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Direct numerical simulations and linear stability analysis are performed to study the
three-dimensional electro-thermo-convective (ETC) flow between two parallel plates under
a simultaneously applied temperature difference and voltage. Entropy generation analysis
and hexagonal pattern analysis are used to illustrate the transient evolution and stationary
dissipative structures of an ETC flow. Numerical simulations with a large computational
domain are first performed to reproduce the experimentally observed motion pattern under
strong unipolar charge injection. The results show that an infinitesimal random perturbation
first grows into a rolls pattern, then partially breaks up into polygons, and finally evolves
into hexagons after a long period of transition. Linear stability analysis is conducted to
obtain the stability criteria (electric Rayleigh number Tc and Rayleigh number Rac) and
the critical wave number (kc) of the ETC flow, and these critical values are found to

be consistent with the numerically obtained ones. In addition, it is found that the basic
features of the numerically obtained ETC hexagonal flow pattern agree with those of
the analytically derived cell pattern. By entropy generation analysis of ETC in a periodic
region, it is found that the formation of the rolls pattern has a larger total entropy generation
and a larger mean-square temperature gradient than the hexagon pattern, which means that
the rolls pattern is more stable than the hexagon under this specific simulation condition.
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I. INTRODUCTION

A dissipative structure is formed in an open system far from the equilibrium state by constantly
exchanging energy with the outside world. When the externally applied energy reaches a certain
threshold, the system spontaneously transforms from its original disordered state into a spatially and
temporally ordered state, thereby forming a new, stable, and ordered structure [1]. Bénard’s thermal
convection (RBC) [2] and electroconvection (EC) [3] are two well-known examples. In these cases,
energy flux flows across a fluid layer subjected to a temperature difference or an electric potential
difference, respectively. The input energy thus generates a periodic dissipative convective structure,
usually with two-dimensional (2D) rolls or three-dimensional (3D) hexagonal cells [4–8].

The study of EC is in many ways analogous to that of RBC due to the physical and phenomenal
similarities between the two. However, there are also clear differences between the two, such as the
linear energy equation in RBC compared to the nonlinear charge conservation equation in EC [9],
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that heat is transferred by diffusion in a hydrostatic state while charges are transported via drift and
diffusion mechanisms [10], or that there is a supercritical pitchfork bifurcation in the onset of RBC
in a Boussinesq fluid [4] but a subcritical bifurcation in EC under unipolar injection (featured by a
linear stability criterion, a nonlinear one, and a hysteresis loop between them [11,12]). Compared to
the widespread attention of RBC problems, the EC instability is still not well understood especially
in three dimensions.

One interesting problem to consider is the combined effects of an electric field and a thermal
gradient simultaneously applied to a horizontal dielectric liquid layer, in which case the interactions
of the RBC and EC instabilities will lead to electro-thermo-convective (ETC) instabilities. One
particular reason for interest in this problem is promising applications in heat transfer augmentation
and fluid control [13–21], especially in microdevices [22] or microgravity environment [23]. A lot of
attention has been drawn to this active field, from the perspectives of stability analysis [3,7,24,25],
experimental study [16,17,26], and numerical simulations [27–30]. Linear and nonlinear stability
analysis has been extensively used since the 1980s to predict the stability criteria associated with
the plate-plate configuration [31]. The effects of the injection strength [32], temperature-dependent
parameters [32], the residual conductivity [33], the cross-flow [24,34], and the non-Newtonian fluid
effect [35] on the stability criteria have been investigated. Experimental studies have also been
performed to evaluate the effect of electro-convection on heat transfer, for both single-phase and
two-phase fluid systems [14,15,36–39] under different electrode configurations, and the results have
confirmed that ion injection can serve as an effective technique with which to actively augment heat
transfer. Furthermore, direct numerical simulations are an important way to gain some fundamental
insights into complex ETC phenomena [27–30]. Among the various numerical methods, the finite
volume method (FVM) [6] and lattice Boltzmann method [28,40] have been relatively popular in
recent years.

Although ETC phenomena have been extensively studied using different methods, most of this
work has been limited to two-dimensional models. Kourmatzis et al. [10] conducted a three-
dimensional simulation of EC between two plates using the FLUENT software, focusing mainly
on the fully turbulent regime at high electric Reynolds numbers. Luo et al. [29] developed a
lattice Boltzmann code for three-dimensional EC and found that a hexagonal cell with a central
region empty of charge and central downward flow is preferred in symmetric systems under
a random initial disturbance or a special hexagonal perturbation. Guan et al. [41] investigated
three-dimensional EC with a cross flow and found that the interactions between the cross flow
and electro-convective vortices lead to the suppression and elimination of structures with velocity
components in the direction of the cross flow. However, few numerical studies have been devoted to
the three-dimensional ETC problem.

