clockwise.

gentle slopes face upward, and steep ones face downward. This effect becomes noticeable in the
experiments with larger amounts of granular medium (Fig. 3).

In the experiments with a large number of granules, the granular bed is partially fluidized: The
thickness of the fluidized layer increases with a decrease of the cylinder rotation rate. Regular
ripples exist in a narrow range of f . At low rotation rates, a large number of granules become
suspended, and the size of regular ripples increases significantly (Fig. 4). The suspended particles
move erratically and unpredictably so that the shape of the ripples changes greatly during one
revolution of the cylinder. However, the average number of ripples remains unchanged over several
tens of minutes. For instance, number of ripples N = 7 and 8 for Figs. 4(a) and 4(b) respectively. At
very low rotation rates, regular ripples disappear.

In the experiments with thick granular beds, we also added a small amount of white-colored
granules in order to estimate the rotation rate of granules relative to the cylinder at different depths
of the bed (see Figs. 3 and 4).

Visual examination of the ripples shows that their deformation is accompanied by a change in
their azimuthal length. As shown in Fig. 5 the ripple length λ depends on the azimuthal coordinate
φ: the ripple length takes a minimum value at an angle φ ≈ 0 and a maximum value at an angle
π/2 < φ < π . Hereinafter, we will use an average value of λ measured in the range π/2 < φ < π

for comparison of experimental and theoretical data.
The change of the ripple azimuthal length within one revolution of the cylinder is an intriguing

result. It can be explained if the ripples do not remain stationary relative to the cylinder but drift
azimuthally. In order to study the spatiotemporal dynamics of the ripples, additional experiments
were carried out using a high-speed camera. The frame rate was chosen in such a way that the
cylinder rotated through an angle about one degree between successive frames. We measured the
azimuthal coordinate of the peak of one ripple from each frame in a series of images. The results of
the measurements are shown in Fig. 6. Each symbol in the figure represents the azimuthal coordinate
of the ripple relative to the marker on the rotating cylinder in dependence on the dimensionless
parameter t f (t is time). When t f = 0, 1, 2, . . . the marker is placed at the point with azimuthal
coordinate φ = 0. At that time, the azimuthal coordinate of the ripple peak closest to the marker
location usually differs from zero, so �(t f ) does not start from the origin. One can find that
the instantaneous velocity of the ripple relative to the rotating cylinder is nonzero and changes
periodically.

When the ripple starts to descend (0 < φ < π/2 and 0 < t f < 0.25), its azimuthal coordinate �

slowly changes near the minimum. This means that the ripple rotates at about the same rate as the
cylinder, i.e., the relative velocity of the ripple is close to zero. In the next quarter (π/2 < φ < π
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(a) (b)

(c) (d)

FIG. 3. Ripple formation obtained in the experiments with various amount of granular material: h = 3 mm
and f = 1.40 rps (a), h = 5 mm and f = 1.55 rps (b), h = 15 mm and f = 1.80 rps (c), h = 33 mm and
f = 2.05 rps (d). Reflection and absorption of light in the granular bed affects the visible color of the granules.
The cylinder rotates clockwise.

and 0.25 < t f < 0.50), coordinate � increases rapidly, therefore the ripple overtakes the cylinder.
During the next quarter of a revolution, the increase of � slows down, then the coordinate reaches
its maximum value and begins to decrease slowly. When 0.75 < t f < 1, coordinate � decreases

FIG. 4. Regular ripples containing large amount of suspended particles: f = 1.47 rps (a) and 1.50 rps (b);
h = 17 mm. The cylinder rotates clockwise.
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FIG. 5. Dependence of the ripple length λ on the azimuthal coordinate φ: h = 2 mm, f = 1.2 rps.

rapidly, therefore the ripple rotates slower than the cylinder. Thus, during one revolution, the ripples
oscillate relative to the cylinder. A feature of this oscillatory motion is the fact that the azimuthal
migration of the ripple in the phase of lagging rotation is greater than the azimuthal migration in the
phase of advancing rotation. This is evidenced by the monotonic downward shift of �(t f ).

(d
eg
)

FIG. 6. Dependence of azimuthal coordinate � of a ripple relative to the rotating cylinder on dimensionless
time t f for various rotation rates (h =33 mm).
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FIG. 7. Dependence of azimuthal length λ of granular ripples on rotation rate f of the cylinder for various
thicknesses of granular bed.

