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Collisions of micron-sized charged water droplets in still air
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We show that the relative dynamics of charged water droplets settling in still air contains
fixed points determined by the combination of hydrodynamic interactions, particle and
fluid inertia, and electrostatic forces. For droplets with large enough opposite charges,
the stable manifold of a saddle forms a separatrix that divides colliding trajectories from
those that do not collide. We analyzed experimental data of hydrodynamically interacting,
micron-sized water droplets in still air with Lagrangian droplet tracking and with a numer-
ical model including gravity, particle inertia, hydrodynamic interactions, fluid inertia, and
Coulomb interactions. The predictions of the model are in excellent agreement with the
experiments. A consequence of our findings is that, for large charges, collision outcomes
are not sensitive to the breakdown of hydrodynamics at small distances.
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I. INTRODUCTION

The collision-driven growth of small water droplets in air is of great importance in atmospheric
physics [1]. Cloud droplets tend to carry charges in thunderclouds but also in warm rain clouds
[2], and the resulting electrostatic forces affect droplet-collision rates and thus the droplet-size
distribution. The collision dynamics of charged cloud droplets has been studied by numerical
integration of model equations. But it is not known when these models work, how they fail, and how
Coulomb forces compete with hydrodynamic effects to determine the rate at which charged droplets
settling through a cloud grow by collision. Even for still air, in the absence of cloud turbulence, there
is no theory explaining the parametric dependence upon charge, droplet size, and velocity.

Several mechanisms affect droplet collisions between neutral droplets settling in a quiescent
fluid. Hydrodynamic interactions bend the path of one droplet around a second one [Fig. 1(a)],
reducing their chance of colliding. Particle inertia may cause droplets of different sizes to collide
nevertheless, because it allows them to detach from the streamlines of the flow [3,4]. Yet this mech-
anism does not allow equally sized droplets to approach in the creeping-flow limit, a consequence
of time-reversal symmetry. Fluid inertia breaks this symmetry and enables droplets of the same size
to approach, as shown by Klett and Davis [5]. However, their approximation of the hydrodynamic
interactions fails as the droplets approach. Early experiments [6] designed to check the theory of
Klett and Davis [5] are inconclusive because they used an updraft to keep the droplets within the
field of vision of the cameras, with unclear consequences [7,8]. More fundamentally, Klett and
Davis [5] did not consider how the hydrodynamic approximation breaks down below the mean free
path. This is important because this effect regularizes an artificial singularity of the hydrodynamic
force [9,10], which would otherwise prevent droplets from colliding.
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FIG. 1. (a) Spatial separation of neutral droplets in the rest frame of the smaller droplet (green disk).
Experiments (solid lines) and fitted simulations of Eqs. (1) (dashed lines). Blue lines indicate that the
experiment resulted in a collision, red lines a miss. The inset shows false-color snapshots from the video
recording of two noncolliding trajectories. (b) Same but for oppositely charged droplets. The inset shows two
colliding trajectories. The red encircled cross indicates the location of a saddle point (see text) at (0,�y∗),
together with its stable and unstable manifolds (solid black lines). As t → −∞, the stable manifold connects
to an unstable fixed point at (∞, bc ). (c) Relative velocities for charged droplets. The blue encircled cross
indicates the fixed point at infinity.

Coulomb interactions compete with hydrodynamic effects, particle inertia, and fluid inertia.
The effects of charge on droplet collisions is understood on a rudimentary level: opposite charges
increase collision efficiencies, and charges are more important for smaller droplets than for larger
ones [1,2]. Davis [11] finds that more than 800 elementary charges are needed for the Coulomb force
to noticeably change the collision efficiency for 20 μm droplets, the typical size of cloud droplets,
but Tinsley and Zhou [12] state that at least 10 000 elementary charges are required. Semonin and
Plumlee [13] quote a limit of 6000 elementary charges.

Early model calculations could not resolve these discrepancies because they neglected hydro-
dynamic interactions and fluid inertia [14], causing the model to break down for realistic charges
[15]. More recent model calculations [16,17] contained hydrodynamic interactions, but only ap-

043601-2



COLLISIONS OF MICRON-SIZED CHARGED WATER …

proximately [5]. It is not known whether the model works, even qualitatively, or not. In addition,
these numerical studies were restricted to selected droplet radii and charges, and could therefore not
resolve the uncertainties mentioned above. More importantly, a lack of experimental data makes it
impossible to validate the models, even for droplet collisions in still air.

We therefore investigated the collision dynamics of water droplets settling in still air, using
Lagrangian tracking [18] to analyze experimental data on collisions of charged water droplets in
still air. The data were collected with a setup similar to that described in Hanstorp et al. [19]. We
explain the observed collision dynamics [Figs. 1(b) and 1(c)] by characterizing its fixed points and
their invariant manifolds. Our analysis describes how the collision dynamics depends on droplet
charges and radii, amongst other parameters. The theory is accurate for the charges we consider. We
discuss how it breaks down for smaller charges.