It should be noted that hexagonal patterns are observed in experiments with a very large aspect
ratio � = L/H � 25 [3] (where L is the diameter of the electrode and H is the distance between
electrodes). But previous 3D numerical simulations were conducted within a small computational
domain [8,41]. A limited domain size naturally restricts the development of some modes of the
perturbation and the flow may not tend to a fully developed state as in real situations. In this work, we
make use of a computation with a large domain (� = 20) with the help of high-performance clusters.

The main objectives of this work are threefold: (1) to conduct a large-domain computation to
reproduce experimentally observed motion patterns under strong unipolar charge injection, (2) to
investigate the onset of instability and a stationary 3D dissipative structure in an electro-thermo-
convective flow, (3) to introduce entropy generation analysis into the ETC problem, and explain
why some specific cell patterns are preferred.

II. MATHEMATICAL FORMULATION

A. Physical problem and governing equations

As shown in Fig. 1, a dielectric fluid layer of thickness H is enclosed between two planar
electrodes of area Lx × Ly normal to the z axis. The aspect ratios of the configuration are defined as
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FIG. 1. A schematic diagram of (a) the physical model and (b) the hexagonal pattern; (c) the velocity
magnitude at the slice z = H/2 in a periodic domain, with an auxiliary dashed line to highlight the hexagonal
pattern.

�x = Lx/H and �y = Ly/H . An electric potential difference �φ and a temperature difference �θ

are simultaneously applied. Heating from the bottom and charge injection from the top are assumed
to form a centrally upward flow (also called l cells in Ref. [4]).

Considering an incompressible, Newtonian, and linear isotropic dielectric fluid, under the as-
sumptions of the Boussinesq approximation and unipolar charge injection, ignoring magnetic effects
and Joule heat, and taking K�φ/H , H2/K�φ, �φ, �θ , and q0 to be the velocity, time, electric
potential, temperature, and charge density scales, respectively, the dimensionless mathematical
formulations are given as [42,43]

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇ p̂ + M2

T
∇2u + CM2qE + M4Ra

T 2Pr
θez, (2)

∇2φ = −Cq, E = −∇φ, (3)

∂q

∂t
+ ∇ · (Eq + uq) = α∇2q, (4)

∂θ

∂t
+ u · ∇θ = M2

T Pr
∇2θ, (5)

where u = [u, v,w] and E = [Ex, Ey, Ez] are the fluid velocity and electric field, respectively. The
scalars ρ, p̂, φ, q, and θ denote the fluid density, a modified pressure [43], the electric potential, the
charge density, and the temperature. The system is governed by the following six dimensionless pa-
rameters (From left to right: Rayleigh number, electric Rayleigh number, Prandtl number, injection
strength, non-dimensional mobility and non-dimensional charge diffusion coefficient):

Ra = gβ�θH3

νχ
, T = ε�φ0

μK
, Pr = ν

χ
, C = q0H2

ε�φ0
, M = 1

K

(
ε

ρ0

)1/2

, α = D

K�φ0
. (6)

The symbols μ, β, ε, K , D, χ , in turn, stand for the dynamic viscosity, the coefficient of
volumetric expansion, the electrical permittivity, the ionic mobility, the charge-diffusion coefficient,
and the thermal diffusivity [6].
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B. Direct numerical simulation using the lattice Boltzmann method

Direct numerical simulations are a useful way to gain fundamental insights into complex ETC
phenomena. By integrating the thermal and electrical parts of a code with general CFD solvers,
such as the LBM, FVM, or Nek5000, we can build up a platform for ETC simulations. Among the
CFD solvers, the LBM is a relatively simple numerical tool for the study of multiphysics coupling
problems such as the present ETC problem. In our previous work, we developed a unified LBM for
2D ETC scenarios [28,44] and this model has been extended by a series of follow-up papers [45–48].
Therefore, here we just provide the fundamental equations for the LBM and refer the reader to the
aforementioned references for further information.

Four consistent lattice Boltzmann equations (LBEs) corresponding to the macroscopic equations
for a flow field [Eqs. (1) and (2)], a temperature field [Eq. (5)], an electric potential field [Eq. (3)],
and a charge density distribution [Eq. (4)], are respectively given as follows:

f j (x + c j�t, t + �t ) − f j (x, t ) = − 1

τν

[
f j (x, t ) − f eq

j
(x, t )

] + �t × Fj, (7)

l j (x + c j�t, t + �t ) − l j (x, t ) = − 1

τθ

[
l j (x, t ) − leq

j (x, t )
]
, (8)

gj (x + c j�t, t + �t ) − g j (x, t ) = − 1

τφ

[
g j (x, t ) − geq

j (x, t )
] + �t × S j, (9)

h j (x + c j�t, t + �t ) − h j (x, t ) = − 1

τq

[
h j (x, t ) − heq

j (x, t )
]
, (10)

where f j , l j , g j , and h j stand for the distribution functions of the flow field, temperature field,
electric potential, and charge density, respectively. The consistent velocity discretization schemes
of the D2Q9 and D3Q19 models (D stands for dimensions and Q for the number of directions [49])
models are adopted for all fields in two dimensions and three dimensions, respectively.

