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We investigate the global frequency selection of two-dimensional vortex shedding in the
flat plate wake. The analysis is based on the mean-flow velocity profiles obtained from
experimental measurements carried out for two values of Reynolds number, 1850 and
3350, which are based on the plate thickness and the free-stream velocity. Two different
trailing edge geometries of the flat plate are considered in this study: blunt and circular.
By performing local spatiotemporal analyses on the measured mean-flow velocity profiles,
we estimate the global shedding frequency of the flow. This is in excellent agreement with
the shedding frequency measured experimentally. To complement the study, we carry out
a low-dimensional modeling based on the proper orthogonal decomposition (POD) of the
flow fields which is novel for flat plate wakes. We observe that a model based on only two
POD modes produces an accurate estimate of the global shedding frequency. Our results
also highlight the role of the interaction strength between the mean flow and the higher
harmonics thereby experimentally supporting the theoretical criterion outlined in Sipp and
Lebedev [J. Fluid Mech. 593, 333 (2007)].

DOI: 10.1103/PhysRevFluids.7.044102

I. INTRODUCTION

Since the seminal work by Strouhal [1] the frequency selection of periodic vortex shedding in
the wakes of flows past obstacles has been of interest to both researchers and engineers [2—-6]. With
the advances in experimental measurements, the frequency selection criterion has been proposed
[6-8] and has been successfully built in the framework of weakly nonparallel flows [5,7,9-12].
Interestingly, the selection criterion when applied to the mean flow of bluff-body wakes has shown
to yield particularly good results for the prediction of the frequency of the unsteadiness. This has
been observed in the wake formed by a rectangular forebody [13], and by a cylinder [12], and
has been confirmed by performing a global stability analysis on the mean flow of a cylinder wake
[14,15]. The theoretical support for these observations was advanced by Sipp and Lebedev [16]
where they outlined the conditions when the stability of a mean flow would approximately match
with the nonlinear frequency of the unsteady wake. Using a weakly global nonlinear analysis in
the vicinity of the critical Reynolds number, they showed that the frequency selection is governed
by the relative interaction strength of the mean flow and the higher harmonics. Specifically, the
global frequency is well predicted by a mean-flow analysis when the nonlinear interaction of the
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zeroth (mean-flow) harmonic with the first harmonic is significantly higher than the interaction of
the second harmonic with the first harmonic. They observed that the linear stability analysis of the
mean flow yields good results for a cylinder wake, but does not provide a meaningful insight in
the case of an open cavity flow. In addition, it has been noted in Refs. [12,17,18] that the global
frequency is well estimated by the local absolute frequency at the stagnation point in the flow. In
this study, we address these concerns for flat plate wakes using experimentally measured mean-flow
velocity profiles, a case that is missing in the literature.

The wake formed by the trailing edge of a flat plate, or a thin aerofoil at zero incidence, has
been extensively studied in the past in the laminar, transitional, and turbulent regimes [19-28].
Understanding the frequency selection in flat plate wakes is of particular importance as they find
direct applications in the aerospace industry, where drag reduction and noise control are desired
[24,29], in the design of turbine and compressor blades [30]. From an academic point of view,
flat plate remains one of the simplest geometrical configurations which result in complex wake
characteristics which resemble turbulent wakes behind industrial objects such as bridges, cooling
towers, and gas turbine blades [30]. In addition, the frequency selection in flat plate wakes is of
interest to further the understanding of laminar to turbulence transition in such scenarios. The
flat plate wake is influenced by the profile of the trailing edge. Carefully made measurements by
Nishioka and Miyagi [21] have shown that the wake behind a flat plate with a sharp trailing edge
can be kept laminar even at a Reynolds number of 3000 (based on the freestream velocity and the
plate length), even though a wake flow is inherently unstable. The turbulent wake characteristics of
flat plates with a sharp trailing edge have been well investigated [22,24,25]. In contrast, there exists
vigorous vortex shedding for flat plates with a blunt trailing edge [31,32]. The vortex shedding from
flat plates with square leading and trailing edges were experimentally studied in Ref. [31] where they
showed that the separated shear layer becomes unstable downstream of the trailing edge corner. As
maintaining extremely sharp trailing edges for flat plates still pose as engineering challenges, it is
pertinent to study the effect of the trailing edge geometry, and is thus considered in the present study.
In addition to the trailing edge geometry [30,32,33], the characteristics of the flat plate wake depends
on the velocities in the upper and lower surfaces of the plate [34], and various other boundary layer
parameters such as the boundary layer thickness and shape factor [30,35,36].

One of the first experimental measurements on the vortex shedding behind thin flat plates were
made by [3]. The hydrodynamic resonance criteria advanced by Koch [37] based on a local stability
analysis predicts well the observed shedding frequency in Ref. [3], which is governed by the
streamwise location where the instability character changes from an absolute to a convective nature.
Apart from the global frequency selection criterion proposed in Ref [37], there are other criteria
such as the maximum growth criterion by Pierrehumbert [38], and the initial growth criterion by
Monkewitz and Nguyen [39]. In a strictly linear setting, the first rigorous selection criterion has
been established in Ref. [7], with the global frequency given by a saddle-point condition based on
an analytic continuation of absolute instability frequency in the complex x = (x,, x;) plane. This
criterion is seen to accurately predict the selected frequency in the wake of a blunt-edged plate
[13] using the time-mean flow. Since then the nonlinear instability of slowly divergent flows has
been addressed in Refs. [11,12] with the bifurcation to self-sustained oscillation in two-dimensional
wake flows being triggered whenever a region of local absolute instability exists in the flow. The
dominant shedding frequency is imposed by the first absolutely unstable downstream station. As
observed in Ref. [13], it has been shown in Ref. [12] that the time average of the oscillating wake
behind a cylinder provided the best profile to predict the vortex shedding frequency.