II. BACKGROUND

Figure 1 shows two components of the spatial separation between two settling droplets, �x
and �y, in the rest frame of the smaller droplet. Gravity points downwards. Whether the droplets
collide is determined by the impact parameter b, the �x coordinate at �y = ∞. The collision
efficiency is defined as b2

c/(a1 + a2)2 [1], where bc is the impact parameter of the grazing path,
and a1 and a2 are the droplet radii. The motion of a single water droplet in still air is controlled
by three non-dimensional numbers: St, Rep, and Sl. The Stokes number St= (τcγ )−1 compares
the particle relaxation time γ −1 to τc, the characteristic acceleration timescale due to electrical
charges on the droplets, τc = √

a/ac, where ac is the Coulomb acceleration upon contact. The Stokes
constant is γ = 9ρfν/(2a2ρp) with fluid-mass density ρf , kinematic viscosity ν, droplet radius a,
and droplet-mass density ρp. Fluid inertia resists the motion of the surrounding air that moves
along with the droplet. This effect is quantified by the particle Reynolds number Rep = av/ν,
where v is the relative speed between the droplet and the air. An accelerating droplet accelerates
the surrounding air. The magnitude of this unsteady effect is quantified by the Strouhal number,
Sl = a/(vτc).

In the presence of a second droplet, a fourth non-dimensional number a/R (center-to-center
distance R between the droplets) determines the strength of hydrodynamic interactions between the
droplets, which can be computed as a perturbation expansion in a/R. In the creeping-flow limit, this
corresponds to the method of reflections [9]. As mentioned above, fluid inertia becomes important
for similar-sized droplets. One can account for this effect by perturbation theory in Rep [20]. A
fifth parameter, the Knudsen number Kn, is defined as the ratio of the mean free path of air to the
droplet radius. For neutral droplets, the breakdown of hydrodynamics must be considered at small
interfacial separations s ≡ R − (a1 + a2), when s/a is of the order of Kn or smaller [10].

The Coulomb number, Cu, is commonly used to quantify the effect of electrical charges on
the droplet dynamics. This nondimensional parameter is defined as Cu = |EC|/Ekin, where EC =
keq1q2/(a1 + a2) is the Coulomb energy upon impact (Coulomb constant ke, droplet charges q1

and q2, and droplet radii a1 and a2), and Ekin is the kinetic energy based on the initial relative
velocity. Defined in this way, Cu parametrizes the critical collision efficiency for the central-force
problem [21], without dissipation or hydrodynamical interactions. The definition is analogous to the
non-dimensional number used to quantify the effect of electric charge on coagulation in Brownian
suspensions [22]. Lu et al. [23–25] define an analogous parameter to describe the effect of charge
on spatial clustering of droplets in turbulence.

III. METHODS

A. Experimental data

The measurements reported here were taken using a setup similar to the one described by
Hanstorp et al. [19]. For details, see Appendix A. Droplets between 17 and 25 μm in radius
were generated using inkjet-printer nozzles [26]. The oppositely charged droplets carried about
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105 elementary charges. The neutral droplets had less than 2500 elementary charges per droplet.
Two nozzles were angled so that collisions and near-collisions could be observed simultaneously by
two high-speed cameras. Electrical charge was imparted to the droplets by applying a DC voltage
to an electrode near the dispenser nozzle [19]. The resulting charge-per-mass ratio was measured
separately by allowing single droplets to fall between two parallel charged conducting plates.

B. Tracking

We estimated the radii and positions of droplets using the circle-fitting method of Pratt [27]
as described by Kearney and Bewley [18]. They tested this method on synthetic data similar to
the present experimental data, and demonstrated that the algorithm outperforms other methods in
measuring the sizes and positions of droplets in high resolution, in particular when the droplet
images overlap in the camera plane.

We tracked the droplets separately in each camera plane using the hybrid method discussed in
Ref. [18]. The internal clocks of the two cameras were not synchronized, therefore we determined
the time delay between the cameras using the moment of collision as a reference. We excluded any
video recordings in which no collisions occurred. We reconstructed the three-dimensional trajec-
tories assuming the optical axes of the cameras were orthogonal, taking the x and y- coordinates
from one camera and the z coordinates from the other one. The uncertainty in finding the droplet
positions in the digital images was less than half a pixel [18] or about 0.9 μm.

Droplet radii were measured using images from camera 1, collinear with the z axis, because the
images recorded by camera 2 were not uniformly illuminated, causing a bias in the measured droplet
sizes. We found that the minimum of the time signal of measured droplet radius along a trajectory
corresponded to the image frame which was in best focus. However, we used the 10th percentile
of the signal, instead of the minimum, as our estimate for the true droplet size because it is robust
to noise [28]. The radii thus measured contained a systematic error that we corrected by estimating
bounds on the radii using information near collisions. An upper bound for the sum of the radii is
the minimum separation distance immediately prior to collision plus the uncertainty in finding the
droplet positions, mentioned above. A lower bound is given by the predicted separation distance in
one time step (using the velocity estimates at the end of each trajectory, described below) minus
the uncertainty in the droplet positions. The mean of these two bounds agreed well with the radii
of the droplets measured directly from camera 1 once a correction factor of 0.85 was applied. This
correction factor is required for two reasons, both of which lead to an increase in the estimated
droplet size. First, a Gaussian blur in the droplet-identification algorithm leads to an overestimate
of the droplet size. Second, diffraction patterns increase the perceived droplet size.