The equilibrium distributions f eq
j , leq

j , geq
j , and heq

j can be calculated using a simplified Maxwell’s
distribution and take the following unified form:

f eq
j = ρω j

(
1 + c j · u

c2
s

+ (c j · u)2

2c4
s

− u · u
2c2

s

)
, (11)

leq
j = θω j

(
1 + c j · u

c2
s

+ (c j · u)2

2c4
s

− u · u
2c2

s

)
, (12)

geq
j (x, t ) = ω jφ, (13)

heq
j (x, t ) = qω j

{
1 + c j (KE + u)

c2
s

+ [c j (KE + u)]2 − c2
s (KE + u)2

2c4
s

}
, (14)

in which the lattice sound speed cs = c/
√

3. The relaxation times τ in Eqs. (7)–(10) are defined as

τν = 3ν

c2�t
+ 1

2
, τθ = 3χ

c2�t
+ 1

2
, τφ = 3γ

c2�t
+ 1

2
, τq = 3D

c2�t
+ 1

2
. (15)

In addition, the force term in Eq. (7) and the source term in Eq. (9) are formulated through the
split-forcing scheme,

Fj = ω j

(
1 − 1

2τν

)
c j[qE+ρgβ(θ − θref )]

c2
s

, (16)

S j = ω jγ q/ε. (17)
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After the evolution process, the macroscopic quantities are obtained from

ρ =
∑

j

f j, ρu=
∑

j

c j f j + �t

2
qE, θ =

∑
j

l j, φ =
∑

j

g j,

E = 1

τφc2
s �t

∑
j

c jg j, q =
∑

j

h j . (18)

It should be noted that the macroscopic equations (1)–(4) can be recovered from the LBEs in
Eqs. (7)–(10) using the Chapman-Enskog expansion as in Ref. [28].

C. Entropy generation in an ETC flow

The thermal gradient and electric potential between the two planar electrodes drive the fluid in
a nonequilibrium state which causes entropy generation in the system. As derived by Castellanos
[50], the equation of local entropy generation in nonpolar fluids is given by

Ṡ = Jo
′ · ∇

(
1

θ0

)
+ �

θ0
+ J′ ·

(
E
θ0

)
, (19)

where θ0 is the absolute temperature and Jo
′ is the heat flow measured by an observer comoving

with an element of the fluid [50], as given by the Fourier law in Eq. (20a). J′ = J − qu is the
current density measured in the comoving frame of reference of the fluid element [50], expressed in
Eq. (20b), and � is the rate at which energy is dissipated by viscosity [51], as given in Eq. (20c),

J0
′ = −λ∇θ, (20a)

J′ = KEq − D∇q, (20b)

� = 2μ

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2]
+ μ

[(
∂u

∂y
+ ∂v

∂x

)2

+
(

∂u

∂z
+ ∂w

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2]
.

(20c)

The three terms on the right-hand side of Eq. (19) represent local entropy generation due to heat
transfer (Ṡh), fluid friction (Ṡ f ), and electric current (Ṡe), respectively.

In addition to entropy generation, we make use of another criterion for measuring the relative
stability deduced by Malkus and Veronis [52], that the stable solution has a greater mean-square
gradient than any other solution. This can be expressed by the equation

(β̄2)m >
(
β̄2

i

)
m. (21)

Here β̄ = −∂θ̄/∂z is the mean temperature gradient with θ̄ being the average temperature over
a horizontal plane. The subscript m is the mean of the gradient along the z direction and the index i
ranges over all solutions but the one considered.

III. RESULTS AND DISCUSSION

In this section, to gain a deeper insight into the formation of cell patterns in an ETC flow, results
from numerical simulations, modal stability analysis, hexagonal pattern analysis, and entropy gen-
eration analysis are presented and compared. The validation of our numerical method is conducted
by a qualitative comparison with an experiment in Sec. III A and a quantitative comparison with
stability analysis in Sec. III B.

A. Formation of cells pattern between two large plates: Simulation versus experiment

In order to reduce the horizontal boundary effect on pattern formation, large plates (sometimes
approximated as infinite plates) are used in experimental observations of both RBC cells [3] and EC
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FIG. 2. A comparison between (a) Atten’s classic experiment [2] (a partial domain for comparison pur-
poses) and (b) present numerical simulation with the parameters �x = �y = 20, T = 180, M = 10, C = 10,
and α = 10–3.

cells [2]. But this large domain is hard to numerically reproduce due to its large computation cost.
Existing works are limited to small computational domains with periodic boundary conditions to
obtain artificial cell flow patterns [53]. In order to get closer to the real experiment conditions, in this
section, we first conduct a large domain simulation (�x = �y = 20) by embedding our thermal and
electrical parts of codes into the open source framework Nek5000, with an average grid resolution
of �z = 0.01, running on a high-performance cluster with 1000 cores.

