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The addition of nanoparticles in fluids significantly influences the fluid’s viscosity and
can be helpful to control viscosity-driven instability. In this work, we analyze how such
nanoparticles modulate viscosity and impact miscible viscous fingering (VF) dynamics.
We consider the flow configuration such that the Hele-Shaw cell is initially filled with a
viscous fluid and then displaces it with other viscous fluid-carrying nanoparticles through
the inlet boundary, which corresponds to the absorbing boundary condition. A closed-
form solution of base-state flow using the Laplace-transform method is obtained, which
overcomes the discrepancy of the base-state solution known in the form of an infinite
series as available in the literature. Due to the time-dependency and nonmonotonic nature
of the base state, nonmodal linear stability analysis in the self-similar domain is used to
determine the onset time of instability. In this work, the effects of various governing flow
parameters such as nanoparticles diffusive coefficient (αnp), effective log-mobility ratio
(R), and deposition rate of nanoparticles (Dadep) on the instability are studied. Our finding
suggests that the onset occurs early with increasing Dadep for αnp > 1, whereas such onset
time is a nonmonotonic function of Dadep for smaller values of αnp. In addition, our results
indicate that the onset time is a nonmonotonic function of αnp for the smaller value of
Dadep, whereas such onset time is an increasing function of αnp for the larger value of
Dadep. Further, nonlinear simulations are performed using COMSOL MULTIPHYSICS, and the
nonmonotonic nature on the onset of instability for different αnp is observed which is in
good agreement with the linear stability analysis results. The present investigation removes
various inconsistencies in the literature about the impact of the nanoparticles on VF with
the quasi-steady-state approximation.

DOI: 10.1103/PhysRevFluids.7.044001

I. INTRODUCTION

In porous media, instability is often observed at the fluid-fluid interface when a less viscous
fluid displaces a more viscous fluid, known as viscous fingering (VF) instability [1,2]. Conversely,
when a more viscous fluid displaces a less viscous fluid, the fluid-fluid interface remains stable. In
this work, we assume fluids are miscible and incompressible. In addition, fluid-fluid displacement
is considered rectilinear. VF is significantly observable in various displacement processes such
as in enhanced oil recovery [2], chromatography separation techniques [3], CO2 sequestration
in the underground reservoir [4,5], and contaminant transport in aquifers [6], to name a few. A
Hele-Shaw cell is commonly used in the laboratory to study such interfacial phenomena in the
miscible displacement process. In most experiments, the Hele-Shaw cell is first filled with one fluid
and displaces it with another fluid through the inlet boundary. So in this work, we considered the
flow configuration taken by Ghesmat et al. [7] where initially a more viscous fluid filled in the
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domain and displaces it with other less viscous fluid-carrying nanoparticles. However, Dastvareh
and Azaiez [8] and Sabet et al. [9] studied the impact of nanoparticles by considered another type
of flow configuration where one more viscous semi-infinite fluid displaced by other less viscous
semi-infinite fluid-carrying nanoparticles. There is a difference in the boundary condition at the
inlet, where the absorbing boundary condition is used by Ghesmat et al. [7], and the reflective
boundary is used by Dastvereh and Azaiez [8] and Sabet et al. [9].

Nanofluid flows in porous media have vast literature in thermal convection, medical science,
and various others [10]. But recently, nanofluid flows in the displacement process have attracted
the interest of many authors, which can be helpful in enhanced oil recovery [11], chromatography
separation techniques, CO2 sequestration, and many others [9]. Many researchers proposed the
various mathematical modeling of such nanofluid flows. Kim et al. [12] advanced the study of
the stability of nanofluids in Rayleigh-Benard convection by considering Soret and Dufour effects.
Later, Ghesmat et al. [7] proposed a new model by considering the first-order removal term of
nanoparticles due to interaction forces between particles [13]. According to Buongiorno [14], only
the Brownian diffusion and the thermophoresis are the essential mechanisms in nanofluids. So,
Dastvareh and Azaiez [15] also proposed a new model to discuss the thermophoretic effects of
nanoparticles on nonisothermal flows using nonlinear simulations in the absence and presence of
deposition of particles. Further, Zargartaleb and Azaiez [16] investigate nanoparticle flow behavior
at the mesoscopic scale using a probabilistic model by considering the nanoparticle’s size and
surface energy along with the local temperature of the system. The role of reactive nanoparticles
on the miscible front is explored in the literature recently [17–20]. Further, Jangir et al. [21]
studied the miscible displacement by nanofluid with concentration-dependent diffusivity. Literature
of the nonlinear simulations of miscible VF widely exists [22–25]. To investigate the effects of
nanoparticles on the dynamics of VF, Dastvareh and Azaiez [8] and Sabet et al. [9] perform
their nonlinear simulations with reflective boundary condition at the inlet using the pseudospectral
method; however, nonlinear simulations with the absorbing boundary condition at the inlet is not
available in the literature yet.

Governing equations with absorbing boundary condition at the inlet described by Ghesmat et al.
[7] is considered in this paper. Dastvareh and Azaiez [8] and Sabet et al. [9] also adopt the same
set of governing equations with reflective boundary condition at the inlet to study the influence
of nanoparticles on miscible VF. All the available literature on the linear stability analysis (LSA)
of nanoparticles impact on miscible VF are performed under the quasi-steady-state approximation
(QSSA) [7–9]. Further, study with the absorbing boundary case [7] is limited, and reported that
their justification on instability is inapplicable [9]. To the best of our knowledge, there is a
lack of comprehensive study of nonreactive nanoparticle influences on miscible VF due to the
nonmonotonic nature and time dependence of base-state flow. Here, we assumed the parameters
such that the double-diffusive effect between the displacing and displaced fluids can be ignored.
Hence, we study the present problem mainly with the effects of three nondimensional parameters,
nanoparticles diffusive coefficient (αnp), effective log-mobility ratio (R), and deposition rate of
nanoparticles (Dadep), on the miscible VF phenomena. Nanoparticles deposition (Dadep) in porous
media can be avoided using surfactants or surface charge technology, and nanoparticles deposition
occurs when these techniques are not used [26]. So in this paper, we considered both cases, (i)
Dadep = 0 and (ii) Dadep �= 0.