Droplet velocities were calculated using a two-point, forward finite-difference method and
smoothed with a Gaussian filter of window size of either 1 or 0.4 ms, depending on the frame rate of
the cameras. This filter size was large enough that it reduced the effect of noise due to uncertainty in
the droplet positions, but it was smaller than the relaxation time of the droplets. We discarded short
trajectories (fewer than ten data points) that were more likely to contain tracking errors.

C. Collision detection

The collision detection method discussed in Ref. [18] cannot be applied to find collisions in the
present data because the time it takes two droplets to coalesce into one stable, spherical droplet was
longer than the time between each image recorded by the cameras. Instead, in order to determine
collision outcome, we used the following three criteria: (1) Two trajectories end (parents) and a
new trajectory begins (daughter) within at most 16 frames. (2) The daughter must have a radius
equal to the calculated radius that preserves the mass of the parents (within threshold 2 μm). (3)
The daughter may not coexist with any other trajectories. The first criterion provides a permissive
threshold for the coalescence time, the time it takes the daughter droplet to achieve a stable spherical
shape (rather than oscillating between a prolate and oblate spheroid). The second criterion enforces
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conservation of mass when no fragmentation occurs upon collision, which was the case due to the
small droplet size [29]. The final criterion prevents a simultaneous interruption in two trajectories
from causing a false positive collision detection.

If all the above criteria were fulfilled, we considered a collision to have occurred. If a collision
was not found by the criteria above, but the inward component of the relative velocity vector was
positive at the final moment of observation, then we marked the event as inconclusive. These were
cases in which the collision might or might not have occurred outside the observation volume of the
cameras. Otherwise, the event was marked as a miss.

D. Model

In the experiments, droplet Stokes numbers were quite large, in the range 1 < St < 3, and the
Coulomb number was in the range 3 < Cu < 10. Therefore our model takes into account particle
inertia in addition to Coulomb interactions. The equation of motion for droplet j with mass mj is

ẋ( j) =v( j), mj v̇
( j) = F ( j)

g + F ( j)
e + F ( j)

h (1)

for j = 1, 2. Here F ( j)
g = mjg is the gravity force with gravitational acceleration g. The electrostatic

force F ( j)
e is modelled by the Coulomb force Fe = keq1q2R/R3, with center-to-center distance

vector R and R = |R|. As a first approximation, we neglect corrections to the Coulomb force due to
induced charges [2].

The hydrodynamic force F ( j)
h is computed to linear order in a/R using the method of reflections,

taking into account fluid-inertia effects at large separations and for small particle-Reynolds numbers
[20]. The method yields an approximate, iterative solution of the Oseen equation using the Green
function derived in Ref. [20]. Unsteady effects matter when the Coulomb force causes rapid
accelerations. We use the approximate history force for hydrodynamically interacting droplets
derived by Ardekani and Rangel [30], and we neglect added-mass effects. The resulting model
for the hydrodynamic force for droplet j reads

F ( j)
h = − 6πμa j

(
1 + 3

8

a jv
( j)

ν

)(
v( j) − u(i, j)

)
− 6πμa j

∫ t

0
dτ K( j)(t − τ ) d

dτ

[
v(1)(τ )
v(2)(τ )

]
. (2)

The first term in Eq. (2) describes the effect of fluid inertia, where u(i, j) is the disturbance velocity
induced at the position of droplet j by droplet i. The droplet-induced velocity field u(i, j) is calculated
to linear order in a/R [20],

u(i, j) = e− 1
2ν

(v(i)R+v(i)·R) f (i)

8πμR

+
{
1−

(
1+ v(i)R

2ν

)
e− 1

2ν
(v(i)R+v(i)·R)

}
f (i)

ρfv(i)

R
4πR3

. (3)

Here f (i) = 6πνρf aiv
(i) is the force applied by droplet i on the fluid. The second term in Eq. (2) is

a history force. The kernel K( j)(t − τ ) is obtained by expanding the result of Ardekani and Rangel
[30] to order a/R, to be consistent with the order of the reflection method considered. Note that
Ardekani and Rangel [30] obtained the kernel by solving the unsteady Stokes equation; fluid-inertia
corrections to the kernel are not accounted for.