Figure 2 shows a comparison between the experimentally [2] and numerically observed cell
flow patterns. The simulation was conducted under a random initial infinitesimal perturbation in
the whole domain, with a free boundary condition in the wall-parallel direction, for the parameters
T = 180, M = 10, C = 10, and α = 10–3. As shown in Fig. 2, the numerical results qualitatively
agree well with the experimental data. In both figures, the fluid domain is fully filled by polygons,
including quadrangles, pentagons, and hexagons. Among the hexagons, both irregular and regular
shapes can be clearly observed.

To better understand the transient formation of cell patterns between two large plates, in Fig. 3,
we plot the isosurfaces (top view) of the vertical velocity component w at three representative points
in time. Using these figures, we can separate the whole formation process into three stages. In the
first stage, the perturbations corresponding to different modes are excited in the domain, a pattern
of rolls is first produced as shown in Fig. 3(a) [and is also clearly seen in Fig. 3(d), which is a
zoomed-in image of 1/15 of the computational domain]. Note that the linear analysis is unable to
provide information on the preferred convective platform. With the development of the flow pattern,
the dominant modes may change. As seen in Fig. 3(b), the rolls pattern bifurcates into polygons, first
in the upper right, and then covering the whole domain. In the last region, the flow slightly regulates
itself into a more regular and stable hexagonal pattern as seen in Fig. 3(c), with a partial enlargement
of the 3D picture also provided in Fig. 3(e). This self-adjustment process is extremely slow.

B. Stability criteria as obtained by linear stability analysis and LBM simulations

The formation of dissipative structures begins with infinitesimal disturbances in a stationary
system. Using modal stability analysis, we can determine the most unstable disturbance and the
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FIG. 3. A top view of the vertical velocity component w at three representative points in time: (a) t = 16;
(b) t = 27; (c) t = 38.6. Panels (d) and (e) are zoomed-in 3D views of 1/15 of the domain of (a) and (c),
respectively.

corresponding critical wave number, which may provide some guidance for the flow pattern analy-
sis. By solving the eigenvalue problem given in Eq. (B17), we can obtain the imaginary component
ωi, which represents the growth rate of the perturbation, and then determine the stability of the
system under a given wave number k and specific governing parameters.

It should be noted that the stability of the ETC flow depends on the combination of T and Ra, so
in practice, we fix one parameter and seek information about the other. For example, in Figs. 4(a)
and 4(b), we display spectra for an ETC flow at T = 120 and T = 150 under a fixed Ra = 400,
respectively. It is shown that the real parts of the leading eigenvalues for the two cases are zero,

FIG. 4. Spectra for an ETHD flow between two parallel plates at C = 10, M = 10, Pr = 10, α = 10–4,
Ra = 400, and k = 4, (a) T = 120; (b) T = 150.
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FIG. 5. The neutral stability curve in the Ra-T plane for an ETC flow between two parallel plates at C = 10,
M = 10, Pr = 10, and α = 10–4.

which means that the perturbations decay or increase monotonically. At T = 120, the imaginary
part of the first eigenvalue is smaller than zero, which indicates that the linear system is stable, and
the decay rate of the linear perturbation is −0.13. In addition, since the largest eigenvalue lies above
ωi = 0 at T = 150, the linear system is unstable and the growth rate is 0.105. Using this method,
we can evaluate the critical kc and Tc (the subscript c indicates critical value) at which the value of
ωi equals zero.

In the same manner, the value of Tc can be calculated for different Ra, producing the neutral
stability curve for the ETC flow shown in Fig. 5. The fitted curve separates the whole domain into
a stable region and an unstable one. The two ends of the stability curve (the intersections with
the coordinate axes) correspond to pure RBC and pure EC scenarios, respectively. For the pure
RBC case, the linear stability criterion is Rac = 1707.762 with a critical wave number kc = 3.117
[2], independent of Pr. For the pure EC case, the linear stability criterion strongly depends on the
injection strength C but is independent of the mobility parameter M. For the case of C = 10 and α