It is to be noted that the cylinder wake studied in Ref. [12] goes from being locally convective
to absolutely unstable within a finite region, with the frequency at this transition station fixing
the global shedding frequency, arising from a balance between upstream perturbation growth and
downstream advection [12,40]. However, the wake of the blunt-edged plate studied in Ref. [13]
is locally absolutely unstable at the blunt trailing edge. The first absolutely unstable downstream
station in this case would correspond to the streamwise location proposed in Ref. [37]. This
observation is detailed in the criterion proposed in Ref. [39] where the initial growth of the
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disturbances within the convectively unstable region downstream of the bluff-body, the extent of
which then subsequently fixes the spatial scale associated with the global shedding frequency. As
mentioned earlier, using a weakly global analysis Sipp and Lebedev [16] theoretically outlined
the conditions when the frequency obtained from a linear stability analysis based on the mean
flow matches with the global shedding frequency of the wake. This is governed by the interaction
strength of the higher harmonics with the mean-flow harmonic. Using a local stability analysis
based on experimentally measured velocity profiles Khor et al. [41] showed that the time-averaged
mean flows yield an accurate estimate of the global shedding frequency for the wake of a cylinder.
However, such an experimental study is missing in the literature for flat plate wakes. We investigate
the above-discussed characteristics for the wake of a flat plate with a blunt/circular trailing edge
by performing a local stability analysis using the time-averaged flows, and compare them with the
global shedding frequency. By quantifying the interaction strengths between the mean-flow and
higher harmonics, we also support the theoretical criterion reported by Sipp and Lebedev [16] using
experimentally obtained flow fields which is novel in the literature.

The characteristics of the wake formed by a circular cylinder, and by a flat plate with a circular
trailing edge are indeed different. This aspect is studied in Ref. [42] where they carried out a Floquet
stability analysis to investigate the transition scenario in the wake behind a flat plate with a circular
trailing edge, referred to as an elongated cylinder with an aerodynamic leading edge, and with a
blunt trailing edge. The aspect ratio (chord length to thickness) of a compact body fixes the boundary
layer characteristics at the trailing edge, the role of which was investigated in Ref. [42]. Their study
revealed the existence of three different modes, showing similarities and differences between the
two different wakes, concluding that the transition scenario in the wake of a flat plate with a circular
trailing edge may not be completely generic, as often assumed based on cylinder wakes. In addition,
they showed that the transition Reynolds number did not vary linearly with respect to the aspect
ratio, thereby concluding that the transition Reynolds number does not require that the boundary
layer thickness should be similar at the trailing edge as the flow enters the wake. The observations
made in Ref. [42] have been experimentally confirmed in Refs. [43—45] wherein they indicate that
the wake topology and their instability at the trailing edge of a flat plate are different from those
observed in the case of a compact body. Furthermore the wake characteristics of a flat plate with
circular and elliptic trailing edges were numerically studied in Ref. [32], where they concluded
that the streamlining of a trailing edge results in weaker vortex shedding, with a smaller separated
region.

Similarly, various studies have revealed the differences in the secondary instability mechanisms
and the resulting vortical structures downstream of a flat plate [26,46] from that of a cylinder
wake [14,47]. The flat plate wake flows were experimentally studied at low Reynolds numbers
in Ref. [26] which were formed by the merging of two parallel laminar streams at the trailing edge.
It is observed that the leading modes are characterized by the same wavelength unlike in a cylinder
wake, indicating that they arise from the same mechanism, which is a combination of hyperbolic
and elliptical instability. These observations have been corroborated numerically in Ref. [46]. The
differences in bluff body wakes from that of a flat plate stem from the fact that the shear layers in
bluff-body wakes separate at a certain location on the surface of the body, thus introducing a second
characteristic length in the problem, whereas in a flat plate wake, the flow separation occurs right at
the trailing edge. In addition, the base flow varies rapidly behind a cylinder and is characterised by
flow reversal with highly concentrated vorticity regions. In this region, the secondary instability is
absolutely unstable due to a global secondary bifurcation [48], whereas for a flat plate the instability
is convective [26].

In this work, we investigate the global frequency of flat plate wakes by performing a local
stability analysis on the mean-flow fields. A blunt (square/rectangular) and a circular profile for
the trailing edge geometry are considered in this study which are shown in Figs. 1(a) and 1(b). The
experiments were conducted in a wind tunnel, a schematic sketch of which is shown in Fig. 1(c). The
two-dimensional velocity fields were obtained by using a time-resolved particle image velocimetry
(TR-PIV) technique. The study is carried out for two values of the Reynolds number, 1850 and
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FIG. 1. The experimental setup used in the present study on flat plate wakes. Two profiles of the flat plate
are considered, with completely blunt (a) and circular (b) trailing edges, respectively. (c) Illustration of the
TR-PIV measurement setup.

3350, based on the freestream velocity and the plate thickness. Using the obtained flow fields,
we perform a local spatiotemporal stability analysis on the mean velocity profiles at different
streamwise locations of the unsteady wake. The selected global frequency is then compared with
the different characteristic frequencies discussed earlier. It has been observed that the local absolute
frequency at the end of the absolutely unstable domain of the flow predicts the global shedding
frequency. As observed in other bluff-body flows, the global frequency of the wake is well predicted
by the local absolute frequency at the stagnation point in the flow. An excellent pedagogical review
on the theoretical tools used in the present study can be found in Ref. [49].

To complement the study, we analyze the experimental data by carrying out a proper orthogonal
decomposition (POD) of the wake velocity fields. POD is a useful tool, especially in experimental
investigations, which is capable of extracting information using snapshots of the flow fields [S0-57].
It provides a set of orthogonal and optimal basis functions, onto which the Navier—Stokes equa-
tions can be projected to construct a reduced order model [58,59]. We perform the POD analysis
on the fluctuations of the wake velocity fields by removing the mean flow. It is observed that over
80% of the energy of the unsteady wake is captured by the first 10 POD modes and over 70% of the
energy by the first two POD modes, even for the higher Reynolds number considered here, indicating
the flow under consideration has low inherent dimensionality. Therefore, a low-dimensional model
based on the dominant POD modes is found to yield an accurate estimate of the selected global
frequency. Similar observations have been reported for a cylinder wake using POD analyses [54]. In
doing so, we experimentally support the theoretical criterion outlined in Ref. [16] which determines
whether a mean-flow stability analysis is meaningful and can predict the global shedding frequency,
based on the interaction strength of the mean flow with its higher harmonics.