The approximate hydrodynamic force (2) is valid when the droplet separation is much larger than
their radii. It fails at small interfacial distances. Previous studies, for instance by Klett and Davis [5]
and Schlamp et al. [16], used models similar to ours. Klett and Davis [5], for example used the Oseen
equation with an ad hoc rescaling of the particle Reynolds number, Rep → Rep[1 − 0.08 ln(1 +
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50 Rep)] [1,31], to compute the effect of fluid inertia on small droplet collisions, assuming that the
droplet dynamics is two dimensional. In addition, neither our model nor the models in the studies
mentioned above account for breakdown of hydrodynamics when the interfacial droplet separation
becomes comparable to the mean free path of air, and thus cannot describe collisions of neutral
droplets [10].

E. Fitting of experimental data

In this section we discuss the procedure used to fit the model equations, Eq. (1), to the exper-
imental data. Figure 1 shows the experimental and fitted trajectories for two measurements, one
with neutral droplet pairs and one with charged droplet pairs. Table I compares the fitted radii and
charges to those measured experimentally. While the fitted radii are consistent with the reported
radii within error estimates, the fitted charges are smaller than the experimentally reported charges;
see Appendix B and Table I. Note that Table I shows the charge squared which has an error about
twice as large as the charge magnitudes. In addition, Fig. 4 shows a shift in the distributions of
the charge-per-mass even for measurements performed on the same day. We expect the difference
between fitted and experimentally observed values, and the shift in charge-per-mass distributions,
to be caused by systematic errors in alignment of the web camera used to measure the fall angle
of single droplets for determining charge: an upward or downward tilt of the camera would tend to
cause an overestimate of the deflection angle. Additionally, it was necessary to clean the dispenser
nozzles at regular intervals to prevent clogging, which may have altered the charge imparted to the
droplets.

Using droplet radii and charges as fitting parameters, we used least-squares fitting to fit the
droplet trajectories obtained by numerical integration of the model, Eq. (1), to the experimental
trajectories. The initial positions and velocities were chosen to be the same as in the experiments. For
each event, the experimental relative separation in time and the center-of-mass position in time were
fitted to the corresponding trajectories obtained by numerical integration of the model equations.
The fitting parameters were chosen to be radii for the two droplets and the product of their charges.
We assumed that the droplet sizes did not vary significantly within a measurement so that there are
only two radii parameters per measurement. This claim is backed up by our observations. Thus,
during fitting, multiple events within the same measurement were simultaneously fitted assuming
the droplet radii were the same for all events. The reason for fitting products of droplet charges is
that this is the relevant parameter determining the Coulomb force. We fitted a different value of this
product per event, to account for uncertainty and systematic errors in droplet charge measurements.
Thus, for n fitted events, the number of fitting parameters was n + 2. The trajectories were fitted
from the moment when the center-to-center droplet separation was 6(a1 + a2), up until they reached
a separation of 2(a1 + a2) for the first time, or until they were last observed together.

F. Fixed-point analysis

Relative droplet dynamics takes place in nine dimensions: the separation R, the relative velocity
�v = v(2)−v(1), and v(1). The separation R obeys the equation of motion

Ṙ=�v, �v̇= m1+m2

m1m2

keq1q2

R3
R + F (2)

h

m2
− F (1)

h

m1
. (4)

To characterize the droplet dynamics, we searched for fixed points of this dynamical system and
analyzed their stability. The fixed-point conditions are Ṙ = 0 (constant droplet separation at saddle
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TABLE I. Table comparing fitted charges and radii to experimentally reported values. The first column
shows the measurements and the numbered events within each measurement (arbitrary indexing for events).
Bold corresponds to a colliding trajectory while italic corresponds to a noncolliding one. Normal typeface
corresponds to an inconclusive trajectory (see Sec. III C). The second column shows the fitted droplet radii
with the experimentally reported radii in parentheses. The third column shows the squares of fitted charges
(in units of 10−9 elementary charges squared), with the corresponding reported values in parentheses. The
measurements 2018_07_25_measure_00_collision_08 and 2018_07_26_measure_00_collision_03 correspond
to the events plotted in Fig. 1(a) and Figs. 1(b), 1(c), respectively, in the main text.

Measurement Radius fitted (reported) (μm) Charge fitted (reported) ( q1q2
e2 10−9)

2018_07_25_measure_00_collision_08 (0.0037 ± 0.003)
494
487
489
475 20.5 (21.3±2.0)
483 24.4 (25.2±2.5)
480
492
497
2018_07_26_measure_00_collision_03 (−4.1 ± 2.7)
390 −3.4388
392 −3.4652
393 −3.3997
395 19.5 (20.0 ± 2.0) −3.4035
402 23.7 (24.2 ± 2.4) −3.3148
394 −3.3662
386 −3.0987
403 −3.4289
2018_07_26_measure_00_collision_04 (−4.0 ± 2.6)
347 −2.5983
352 −2.6106
357 −2.4186
362 20.4 (20.6 ± 2.1) −2.4534
367 24.4 (24.0 ± 2.4) −2.2638
372 −2.2688
377 −2.4077
2018_07_26_measure_00_collision_02 (−4.1 ± 2.8)
405 −2.8858
408 −3.1250
411 −2.9430
414 20.0 (20.3 ± 2.0) −2.9892
417 23.7 (24.0 ± 2.4) −2.7313
420 −2.8954
423 −2.9454
426 −2.2981
406 −2.9431
2018_07_26_measure_00_collision_00 (−3.6 ± 2.4)
446 −3.5093
447 −3.3692
449 20.3 (20.3 ± 2.0) −3.3110
450 23.4 (23.0 ± 2.3) −3.4071
451 −3.2807
452 −3.5480
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TABLE I. (Continued).