= 0, the criterion and critical wave number are Tc = 164.1 and kc = 5.113 [3], respectively.
Linear stability criteria can also be obtained in this numerical manner, by setting the driving

parameters Ra and T close to the estimated linear instability threshold and examining the develop-
ment of the initial perturbation. The time histories of the peak velocity Vmax for the three different
T = 145, 150, and 155 for Ra = 400 are plotted in Fig. 6(a). It is seen that all cases eventually
reach a stable state of convection. As shown in Fig. 6(b), the relation between Vmax and the time
t is linear in logarithmic coordinates, which means the development of the perturbations in the
velocity field at the initial stage follows an exponential law, called as growth rate [8]. The extracted
growth rates for the cases T = 145, 150, and 155 are plotted in Fig. 6(c), then extrapolated to obtain
the linear stability criterion corresponding to the zero-growth rate, finally giving Tc = 139.1 for
Ra = 400. In the same manner, for a given wave number k = 5.5, the values of Tc at Ra = 800 and
1200 are calculated approximately to be 114.7 and 90.3, respectively. Repeat the steps shown in
Figs. 6(a)–6(c) for different k and Ra, we can obtain the k − Tc curves as presented in Fig. 6(d).

Good agreement between the numerical simulation and modal-stability analysis can be observed
in Fig. 6(d). Here, the numerically predicted linear stability criteria obtained from the LBM are
based on a large number of computational runs for different wave numbers k ∈ (3–5.5) and Ra =
(400, 800, 1200). The numerically predicted values of Tc at the critical wave number kc are 133.5,
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FIG. 6. Linear stability criteria for the ETC flow obtained from an LBM simulation and compared with
stability analysis results: (a) time histories of the peak velocity Vmax for T = 145, 150, and 155 at Ra = 400
and k = 5.5, (b) the extraction of the exponential growth stage and the fit of the growth rate, (c) the linear
fitting of the growth rates for Ra = 400, 800, and 1200, with the intersections of the lines with the x axis giving
the values of T corresponding to neutral stability, (d) a comparison between the Tc obtained from the numerical
simulation and stability analysis at different wave numbers k and Ra.

99.1, and 59.5 for Ra = 400, 800, and 1200, respectively, close to the values obtained by stability
analysis (131.1, 96.2, 56.5). The difference between the LBM simulation and stability analysis may
be explained by the fact that, unlike the single wave number k used in linear stability analysis, it is
hard to eliminate the higher harmonics effect in direct numerical simulation, which may affect the
numerical prediction of growth rate. Moreover, a larger k corresponds to a smaller computational
domain where the higher harmonics are effectively restrained, which explains the relatively large
difference at smaller k but strong consistency between the LBM simulation and stability analysis at
larger k.

C. Analytical solution and LBM simulation of the hexagonal pattern

For an isotropic liquid where no favored direction exists in the horizontal plane, a hexagonal
pattern possesses a higher symmetry than other distributions such as squares or rectangles [2].
Hence, the flow slowly regulates itself from polygons toward a more regular hexagonal pattern.
Owing to the periodicities of the flow in both the x and y directions, we can simply pick out one
periodic unit to represent the flow features. Figure 7 presents a comparison between the analytical
solution and the LBM simulation within one hexagonal cell. The analytical solution of w and
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FIG. 7. A comparison between the analytical description of a hexagonal cell obtained by Chandrasekhar
[2] (left) and the LBM simulation (right): (a) the vertical velocity w at slice z = H/2; streamlines at (b) slice
x = 0 and (c) slice y = 0.

streamlines at slices x = 0 and y = 0 are expressed by Eqs. (A1), (A10), and (A11) in Appendix A,
respectively. It is seen that the numerical results exhibit the basic features of a hexagonal pattern,
similar to the analytical solution [2]. However, a discrepancy in the w distribution can be observed
in Fig. 7(a), due to the nonlinear feature of the charge conservation equation, which causes a charge
void region in the center of the hexagon and a larger velocity magnitude than in the theoretical
prediction. Furthermore, the fluid ascends in the center and descends in the peripheral regions,
leading to a pair of vortices in both slices x = 0 [Fig. 7(b)] and y = 0 [Fig. 7(c)].

A full view of the hexagonal pattern in one periodic unit is presented in Fig. 8. The rolls pattern
is also shown for comparative analysis. The simulations are conducted based on the LBM with
the size of the computational domain chosen to be �x = λx and �y = λy, where λx = 2π/kx and
λy = 2π/ky are the wavelengths in the streamwise and spanwise directions, respectively. As shown
in Fig. 8(a), the flow shows a straight roll structure and can be viewed as an extension of 2D rolls
in the x direction. Two thermal plumes, two independent charge void regions, and two pairs of
counter-rotating rolls are readily seen. The counter-rotating rolls are symmetrical to each other.
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FIG. 8. The final steady results for (a) the rolls pattern and (b) the hexagonal pattern at T = 120, Ra =
1200. From top to bottom: temperature isosurfaces for θ = 0.15, 0.5, and 0.75; charge density isosurfaces for
q = 0.04, 0.07, 0.2; a vertical velocity w slice at y = 0.5 with streamlines and isosurfaces.

