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Controlling instabilities of electrified liquid jets via orthogonal perturbations
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Whipping is a peculiar nonaxisymmetric instability experienced by electrified liquid
jets and utilized in electrospinning to produce fine polymer fibers; however, it manifests
itself in a chaotic and uncontrollable fashion. We impose two perturbations in the form
of small mechanical oscillations, orthogonal with each other, to alter and curb instabilities
of electrified liquid jets. The oscillations cause transverse positioning disturbance to the
nozzle and therefore the initial positioning of the jet. The effects of parameters including
the excitation frequency, amplitude, and phase difference of the imposed perturbations
and the axial electric field are investigated. The steady helicoidal whipping structure with a
linearly growing lateral amplitude in air has been demonstrated, offering a feasible solution
for electrospinning to fabricate fibers of uniform thickness. Furthermore, the superposition
of two sinusoidal orthogonal perturbations enables deposition of complex patterns, such as
Lissajous curves.
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I. INTRODUCTION

The presence of an intense electric field may introduce instabilities to liquid jets distinct from
those observed with their electrically neutral counterparts owing to the Coulombic repulsion
resulting from induced net charges at the jet interface [1–4]. One of these distinctive instability
phenomena is known as the whipping or kink mode, manifesting itself as rapid lateral motion
and lashes. The resultant large tensile stresses empower the utility of this mode in the production
of ultrathin fibers [5,6]. This is the fundamental mechanism exploited in electrospinning, where
polymer fibers down to nanometers in diameter are produced [7]. Such fibers of remarkably high
aspect ratios make electrospinning competitive in applications such as nanotechnology and life
science [8–10].

Once an electrified jet moves off its original axis, the nonaxisymmetric electrostatic repulsion
will push the curved portion further away; as a result whipping instabilities are formed. Unfor-
tunately, the dynamics of electrified jets is subject to random perturbations in most experimental
practices and manifests in a chaotic fashion [11]. This undesirable feature brings forth challenges
in keeping the ordered whipping structure of electrospinning and undermines the quality of the
produced fibers. To overcome this problem, materials scientists usually resort to methodologies
such as shortening the electrospinning distance [12] and optimizing the moving speed of substrates
to suppress irregular depositions [13]. Fluid dynamicists are also interested in the electrified whip-
ping jet, especially the formation mechanism and properties of whipping structures [14]. Several
publications report achieving steady helicoidal structures of whipping in liquid ambience, taking
advantage of the fact that the characteristic time of jets is much longer than that in air [15–17]. Very
few works have been conducted in air, with the exception of Yang et al. [18], who utilized alternative
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FIG. 1. Schematic of experimental device for controlling instabilities of electrified jets via orthogonal
perturbations imposed by two loudspeakers.

electric fields to generate in-plane transverse perturbations that realized the transition from varicose
to whipping instabilities in air. However, the jet motion in their experiments was confined in the
planar space and achieving controllable whipping structures in a general manner remains an open
issue.

Since jet instabilities originate from the evolution of perturbations, it is possible to curb the
dynamics of electrified jets by imposing specific forms of perturbations. Indeed, in the prevailing
numerical model developed by Reneker and co-workers for electrospinning [19,20], orthogonal
perturbations of identical frequency and amplitude are prescribed at the spinneret exit. Based on
simulations using this model, Coluzza et al. reported that increasing the amplitude and frequency
of the driving perturbations could expand the opening angle of the spiral structures and reduce the
jet thickness in electrospinning [21,22]. In this work, we designed a device to introduce orthogonal
perturbations transverse to the electrified jets in air ambience, and we investigated the effects of
parameters, including the frequency, amplitude phase difference, and axial electric field strength
in steady helicoidal whipping structure. In addition to the helicoidal structure, interestingly, with
further varying of the frequency and phase difference, we found more distinct jet instability modes
corresponding to the initial perturbations.

II. EXPERIMENTAL METHODS

We used two loudspeakers with their cone centers bonded to a three-dimensional (3D)-printed
right-angle joint beam to allow the superposition of two orthogonal mechanical oscillations, as
shown in Fig. 1. A stainless-steel nozzle was embedded at the beam joint so that transverse
perturbations of the initial positioning of the jet are introduced. The loudspeakers were driven by
sinusoidal input voltages, respectively defined as

s1(t ) = A sin (2π f1t ),
s2(t ) = A sin (2π f2t + φ), (1)

with A, f , and φ being the amplitude, frequency, and phase difference. In this manner, the per-
turbation pattern of the jet initial position follows the superposition of the sinusoidal vibrations.
For instance, when f1 = f2 and φ = ±π/2, the superposed pattern of orthogonal perturbations
is a circle. Perturbations in the circular pattern enable whipping in a helicoidal structure [21],
which is fundamental to producing controllable uniform fibers. Note that the vibration amplitude
at various driving voltages and frequencies needs to be calibrated (see Supplemental Material [23]).
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FIG. 2. Examples of (a) chaotic whipping with no imposed perturbations and (b–e) helicoidal whipping
structures of jets emanated from the Taylor cone at constant flow rate Q = 300 μl/min and axial electric field
strength between the two parallel electrodes Ez = 6 kV/m .