To this end, we organize the paper as follows. The flow configuration, along with the theoretical,
experimental, and numerical tools used in the current study are briefly outlined in Sec. II. Following
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FIG. 2. Boundary layer profile at 0.45D (i.e., at x = —0.45D) from the blunt trailing edge of the flat plate

for Re = 3350. Open and filled circles denote the velocity profiles above and below the flat plate, respectively.
Here, §* denotes the displacement thickness. The Blasius solution is shown using the solid black line.

this, in Sec. III we present the mean-flow velocity profiles using which the spatiotemporal stability
analyses are performed. The results from POD analysis with a description of the flow features of a
flat plate wake are presented in Sec. IV. The paper finishes with a discussion on the global shedding
frequency of flat plate wakes along with some concluding remarks in Sec. V.

II. FLOW CONFIGURATION AND METHODOLOGY

A. Experimental setup

The general flow configuration consists of an incompressible fluid stream over a flat plate with
a blunt/circular trailing edge, a schematic of which is shown in Fig. 1. Shape of the leading edge
of the plate is a super ellipse, details of which are available in Ref. [60]. A wake forms downstream
of the flat plate from the fixed separation points at the trailing edge. Whole field measurements in
the wake of the flat plate were carried out using the TR-PIV technique in a low-speed wind tunnel.
The wind tunnel used in the present study is an open circuit suction type wind tunnel. The settling
chamber of this tunnel houses a honeycomb and six turbulence reduction screens. However, the
settling chamber is followed by a contraction cone of 16 : 1. The 3000-mm-long test section of the
tunnel has a square cross section of 610 mm x 610 mm, and is followed by a diffuser. The three
bladed fan of this tunnel is powered by a 14.5-kW alternating current motor. The tunnel turbulent
intensity measured in the test section is found to be 0.1% of the freestream velocity (for details,
see Ref. [60]). The flat plate has a thickness of 12 mm and a length of 700 mm and is mounted
horizontally in the midplane of the test section of the tunnel. In the following x, y, and z represent
streamwise, wall normal, and spanwise directions, respectively. The free stream velocity Uy, and the
flat plate thickness D were used as the velocity and length scales, with the Reynolds number given
by Re = Ux,D/v. In the present study two values of Re are considered: 1850 and 3350, which are
carefully chosen so that the boundary layer remains laminar till it reaches the trailing edge of the flat
plate. The boundary layer profile at a distance of 0.45D from the blunt trailing edge at Re = 3350
is shown in Fig. 2. The velocity profile closely matches with the Blasius solution, thereby ensuring
that the boundary layer remains laminar for both values of Re chosen in this investigation.

The TR-PIV measurements were carried out at the trailing edge of the flat plate, as schematically
shown in Fig. 1. The TR-PIV system consists mainly of a 4-megapixel CMOS camera with 365-Hz
repetition rate in double exposure mode at full resolution (IDT vision, USA), a Nd-YLF dual head
PIV laser with 30-mJ/pulse at 1-kHz repetition rate (Photonics Industries International Inc, USA),
and an IDT synchronizer. Using the inboard memory of the CMOS camera, 365 TR-PIV image
pairs were captured per second at full resolution. The flow was seeded using a fog generator. Using
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appropriate sheet forming optics, a thin laser sheet of about 1-mm thickness was produced at the
region of interest, as shown in Fig. 1. Using the ProVISION XS package procured from IDT, the
images of the seeding particles in the streamwise wall-normal (x-y) plane were then acquired over
a region of interest &~ 66 mm x 60 mm. The acquired images were then processed in ProVISION
XS using a correlation window of 32 pixels x 32 pixels. Mean quantities were estimated based on
800 PIV realizations, which were spread over several shedding cycles. The ProVISION XS is based
on mesh free algorithm as detailed in Ref. [61]. This software package and the PIV system were also
used in our various previous works (e.g., Refs. [60,62-64]). Following [60] an uncertainty analysis
for the measured velocity fields has been carried out, and the maximum uncertainty is found to be
around 2% of the freestream velocity. The resulting uncertainty in circular frequency is found to be
2.7%.

B. Local stability analysis

The global shedding frequency of bluff-body wakes can be determined from a local stability
analysis based on the concept of absolute instability [7,9,10,65]. There exists a precise location
in the complex x plane which acts as a wavemaker for the entire field, thereby fixing the global
frequency. Following Refs. [11,12,18], we boldly ignore the highly nonparallel nature of the flat
plate wake, even though the Reynolds numbers are on the higher side of the laminar range. This is
due to the fact that the most unstable modes are two-dimensional which follows the Squire’s theorem
[66]. We derive the local characteristics at a streamwise location by freezing the x coordinate,
and by performing a linear stability on the measured mean-flow velocity profiles, U (y) = U,(x, y).
Linearizing around this basic flow by adding a small amplitude perturbation (i, u;,), gives us the
linearized Navier-Stokes equations

il + Udl, + u,0,U = —0,p' + Re™ ' V2u,

X

Byl + dyu, = 0. (1)

du, + Uduy, = —dyp' + Re_lvzu;,

We look for traveling wave solutions in the form of normal modes as ¢'(x, y, t) = q(y) exp[i (kx —
ot)] where w(= w, + iw;) is the complex frequency, and k(= k, + ik;) is the complex wave
number; ¢'(x, y, 1) = [uy, uj, pP'17. The linear stability of these waves are governed by the Orr-
Sommerfeld equation [67]:

d? d*U 1 ([ d? 2
(—iw+ikU)| — —k*) —ik—r — —( — —k*) |u, =0, )
dy*? dy*? Re\dy? ’

where the wave number k is nondimensionalized by the flat plate thickness D, and w by D and
the freestream velocity Us,. The Orr-Sommerfeld equation (2) along with the boundary conditions

u, = ‘2—‘3 = 0 (in the free stream) is then solved using standard spectral methods [68] which yields
the local dispersion relation w = Q! (k, x). For doing this, the measured mean-flow velocity profile at
a streamwise location is spatially discretized on N, = 100 Chebyshev collocation points in the wall
normal direction (x; = cos (%)E[_l’ 1],j=0,1,...,N,). By applying the classical Briggs-Bers
criterion [12,69,70] of zero group velocity condition the absolute frequency wg(x) is then obtained.
As part of the current study, the spatiotemporal analysis of a parallel model wake flow at a low
Reynolds number is carried out. Following Refs. [9,17], the profile of the basic flow is given by

U(y) =1—R+2RF(y), (3)
S 4)
S Ur+ UL

F(y) = {1 4 sinh®[ysinh ' ()]} 7!, (5)

where N is the shape parameter. The superscript * denotes a dimensional quantity, with U, being the
centerline velocity (y = 0), and U, the freestream velocity. Figure 3(a) shows the parallel model
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FIG. 3. (a) Parallel model wake velocity profile U(y) and (b) the contours of w; (grayscale) and w,
(graylines) at Re = 11.3, R = —1, N = 2. The thick black line is w; = 0. The normalization has been carried
out as in Ref. [9].

wake profile at a Reynolds number 11.3 (based on the average basic flow velocity and the wake half-
width), R = —1,and N = 2. The variation of w, and w; in the complex k plane is shown in Fig. 3(b).
The absolute wave number ko = 0.8047 — 0.5569i, and the absolute frequency wy = 1.0086 + 0i
is in excellent agreement with Ref. [9].

C. POD analysis and low-dimensional modeling
1. POD methodology

The POD analysis of the unsteady flat plate wake is based on the commonly used “method of
snapshots” proposed in Ref. [71], to find the dominant POD modes/eigenfunctions. The discrete
data of the fluctuations of the velocity field are obtained from PIV measurements, and are arranged
in vectors [62,72] as

M
IZ .
‘I’[ZV,‘—szlvj‘, l=l,2,...,M, (6)

where M is the number of ensemble and V; is the instantaneous velocity field corresponding to
the jth PIV realization. From these velocity fluctuations, as the mean-flow fields are removed, the
elements of a covariance matrix are formed as

Rij = (¥, ¥)). (7

The covariance matrix R is a M x M symmetric matrix with non-negative eigenvalues, A. These
eigenvalues correspond to the energy of the respective POD mode. The energy fraction of the kth
mode is given by E; = A /E, where E is the total energy of the POD modes.

The eigenfunctions, ®*, are constructed using the eigenvectors of the covariance matrix as,

M
<1>k=2¢§<\11,-, k=1,...,M, (8)
i=1

where ¢¥ is the ith component component of the kth eigenvector, and the eigenfunctions are normal-
ized such that (®*, ®') = §;;, where 8;; denotes the Kronecker delta [62]. Using the eigenfunction
system ®F, one can expand the fluctuating velocity field, v(x, ¢) as

VX ) = ) d (1)@ (%), ©)
k
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FIG. 4. Mean-flow fields of the wake of a flat plate with a blunt trailing edge. The spatial distribution
of the time-averaged mean-flow fields of streamwise velocity component for (a) Re = 1850 and (b) Re =
3350. The zero contour represents the extent of the recirculation zone. The wall-normal mean velocity profile
U(®) =Uy(x,y) at (c) x/D = 0.86 for Re = 1850 and (d) x/D = 0.56 for Re = 3350. The continuous lines
represent the best fit mean-flow velocity profiles given by Eq. (17) which are used in the local spatiotemporal
stability analyses, with (c) ¢; = —1.165, ¢; = 0.289, and ¢; = 0.996, and (d) ¢; = —1.141, ¢, = 0.217, and
c; = 1.026.

where the time coefficients, a*(t,), are obtained by projecting the instantaneous snapshots on the
eigenfunctions, i.e.,

d“(t,) = (V(x, 1,), ®*(x)), (10)

where (,) represents an inner product in the function space.

2. Low-dimensional modeling

Galerkin projection is a suitable method to get an evolution equation of the time/expansion
coefficients, a(t), and the POD eigenfunctions provide a suitable basis for Galerkin projection
(see Ref. [73], for details). Therefore, one can project the Navier-Stokes equations on the POD
eigenfunctions to get a low-dimensional model consisting of a system of ordinary differential
equations for the time coefficients. For Galerkin projection, we follow the formulation presented
in Refs. [57,59]. Since POD eigenfunctions satisfy the continuity equation, we consider the fol-
lowing momentum equation for the instantaneous velocity, V. Neglecting the body force term
and considering incompressible flow, the momentum equation for the instantaneous velocity, V,
reads as

ov

VP
— 4+ V- VV=—— 4 vAV, (11
at P

where P is the pressure and v is the kinematic viscosity. Substituting V = V + vin Eq. (11), where
V and v are the mean and the fluctuating parts of the velocity, and subtracting the time-averaged
momentum equation, we obtain

9 N — 1
a—:+v-VV+V-Vv+v-VV—V~Vv=——Vp—i—vAv, (12)
0
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FIG. 5. Variation of the centerline velocity as a function of the downstream distance behind the blunt
trailing edge of the flat plate. Parameter settings: (a) Re = 1850 and (c) Re = 3350. (b, d) Contours of w;
(grayscale) and w, (graylines) at Re = 1850 and Re = 3350 at the corresponding stagnation points. The thick
black line denotes w; = 0.

where p is the fluctuating pressure. Using the Eq. (9) in the above, and projecting the resulting
equation on the POD modes, ®;, we have

% — Akig +Bkil(aial _@)_i_ck’ (13)
where the coefficients are given by
AR = —(®F, @' . VV) — (®F, V. V') + v(®*, A®), (14)
Bl = —(®*, @' . V@), (15)
ch = —%@k, vp). (16)

Note that a*a! = §;;A; as the coefficients are uncorrelated. Utilizing the given POD modes and the
mean velocities, one can calculate the coefficients of Eq. (13). Further, one can find that ck =0,
considering homogenous boundary conditions and divergence free nature of the POD modes (see
Ref. [59] for further details).