Measurement Radius fitted (reported) (μm) Charge fitted (reported) ( q1q2
e2 10−9)

2018_08_06_measure_01_collision_02 (−9.7 ± 4.2)
1042 −5.8879
1043 −6.2777
1044 24.1 (23.8 ± 2.4) −6.0872
1048 26.1 (25.0 ± 2.5) −6.3287
1049 −5.6761
1050 −5.7901

point) as well as v̇( j) = 0 for j = 1, 2. The last two equations yield the conditions

g − ke

m1

q1q2

(�y∗)2
− 6πμa1

(
1 + 3a1v

∗
y

8ν

)
v∗

y

m1
+ 9πμa1a2

(
1 + 3a1v

∗
y

8ν

)
v∗

y

m1

1

�y∗ = 0, (5a)

g + ke

m2

q1q2

(�y∗)2
− 1

m2
6πμa2

(
1 + 3a2v

∗
y

8ν

)[
v∗

y +
(

e− �y∗v∗
y

ν − 1

)
3

2

a1ν

�y∗

]
= 0. (5b)

Equations (5) must be solved simultaneously for the fixed-point coordinates v(1)∗ = (0, v∗
y , 0) and

R∗ = (0,�y∗, 0). Note that the history force does not appear in Eqs. (5) because the droplets
experience no acceleration at the saddle point. In summary, at the fixed point the droplets fall
together at fixed separation �y∗ with the common velocity v∗

y . Analysis of the dynamics in the
vicinity of the fixed point [Fig. 1(b)] shows that it is a saddle point [32].

Next we describe the dynamics close to the fixed points at infinity. When the droplets are
infinitely far apart, they settle at their respective settling velocities. There is a fixed point of the
relative droplet dynamics when �y = ±∞. But how do the dynamics change when the droplets are
at a large but finite separation? At a large separation, �ẏ = �vy < 0 in our convention. Thus, �y
decreases from a large separation so that if �y > 0 the system moves away from the fixed point but
if �y < 0 the system moves towards the fixed point at infinite separation. Thus, the fixed points at
infinite separation are unstable when �y > 0, but stable when �y < 0.

For oppositely charged droplets, the larger droplet encounters the saddle point below the smaller
one [red crosses in Figs. 1(b) and 1(c)]. The stable manifold of the saddle point connects to an
unstable fixed point at infinity, where the droplets fall at their independent settling velocities [blue
cross in Fig. 1(c)]. There is a continuum of such unstable fixed points, but only one connects to
the saddle point. The connecting invariant manifold between the fixed points forms a separatrix that
separates trajectories with qualitatively different behaviors [32].

IV. RESULTS

Consider first the dynamics of neutral droplets. Figure 1(a) compares measured spatial separa-
tions with numerical model trajectories. We see that the model works reasonably well, although the
fits become worse for separations smaller than 2(a1+a2). Noncolliding trajectories for which the
particle separation remains large fit better than colliding ones. However, note that the noncolliding
trajectory passing closest to the smaller droplet shows the largest deviation: while the experimental
trajectory shows the larger droplet traveling at a fixed separation as it tumbles around the smaller
one, the numerical model trajectory collides. The reason for this discrepancy is that the model does
not contain higher-order corrections in a/R (lubrication forces [9]) needed at small separations.
However, even with lubrication forces, the model cannot be used to compute collision efficiencies
for neutral droplets, because they are determined by the breakdown of the hydrodynamic approxi-
mation below the mean free path [10] in the absence of charges.
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FIG. 2. (a) Location �y∗ of the fixed point in Fig. 1(b) as a function of Coulomb number Cu, for Eqs. (1)
with a1/a2 = 0.8 (black), and without hydrodynamic interactions and without fluid inertia (blue, dash-dotted).
(b) �y∗ as a function of droplet-radius ratio for different charges for the full model (solid), and excluding
fluid inertia (dashed). Red, blue, and green correspond to charges of 6 × 103, 6 × 104 and 3 × 105 elementary
charges for one of the droplets, while the second droplets charge is kept fixed at 8.2 × 104 elementary charges.
(c) Escape time tesc normalized by the interaction timescale τ0 = (a1 + a2)/|�v0| plotted as a function of the
difference of the impact parameter b from the critical impact parameter bc, defined in the main text. Blue
circles correspond to data points for which b < bc, red triangles are for b > bc. Red and blue lines show
fitted exponential laws with slope −3.58 ± 0.02. (d) Approximate collision efficiency using an approximate
impact parameter b̃c computed at the largest experimentally observed vertical separation, �y ≈ 6(a1 + a2).
Blue crosses and red circles correspond to experimentally observed collisions and misses, for the charged
cases listed in Table I (the charges and droplet-radius ratios used to compute the Coulomb number for the
experimental data are the fitted values given in Table I). Also shown are results of model calculations for radius
ratio 0.8 (upper gray line) and 0.9 (lower gray line). See text for further details.