The flow structure of the hexagonal pattern is more complicated, as seen in Fig. 8(b). The flow
shows two complete hexagonal cells, with one in the center and the other separately located at the
four corners. In addition, vase-shape regions free of charge, which are mutually independent of
each other, appear in the centers of each convective cell. The fluid always ascends and descends
in the central regions and the peripheral regions of the convective annular cells, respectively.
Therefore, free charges are injected from the top electrode and move mainly with the combined
velocity KE + u in the outer region of the vase, before finally discharging at the lower collecting
electrode.
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(a) (b)

(c) (d)

FIG. 9. The time evolution of the nondimensional entropy generation of both the rolls pattern and the
hexagonal pattern for three combinations of (Ra, T ): entropy generation due to (a) heat transfer, (b) fluid
friction, (c) electric current, and (d) total entropy generation.

D. Entropy analysis of the cells patterns in ETC

In traditional analysis of ETC flows, quantities such as temperature, velocity, and charge density
are frequently considered, but entropy properties are seldom involved. For a typical dissipative
structure like this, it is to be expected that entropy analysis can provide a unique perspective on
the estimation of relatively stable ETC flow patterns.

The entropy analysis and pattern selection of an ETC flow are analogous to those of a classical
RBC flow. The selection of a pattern in an RBC flow, whether polygon or rolls, is a rather subtle
matter, and very small alterations in the physical conditions can result in radical changes in the
structure of the convection pattern. The appearance of a steady-state pattern is determined by
multiple factors, including the values of nondimensional parameters (Ra and Pr), boundary and
initial conditions, and the temperature dependence of physical parameters. But ETC flows are even
more complex than RBC flows due to the nonlinear character of the electrical equations. Here we
use entropy analysis to judge the “relative stability” of various stable solutions. It is expected that
a stable solution will produce more entropy per unit time from the mean temperature field of any
other solution than it does from its own mean field [52].

Figures 9(a)–9(d) present the transient evolution of entropy generation due to the irreversibility
of heat transfer Sh, fluid friction S f , and electric current Se, as well as the total entropy generation S.
Three representative cases at (T = 80, Ra = 1800), (T = 120, Ra = 1200), and (T = 160, Ra =
600) are considered for C = 10, M = 10, Pr = 10, and α = 10–4. In each case, both the rolls and
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FIG. 10. A comparison of the mean-square gradient between the rolls and hexagons can be used to
determine which pattern is more stable.

hexagonal patterns are motivated by the corresponding special initial perturbations. It is seen that the
values of Sh and S f for the rolls are larger than those for the hexagons in all cases, but the hexagonal
pattern is generally associated with greater electrical entropy generation as shown in Fig. 9(c). The
total entropy generation of the rolls pattern is larger than that of the hexagonal pattern. Therefore, we
can say that the rolls are more stable than the hexagons under this simulation condition. Figure 10
shows a comparison of the mean-square gradient β̄ results for the rolls and hexagons. It is seen that
the time history of β̄ has the same trend as for the entropy generation, confirming that the rolls are
more stable than the hexagons in this case.

IV. CONCLUSIONS

In this work, a comprehensive study has been conducted to investigate the formation of a
dissipative structures in a 3D electro-thermo-convective (ETC) flow. Multiple methods, from theo-
retical analysis to numerical simulations, have been adopted to cooperatively explain the ETC flow
patterns. Linear stability analysis was conducted to determine the stability criteria (Tc and Rac) and
critical wave numbers (kc). To demonstrate the transient evolution of the initial perturbation and the
steady-state ETC flow pattern, a numerical simulation was performed by solving the fully coupled
governing equations. Furthermore, hexagonal pattern analysis and entropy generation analysis were
also implemented to explore the basic features of the hexagonal cell flow pattern.

A large domain simulation (�x = �y = 20) with a random initial infinitesimal perturbation
was first conducted to reproduce the realistic conditions of Atten and Lacroix’s classic electro-
hydrodynamics experiment. The results showed that electro-convection with a random perturbation
first grows into a rolls pattern, then partially breaks up into polygons, and finally evolves into a
regular hexagonal pattern after a long period of evolution. The simulation showed good qualitative
agreement with the experiment. Linear stability analysis was then performed to test the onset of
ETC instability. By calculating the eigenvalues, we could estimate whether a given perturbation of
wave number k would grow or decay. In this manner, a neutral stability curve for the ETC flow
in the Ra-T plane was plotted. Good agreement was observed between the numerically predicted
linear stability criteria and the modal-stability analysis.