Figure 7 reveals that the azimuthal length of the ripples slowly increases with decreasing rotation
rate in the experiments with various amounts of granular material. What can be clearly seen in
this figure is the good agreement of data obtained in the experiments with thick annular layers. In
the limit of thin granular beds, the wavelength of ripples significantly differs from those of ripples
observed at h = 5–33 mm.

IV. ANALYSIS OF EXPERIMENTAL DATA

In the previous section, it was illustrated that the fluidized granular medium oscillates relative to
the rotating cylinder. Since the viscous fluid rotates at the same rate as the cylinder, the fluidized
granular medium and pure fluid oscillate relative to each other. An important consequence of this is
that the velocity difference across the interface between pure fluid and fluidized granular material
can provoke the onset of the oscillatory Kelvin-Helmholtz instability.

Here we should note that shear instability is a known effect for granular flows. Various recent
studies were devoted to the investigation of interfacial instabilities in bidisperse granular mixtures.
For example, Ciamarra et al. [38] simulated the dynamics of a binary mixture of particles of different
densities and revealed curl-like structures at the interface between shearing granular streams. A
similar effect was experimentally observed at the interface between two streams of identical grains
flowing on an inclined plane [39]. The authors stated that the interface waviness was driven by
velocity shear instability. The formation of vortices at the granular flow–substrate interface is one
more example of the Kelvin-Helmholtz-like instability [40]. Also, wavy patterns were revealed at
the interface between two granular streams of different constant velocities on an inclined plane [41].
In a problem closer to that of the present investigation, Venditti and coauthors revealed transverse
ripples on sand beds sheared by unidirectional currents in a series of flume experiments [42]. The
authors found a good agreement between the observed wavelength and the wavelength predicted by
the Kelvin-Helmholtz theory.
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FIG. 8. Photo showing the thicknesses used to measure the porosity of the granular bed in the fluidized
state: h = 5 mm, f = 4 rps (left) and 1.55 rps (right).

The present analysis is aimed at comparing the obtained experimental data on the ripple
length and the wavelength of the expected shear instability. Here we will consider a fluidized
granular medium and a low-viscosity water-glycerol solution as two immiscible fluids with zero
surface tension. Lyubimov and Cherepanov [31] predicted that, in the limit of high frequencies
ω = 2π f H2

ν
� 1, the interface between two fluids becomes linearly unstable when


U 2 � ρ2
s − ρ2

l

ρsρl

λg

π
, (2)

where H is the height of regular ripples, 
U is the velocity of the fluid relative to the fluidized
granular medium, and g is the acceleration of gravity. This relation is analogous to the dispersion
relation of the basic instability mode of steady Kelvin-Helmholtz type for two counterflows when

U/

√
2 is regarded as the velocity difference in the classical case (see, for example, [43]).

Here we intend to evaluate the possibility of considering pure fluid and particles suspended in
pure fluid as inviscid fluids. Many relations have been proposed for the dependence of the relative
dynamic viscosity of suspensions μrel on solid fraction c = 1 − P, where P is the porosity of
granular material, namely the ratio of pure fluid volume over the total volume of fluid and suspended
particles. An overview of such relations can be found in [44]. According to these relations, the
relative viscosity μrel depends only on solid fraction c and maximum solid fraction cmax of the
particles. A often-used relation for the relative viscosity that does involve the maximum solid
fraction cmax is given by Krieger and Dougherty [45]:

μrel = (1 − c/cmax)−Bcmax , (3)

where B = 5/2 for solid spherical particles. The maximum solid fraction cmax = 1 − Pmin. This
porosity is related to the porosity of the annular layer of the granular medium inside a rapidly
rotating cylinder. When the granular medium is fluidized, its porosity increases. It is known
from [46] that the porosity Pmin = 0.4 of granular medium consisting of randomly packed spheres,
i.e., cmax = 0.6.