Relative trajectories of oppositely charged droplets are shown in Fig. 1(b). The electrical charges
change the phase-space dynamics entirely, compared with the neutral droplets in Fig. 1(a). Now the
larger droplet overtakes the smaller one before colliding [inset in panel (b)]. This cannot happen for
neutral droplets, for which collisions always occur when the larger droplet is above the smaller one.
The experimental trajectories suggest that the stable manifold of a saddle point forms a separatrix
between the colliding and noncolliding trajectories. This is confirmed by the numerically simulated
trajectories, where we fitted droplet charges in addition to droplet radii. The obtained charges were
smaller than the experimental estimates, likely due to systematic errors in the experimental charge
measurements, as discussed in Sec. III E above.

The corresponding relative velocities are shown in Fig. 1(c). The model accurately captures
the observed relative velocities. We see that the relative speeds of the droplets decrease as they
approach, dissipated by hydrodynamic interactions. All relative trajectories start close to an unstable
fixed point where the droplets are infinitely far apart. At long times they either end up colliding, or
converge to a stable fixed point where the droplets settle independently.

In summary, Figs. 1(b) and 1(c) suggest that for oppositely charged droplets the stable manifold
of a saddle point forms the separatrix which explains droplet-collision outcomes. In other words,
its �x coordinate approaches bc as �y → ∞. Noncolliding trajectories converge to a stable fixed
point at infinite separation. Colliding trajectories remain outside the circular region demarcated by
the separatrix. By contrast, Fig. 1(a) shows that no such saddle point exists in the case of neutral
droplets.

Figures 2(a) and 2(b) show how the location of the saddle point changes as the droplet charges
and radius ratio are varied. In order to understand this dependence, we start by discussing the
origin of the saddle point. The saddle point in Figs. 1(b) and 1(c) emerges because gravity and
hydrodynamic forces in Eq. (4) break the rotational symmetry of the Coulomb problem. In the
absence of these perturbations, the solutions are periodic orbits determined by the balance between
the attractive Coulomb force and the repulsive centrifugal force [21]. The Coulomb number Cu
determines the radius of these orbits, equal to Cu (a1 + a2). In the presence of gravity and hydro-
dynamic effects, by contrast, the Coulomb force is balanced by hydrodynamic forces. Solving the
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fixed-point condition, Eqs. (5a) and (5b), for v∗
y and �y∗ yields

|�y∗|2 = −keq1q2(m1 + m2)

m1F (2)
h,y (�y∗, v∗

y ) − m2F (1)
h,y (�y∗, v∗

y )
. (6)

Asymptotic expressions for �y∗ can be obtained in the limit of large charge and when a1 → a2.
As the charge magnitude increases, so does �y∗, while v∗

y asymptotes to a constant value. Con-
sequently, at large charges the first three terms in Eq. (5a) are comparable while the last term
vanishes. Similarly, the second term in square brackets in Eq. (5b) vanishes as well. As a result,
F ( j)

h,y in Eq. (6) becomes independent of �y∗ in this limit, and we obtain the asymptotic dependence

�y∗ ∝ √
q1q2 ∝ √

Cu as Cu → ∞, for fixed a1 and a2. This explains the model-simulation results
shown in Fig. 2(a). It also explains why �y∗ becomes independent of hydrodynamic interactions
and fluid inertia at large Cu [Fig. 2(a)]: the corresponding terms in F (1,2)

h,y vanish as |�y∗| → ∞.
The situation is quite different for similarly sized droplets. Figure 2(b) indicates that fluid inertia

causes |�y∗| to become insensitive to charge as a1 → a2, and that fluid inertia plays a major role
in this. When the droplets are far apart, Coulomb attraction (∝ R−2) is negligible compared to
attraction by fluid inertia (∝ R−1). In the limit a1 → a2, �y∗ diverges and one can ignore the
Coulomb terms in Eqs. (5a) and (5b), as well as the exponential term in Eq. (5b), while the other
terms remain of comparable magnitude. Solving for �y∗, we find |�y∗| ∼ |a2 − a1|−1 as a1 → a2.
As |�y∗| diverges, so does bc: droplets always collide in this limit.