In this paper, the impact of nanoparticles on the onset of miscible VF with the absorbing
boundary conditions at the inlet is discussed. In Sec. II, the problem formulation is described
by adopting the similar mathematical modeling of Ghesmat et al. [7]. Then in Sec. III, a closed
form of the base-state solution is determined using the Laplace-transform method and compared
with the base-state series solution utilizing the separation of variables method [7,27]. Due to the
nonmonotonic time-dependent base state, the initial value problem (IVP) in the self-similar domain
is solved to discuss the nanoparticles’ effect on miscible VF in Sec. IV. Furthermore in Sec. V,
the results of the nanoparticles diffusive coefficient (αnp), effective log-mobility ratio (R), and the
deposition rate of nanoparticles (Dadep) on the onset time are studied using IVP in the self-similar
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FIG. 1. Schematic diagram of two-dimensional flow configuration in homogeneous porous media, where
the dashed line stands for the unperturbed nanofluid-fluid interface at initial time.

domain. In Sec. VI, nonlinear simulations are performed using the COMSOL MULTIPHYSICS software.
General conclusions about the effect of nanoparticles on instability using nonmodal analysis are
represented in Sec. VII.

In previous studies, it is reported that there exists a turning point of αnp ≈ 1 such that nanopar-
ticles diffusion (αnp) has a stabilizing and destabilizing effect before and after that turning value,
respectively [7,9]. In contrast, Dastvareh and Azaiez [8,28] reported that αnp has only a destabilizing
impact on instability. Our finding of the αnp effect on instability is in line with the previous studies
[7,9] for Dadep < O(10−1). In addition, our studies suggest αnp has only a stabilizing influence for
Dadep � O(1). Previous studies [7–9] using the modal analysis reported that R and Dadep has the
stabilizing and the destabilizing effect on instability, respectively. In this paper, we also describe the
more accurate results with justification regarding the effects of R and Dadep on miscible VF.

II. MATHEMATICAL MODELING

A Hele-Shaw cell consists of two transparent parallel plates separated by a very small gap. A
uniform rectilinear flow in a three-dimensional Hele-Shaw cell is mathematically analogous to
two-dimensional flow in porous media [2,29]. Thus, the displacement of a viscous fluid by another
viscous fluid laden with nanoparticles in the Hele-Shaw cell is studied by considering the flow in
rectilinear homogeneous two-dimensional porous media [9,15]. The schematic of flow configuration
is shown in Fig. 1, where initially the domain is filled with a fluid “b” of viscosity μb with molar
concentration cb and then displaced by injecting another fluid “a” of viscosity μa with molar
concentration ca carrying nanoparticles of viscosity μnp having molar concentration cnp with a
longitudinal velocity U through the inlet boundary. In this study, fluids are considered miscible,
Newtonian, nonreactive, neutrally buoyant, and incompressible. In addition, the permeability (κ) of
the porous media and the diffusivity of the species are assumed constant.

The flow is described by the coupling of two physics interfaces, hydrodynamics and transport of
solute species. The hydrodynamic part for incompressible flow and under the transient laminar flow
condition is characterized by divergence-free velocity field for conservation of mass and Darcy’s law
to conserve the momentum in porous media. In addition, mass transport of the species ca and cb are
governed by a convection-diffusion equation having diffusion coefficient Da and Db, respectively.
Mass transport of the nanoparticles over a surface in the presence of interaction forces between
particles is described by the convection-diffusion equation with an external force field [13,30]. In
the present study, the governing equation for the nanoparticles of submicrometer size, a kinetic
formulation for the interaction of nanoparticles, is used by considering the first-order removal term
with diffusion coefficient Dnp [7,31]. Thus, the governing equations of the problem are given as
follows [7–9]:

∇ · �u = 0, (1)

∇p = −μ(ca, cb, cnp)

κ
�u, (2)

∂ca

∂t
+ (�u · ∇)ca = Da∇2ca, (3)
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∂cb

∂t
+ (�u · ∇)cb = Db∇2cb, (4)

∂cnp

∂t
+ (�u · ∇)cnp = Dnp∇2cnp − kdepcnp, (5)

where �u = (u, v) is the two-dimensional velocity vector, p is the hydrodynamics pressure, μ is the
dynamics viscosity of the solution, and kdep is the nanoparticle deposition rate having unit s−1.

Initially the domain is filled with the fluid b, so the initial conditions are specified as

�u(x, y, t = 0) = (U, 0), (6)

(ca, cb, cnp)(x, y, t = 0) = (0, cb0, 0). (7)

Moreover, the boundary conditions of the given problem are described as follows:

�u(x = 0, y, t ) = (U, 0), (8)

�u(x, y, t ) = (U, 0) as x → ∞, (9)

(ca, cb, cnp)(x = 0, y, t ) = (ca0, 0, cnp0), (10)

∂ (ca, cb, cnp)

∂x
→ (0, 0, 0) as x → ∞, (11)

∂ (ca, cb, cnp)

∂y
→ (0, 0, 0),

∂v

∂y
→ 0 as y → ±∞, (12)

where ca0, cb0, and cnp0 are the concentration of fluid a, fluid b, and nanoparticles at initial time
t = 0. Here, Dirichlet boundary conditions at the inlet are specified, which is known as the absorbing
boundary condition.

To complete the model, an Arrhenius-type relation is adopted between viscosity and solute
species concentration ca, cb, cnp [7–9] as follows:

μ(ca, cb, cnp) = μrefe
(Raca+Rbcb+Rnpcnp )/ca0 , (13)

where Ra, Rb, and Rnp are log-mobility ratios defined as

Ra = ln

(
μa0

μref

)
, Rb =

(ca0

cb0

)
ln

(
μb0

μref

)
, Rnp =

(
ca0

cnp0

)
ln

(
μnp0

μref

)
(14)

such as μa0 = μ(ca0, 0, 0), μb0 = μ(0, cb0, 0), μnp0 = μ(0, 0, cnp0). On the one hand, when Rnp =
0, Rb > Ra represents the nanoparticles free system where a less viscous fluid displaces a more
viscous fluid. On the other hand, Rnp = 0 with Rb < Ra represents the nanoparticles free system
where a more viscous fluid displaces a less viscous fluid. There is a total of 12 dimensional variables
in the given problem (u, v, μ, ca, cb, cnp, κ, p, Da, Db, Dnp, Dadep).