The algorithm for evaluating the porosity P of the fluidized granular medium is as follows. First,
we measured the thickness of the axisymmetric granular layer h (Fig. 8). Second, we determined the
thickness of the nonfluidized granular layer h1 in the quarter π/2 < φ < π . Third, we calculated
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the total thickness of the granular layer h2 in the same quarter. Assuming that an initially densely
packed column of particles with a height h extends to a column with a height h2 in the presence of
ripples and taking into account the conservation of mass inside a column of particles, one can obtain

h(1 − Pmin) = h1(1 − Pmin) + (h2 − h1)(1 − P). (4)

Finally, the porosity of the fluidized granular layer is

P = 1 − (1 − Pmin)
h − h1

h2 − h1
. (5)

According to our calculations, the porosity varies in the range from 0.54 to 0.91 or, in other
words, c ∈ [0.09; 0.46] in the experiments. After substituting the obtained experimental values of c
into Eq. (3) one can get that μrel varies in the range from 1.3 to 8.9. Then the dynamic viscosity of
the suspension μsat = μrelνρl varies in the range from 4 to 29 mPa s.

Now we can calculate the kinematic viscosity of the fluid saturated with solid particles νsat =
μsat/ρsat. When a fluid is saturated with solid particles, the density of suspension can be calculated
by the following formula:

ρsat = ρs(1 − P) + ρlP. (6)

Combining Eqs. (5) and (6) and rearranging them one can find

ρsat = ρl + (1 − Pmin)(ρs − ρl )
h − h1

h2 − h1
. (7)

From our observations it follows that the density ρsat ∈ [1.12; 1.22]. Then, the kinematic viscosity
νsat of the fluid saturated with solid particles changes from 4 to 24 cSt.

Finally, we can get the values of the dimensionless frequency for the aqueous solution of glycerol
ωl and for the suspension ωsat. For typical values of the rotation rate f = 1.5 rps and the ripple height
H = 1 cm, one can get ωl = 314 and ωsat ∈ [39; 235]. Regardless of the choice of the characteristic
dimensionless frequency of oscillations, we can assume that ω � 1, and we can use Eq. (2) to
evaluate the experimental results.

The dispersion relation Eq. (2) can be rewritten taking into account the rotational motion of the
ripples. First, 
U = 
�


t a = 
ωa = 2π
 f a, where a is the distance from the rotation axis to the
undisturbed interface between the fluid and the porous medium, 
ω is the angular velocity of ripples
relative to the fluid, and 
 f is the rotation rate of the ripples. Second, we replace the acceleration
of gravity, which indicates the downward action of gravity in the case of translational motion of two
continuous media, with centrifugal acceleration, i.e., g → (2π f )2a. Also, we introduce the relative
density, defined as the ratio between the solid density and the fluid density, ρ ≡ ρs

ρl
. We therefore

write

πa
 f 2 �
(

ρ − 1

ρ

)
f 2λ. (8)

We can rewrite Eq. (8) as follows:
(


 f

f

)2

�
(

ρ − 1

ρ

)
λ

πa
. (9)

Let us introduce the notation 
F ≡ ( 
 f
f ), which is the dimensionless rotation rate of the ripples,

and the notation � ≡ λ
πa , which is the dimensionless ripple wavelength. Finally, we can rewrite

the dispersion relation in the dimensionless form


F 2 �
(

ρ − 1

ρ

)
�. (10)
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FIG. 9. Dependence of dimensionless length � of granular ripples on dimensionless parameter 
F 2

(ρ− 1
ρ )

. The

symbols correspond to those in Fig. 7. The solid line indicates the predictions of the theory of the oscillatory
Kelvin-Helmholtz instability.

Thus, for a given frequency of the ripple rotation 
F , the dimensionless wavelength of the Kelvin-
Helmholtz waves can be evaluated from the formula

� � 
F 2(
ρ − 1

ρ

) . (11)

To compare experimental data with theoretical predictions based on Eq. (2), the velocity of the
ripple drift and the density of fluidized granular medium have to be examined. Since we calculated
the ripple length λ in the range π/2 < φ < π , the drift velocity


 f = 1

2π


�


t
(12)

should be measured in the same quarter. For this reason, we measured the slope of the tangent drawn
to the curve �(t ) for 3–5 successive revolutions of the cylinder and then calculated the average value
of 
�


t .
Figure 9 shows the results of comparing the wavelength, calculated by Eq. (2) using the known

data on the velocity 
F and the relative density ρ, and experimental data. The large horizontal error
bars are explained by the uncertainty in measuring the thickness of the fluidized layer of the granular
bed. Comparison of experimental results with theoretical predictions based on Eq. (2) shows that
the data agree only in order of magnitude. A possible explanation for this fact is that dispersion
relation was obtained in the limit of small disturbance amplitudes. Moreover, dispersion relation
was deduced for a case of translational motion of two interacting fluids, but fluid and fluidized
granular medium rotate in the present study. However, the results seem to be more positive for
highly diluted suspensions (ρ → 1 and 
F 2