III. MEAN-FLOW FIELDS AND SHEDDING FREQUENCY

We now present the mean velocity fields of the flat plate wake obtained for blunt, and circular,
trailing edges for two values of the Reynolds number. Figure 4 shows the time-averaged velocity
profiles of the flat plate wake with a blunt trailing edge. The spatial distribution of the mean-flow
fields, Up(x, y), are presented in Figs. 4(a) and 4(b). Directly downstream of the trailing edge, the
flow reverses, as can be seen from the negative values of the centerline velocity. Moving downstream
along the flat plate wake, we can observe that the centerline velocity decreases up to a point where
the flow reversal is maximum, following which it increases. The variation of the mean-flow velocity
along the wall-normal direction at two different streamwise locations are shown in Figs. 4(c)
and 4(d) for Re = 1850 and 3350, respectively. To perform a local stability analysis of these
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FIG. 6. Temporal amplification rate wy; (circles) and wy, (diamonds) as a function of the streamwise
distance for the different flat plate wakes in the present study. The upper panels [(a) and (b)] correspond to
the blunt trailing edge, while (c) and (d) for the circular trailing edge. The straight vertical line represents the
stagnation point x, while the dashed line indicates the end of the AU region. Parameter settings: [(a) and (c)]
Re = 1850 and [(b) and (d)] Re = 3350.

time-averaged velocity fields, as in other experimental [60,74] and numerical studies [46], it is
convenient to fit the measured profiles using an analytical expression as

U(y) = c1exp(—y*/c2) + c3. (17

Here ¢y, ¢, and c¢3 are constants which were varied so as to best predict the measured experimental
velocity profiles. Indeed, their values are different at each streamwise location. These are shown by
the solid black lines in Figs. 4(c) and 4(d). The length of the recirculation zone, represented using
the zero contour of the streamwise velocity field in Figs. 4(a) and 4(b), increases with the Reynolds
number. This is elucidated in Fig. 5 where the variation of the centerline velocity downstream of the
flat plate with a blunt trailing edge are shown in Figs. 5(a) and 5(b). The contours of the complex
frequency w in the complex k plane at the respective stagnation points for Re = 1850 and Re =
3350 are shown in Figs. 5(c) and 5(d).

To delineate the absolutely unstable (AU) region from the convectively unstable (CU), we extend
the local analysis to the entire wake region. Figure 6 shows the variation of the real and imaginary
parts of the absolute frequency wy as a function of the downstream distance from the trailing edge of
the flat plate. The AU region where wy; > 0 is demarcated using dotted lines. It can be seen in Fig. 6
that the flow is locally AU both for blunt, and circular trailing edges directly downstream in the flat
plate wake. The extent of the AU region indeed increases with the Reynolds number, beyond which
the flows are CU. It is this boundary of the AU region which is of particular interest, as they are
defined by real absolute frequencies [11,75]. It can be seen from Fig. 6 that the absolutely unstable
region closely follows the flow reversal region, extending slightly beyond it. For Re = 1850 the
distance between the stagnation point and the front of the AU region is 0.07D, while for Re = 3350
is 0.09D. This feature has also been observed in other bluff-body wake flows [11-13,17]. It can also
be noted from Fig. 6 that the local frequency at a given streamwise location in the wake is higher at
a larger Reynolds number.

044102-10



EXPERIMENTAL STUDIES ON THE FREQUENCY ...

TABLE I. Summary of the different characteristic frequencies (wy,) from the present study. Here wy and
wauscu are the frequencies obtained from a local spatiotemporal analysis at the stagnation point and at the end
of AU region, respectively. The experimentally measured shedding frequency is denoted by wey,. Here wgaqie
denotes the circular frequency obtained from the saddle-point criterion, and wpop obtained from the POD based
low-dimensional model, as described below.

Trailing edge Re Wy WAUICU Wexp Wsaddle WpoD
Blunt 1850 1.04 1.05 1.04 0.91 1.03
Blunt 3350 1.23 1.27 1.25 1.03 1.24
Circular 1850 1.16 1.18 1.19 1.0 1.22
Circular 3350 1.27 1.34 1.37 1.09 1.34

It has to be pointed out that unlike in cylinder wakes, the flow is AU at the trailing edge of the
flat plate. In the former the flow goes from a locally CU domain to a finite sized region where
the flow is locally AU. The frequency at this transition station, from local convective to absolute
instability, fixes the global shedding frequency [12]. This arises from a balance between upstream
perturbation growth from the AU region and downstream advection from the CU region resulting in
a stationary front [12,40]. However, in flat plate wakes the flow is already AU at the trailing edge,
and hence the global selection frequency outlined in Ref. [12] is not directly applicable to the present
flows. We shall see that the other characteristic frequencies discussed in Ref. [12], notably the real
absolute frequency corresponding to the AU/CU transition station [11], which corresponds to the
criterion outlined in Ref. [37], and the local absolute frequency at the stagnation point, predicts the
observed global shedding frequency. The nondimensional absolute frequency at any location can be

calculated as
fD
=27 =—). 18
wo T <Uoo (18)

For Re = 1850 the freestream velocity Uy, is 2.42 m/s, whereas for Re = 3350, Uy, is 4.38 m/s.
The characteristic frequencies at some streamwise locations of interest, along with the experimen-
tally measured values are presented in Table I. Figure 7 summarizes these experimentally measured