We nondimensionlized the governing equation using the diffusive characteristics scaling as the
characteristics velocity U , characteristics length Da

U , and characteristics time Da
U 2 . Also, viscosity,

concentration, and pressure are nondimensionlized using μref, ca0, and μrefDa

κ
, respectively. Thus, the

resulting dimensionless governing equation in the Eulerian frame are given as follows:

∇ · �u = 0, (15)

∇p = −μ�u, (16)

∂ca

∂t
+ (�u · ∇)ca = ∇2ca, (17)
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∂cb

∂t
+ (�u · ∇)cb = αb∇2cb, (18)

∂cnp

∂t
+ (�u · ∇)cnp = αnp∇2cnp − Dadepcnp, (19)

μ = eRaca+Rbcb+Rnpcnp , (20)

where the dimensionless parameters αb = Db
Da

and αnp = Dnp

Da
represent the diffusive rate of fluid b

and nanoparticles with respect to the diffusive rate of fluid a, respectively. Further, Dadep = kdepDa

U 2 is
the dimensionless deposition rate of nanoparticles. Also,

Ra = ln

(
μa0

μref

)
, Rb = 1

φb
ln

(
μb0

μref

)
, Rnp = 1

φnp
ln

(
μnp0

μref

)
, φb = cb0

ca0
, φnp = cnp0

ca0

are the other five dimensionless parameters that appear in the nondimensionlized governing
equations where φb and φnp represent the ratio of initial solute species concentration of fluid b
and nanoparticles with respect to the initial solute species concentration of fluid a, respectively.
There are 12 dimensional variables in a problem and these variables contain 4 fundamental
dimensions—mass, length, time, and molar concentration of the solute—hence the nondimensional
equations relating all the dimensional variables have a total of 8 dimensionless parameters.

According to the given diffusive characteristics scaling, the initial and the boundary conditions
(6)–(12) are transformed as

�u(x, y, t = 0) = (1, 0), (21)

(ca, cb, cnp)(x, y, t = 0) = (0, φb, 0), (22)

�u(x = 0, y, t ) = (1, 0), (23)

�u(x, y, t ) = (1, 0) as x → ∞, (24)

(ca, cb, cnp)(x = 0, y, t ) = (1, 0, φnp), (25)

∂ (ca, cb, cnp)

∂x
→ (0, 0, 0) as x → ∞, (26)

∂ (ca, cb, cnp)

∂y
→ (0, 0, 0),

∂v

∂y
→ 0 as y → ±∞. (27)

III. BASE-STATE SOLUTION

With the assumptions that there is no disturbance in the flow and diffusion of the species occurs
only in the longitudinal direction, base-state equations are given as

�uB = (1, 0), (28)

d pB

dx
= −μB, (29)

∂cB
a

∂t
+ ∂cB

a

∂x
= ∂2cB

a

∂x2
, (30)

∂cB
b

∂t
+ ∂cB

b

∂x
= αb

∂2cB
b

∂x2
, (31)
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∂cB
np

∂t
+ ∂cB

np

∂x
= αnp

∂2cB
np

∂x2
− DadepcB

np, (32)

μb = μrefe
RacB

a +RbcB
b +RnpcB

np , (33)

where superscript B stands for the base-state variables. Accordingly, the boundary conditions for
base-state concentrations are as follows:

cB
a = 1, cB

b = 0, cB
np = φnp at x = 0, (34)

∂cB
a

∂x
→ 0,

∂cB
b

∂x
→ 0,

∂cB
np

∂x
→ 0 as x → ∞, (35)

and the initial condition for base-state concentrations is

cB
a (x, 0) = 0, cB

b (x, 0) = φb, cB
np(x, 0) = 0 ∀x. (36)

Base-state equations are linear in nature and their closed-form analytical solutions are attainable
using the Laplace transform technique for a semi-infinite domain with the given boundary and initial
conditions [32,33]. Thus, the closed-form solutions of base-state equations are given as [32,34]

cB
a (x, t ) =

[
1

2
erfc

(
x − t

2
√

t

)
+ ex

2
erfc

(
x + t

2
√

t

)]
, (37)

cB
b (x, t ) = φb

[
1 − 1

2
erfc

(
x − t

2
√

αbt

)
− e(x/αb )

2
erfc

(
x + t

2
√

αbt

)]
, (38)

cB
np(x, t ) = φnp

[
e(1−w)x/2αnp

2
erfc

(
x − wt

2
√

αnpt

)
+ e(1+w)x/2αnp

2
erfc

(
x + wt

2
√

αnpt

)]
, (39)

where w = √
1 + 4Dadepαnp, erf(x) = 2√

π

∫ x
0 e−z2

dz, and erfc(x) = 1 − erf(x).
Ghesmat et al. [7] determined the base-state solution in the form of a Fourier series using

the separation of variables method. Moreover, the error in the solution has been reported later in
an erratum [27]. Various inconsistencies are found in their determination of base-state solutions.
Firstly, they assumed solution is separable in independent variables, and secondly, their solution is
obtained by taking the periodic boundary conditions. Further, it is observed that their solutions
suffer from oscillation due to the Gibbs phenomenon that occurs for jump discontinuity. As
shown by Mojtabi and Deville [35], the analytical solution using the variable separable method
of an advection-diffusion equation with Dirichlet homogeneous boundary conditions and an initial
sine function becomes ill behaved when the advection becomes dominant. A comparison of the
base-state concentration presented in this paper with the solution of Ghesmat et al. [7,27] is shown
in Fig. 2, and it is clear that there is a significant difference between them. So in the subsequent
study of this paper, nanoparticles impact on miscible VF has been studied using the more exact
base-state solutions (37)–(39).

In our study, we have a total of eight nondimensional parameters, φb, αb, φnp, αnp, Dadep,
Ra, Rb, and Rnp. The primary aim of our study is to analyze the impact of nanoparticles on
the miscible VF. So, the value of parameters φb and αb are assumed unity, corresponding to the
miscible VF case without double-diffusivity effect between fluid a and fluid b. The addition of
the nanoparticles cannot destabilize the nanoparticle free stable system [8,9], hence, we consider
Ra < Rb in the present study.