Droplet motion close to the saddle point is governed by the linearized dynamics. Figure 2(c)
shows the time tesc a droplet takes to pass close to the saddle point and reach a distance of a1 + a2

from it. The linear stability matrix at the saddle point determines the time tesc which diverges as
tesc ∼ − 1

λ+
ln |b − bc|, where λ+ is the leading eigenvalue of the stability matrix [32]. The stability

of the saddle point (ignoring the history force) can be determined by calculating the eigenvalues,
λi, i = 1, . . . , 9, of the Jacobian at the saddle point. Numerical diagonalization gives one eigenvalue
with a positive real part and eight eigenvalues with negative real parts, Real(λ1) > 0 > Real(λ2) �
Real(λ3) � · · · � Real(λ9). The eigenvalue with positive real part corresponds to an eigenvector
directed along the positive �y and �vy directions. Numerical computation for typical experimental
parameters [a1 = 19.5 μm, a2 = 23.7 μm, q1 = 6.5 × 10−15 C (41 000 elementary charges), and
q2 = −1.2 × 10−14 C (74 000 elementary charges)] gives Real(λ1) = 139.9/second. Normalizing
this by the interaction time τ0 = a1+a2

|�v0| based on the initial relative velocity of the droplets gives

λ−1
+ = 3.46, in good agreement with the scaling exponent for tesc obtained from integrating model

trajectories, shown in Fig. 2(c). The figure demonstrates that simulations of the escape time,
including the history force, give a scaling tesc ∼ −3.58 ln |b − bc|. We expect that the reason for
the good agreement is that the history force is a small correction, which does not drastically modify
the escape time.

Figure 2(d) shows that our model explains the decision boundary between experimental droplet
collisions and misses, for all charged events considered. The experimental data plotted corresponds
to radius ratios between 0.82 and 0.87, except for one dataset (measurement 2018_08_06_mea-
sure_01_collision_02 in Table I) where a1/a2 ≈ 0.92. The charges and radius ratios used to compute
the Coulomb number for the experimental data are the fitted values given in Table I. Also shown
are results of model calculations for an approximate collision efficiency, based on an approximate
impact parameter that was evaluated at the largest experimentally observed droplet separations.
Since the radius ratios vary in the experimental data, we plotted two model results, for a1/a2 = 0.8
(upper curve), and for a1/a2 = 0.9 (lower curve). The gray-shaded region predicts qualitatively
correctly where the boundary between hits and misses occurs.

V. DISCUSSION

The stable manifolds of the saddle point shown in Figs. 2(b) and 2(c) prohibit the trajectories
in the colliding region (blue trajectories) from escaping, so that they must collide. Further, for the
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charges considered, the droplet separation at the saddle point and along its stable manifolds remains
large enough so that they are not influenced by lubrication effects. Yet, as discussed in Sec. III D, our
model is valid only when the droplet separation is large compared to their radius, for small values of
a/R, and must fail when the droplet separation becomes small as for the colliding trajectories. What
happens at these small separations, when the interfacial distances s 
 a? Consider first how the
hydrodynamic interactions compete with the Coulomb force in this limit. At small s, the leading-
order electrostatic force for two equally sized droplets (with radius a and mass m) is Fe = −ke(q1 −
q2)2[2as (ln 4a

s )2]−1 [34]. Also the leading-order hydrodynamic interaction (the lubrication force)
diverges, as −6πμa2�v/s [9]. Adding Coulomb interactions to the small-s equation of motion
from Ref. [10] we find

ṡ = �v, (7a)

m

2
�v̇ = −6πμa2 �v

s
− ke(q1 − q2)2

2as(ln 4a
s )2

. (7b)

In the limit s → 0, Eq. (7b) becomes overdamped, so that the relative velocity is given by

�v = −ke(q1 − q2)2

12πμa3

1

(ln 4a
s )2

. (8)

This equation implies that the droplets collide in finite time because the electrostatic forces over-
power the lubrication forces. Note that while this analysis applies to equally sized droplets, the
qualitative conclusion remains the same for droplets with radius ratio close to unity. Also, the
divergence of the lubrication force at small s is cut off by the breakdown of hydrodynamics at
distances smaller than the mean free path [10]. This does not change the conclusion, because it
tends to weaken the effect of hydrodynamic interactions. In summary, the Coulomb force dominates
at small separations s; neither lubrication forces nor their regularization by the breakdown of
hydrodynamics make a difference.

For neutral droplets, by contrast, the breakdown of hydrodynamics is essential for droplet
collisions, and the collision efficiency depends on Kn [10,35]. This limit is not obtained from our
simplified model which must fail when the interfacial distance s at the fixed point, or at any point
along the separatrix, becomes of the order of the mean free path. This is not the case when the
droplet charge is large enough, as in the experimental data considered here, but might happen at
smaller charges.

VI. CONCLUSIONS

We explained the qualitative nature of the collision dynamics of oppositely charged droplets
settling in still air, and determined its parameter dependence by analyzing its fixed points, their
stability, and their invariant manifolds. We found that a manifold connecting a saddle and an
unstable fixed point separates colliding trajectories from noncolliding ones. Our analysis determines
how Coulomb forces compete with inertial and hydrodynamic forces to determine the collision
dynamics, and predicts how the collision efficiency of charged droplets settling in quiescent air
depends on their charges. These main conclusions of our analysis are in good agreement with the
experimentally observed collision dynamics of highly charged droplets, at high Coulomb number
Cu. Our analysis allowed us to conclude that the collision efficiency of highly charged droplets does
not depend on the Knudsen number, because the collision dynamics is determined by a separatrix
along which the droplets are much further apart than the mean free path, for large Cu.