A regular ETC hexagonal pattern was obtained in a periodic domain under a special initial
perturbation. Thermal plumes in the temperature field and vase-shaped charge void regions in the
charge density distribution could be readily seen. The fluid was seen to always ascend in the central
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regions and descend in the peripheral regions of convective annular cells. The LBM simulation
results were consistent with the analytical solutions for the hexagonal pattern in three representative
planes. Besides, using entropy generation analysis, we found that the total entropy generation and
mean-square temperature gradient of the rolls pattern is always larger than those of the hexagon,
indicating that the rolls pattern is relatively stable under the simulation condition of a periodic cell
with specific perturbation.
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APPENDIX A: AN ANALYTICAL DESCRIPTION OF THE HEXAGONAL CELLS

Using linear stability analysis, we can see the onset of instability as characterized by the most
unstable mode with wave number k. But a given k =

√
α2 + β2 corresponds to infinite combinations

of (α, β). Incorporating the symmetry and periodicity of the system, rolls and hexagons are the
most frequently observed flow patterns in both RBC and EC problems. As the rolls flow pattern has
been thoroughly discussed in relation to 2D studies, here we focus on the analysis of steady-state
hexagonal cell flows.

In the study of 3D RBC, Chandrasekhar derived an analytical solution for the hexagonal pattern
[2]. Here we introduce this analytical solution into the study of the ETC flow,

w = 1

3
W (z)

{
2 cos

2π

L
√

3
x cos

2π

3L
y + cos

4π

3L
y

}
, (A1)

in which k = 4π/3L is the wave number and L is the side length of the hexagon. Two alternative
forms of Eq. (A1) can be given as [2]

w = 1

3
W (z)

{
cos

4π

3L

(√
3

2
x + 1

2
y

)
+ cos

4π

3L

(√
3

2
x − 1

2
y

)
+ cos

4π

3L
y

}
, (A2a)

w = 1

3
W (z)

{
4 cos

2π

3L

(√
3

2
x + 1

2
y

)
cos

2π

3L

(√
3

2
x − 1

2
y

)
cos

2π

3L
y − 1

}
. (A2b)

We can now check the symmetry and periodicity of the hexagonal pattern, letting x = � cos ϑ ,
y = � sin ϑ , and substituting into Eq. (A2a) [2],

w = 1

3
W (z)

{
cos

[
4π�

3L
sin (ϑ + 60◦)

]
+ cos

[
4π�

3L
sin (ϑ + 120◦)

]
+ cos

[
4π�

3L
sin ϑ

]}
.

(A3)
In Eq. (A3), we have w(�,ϑ ) = w(�,ϑ + 60◦), and using this invariance for rotation by 60◦,

we can prove the symmetry of the hexagonal pattern. Furthermore, the periodicity of the pattern in
both the x and y directions can easily be observed from Eq. (A1), and thus

w(x + n
√

3L, y + 3mL) ≡ w(x, y), (A4)

where n and m are integers. The wavelengths in the x and y directions are Lx = √
3L and Ly = 3L,

respectively.
Expressing u and v in terms of two functions ϕ and ψ in the manner

u = ∂ϕ

∂x
− ∂ψ

∂y
and v = ∂ϕ

∂y
+ ∂ψ

∂x
(A5)
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and combining with the continuity equation ∂u/∂x + ∂v/∂y + ∂w/∂z = 0, we have

∂w

∂z
= −∂u

∂x
− ∂v

∂y
and η = ∂v

∂x
− ∂u

∂y
, (A6)

where η is the z component of the vorticity used in Sec. II B. Using the spatial derivative of Eq. (A6),
we have

∂2w

∂z∂x
+ ∂η

∂y
= −∂2u

∂x2
− ∂2u

∂y2
,

∂2w

∂z∂y
− ∂η

∂x
= −∂2v

∂x2
− ∂2v

∂y2
. (A7)

Due to the periodicity of u and v, we have ∂2u/∂x2 + ∂2u/∂y2 = −k2u and ∂2v/∂x2 +
∂2v/∂y2 = −k2u. Besides, when marginal conditions prevail, the z component of the vorticity
vanishes [2], i.e., ∇η = 0. Then,

u = 1

k2

∂2w

∂z∂x
= −DW

3k2

4π

L
√

3
sin

2π

L
√

3
x cos
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y, (A8)

v = 1
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The flow in an arbitrary vertical plane is complicated, but there are two relatively simple cases
in the planes x = 0 and y = 0. Using Eqs. (A1), (A8), and (A9),

u = 0,

v = −DW

3k2

4π

3L

(
1 + 2 cos

2π

3L
y

)
sin

2π

3L
y (in the plane x = 0),

w = 1

3
W
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2 cos

2π

3L
y + cos

4π
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y
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(A10)

and

u = −DW

3k2

4π√
3L

sin
2π√
3L

x,

v = 0 (in the plane y = 0),

w = 1

3
W

(
2 cos

2π√
3L

x + 1

)
. (A11)

Equations (A1), (A10), and (A11) are analytical solutions of velocity of the hexagon at specific
planes.