We used triethylene glycol (TEG), an organic liquid of mediate viscosity μ = 49 mPas, surface
tension γ = 45.3 mN/m, and electric conductivity K = 1.8 × 10–5 S/m. The liquid jet was issued
from the nozzle (inner radius Rin = 120 μm and outer radius Rout = 180 μm) at a constant flow
rate delivered by a syringe pump. To charge the jet, a constant high negative voltage was applied on
a round extractor electrode mounted 3 mm below the nozzle tip. A second meshed electrode applied
with a lower negative voltage was mounted parallelly below the extractor electrode, establishing a
nearly uniform axial electric field Ez. We visualized the jet with a high-speed camera (i-SPEED 220,
iX Cameras) with a long-distance lens of adjustable magnification in shadowgraph mode at 2852
frames per second with an exposure time of 10 μs. The region of interest was illuminated from
behind with a large-area (9 × 9 cm2) light emitting diode (LED) light source (OPT-FLP9090-W,
OPT). The current I was obtained by measuring the voltage drop Vm through a multimeter (Fluke
12E+ Digital Multimeter), which is connected in series with the nozzle and has an internal
resistance of 10 M�.

III. RESULTS AND DISCUSSIONS

A. Steady helicoidal whipping structure in the cone-jet mode

We use the Weber number We = ρQ2/(π2γ R3
in ) to assess the relative importance of inertia and

surface tension, where ρ is the liquid density. When the flow rate Q is too low, the Weber number
is less than unity, and the flow takes the form of dripping instead of jetting. An intense electric
field between the nozzle and extractor can accelerate the liquid to form a Taylor cone with a
fine jet erupting from the apex of the cone, which is known as the cone-jet mode. With the aid
of orthogonal perturbations of identical frequency and phase difference equal to π/2, and if the
imposed perturbations grow fast enough, a helicoidal whipping structure is formed downstream
[21]. Figure 2 demonstrates a chaotically whipping jet without imposing perturbations and steady
3D helicoidal morphology of the whipping jet in the cone-jet mode at various excitation frequencies
(see Supplemental Material [23]). The liquid feeding flow rate was Q = 300 μl/min, and We ≈ 0.3
within the nozzle. We observed that the number of turns of the jet between the two parallel electrodes
increases linearly with the excitation frequency, as defined in the axial wave number χ = 2πR/λ

with R representing the jet radius, and λ the wavelength. This indicates that the morphology of
the spiral depends highly on the initial perturbations. The steady helicoidal whipping structure is
characterized with a constant envelope angle and a linearly growing lateral amplitude, in line with
previous results obtained in the liquid ambience [16]. The axial component of the whipping velocity,
namely, the phase velocity, is calculated by uz = λ f ≈ 5.0 m/s. Accordingly, the averaged local
Weber number at the corresponding whipping segment is larger than 10. This value is one order
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of magnitude higher than that at the nozzle and consistent with the stability condition for jetting.
Moreover, compared with the experiments of Yang et al. where ethanol was used [18], varicose
instabilities are substantially suppressed as TEG’s viscosity is over 40 times higher and as a result,
the jet exhibits more turns before breaking up. More importantly, the jet thickness reduces smoothly
downstream before the varicose instability dominates with the ordered helicoidal structure. This
outperforms chaotic whippings and in-plane whippings induced from one-dimensional perturbations
[18], as fibers of uniform thickness can be produced.