0.05 ' T 0.1 r r . T
Blunt Re = 1850 Blunt Re = 3350
qh) —
<]
% % 0.05}
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0 T 0 bl D
0 02 04 06 08 1 0 02 04 06 08 1
0.1 T T T T 0.1 : - r
Circular Re = 1850 Circular Re = 3350
g g
% 0.05¢ 1 E 0.05
A Al
0 — 0 —
0 02 04 06 08 1 0 02 04 06 08 1
fD/Us fD/Us

FIG. 7. The experimentally measured frequency spectra for the different cases considered in the present
study. The global shedding frequency increases with the Reynolds number, and remains roughly the same
irrespective of the trailing edge geometry.
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FIG. 8. The relative contribution of the POD modes to the total energy. It can be seen that the first two POD
modes, which occur in pairs, contribute over 70% to the total energy in all the four different cases considered
in the present study.

global shedding frequencies in the present study. They are in excellent agreement with the local
absolute frequency at the streamwise location where the flow goes from an absolutely unstable to
a convectively unstable region. It may be noted here that the circular frequency, wsyqqie, is obtained
based on the analytical continuation of wy in the complex x plane [13,65] following a second
order polynomial fit through wg as described in Ref. [76]. To further investigate this excellent
agreement using the time-averaged velocity profiles, we perform the POD analysis of the fluctuating

Blunt Re = 1850 Blunt Re = 3350 Circular Re = 1850 Circular Re = 3350

z/D x/D

FIG. 9. The spatial distribution of the first six POD modes for the four different cases considered in the
present study. The colormap indicates the streamwise component of the POD eigenfunction. It can be seen that
the first two modes have the same spatial structure, albeit with a slight shift in the streamwise direction. The
fact that the POD modes occur in pairs is also manifestly evident from their spatial distributions.
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TABLE II. Relative and cumulative energy for the first 10 POD modes for four different cases.

Blunt Blunt Blunt Blunt Circular Circular Circular Circular
Mode Re = 1850 Re = 1850 Re = 3350 Re = 3350 Re = 1850 Re = 1850 Re = 3350 Re = 3350

Relative Cumulative Relative Cumulative Relative Cumulative Relative Cumulative
Number energy (%) energy (%) energy (%) energy (%) energy (%) energy (%) energy (%) energy (%)

1 42.60 42.60 37.10 37.10 41.50 41.50 38.08 38.08
2 38.68 81.30 3442 71.52 38.00 79.50 36.13 74.20
3 2.68 83.98 1.89 73.41 2.20 81.70 2.25 76.45
4 2.63 86.61 1.65 75.05 2.16 83.86 2.14 78.60
5 1.35 87.96 1.60 76.66 1.18 85.03 1.48 80.08
6 1.29 89.25 1.07 71.74 1.10 86.14 1.05 81.13
7 0.82 90.08 1.04 78.77 0.66 86.80 1.00 82.14
8 0.54 90.62 0.92 79.69 0.64 87.44 0.78 82.92
9 0.48 91.10 0.90 80.56 0.55 87.99 0.74 83.66
10 0.41 91.52 0.71 81.31 0.51 88.50 0.51 84.17

velocity data; wpop in Table I is found from this analysis, which is presented in the following
section.

IV. REDUCED ORDER MODELING

To quantify the interaction between the mean-flow harmonic and the higher harmonics, which is
the crux of the theoretical criterion derived in Ref. [16], we look at the reduced order dimensionality
of the flat plate wake. To begin with, we compute the energy contribution of the different POD
modes. As outlined in the previous section, the eigenvalue corresponding to each POD mode
represents the proportional contribution to the total energy content. Figure 8 describes the relative
energy distribution of the modes, for the different cases investigated in the present study. The
numerical values of the relative and the cumulative energy of the first 10 POD modes are also
listed in Table II. One may notice that the first two POD modes are the dominant ones. To be
specific, the first two modes carry about 81.3%, 71.5%, 79.5%, and 74.2% of the total energy,
for Re = 1850 (blunt), Re = 3350 (blunt), Re = 1850 (circular), and Re = 3350 (circular) cases,
respectively. Table II also shows that the first 10 POD modes carry more than 80% energy for all the
cases. It also indicates that some eigenvalues come as pairs, for example, first two eigenvalues for
all the cases; the corresponding modes are known as degenerate eigenmodes, which originate due
to some symmetry in the flow [53,62,77,78], as further discussed below. Similar observations have
also been made in the case of cylinder wakes [51,54,79].

The POD modes or the eigenfunctions corresponding to the first six eigenvalues are shown in
Fig. 9. The corresponding time coefficients obtained from direct projections [Eq. 10)] and their
frequency spectra are shown in Figs. 10 and 11, respectively. The first two near-degenerate POD
modes are nearly the same with a slight spatial and temporal shift as seen in Figs. 9 and 10,
respectively. This sort of shift associated with a pair of POD modes is attributed to some sort of
symmetry/traveling disturbance in the flow. Here, this is due to the vortex shedding at the trailing
edge of the flat plate, as the frequency of these disturbances in Fig. 11 (first row) matches with
the shedding frequency in Fig. 7. Similarly, second and third pairs of modes corresponding to the
second and third pairs of eigenvalues, for Re = 1850 (blunt) and Re = 1850 (circular) cases, show
the first and the second harmonics associated with the vortex shedding. In contrast, one solitary
mode which does not make any pair is seen to appear for the blunt and circular cases at Re = 3350,
mode 3 and mode 5, respectively. This mode is similar to the anomalous mode of first kind reported
by Sengupta et al. [79] where they investigated the instability of a flow past a circular cylinder. They
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FIG. 10. The projected POD coefficients, a*, corresponding to the POD modes shown in Fig. 9.

attributed the appearance of this mode due to transient effects in the flow. This phenomenon has also
been investigated by Noack et al. [51] where they constructed a shift mode using the steady solution
and the time-averaged solution for a better resolution of the transient dynamics.