APPENDIX B: LINEAR STABILITY ANALYSIS OF AN ETC FLOW

To study dissipative structures formation in an ETC flow, we start from an initial field that
represents a stationary state of the system. After undergoing infinitesimal disturbances, only some
components of the wave-number spectrum of the convective disturbance grow. Using linear stability
analysis, we can determine the most unstable mode and the corresponding critical wave number,
which may provide some guidance for the simulation.

The variables can be written as a summation of the base state (denoted by an overbar)
and the perturbation (denoted by a prime), i.e., u = ū + u′, p̂ = P̄ + P′, E = Ē + E′, q =
q̄ + q′, φ = φ̄ + φ′, θ = θ̄ + θ ′ [41]. Substituting these decomposed variables into Eqs. (1)–
(5), subtracting the governing equations for the base state, and removing the high-order
small quantities, leaving only the first-order term, the linear perturbation equation can be
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obtained [24,34]:

∇ · u′ = 0, (B1)

∂u′

∂t
+ (u′ · ∇)ū + (ū · ∇)u′ = −∇P′ + M2

T
∇2u′ + CM2(q′Ē + q̄E′) + M4Ra

T 2Pr
θ ′ez, (B2)

∇2φ′ = −Cq′, E′ = −∇φ′, (B3)

∂q′

∂t
+ ∇ · [(Ē + ū)q′ + (E′ + u′)q̄ − α∇q′] = 0, (B4)

∂θ ′

∂t
+ u′ · ∇θ ′ = M2

T Pr
∇2θ ′. (B5)

The boundary conditions for the perturbation equation are

φ|z=0,1 = 0, q|z=1 = 0, ∂q/∂z|z=0 = 0, u|z=0,1 = 0, θ |z=0,1 = 0. (B6)

The base states are only functions of the z direction, ū = ū(z)ez, Ē = Ē (z), q̄ = q̄(z), φ̄ = φ̄(z),
θ̄ = θ̄ (z), and can be regarded as hydrostatic solution of different fields at α = 0,

ū = 0, (B7)

Ē = a
√

z + b, q̄ = a

2

1√
z + b

φ̄ = −2

3
a(z + b)3/2 + c, (B8)

θ̄ = 1 − z, (B9)

where a, b, c are three constants dependent on the injection strength C,

2

3
a[(1 + b)3/2 − b3/2] = 1, b = a2

4C2
, c = 1 + 2

3
ab3/2. (B10)

As the pressure cannot be directly obtained, we eliminate the pressure P′ by introducing the wall
vorticity η′ = ∂xv

′ − ∂yu′. After some simple transformation, we have [34]

∂∇2w′

∂t
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[
−ū

∂

∂x
∇2 + ūzz

∂

∂x
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T
∇4

]
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[
φ̄z

(
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∂z2

)
∇2φ′ − φ̄zzz

(
∇2 − ∂2

∂z2

)
φ′

]

+ M4Ra

T 2Pr

(
∇2 − ∂2

∂z2

)
θ ′, (B11)

∂η′

∂t
= − ū

∂

∂x
η′ − ūz

∂w′

∂y
+ M2

T
∇2η′, (B12)

∂∇2φ′

∂t
= ∂∇2φ′

∂z
φ̄z + φ̄zzz

∂φ′

∂z
+ 2φ̄zz∇2φ′ − ū

∂∇2φ′

∂x
− φ̄zzzw

′ + α∇4φ′, (B13)

∂θ ′

∂t
= −w′ ∂θ̄

∂z
+

(
−ū

∂

∂x
+ M2

T Pr
∇2

)
θ ′, (B14)

where the subscript z stands for the spatial derivative along the z direction.
The above equation can be written in a more compact form [24],

A
∂γ

∂t
= Bγ → ∂γ

∂t
= Lγ, (B15)

where γ =[v′, η′, φ′, θ ′]T is the vector form of the variables to be solved. A and B are coefficient
obtained from Eqs. (B11)–(B14); L = A−1B represents the linearized NS operator for the ETC flow.
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Under the wavelike assumption [24], the flow variables can be written as

f (x, y, z, t ) = f̂ (z, t ) exp(iαx + iβy) = f̂ (z) exp(−iωt ) exp(iαx + iβy), (B16)

in which α and β are the real-valued streamwise and spanwise wave numbers. and the complex-
valued ω is the circular frequency of the perturbation, with its real part ωr representing the phase
speed and its imaginary part ωi representing the growth rate of the linear perturbation. Substituting
Eq. (22) into Eq. (21), we have [24]

−iωγ̃ = Lγ̃, (B17)

where −iω is the eigenvalue and γ̃ is the corresponding eigenvector.
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