In the absence of deposition, a phase diagram of base-state viscosity at the initial time is shown
in Fig. 3 in the plane of (R, αnp) where R is the effective log-mobility ratio defined as R = Rnpφnp

Rb−Ra
.

It is clear that the parameters Ra, Rb, φnp, Rnp are linked together in R. Hence without loss of
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FIG. 2. Nanoparticles base concentration at time t = 5, where φnp = 1, αnp = 1, and Dadep = 0.02. The
solid line represents the base-state solution obtained in the present study and the dashed line represents the
base-state series solution of Ghesmat et al. [7].

generality, the effect of R can be studied to bring the relevant effects on the dynamics of the
instability. For the sake of clarity, we have fixed φnp = 1, Ra = 1, Rb = 4 and R can be varied by
changing Rnp. Thus, we are left with three nondimensional parameters αnp, R, and Dadep whose
effects on the dynamics of the problem has to be discussed. As clear in Fig. 3, the parameter
space (R, αnp) is divided into six different regions depending on the base-state viscosity profile.
As observed, the left-end base viscosity is less (more) than the right-end base viscosity for R < 1
(R > 1). The region (R < 1, αnp < 1) is divided into region I and region II by finding the data
points as fixing R with increasing αnp, such that the nonmonotonic viscosity profile becomes
monotonic. Similarly, the region (R > 1, αnp > 1) is divided into two regions, by finding the
data points as fixing R with increasing αnp such that the monotonic decreasing viscosity profile
becomes nonmonotonic. These data points are shown as red dots in Fig. 3, and they follow the
power rule αnp ≈ R2.15, which is obtained using the MATLAB tool box CFTOOL. It is observed
that the base-state viscosity is monotonic in regions II, V and nonmonotonic in nature for regions
I, III, IV, VI.

FIG. 3. Sketch of six different base-state viscosity profiles in the (R, αnp) plane at initial time t = 0.01 for
Dadep = 0.
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IV. LINEAR STABILITY ANALYSIS IN SELF-SIMILAR DOMAIN

Following the previous work [7,36,37], the linearized perturbed equations are obtained by
introducing the infinitesimal perturbations around the base state as f = f B + ε f ∗ where f B in
{uB, cB

a , cB
b , cB

np}, f ∗ in {u∗, c∗
a, c∗

b, c∗
np} stands for base-state and perturbed quantities, respectively,

with ε � 1. Thus, the resulting coupled perturbed equations in the Eulerian frame are given as[
∂2

∂x2
+

(
Ra

∂cB
a

∂x
+ Rb

∂cB
b

∂x
+ Rnp

∂cB
np

∂x

)
∂

∂x
+ ∂2

∂y2

]
u∗ = −

(
Ra

∂2c∗
a

∂y2
+ Rb

∂2c∗
b

∂y2
+ Rnp

∂2c∗
np

∂y2

)
,

(40)(
∂

∂t
+ ∂

∂x
− ∂2

∂x2
− ∂2

∂y2

)
c∗

a = −∂cB
a

∂x
u∗, (41)(

∂

∂t
+ ∂

∂x
− αb

∂2

∂x2
− αb

∂2

∂y2

)
c∗

b = −∂cB
b

∂x
u∗, (42)(

∂

∂t
+ ∂

∂x
− αnp

∂2

∂x2
− αnp

∂2

∂y2
+ Dadep

)
c∗

np = −∂cB
np

∂x
u∗. (43)

Now, as the coefficients of the above equations are independent of y, further using the normal
mode decomposition, the perturbations are decomposed along the y direction using f ∗(x, y, t ) =
f ′(x, t )eiky. Thus, the resulting perturbed equations are transformed to[

∂2

∂x2
+

(
Ra

∂cB
a

∂x
+ Rb

∂cB
b

∂x
+ Rnp

∂cB
np

∂x

)
∂

∂x
− k2

]
u′ = k2(Rac′

a + Rbc′
b + Rnpc′

np

)
, (44)(

∂

∂t
+ ∂

∂x
− ∂2

∂x2
+ k2

)
c′

a = −∂cB
a

∂x
u′, (45)(

∂

∂t
+ ∂

∂x
− αb

∂2

∂x2
+ αbk2

)
c′

b = −∂cB
b

∂x
u′, (46)(

∂

∂t
+ ∂

∂x
− αnp

∂2

∂x2
+ αnpk2 + Dadep

)
c′

np = −∂cB
np

∂x
u′, (47)

where the perturbations decay to zero at both the longitudinal boundaries. Similarity transformation
is often used due to the difficulty of localization of perturbation within the diffusive layer in the orig-
inal perturbed system [4,38]. We also found a similar issue by solving Eqs. (44)–(47) numerically in
the original coordinate system, not shown here for the sake of brevity. To overcome this difficulty,
similarity transformation ξ = x√

t
[39] is used and the linearized perturbed equations (44)–(47) are

transformed into[
∂2

∂ξ 2
+

(
Ra

∂cB
a

∂ξ
+ Rb

∂cB
b

∂ξ
+ Rnp

∂cB
np

∂ξ

)
∂

∂ξ
− k2t

]
u′ = k2t

(
Rac′

a + Rbc′
b + Rnpc′

np

)
, (48)(

∂

∂t
− ξ

2t

∂

∂ξ
+ 1√

t

∂

∂ξ
− 1

t

∂2

∂ξ 2
+ k2

)
c′

a = − 1√
t

∂cB
a

∂ξ
u′, (49)(

∂

∂t
− ξ

2t

∂

∂ξ
+ 1√

t

∂

∂ξ
− αb

t

∂2

∂ξ 2
+ αbk2

)
c′

b = − 1√
t

∂cB
b

∂ξ
u′, (50)(

∂

∂t
− ξ

2t

∂

∂ξ
+ 1√

t

∂

∂ξ
− αnp

t

∂2

∂ξ 2
+ αnpk2 + Dadep

)
c′

np = − 1√
t

∂cB
np

∂ξ
u′ (51)

with the decaying boundary condition at both the inlet and the outlet boundary. Further, as the time
t appears in the denominator, so as to remove the singularity in the obtained differential equations,
the initial time for numerical simulation is assumed to be t0 = 10−4.
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The computational domain ξ ∈ [0, L] has been discretized into n + 2 grid points with spacing
size h. By applying the central finite-difference discretization scheme, the coupled system of
equations (48)–(51) can be recast as

M1U
′ = M2C

′
a + M3C

′
b + M4C

′
np, (52)

dC′
a

dt
+ M5C

′
a = M6U

′, (53)

dC′
b

dt
+ M7C

′
b = M8U

′, (54)

dC′
np

dt
+ M9C

′
np = M10U

′, (55)

where each matrix M1 to M10 is of order n × n (matrix expressions are shown in Appendix A) and
the unknown vectors are

C′
a =

⎡
⎢⎢⎢⎢⎢⎢⎣

c′
a(h, t )

c′
a(2h, t )

.