The spatial structure of this anomalous mode is shown in Fig. 9 (second column 3rd mode, and
fourth column fifth mode). The corresponding time series and frequency of this mode is shown
in Figs. 10 and 11, for the blunt and the circular cases at Re = 3350. These observations indicate
that this mode may be associated with a slowly moving disturbance in the downstream direction.
Interestingly, these results also show that the trailing edge geometry has little influence on the vortex
shedding characteristics, whereas the Reynolds number does play a significant role. Further, the
present POD analysis reveals that the flat plate wake at this moderate Reynolds number is low
dimensional in nature as the first ten POD modes can capture more than 80% of the flow energy.
Since the first two POD modes contribute maximum to the total energy as shown in Fig. 8§, it is
worthwhile to compare these modes with the linear stability analysis. This is shown in Fig. 12
where the streamwise and cross-stream components of the eigenfunctions obtained from the linear
stability analysis is compared with those obtained from POD analysis and experimental data. The
peak of the streamwise component shown in Fig. 12(a) is slightly away from the experimental data
point. This may be attributed to the fact that the linear stability analysis was performed using the
velocity profiles which were curve-fitted to the experimental data as discussed earlier. The mismatch
of the POD eigenmode with that obtained from the linear stability analysis and experimental data,
at the outer side (y/D =~ 1) of the shear layer, is due to the fact that we have considered the absolute
value of the POD mode. However, the cross-stream component shows an excellent agreement with
the experimental data as well as with the POD eigenfunction.

Since the vortex shedding dynamics is low dimensional, it is interesting to check whether
a reduced order model/low-dimensional model can describe the vortex shedding characteristics.
Considering just two POD modes, Eq. (13) was numerically solved in Matlab. Figure 13 shows the
numerical solutions for a; and a, compared with their experimental counter parts obtained using
direct projection for all the cases considered in the present study. It can be seen that the coefficients
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FIG. 11. Spectra of the POD coefficients, a*, shown in Fig. 10. P indicates power in arbitrary scales.

of the first two modes closely follow the experimental data. The simulated frequencies associated
with the first two POD modes, and the experimentally measured global shedding frequency from the
instantaneous velocity fields are shown in Fig. 14. One may notice an excellent agreement between
the numerical solution and the experimental data, at least for one shedding cycle. However, a phase
drift can be observed in Fig. 13 during the time evolution of the coefficients. This phenomenon has
been reported in various studies in the past [§0—84]. It arises mainly due to numerical differentiation
of the higher-order modes which have a lower energy content but with higher noise levels. This can
be seen in Fig. 13 where the phase drift is higher for the six-mode model. In fact inclusion of more
number of modes while solving Eq. (13) does not improve the solution significantly. Although the
amplitudes are found to be comparable with the experimental data for the four and six mode models,
there is a significant deviation of phase as the solution progresses in time, which is better seen for
the higher Re cases considered here.

1 : . : 1 :
(a) ~POD Mode 1 (b) - POD mode 1
—Linear stability —Linear stability
~-Experimental data at 34 Hz --Experimental data at 34 Hz
S 05} = 05} 1
N ¥ H N 0 L L
-6 4 2 0 2 4 6 -10 -5 0 5 10
y/D y/D
FIG. 12. Absolute values of the streamwise (|u| = |ut,|/|tt;|max) and cross-stream (|v]| = |uy|/|uy|max) cOm-

ponents of the eigenfunctions computed from linear stability analysis, POD analysis and experimental data for
the flat plate with a blunt trailing edge. Parameter settings: Re = 1850, blunt trailing edge. The comparison is
shown at the streamwise location corresponding to the end of the AU region (x/D = 1.04). Experimental data
at 34Hz is considered as it is the vortex shedding frequency (wex, = 1.04, as shown in Table I).
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FIG. 13. Comparison of the simulated coefficients (solid line), a; and a,, obtained using different number
of modes in the reduced order model (two, four, and six modes), with their experimental counter parts (red
filled circles), calculated from direct projection, for the different cases considered in the present study.

Nonetheless, the POD based simulations and the local stability analyses considering the time-
averaged mean flow as the base flow gives an accurate estimation of the global shedding frequency
of the wake, as shown in Fig. 14. We now turn our attention to provide a plausible explanation
based on the theoretical criterion outlined by Sipp and Lebedev [16]. For doing this we compare
the interaction strength between the mean flow and the first harmonic, and the interaction strength
of the second harmonic with the first. From our framework based on low-dimensional modeling

(a) 1000 —a; Model data (b) 1000 —ay Model data
- a; Exp. data - az Exp. data
g
s
@]
Ay
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04 06 08 1 04 06 08 1
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FIG. 14. Comparison of the frequency spectra of the time coefficients, a; and a, obtained from the
simulation (solid line), and from the direct projection (dashed line). They are in excellent agreement in all
the four different cases investigated.
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FIG. 15. Representative measure of the interaction strengths between the mean-flow and the higher har-
monics. The interaction strenght between the mean-flow and first harmonic is shown using a blue line while
the black line shows the interaction strength between the second and the first harmonic. Parameter settings:
(a) blunt trailing edge, Re = 1850; (b) circular trailing edge, Re = 3350.

[Eq. (14)], we introduce the following ansatz as a representative measure of the interaction strength
between the mean flow (V) and the first harmonic (given by ®! and ®2):

A= —(®', ®' - VV)— (&', V.V, (19)

A? = —(®', ®*.VV) — (!, V. Vd?), (20

A2 = —(@%, @' . VV) — (%, V. Vo)), 20

A2 = (9, % . VV) — (%, V- V?), (22)
All A12

A= |:A21 Azz]- (23)

Note that while evaluating the matrix A the modes are weighted by their corresponding ampli-
tudes obtained from the direct projection, and the viscous terms have been neglected. To measure
the interaction strength of the second harmonic with the first harmonic using the same mathematical
ansatz, we replace (®', ®2) with (®3, ®*) and V with (a; ®' + a,®?) in the above set of equations.
We would like to remind the reader that the norm of the above formed matrix A is only a
representative measure of the interaction strengths and is considered as it follows directly from
the framework of reduced-order modeling. Figure 15 shows the evolution of these quantities of
interest over multiple shedding cycles. We can see from Figs. 15(a) and 15(b) that the interaction
strength between the mean-flow and the first harmonic is several orders of magnitude higher than
the interaction strength between the second and the first harmonics. We have also observed that
the interaction strength between the mean flow and the second harmonic is about ten times smaller
when compared with that of the first harmonic, which is not shown here.