B. Effects of the excitation frequency

Given that the amplitude of the imposed perturbations stands out from the background noise, the
breakup process of the jet is highly repetitive and controllable. Here, we focus on the condition
that the two speakers have equal excitation frequency and constant phase difference (90°) as
demonstrated in the previous section. We can gain deeper insights into the controlling of electrified
jet instabilities from simplified linear stability theory without considering nonlinear effects. We
rewrite Saville’s equation describing the dispersion relationship for electrified Newtonian viscous
liquid cylinders [24]:

1 − χ2 − m2 − 	

[
1 + χ

K ′
m(χ )

Km(χ )

]
= 2Ohχ2ω

det D1

det D2
, (2)

where ω = ω̂
√

ρR3γ is the normalized growth rate with ω̂ defined as the growth rate; Km denotes
the modified Bessel function of the second kind; m is the azimuthal wave number, with m = 0
denoting the varicose mode and m = 1 the sinusoidal (whipping) mode. The dimensionless numbers
	 and Oh are the electrical Bond number and the Ohnesorge number, respectively defined as 	 =
σ 2R/(γ ε0) and Oh = μ/

√
γ ρR with ε0 being the permittivity of free space, and σ the surface

charge density obtained from the convection current σ = IconvR/(2Q). The last term on the right-
hand side refers to the ratio between determinants of D1 and D2, where the details can be found in
Eqs. (11) and (12) in Saville’s paper [24]. According to the dispersion relationship, the transition
frequency from the whipping to the varicose mode could be up to hundreds of kilohertz, since the
diameter of a jet emanated from the Taylor cone typically falls within the order of 10 μm. Here,
we increase Q to 5.5 ml/min (same as below unless otherwise specified) to shift the jetting from
the cone-jet to the simple-jet mode [25,26]. In this case the Weber number at the nozzle exit equals
10, surpassing the threshold condition (We > 4) for issuing an electrically neutral jet [27]. By this
means, the jet radius is equal to the inner radius of the nozzle, and the transition frequency decreases
to kilohertz, just within the operating regime of the loudspeakers. It is worth mentioning that the
conduction current Icond = πR2KEz cannot be neglected here as the jet is one order of magnitude
thicker than typical jets in cone-jet mode. In our experiments, Icond reached the order of 100 nA,
which can be half of the total measured current. Henc, we have Iconv = I−πR2KEz.

Figure 3 shows the typical images capturing the transition from the whipping to the varicose
mode by continuously increasing the excitation frequency (see Supplemental Material [23]), and
the dispersion relations based on Eq. (2) when 	 = 1, and Oh = 0.6. At low excitation frequency
[Fig. 3(a)], the jet manifests a helicoidal structure, as the growth rate of the whipping instability is
larger than that of the varicose instability. The maximum whipping growth rate occurs at around
0.75 kHz [see Fig. 3(h)]. With increased excitation frequency, the breaking-up point gradually
moves upstream, as the varicose mode becomes increasingly prominent. Further increasing the
excitation frequency, the increase in the varicose growth rate leads to earlier breakup [Fig. 3(b)].
Above some frequency (∼1.4 kHz), the varicose instability grows faster than the whipping. When
the second harmonic of the excitation frequency reaches the Rayleigh frequency (∼1.6 kHz), while
the whipping instability also plays a role [not exactly captured in Fig. 3(h)], the helicoidal structure
collapses into fractured filaments and two streams of monodispersed droplets [Figs. 3(c) and 3(d)].
This phenomenon is similar to the whipping assisted bifurcation mode reported in the experiments
of Yang et al. [18]. It is found that the bifurcation streams rotate synchronously when varying
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FIG. 3. [(a)–(g)] Example images of instability transition of electrified jets via changing the excitation
frequency of orthogonal perturbations, and (h) the corresponding dispersion curves based on Eq. (2). The inset
of (e) is its side view. The axial electric field Ez = 1.15 × 105 V/m.

excitation frequency, indicating that their phases are not constant. This evidence rules out the
possibility that any imperfection of imposed perturbations plays a major role in the formation of
bifurcation. Different from Yang’s observations, filaments cut off by the two main droplets are
formed due to significant viscous effects and eventually break into much finer droplets. At higher
excitation frequency, due to the zero growth rate of whipping, the filaments are not seen, and instead,
dumbbell-shaped segments are yielded [Fig. 3(e)]. Although a sinusoidal wave is visible at 2.8 kHz,
it gives way to the varicose instability downstream. Above 2.8 kHz, the jet is straight as governed by
the varicose instability. Since the varicose growth rate declines, the jet is elongated when increasing
the excitation frequency.

At large wave numbers, the growth rate associated to the varicose breakup is larger than that of
the whipping instability, while this trend is reversed for small wave numbers. It is noted that when
increasing the excitation frequency, the measured current did not remain constant, with its value
declining in the whipping mode and increasing in the varicose mode. Therefore, the value of 	 also
varied, as shown correspondingly in Fig. 4. The jet instabilities are mapped in the χ -	 diagram,
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FIG. 4. Jet instability mode mapped in the χ -	 diagram, where the whipping mode is denoted by the green
background, whipping assisted bifurcation mode is the region in blue, and the varicose mode is in orange. The
data points are the corresponding experimental data partially marked in Fig. 3.
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FIG. 5. Snapshots of the whipping assisted bifurcation mode at various initial perturbation amplitudes at
constant excitation frequency of 1.8 kHz.

partitioned by cutoff curves obtained Eq. (2). The cutoff curves refer to the zero growth rate of
specific instability, below which the corresponding instability vanishes.