.

.

c′
a(nh, t )

⎤
⎥⎥⎥⎥⎥⎥⎦

, C′
b =

⎡
⎢⎢⎢⎢⎢⎢⎣

c′
b(h, t )

c′
b(2h, t )

.

.

.

c′
b(nh, t )

⎤
⎥⎥⎥⎥⎥⎥⎦

, C′
np =

⎡
⎢⎢⎢⎢⎢⎢⎣

c′
np(h, t )

c′
np(2h, t )

.

.

.

c′
np(nh, t )

⎤
⎥⎥⎥⎥⎥⎥⎦

, and U ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

u′(h, t )

u′(2h, t )
.

.

.

u′(nh, t )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Now by eliminating U ′ from the above set of equations, we can recast the problem as an IVP in
the matrix form as

d

dt

⎡
⎢⎣

C′
a

C′
b

C′
np

⎤
⎥⎦ =

⎡
⎢⎣

M6M−1
1 M2 − M5 M6M−1

1 M3 M6M−1
1 M4

M8M−1
1 M2 M8M−1

1 M3 − M7 M8M−1
1 M4

M10M−1
1 M2 M10M−1

1 M3 M10M−1
1 M4 − M9

⎤
⎥⎦

⎡
⎢⎣

C′
a

C′
b

C′
np

⎤
⎥⎦ (56)

with a random initial condition of infinitesimal small amplitude a for LSA. Following the previous
studies [38], IVP is solved numerically using the explicit Runge-Kutta method with MATLAB in-
built function ODE45.

Here, we used the two-norm for the energy calculation of the perturbations and evolved base
state, and defined it as

E ′(t ) = (‖c′
a(x, t )‖2)2 + (‖c′

b(x, t )‖2)2 + (‖c′
np(x, t )‖2)2 + (‖ �u′(x, t )‖2)2, (57)

EB(t ) = (∥∥cB
a (x, t )

∥∥
2

)2 + (∥∥cB
b (x, t )

∥∥
2

)2 + (∥∥cB
np(x, t )

∥∥
2

)2 + (∥∥�uB(x, t )
∥∥

2

)2
. (58)

When the base state is time dependent, the growth rate of the perturbation is measured with
respect to the growth of the evolved base state. In order to characterize the stability analysis, the
instantaneous growth rate of perturbations (σ ) is defined as [38,40]

σ (t ) = σ ′(t ) − σb(t ) = 1

E ′
dE ′

dt
− 1

EB

dEB

dt
, (59)

where σ > 0 and σ < 0 characterize the stable and the unstable region, respectively.
It is observed that the growth rate is accurate up to the order of 10−2 for any values of parameters,

when the length of the domain is more than 50 (see Fig. 4 when R = 3, k = 0.2). Hence, L = 50
is assumed in our study for time-efficient study. In a similar way, the obtained IVP is solved with
different domain length, step size, and amplitude of perturbations for a convergence study of the
solution, and we found that L = 50, h = 0.5, and a = 10−5 are sufficient for the time-efficient and
optimal solution.
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FIG. 4. Dependence on the domain length L on the growth rate using SSIVP, for R = 3, k = 0.2.

Following the studies of IVP analysis with the absorbing inlet boundary condition [4,41], we
defined the dominating eigenmode as the initial condition of the given IVP by

(c′
a, c′

b, c′
np)(ξ, t0) =

[
ξ exp

(
−ξ 2

4

)
, ξ exp

(
−ξ 2

4

)
, ξ exp

(
−ξ 2

4

)]
(60)

and found that the growth rate obtained using the dominant eigenmode is in line with the growth rate
obtained using the averaging of the random initial conditions for all time t > O(10−1), not shown
here for sake of brevity. So for the time-efficient study, we numerically solve the IVP [Eq. (56)]
using the dominant eigenmode in the subsequent study.

V. RESULTS AND DISCUSSION

All the available literature of nanoparticles impact on miscible VF is performed under the QSSA
[7–9]. Ghesmat et al. [7] performed their study for absorbing the inlet boundary condition by
freezing the base-state time t = 5, whereas Dastvareh and Azaiez [8] and Sabet et al. [9] reported
their results for the reflective inlet boundary. In the study of Dastvareh and Azaiez [8], the instability
growth rate is calculated by freezing the base-state time at t = 1. Later, Sabet et al. [9] reported that
problem is sensitive to base-state freezing time to analyze the dynamics of the problem. Further,
previous studies show (see Fig. 7 of [9]) that system having Ra = 1, Rb = 4, Rnp = 1, Dadep =
0, αnp = 2 is unconditionally unstable for the initial period of time. But physically, the system has
to be stable due to the dominance of diffusion forces over convection in the initial period of time
[38,42]. So nonmodal analysis using IVP in the self-similar domain is used to discuss the early time
dynamics of nanoparticles on miscible VF more accurately in the subsequent study.