These findings reaffirm the fact that there is a strong interaction of the mean flow (zeroth
harmonic) with the first harmonic in comparison with the higher harmonics. To further verify
the interaction strengths between the mean-flow and higher harmonics we have computed the
contributions of different terms present in Eq. (13). These are summarized in Fig. 16. One can
clearly see that while keeping only the contribution from the A term [Eq. (14)] the flow unsteadiness
is accurately captured over several shedding cycles. The importance of the contribution stemming
from A [Eq. (14)] can be seen from the blue curves which fails to capture the experimental data even
qualitatively. Interestingly by just turning-off the diagonal terms of A in Eq. (13) one can reproduce
the flow dynamics quantitatively (pink curves). This aspect has not been previously reported in the
literature to the best of our knowledge. Similarly, when one switches-off the B term in Eq. (13),
an accurate estimate of the frequency can be obtained albeit with a difference in the amplitude.
It can also be noted from Fig. 16(b) that the four-mode model does not improve significantly the
captured dynamics. However, a small phase drift can be noticed during the time evolution for the
case corresponding to the four-mode model when the B term is turned off. One has to keep in mind
that the two-mode model considers the interaction of the mean flow with the first harmonic, whereas
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FIG. 16. Comparison of the experimental data with the simulations by considering the contribution of the
different terms in Eq. (13). (a) Two-mode model and (b) four-mode model. Parameter settings: Re = 1850,
blunt trailing edge.

the four-mode model takes into account of both the first and second harmonic interacting with the
mean flow. These observations clearly signify that the interaction strength between the zeroth (mean
flow) and the first harmonic is the dominant one. This is consistent with the theoretical finding
presented in Ref. [16], and in turn explains why the mean-flow velocity fields gives an accurate
estimate of the global unsteadiness, thereby experimentally supporting the criterion outlined by
Sipp and Lebedev [16].

V. DISCUSSION AND CONCLUDING REMARKS

The global shedding frequency of the flat plate wake is well predicted from a local spatiotemporal
stability analysis based on the mean-flow velocity fields. The mean-flow velocity fields were
obtained using a TR-PIV technique in a low-speed wind tunnel. Two values of the Reynolds
number, Re, based on the freestream velocity U, and the flat plate thickness D (which is fixed
throughout the study), were considered: 1850 and 3350. A blunt, and a circular profile is used for
the trailing edge geometry of the flat plate. Though the time-mean velocity profiles at different
streamwise locations can be obtained using the hotwire anemometry technique (as in Ref. [41]), the
present investigation uses a nonintrusive PIV measurement technique. This measurement technique
is best suited for separating flows like the present one, and it is widely used for simultaneous whole
field measurements as compared to the hotwire anemometry technique. The local stability analysis
assumes that the flows are nearly parallel in the regions where the stability analysis is performed.
Despite this, as observed in earlier studies, notably the vortex shedding from interacting boundary
layers at a blunt trailing edge of a rectangular forebody in Ref. [13] which was studied numerically,
the selected frequency is surprisingly well estimated with a deviation within 1%. In addition, the
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frequency at the end of the absolutely unstable region is seen to be selected by the global wake in
the present study, which is the hydrodynamic resonance criterion advanced by Koch [37]. Similar
observations have been detailed for a cylinder wake based on the mean flow [12,41].

As discussed in Ref. [12], the linear global frequency corresponding to the streamwise locations
where the flow changes the nature of instability from convective to absolute cannot account for
the real global frequency selected by the wake. In addition, the saddle-point criterion gave the best
estimate for the shedding frequency of the fully developed cylinder wake when the stability analysis
was applied on the time-averaged mean flow. This has been theoretically [16], numerically [14,15],
and experimentally [41] supported. The same characteristics have been observed in the present
study based on time-averaged mean-flow fields for a flat plate wake, with the frequencies obtained
from a local stability analysis providing excellent predictions for the global shedding frequency.
Interestingly, as observed in other wake flow studies, the local absolute frequency at the stagnation
point was found to give an excellent estimate of the global shedding frequency. We would like to
emphasize that to the best of our knowledge, this is the first experimental study to quantitatively
investigate the global shedding frequency of a flat plate wake, and compare the different selection
criteria available in literature using mean-flow velocity fields.

To further support these observations, we have performed a POD analysis using the velocity
fluctuations. It has been shown that the first two POD modes (which occur in pairs) account for over
70% of the total energy of the flow. The frequency of the wake predicted using a low-dimensional
model with these two modes are in excellent agreement with the experimentally measured
values. The physical mechanism behind the two theoretical conditions presented in Ref. [16] is
related to the fact that the frequency of the nonlinearly saturated limit cycle of the unsteady wake
depends on the interaction of the mean flow with the higher harmonics. We have observed that the
interaction strength of the mean-flow and first harmonic is significantly higher than the interaction
strength between the second and the first harmonics. This quantitativley supports the theoretical
criterion outlined by Sipp and Lebedev [16] for the first time using experimentally measured flow
fields. The reduced order framework considered here allows one to estimate the interaction strengths
between the mean-flow and higher harmonics which can be used in other bluff-body flows as well.
More importantly, Eq. (13), which closely mimics the flow dynamics without considering the B term
and the diagonal terms in A, gives a linear framework, which is highly desireable in flow control
applications.
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