C. Effects of the initial perturbation amplitude

As aforementioned in introducing our experimental setup, the amplitude of the initial perturba-
tion A imposed by the loudspeakers varies with excitation frequency. Therefore, it is important to
examine the influence of the initial perturbation amplitude, especially on the jet instability mode,
although it should be trivial according to the dispersion relationship. We verify this by varying
the driving voltage of the loudspeakers while keeping the excitation frequency constant at 1.8 kHz,
specifically in the whipping assisted bifurcation mode, as illustrated in Fig. 5. When the amplitude of
initial perturbations increases nearly four times from ∼2 to 9 μm, the jet remains in such transition
mode without either shifting to the varicose or the whipping mode. Hence, it is acceptable to only
consider the role of the excitation frequency in the transition of instabilities as demonstrated in
Fig. 3. On the other hand, it is noted that the bifurcating inception point moves close to the nozzle,
when the initial perturbation amplitude is increased. This distance marked by Lb is plotted versus
A in Fig. 6(a). The fitting shows that Lb approximately declines with A in a logarithm trend. This
result is in agreement with the study of González and García on the jet length in the varicose mode,
where an axial electric perturbation was adopted [28]. In addition, Fig. 6(b) shows the dependence
of the semiopening angle α on the perturbation amplitude in the transition mode and the whipping
mode ( f = 2.1 kHz, Q = 1.5 ml/min). In the helicoidal whipping mode, there is significant growth
of α when increasing A from 1 to 5 μm. Because larger amplitude causes larger displacement off
the jet’s axis, according to Earnshaw’s theorem, the surface charge distributed along the jet will
push this portion further away from its axis, resulting in a larger opening angle. This provides a clue
that a higher initial perturbation amplitude promotes the production of thinner jets, due to the larger
shearing force at a higher opening angle. On the other hand, α increases marginally with A in the
whipping assisted bifurcation mode. An interpretation for this is that a larger perturbation amplitude
leads to faster growth of varicose instability and earlier jet breakup, leaving shorter developing
time for the off-axis instability. Besides, with relatively low surface charge density (Fig. 4), the
opening angle is less sensitive to the initial perturbation amplitude. Nonetheless, the opening angle
in both modes attempts to reach a plateau by only enhancing the perturbation amplitude, due
to the increasing energy consumption by the counteracting factors, such as the viscous shearing
(dissipation), capillary effect, and air drag. It can be explained why this observation is different
from the numerical simulations in [21], where a linear relationship was drawn without considering
the above factors.
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FIG. 6. Effects of the initial perturbation amplitude A on (a) the distance between the nozzle and the
bifurcating point shown in Fig. 5, and (b) the semiopening angle in the whipping assisted bifurcation mode
and the whipping mode

D. Effects of the axial electric field strength

We also explore effects of the axial electric field strength Ez by tuning the applied voltage on the
lower electrode at a constant excitation frequency of 1.0 kHz. As shown in Fig. 7, the response of
the helicoidal whipping jet to Ez is in analogy with applying a pulling or pressing force on a spring.
Enhancing Ez elongates the wavelength and reduces the opening angle of the helicoidal structure in a
linear manner, as quantitatively plotted in Fig. 8. In addition, the measured overall current increases
approximately linearly with Ez, contributed by the increased conduction current Icond = πR2KEz.
One can estimate that the average jet radius is in the magnitude of a dozen microns from the fitting
coefficient, in line with observations in Fig. 7. Moreover, with increased Ez, the jet is elongated in
the axial direction and the growth of varicose instabilities is suppressed due to larger shearing force
exerted on the jet This effect is also indicated by the local Weber number, as it rises from 6.6 to 19.1
with Ez, showing an increased importance of the inertial effect compared with the capillary effect. It
can be concluded that the axial electric field strength can serve as an extra parameter for controlling
the whipping structure and the resulting fiber thickness in applications of electrospinning.

FIG. 7. Images of the helicoidal whipping structure obtained at various axial electric field strengths without
changing other operating parameters.
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FIG. 8. Effects of the axial electric field strength on the overall current, half-cone angle, and averaged
wavelength of the whipping structure.