The neutral stability curve (i.e., σ = 0 isocontour) in the parameter space (k, t ) is plotted where
the region below and above the σ = 0 isocontour curve corresponds to stable (σ < 0) and unstable
regions (σ > 0), respectively. Neutral stability curves are shown in Fig. 5, for different values of
αnp in the absence of deposition of nanoparticles at Rnp = 4, i.e., R = 1.33. It is observed that in
the instability region, the time as well as the wave-number ranges, shrinks more for αnp = 1.5 than
for αnp = 0.4 and αnp = 3. As shown in Fig. 3, αnp = 0.4, 1.5, and 3 for R = 1.33 corresponds
to region VI, region V, and region IV, respectively. Since, the base-viscosity profile in region V is
monotonic decreasing, whereas in regions IV and VI it is nonmonotonic, as expected region V is
less unstable than region IV and region VI.
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FIG. 5. Neutral stability curve using IVP in the (ξ, t ) domain at R = 1.33, Dadep = 0 where the dashed
curve, solid curve, and dotted curve correspond to αnp = 0.4, αnp = 1.5, and αnp = 3, respectively. The solid
dot on the curve stands for the corresponding critical point.

Here, the lowest point of the σ = 0 isocontour corresponds to the critical time (tc) and critical
wave number (kc), which can be defined as follows:

tc(R, αnp, Dadep) := min
t

{t : σ (t, k, R, αnp, Dadep) � 0}, (61)

kc(R, αnp, Dadep) := min
k

{k : σ (tc, k, R, αnp, Dadep) = 0}. (62)

Further, we define the maximum growth rate (σm) of the perturbation for all possible wave numbers
k with a frozen time as follows:

σm(t, R, αnp, Dadep) := max
k

{σ (k, t, αnp, R, Dadep)}. (63)

In Fig. 6, we plotted σm as a function of time t for different αnp. We define the onset time of
instability tc as the instant of time when σm(t ) becomes negative to positive. A shorter tc referred
to an early onset of instability, whereas a larger tc referred to the delay in the onset of instability.
From Fig. 6, it is clearly depicted that the onset time tc as well as σm behaves nonmonotonically as
a function of αnp.

FIG. 6. Instantaneous maximum growth rate (σm) as a function of t for R = 1.33, Dadep = 0 at different
αnp values, where the dot in the curve corresponds to the maximum growth rate.
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FIG. 7. (a) Critical time and (b) critical wave number as a function of αnp for Dadep = 0 where the solid
line and the dashed line stand for R = 1.33 and R = 0.66, respectively.

As tc is the onset time of instability for all possible wave numbers, it is more instructive to
determine how a physical system behaves to any physical perturbations present in the system.
Hence in the subsequent study, tc as a function of αnp, R, Dadep is used to study the influence of
nanoparticles on miscible VF. Ghesmat et al. [7] and Dastvareh and Azaiez [8] studied the influence
of nanoparticles in the presence of the deposition of nanoparticles, whereas Sabet et al. [9] studies
the nanoparticles impact in depositing as well as in nondepositing of nanoparticles, as nanoparticles
deposition in porous media can occur or be avoided using many technologies [26]. We divided the
study into two general cases: (i) the absence of the deposition of nanoparticles (Dadep = 0) and (ii)
the presence of the deposition of nanoparticles (Dadep �= 0).

A. Absence of the deposition of nanoparticles

1. Effect of αnp

In absence of the deposition, tc and kc are plotted as a function of αnp for Rnp = 2 (R = 0.66)
and Rnp = 4 (R = 1.33) (see Fig. 7). Our finding suggests that both the onset time of the instability
and the critical wave number are nonmonotonic functions of αnp for R < 1 and R > 1. Unimodal
distribution of the onset time as a function of αnp is obtained where the peak is observed approxi-
mately in the middle range of αnp ∈ (1, 2). Thus initially, instability decreases with increasing αnp,
and then instability increases with the further increase of αnp. Such effect of αnp on the instability at
Dadep = 0 is in line with the results of Ghesmat et al. [7] and Sabet et al. [9]. Further, the detailed
analysis using the maximum growth rate over all time σmax is discussed in Appendix B with the
corresponding effects of αnp. Interestingly we find the nonmonotonic behavior of σmax versus αnp

and the corresponding critical time and wave-number explanations remain unchanged qualitatively
to the results obtained in the explanation of tc with respect to αnp.

As shown in Fig. 3, the base-state viscosity profile changes its behavior with increasing αnp for
R < 1 as well as for R > 1. For R < 1, a favorable viscosity gradient plays an important role, and
it is clear from Fig. 8(a) that a favorable viscosity gradient for instability is more for region I and
region III than region II. Hence, region II is less stable than region I and region III. Therefore, tc is
a nonmonotonic function of αnp for R < 1. Further, it is clear from Fig. 8(b) that region V is more
stable than region VI and region IV, so tc is more for the middle range of αnp than for other αnp

values for R > 1.

2. Effect of R

In the absence of the deposition of nanoparticles, tc is monotonically increasing with increasing R
for αnp = 1.5 and αnp = 4, whereas tc is monotonically decreasing with increasing R for αnp = 0.2
(see Fig. 9). Further, the results indicate that tc grows more rapidly for αnp = 1.5 than for αnp = 4.
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FIG. 8. Base-state viscosity profile (a) R < 1 and (b) R > 1 at t = 0.01 in the absence of deposition where
the dashed, solid, and dotted curves stand for αnp = 0.3, αnp = 1, and αnp = 4, respectively.

B. Presence of the deposition of nanoparticles

Critical time as a function of the deposition rate of nanoparticles (Dadep) is plotted for different
values of R and αnp. A unimodal distribution of onset time as a function of Dadep is obtained for
αnp = 0.2, where the peak is observed approximately at Dadep = 0.5 [see Fig. 10(a)]. Whereas
Figs. 10(b) and 10(c) show that tc is a decreasing function of Dadep for αnp = 1.5 and αnp = 4.
In contrast, previous studies [7–9,16] reported that the nanoparticles deposition rate has only a
destabilized effect on the VF instability.

For αnp = 0.2, two types of base-state viscosity profiles exist with time for R = 0.66 as well
as for R = 1.33 (see Fig. 11). Profile (ii) is more unstable than profile (i) since there are two
favorable viscosity gradients for instability appearing in profile (ii), whereas only one favorable
viscosity gradient appears in profile (i). In addition, it is observed that the time range of appearance
in profile (ii) decreases with increasing Dadep, whereas the favorable viscosity gradient for instability
increases with increasing Dadep. For the smaller value of Dadep � O(10−1), instability behavior is
dominated only by the viscosity profile (ii) type, which diminished with increased Dadep, hence
the onset time of instability increases with increasing Dadep. Whereas for Dadep � O(1), profile (ii)
appears for an infinitesimally short time, and hence the favorable viscosity gradient dominates the
instability, which increases with the increase of Dadep. Hence, the onset time tc becomes a decreasing
function of Dadep. Thus, tc behaves nonmonotonically as a function of Dadep for αnp = 0.2.