(ρ− 1
ρ

)
tends to the maximum value): the experimental data

approach the theoretical line. This allows us to assert that the observed ripples appear due to the
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FIG. 10. Dependence of the ratio of the wavelength to the thickness of the fluidized layer of granular
medium on the dimensionless acceleration. The empty symbols correspond to those in Fig. 7. The filled circles
indicate the data obtained from Fig. 4.

oscillatory Kelvin-Helmholtz instability arising at the interface between pure fluid and fluidized
granular medium.

Since the observed trend of experimental data does not agree well with the one predicted by
Eq. (2), we should choose another parameter instead of 
F 2

(ρ− 1
ρ

)
to determine the azimuthal wavelength

of the observed Kelvin-Helmholtz waves. Since the ripples are due to the fluidization of granular
material one can assume that the azimuthal size λ is determined by the thickness h f of a fluidized
layer. In turn, the fluidized layer thickness depends on the magnitude of the perturbations produced
by the gravitational force. The effect of gravity can be estimated by the dimensionless acceleration
� = g

(2π f )2a .
Figure 10 shows the dependence of the dimensionless wavelength of the observed Kelvin-

Helmholtz waves λ
h f

on the dimensionless acceleration �. The results of most experiments agree
well with each other and therefore confirm the hypothesis that λ is determined by h f . The large
vertical error bars are explained by significant uncertainty in measuring the thickness of the fluidized
layer of the granular medium.

Figure 10 also illustrates the results of measuring the length of ripples formed by a large number
of suspended particles shown in Fig. 4 (filled circles). For these experimental symbols, the horizontal
error bars are additionally shown since it is impossible to specify a single value of the distance a
from the rotation axis to the suspended granules. The good agreement of the azimuthal size of the
ripples consisting of suspended granules with the general trend in Fig. 10 confirms the hypothesis
that the depth of the fluidized layer of granular medium determines the wavelength λ. At the same
time, experimental data obtained in the experiments with a very thin layer of the granular material
(inverted triangles in Fig. 10) disagree with the general trend. This is probably because the layer of
the granular bed was too thin to form the required number of ripples for a given drift velocity. A
similar effect was observed when studying ripple formation in a horizontal librating cylinder [47].
We speculate that the ripple length becomes “’satisfactory” when the parameter h/a reaches a critical

044302-12



PATTERN FORMATION ON THE SURFACE OF THE …

value. If so, then the critical value of dimensionless thickness is within the range from 0.028 to 0.042
(2 < h < 3 mm) in the present study.

V. SUMMARY

We have presented an experimental study of the phenomenon of pattern formation at the interface
between the fluid and the granular medium in a horizontal rotating cylinder. We have found that
gravitational force perturbs the surface of the granular medium and induces azimuthal oscillations
of suspended granules relative to the rotating fluid. The velocity difference across the interface
of two media provokes the onset of the Kelvin-Helmholtz instability. The analysis revealed that
the experimental data on the azimuthal length of the observed ripples qualitatively agrees with
the predictions of the oscillatory Kelvin-Helmholtz theory for two immiscible perfect fluids with
zero surface tension. A more detailed analysis of the data suggests that the wavelength of the
observed waves is determined by the thickness of the fluidized layer of the granular material, which
increases as the disturbing effect of gravitational force grows stonger in comparison with the effect
of centrifugal force.

Moreover, by using a high-speed camera we have shown that the observed ripples migrate relative
to the rotating cylinder. This phenomenon has not been explained yet and needs further investigation.

In the present paper, we have not addressed the effect of the relative density ρ of two media
and the granule diameter ds on the ripple formation. We have started doing laboratory experiments
using denser spheres of another diameter to complete our analysis. Another area of possible research
includes a study of positively buoyant particles. Then, a granular medium will form a cylindrical
column in the center of the rotating cell similar to that observed in [13]. The granular column will
rotate relative to the fluid due to the action of gravitational force. We expect that the combined effect
of relative rotation and proper relative density of granules will be able to excite Kelvin-Helmholtz
waves.
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