E. Effects of the phase difference

We have demonstrated the functionality of the excitation frequency and amplitude of the or-
thogonal perturbations in controlling instabilities of electrified jets, while setting the superposed
pattern of perturbations as a circle. Indeed, Eq. (1) describes a family of smooth curves known as
Lissajous curves, having interesting properties and applications [29,30]. We can expediently differ
the parameters of the orthogonal perturbations, taking advantage of the flexibility in controlling
initial perturbations. Following the motivation of our recent work [31] for applications of film
deposition using electrospray, we can gradually transform the superposition of the orthogonal
perturbations from a circle into a line by simply adjusting the phase difference φ from π/2 to zero
and accordingly “compress” the deposition pattern on demand, as shown by snapshots from two
viewing angles in Fig. 9. Noticeably, as the whipping structure is compressed in one direction and
slightly stretched in the other, the spiral turns to become a saddle-shaped profile with the stretched
sides being “lifted” up, where the jet segments in fact move slower than other parts. This leads to
oscillations of the shear stress along the jet and, as a result, the thickness of the jet segments in the
vicinity of the turning point increases (see in view 1). Such phenomenology is exaggerated when
further increasing the excitation frequency, as shown in Fig. 10, where the thick segments evolve
and eventually break up into two streams of droplets, that is, the whipping assisted bifurcation mode.
Moreover, it is found that with lower φ, the threshold of the excitation frequency for the inception

FIG. 9. (a) Patterns of orthogonal perturbation superposition at various phase differences, where the dashed
lines s1 and s2 represent the imposed perturbation directions; [(b)–(d)] snapshots obtained from view 1 (insets)
and view 2, when φ = π/3, π/6, 0, respectively.
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FIG. 10. (a) Snapshots obtained at the inception of whipping assisted bifurcation mode from view 1 at (a)
φ = π/3, f = 1.0 kHz; (b) φ = π/6, f = 0.95 kHz; (c) φ = 0, f = 0.9 kHz.

of the whipping assisted bifurcation mode decreases. Although the spikes of jet thickness along the
axial direction are not desirable in electrospinning for fiber production, the compressed topology,
especially when φ = 0, demonstrates the potential in film deposition applications as long as the jet
breakup into droplets is well handled.

F. Lissajous curves

As shown in Fig. 11, we further differ the phase difference φ and the excitation frequency f1

and f2. A diversity of Lissajous trajectories corresponding to the input perturbations are deposited
on the lower electrode. For example, when f2/ f1 = 0.5 and φ = π/2, a figure “8” is observed.
This reinforces the evidence that the whipping structure is highly dependent on the choice of input
perturbations and is controllable. The superposition of two orthogonal perturbations provides a
variety of controllable depositions on substrates. However, it should be noted that as also found
in Fig. 9, the jet thickness also oscillates, which is detrimental in electrospinning applications.

We note that utilization of lateral electric fields is also an effective approach to control the
whipping morphology. A main advantage compared with using mechanical oscillations is that
it supports a much higher excitation frequency (>10 kHz), which covers the response range of
excitation frequency for fine jets in practical applications. Lauricella et al. numerically studied the
jet morphology controlling mechanism with an external rotating electric field transverse to the jet
[32]. They used hexagonally arranged capacitor plates connected to a three-phase power source

FIG. 11. Lissajous trajectories deposited on the lower electrode at various excitation frequency ratios and
phase differences. The insets illustrate the corresponding imposed perturbation patterns. The high-speed images
on the right show the jet morphology corresponding to figure “V” and figure “8”.
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to reduce the resulting fiber thickness. It can be expected that by varying the electric field, the
Lissajous trajectories are also achievable. However, it should be stressed that the electrodes need to
be carefully designed and arranged to form a desired rotating electric field. For example, the electric
field needs to “rotate” smoothly in terms of both space and time. This was not achieved in [32], as
can be found from the jet morphology and deposition patterns on the substrate. Another problem in
experimental practice is that the electric field between electrodes may be too high to cause spark.
Future work can be conducted to improve this electrode configuration to controllably drive the fiber
and its deposition.

IV. CONCLUSIONS

We have experimentally demonstrated that steady whipping structures described as a conical
helix are achievable via imposing orthogonal perturbations to the electrified jet. The parameters,
especially the frequency and phase difference, are critical in determining the jet instability mode.
The approach of imposing periodic perturbations not only helps stabilize the whipping structure, but
also offers an additional dimensional control in the production of electrified jets. The orthogonal
perturbation enables superposition of fundamental sinusoidal signals of different frequency and
phase to create complex Lissajous patterns, which show the unique ability of modulating the
electrified jet in space via choreographed orthogonal perturbation.
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