As for αnp = 0.2, Dadep � O(10−1), instability behavior is dominated only by the viscosity
profile (ii), and the favorable viscosity gradient of instability is more for R = 1.33 as compared
to R = 0.66. Hence, tc(R = 1.33) < tc(R = 0.66) for smaller values of Dadep. But for larger values

FIG. 9. Critical time tc as a function of R when Dadep = 0.
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FIG. 10. Critical time as a function of Dadep for (a) αnp = 0.2, (b) αnp = 1.5, and (c) αnp = 4, where the
solid line and the dashed line stand for R = 0.66 and R = 1.33, respectively.

of Dadep � O(1), instability behavior is dominated only by the viscosity profile (i), and unfavorable
viscosity gradient for instability at the inlet increases with increasing R. Hence, the instability
decreases with increasing R; tc(R = 1.33) > tc(R = 0.66) for larger values of Dadep; and the
crossover of the R < 1 and R > 1 curves appears for the onset tc as a function of Dadep. Although
when Dadep � O(10), nanoparticles deposit completely on the inlet boundary in infinitesimal small
time, thus the effect of nanoparticles is negligible, so tc values are approximately the same for every
Rnp and αnp.

FIG. 11. Different types of base-state viscosity profiles appear with time when αnp = 0.2 where the first
row is for R = 0.66 and the second row is for R = 1.33.
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For αnp > 1, it is observed that favorable viscosity gradient for instability is more and unfavorable
viscosity gradient for instability is less for R < 1 (region III in Fig. 3) as compared to R > 1 (region
IV and region V in Fig. 3) for all Dadep, so the onset time is less for R = 0.66 as compared to R =
1.33 at αnp = 1.5 and αnp = 4 for all Dadep. In addition, our result indicates that tc is a decreasing
function of Dadep for αnp > 1 for all R.

From Fig. 10, it is also clear that in the absence of the deposition of nanoparticles (i.e.,
Dadep = 0), the onset time is a decreasing function of R for αnp = 0.2 and an increasing function
of R for αnp = 1.5 and αnp = 4 (as shown in Fig. 9). In addition, our results indicate that tc is an
increasing function of R for αnp = 0.2, 1.5, and 4 when Dadep � O(1). Whereas, previous studies
[7–9] reported that instability decreases with increasing R for all values of αnp and Dadep.

As shown in Fig. 10, tc is more for R = 0.66 than for R = 1.33 at αnp = 0.2 when Dadep = 0,
whereas tc is less for R = 0.66 than for R = 1.33 at αnp = 1.5 and 4 when Dadep = 0. Hence,
the crossing of the curves appears in Fig. 7(a). Further, our findings suggest that onset time
increases with increasing αnp for R < 1 as well as for R > 1 when Dadep � O(1), whereas tc is
a nonmonotonic function of αnp for R < 1 as well as for R > 1 when Dadep � O(10−1).

VI. NONLINEAR SIMULATIONS

Finite element simulations using COMSOL MULTIPHYSICS [43] is used for nonlinear analysis.
Various COMSOL models are available in literature for miscible VF. Van Dam et al. [44] performed
an analysis by coupling of the “Darcy’s law (dl)” model and the “transport of dilute species in
porous media (tds)” model. Whereas, Sharma et al. [45] used the “Two-Phase Darcy’s Law (TPDL)”
model of the fluid flow module. In the present work, we use four physics interfaces of COMSOL to
solve the nonlinear coupled dimensionless equations (15)–(20). “Darcy’s law (dl)” is used for fluid
flow and “transport of diluted species in porous media (tds)” is used to model the transport of
solute concentrations ca, cb, and cnp. By setting the value of porosity (εp) and permeability of the
medium (κ) to be unity, the DL-model equations of COMSOL MULTIPHYSICS reduce to Eqs. (15) and
(16). Species concentration equations (17), (18), and (19) obtained from the tds model of COMSOL

MULTIPHYSICS by setting the reaction term Ri as 0, 0, and −Dadepcnp, respectively. Further, the
velocity field in the tds model is selected as “Darcy’s velocity field (dl).” Viscosity in the dl model
is set as μ = eRaca+Rbcb+Rnpcnp to model Eq. (20).

Further, initial and boundary conditions (21)–(27) are modeled in COMSOL. In the dl model of
COMSOL, the inlet and outlet boundary conditions for fluid velocity are fixed to �u = (1, 0) and p =
0, respectively. In addition, the initial condition in the dl model of COMSOL is given as p = 0,
which is equivalent to �u(x, y, 0) = (1, 0). At transverse boundaries, no flow boundary conditions
are implemented. For concentration, no flux conditions are specified at the transverse boundaries
and outlet of domain in the tds model of COMSOL. Further, the initial conditions of concentrations
are set as (ca, cb, cnp) = (0, φb, 0). Boundary conditions at the inlet are set as ca = 1, cnp = φnp. We
used the mapped mesh discretization for numerical simulation in COMSOL. As the mapped mesh
is structured meshing, there is no perturbation at the interface, so only diffusion at the interface
is observed. For inserting perturbation in the system, we used the inlet boundary condition for
concentration cb as

cb(0, y, t ) =
{|rn1(y)| : t = 0

0 : t > 0,
(64)

where rn1(y) is a COMSOL in-built random function having uniform distribution and the amplitude
of rn1(y) is assumed of order O(10−3). The MUMPS numerical time-dependent solver of COMSOL

is used for numerical simulations of the proposed problem. In present work, the length (L = 3000)
and width (W = 500) of the domain are assumed for the numerical solution. Further, a mapped
mesh is used with the step size (
x,
y) = (5, 5). A convergence study for (L,W,
x,
y) is also
performed such that the results are qualitatively invariant.
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FIG. 12. Viscosity density plot at successive times t = 0, 500, 1000, 1500, 2000 (from top to bottom) for
R = 1.33, Dadep = 0 where αnp = 0.01, 1.2, 4 increases from left to right.

Density plots of the viscosity profile are depicted in Fig. 12 for different values of αnp with R =
1.33 and Dadep = 0. It is clearly observed that at t = 500 for αnp = 4 instability appears, whereas
there is no instability seen for a large time even up to t = 2000 when αnp = 1.2. For smaller αnp =
0.01, instability occurs approximately when t = 1000. This shows the nonmonotonic nature of the
onset of instability with respect to the values αnp. This result verifies the nonmonotonic nature of
tc as a function of αnp obtained from LSA [see Figs. 5 and 7(a)]. Also for smaller values of αnp,
backward finger dynamics are observed due to the dominance of viscosity profile type (ii) (see
Fig. 11) at R = 1.33, αnp < O(10−1).

VII. CONCLUSION

Our study considered the flow configuration such that less viscous fluid-carrying nanoparticles
displace a more viscous fluid through the inlet boundary [7]. A more accurate exact solution of the
base state is described utilizing the Laplace transform, and LSA is performed using the IVP in the
self-similar domain to get the onset time more accurately. We studied the effect of nanoparticles on
instability using the critical time tc as a function of αnp, R, Dadep. The present results in our analysis
can be summarized as follows: For smaller values of Dadep � O(10−1), initially VF instability
decreases with increasing αnp up to the turning point of approximately 1.5 and then instability
increases with further increasing of αnp, whereas instability decreases with increasing αnp for all
values of R when Dadep � O(1). Our finding suggests that VF instability decreases with increasing
R for all values of αnp when Dadep � O(1). While for smaller values of Dadep � O(10−1), instability
decreases with increasing R for αnp > 1, whereas instability increases with increasing R for small
values of αnp � O(10−1). Further, VF instability increases with increasing Dadep for all values of R
when αnp > 1. Although for smaller values of αnp � 1, instability decreases with increasing Dadep

up to a turning point and then instability decreases with increasing Dadep. Further, results obtained
from the LSA are compared with the COMSOL numerical simulations, and outcomes are found in
very good agreement. Our study removes the various inconsistencies available in the literature
since LSA was performed using QSSA in the literature [7–9]. These results provide a basis for
controlling VF instability using nanofluid displacement processes, such as nanoparticle-based drug
delivery, and soil and groundwater remediation by delivering the fluid-carrying nanoparticles to in
situ contaminated areas [46].
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APPENDIX A: MATRIX EXPRESSIONS

The matrices M1 to M10 of order n × n are given as

M1(i, j) =

⎧⎪⎨
⎪⎩

1
h2 ± {Ra[cB

a (i+2)−cB
a (i)]+Rb[cB

b (i+2)−cB
b (i)]+Rnp[cB

np(i+2)−cB
np(i)]}

4h2 if i ± 1 = j

− 2
h2 − k2t if i = j

0 otherwise,

M2(i, j) =
{

k2tRa if i = j

0 otherwise,

M3(i, j) =
{

k2tRb if i = j

0 otherwise,

M4(i, j) =
{

k2tRnp if i = j

0 otherwise,

M5(i, j) =

⎧⎪⎨
⎪⎩

− 1
h2t ∓ ξ (ii+1)

4ht ± 1
2h

√
t

if i = j ± 1
2

h2t + k2 if i = j

0 otherwise,

M7(i, j) =

⎧⎪⎨
⎪⎩

− αb
h2t ∓ ξ (ii+1)

4ht ± 1
2h

√
t

if i = j ± 1
2αb
h2t + k2 if i = j

0 otherwise,

M9(i, j) =

⎧⎪⎨
⎪⎩

−αnp

h2t ∓ ξ (ii+1)
4ht ± 1

2h
√

t
if i = j ± 1

2αnp

h2t + k2 + Dadep if i = j

0 otherwise,

M6(i, j) =
{ cB

a (i)−cB
a (i+2)

2h
√

t
if i = j

0 otherwise,

M8(i, j) =
{ cB

b (i)−cB
b (i+2)

2h
√

t
if i = j

0 otherwise,

M10(i, j) =
{

cB
np(i)−cB

np(i+2)

2h
√

t
if i = j

0 otherwise,

where i ∈ {1, 2, 3, . . . , n}, j ∈ {1, 2, 3, . . . , n}. It is clear that M1, M5, M7, M9 are the tridiagonal
matrices and others are the diagonal matrices.

APPENDIX B: MAXIMUM GROWTH RATE

The maximum growth rate (σmax) is defined as the maximum of σm over time as follows:

σmax(R, αnp, Dadep) := max
t

{σm(t, αnp, R, Dadep)}, (B1)
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FIG. 13. Maximum growth rate (σmax) as a function of αnp for Dadep = 0, where the solid and dashed curves
stand for R = 1.33 and R = 0.66, respectively.

and corresponding critical time (tcrit) and critical wave number (kcrit) with respect to the maximum
growth rate can be defined as follows:

tcrit(R, αnp, Dadep) := {t : σm(t, R, αnp, Dadep) = σmax(R, αnp, Dadep)}, (B2)

kcrit(R, αnp, Dadep) := {k : σ (k, tcrit, R, αnp, Dadep) = σm(tcrit, R, αnp, Dadep)}. (B3)

In Fig. 13, we plotted σmax as a function of αnp for Dadep = 0 at R = 0.66, 1.33. It is clear that
σmax first decreases and then increases with αnp for both R = 1.33 and R = 0.66. Thus initially,
instability decreases with increasing αnp, and then instability increases with the further increase of
αnp. Such effect of αnp on the instability is in line with the results presented using tc in our study
(see Fig. 7). Therefore we find that the early onset gives rise to a more unstable flow and delay onset
corresponds to less unstable flow. Further, in Fig. 14, the critical time and critical wave number
corresponding to σmax are plotted, and show the same qualitative analysis as tc and kc in Fig. 7.

FIG. 14. (a) Critical time (tcrit ) and (b) critical wave number (kcrit ) as a function of αnp for Dadep = 0, where
the solid and dashed curves stand for R = 1.33 and R = 0.66, respectively.
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