At smaller values of Cu, the saddle point may occur when the droplets are very close. When
their interfacial distance at the saddle point (or on any point on the separatrix) is of the order of
the mean free path, the collision efficiency is expected to depend on Kn. In order to determine a
critical Coulomb number where the breakdown of hydrodynamics becomes important, one needs
to consider higher-order corrections in a/R—not only to the electrostatic force, but also to the
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hydrodynamic interactions (lubrication force)—and one must take into account the regularization of
the lubrication force at interfacial distances smaller than the mean free path. In this limit, the precise
location of the separatrix is surely affected by how noncontinuum effects regularize lubrication
forces. While it is a challenge to find reliable approximations when the droplets are close, we
nevertheless expect that the fixed-point analysis described in this paper will enable progress. Since
the collision dynamics is discontinuous, bifurcation mechanisms observed in nonsmooth dynamical
systems [36] may become important.

In our manuscript, we considered the significance of the parameters Cu and Kn. For the remaining
dimensionless parameters (the radius ratio, Stokes number, particle Reynolds number, and Strouhal
number), we assumed values characteristic for the experiment. Preliminary model simulations
suggest that the collision dynamics is not sensitive to changes in these dimensionless parameters,
at least in the parameter range considered here. We leave a detailed study of these effects to future
work.

Concerning droplet growth by collision and coalescence, note that collision kernels depend not
only upon the critical impact parameter but also on relative velocities [37]. Since this velocity
vanishes at the saddle point, droplets may collide at smaller relative velocities compared to neutral
droplets, at least at small charges where the saddle point occurs for nearby droplets. This could give
weakly charged droplets more time to interact.

While our charges are considerably smaller than those in the innovative study of spatial droplet
patterns in turbulence [23–25], they are nevertheless larger than the charges in warm clouds by about
one order of magnitude [38]. To validate models for the dynamics of closely approaching droplets,
measurements for weakly charged droplets are necessary.

Updrafts in clouds cause air turbulence which may affect the cloud-droplet collisions [39].
Turbulent strains increase the collision rate of very small, neutral droplets [40]. Recent numerical
simulations of droplet collisions in a straining flow exhibit a rich variety of different dynamical
behavior in this regime, as well as intricate parameter dependencies [35]. For larger Stokes numbers,
as in the present paper, the effect of particle inertia can significantly enhance the Saffman-Turner
collision rate [41–43]. It remains an open question how turbulence competes with the collision
mechanisms studied in the present paper.

Lu et al. [23,24] and Lu and Shaw [25] measured the effect of electrostatic charges on the spatial
distribution of droplets in turbulence on scales much larger than the droplet size. Little is known
about the effect on smaller spatial scales, where hydrodynamic interactions must begin to matter.
How does the spatial clustering observed by Lu et al. develop as the charges become smaller? This
is a challenging question, not least because recent experiments [44,45] suggest evidence for extreme
spatial clustering of small droplets in turbulence, which remains to be understood.

Finally, an important open question concerns the fluctuations of relative velocities of weakly
charged droplets in turbulence. The phase-space dynamics in the presence of an external flow is
expected to be quite different from that shown in Figs. 1(b) and 1(c), but we expect that a systematic
bifurcation analysis will reveal the underlying mechanisms, at least for steady flows.
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APPENDIX A: EXPERIMENTAL SETUP

We analyzed collisions between pairs of droplets approaching each other in still air using
data that was obtained with a set up developed by Hanstorp et al. [19] and Ivanov et al. [46].
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FIG. 3. Experimental setup. Shown are the two droplet dispensers (top), the two cameras at right angles
(bottom), and two droplets paths. The axes of the cameras are parallel with the x and z axes.

Droplets were generated using inkjet-printer technology as described by Sergeyev and Shaw [26].
Two printer nozzles were angled at each other such that collisions and near-collisions occurred
in the observation volume where the fields of view of two high-speed cameras (Phantom Miro
Lab310 from Vision Research) were aligned. Optical traps [19] were not used. We defined the
laboratory-frame coordinates to be collinear with the axes of the cameras, so that one camera
pointed along the z axis (viewing images in the x-y plane), and the other was aligned with the
x axis (viewing images in the y-z plane). Gravity pointed in the negative y direction to within
3◦. The setup is shown schematically in Fig. 3. The cameras were equipped with long distance
microscopes (Model K2 DistaMax from Infinity) so that the droplet images were magnified by
about 11 times. The resolution of each camera was measured by taking a picture of a flat calibration
mask (Thorlabs model R2L2S3P1). The spatial resolution of each camera was was found to be 1.78
and 1.70 μm/pixel. The uncertainty in the resolution is ±10% [46].

The droplet generators were triggered such that pairs of droplets were generated one after another.
This allowed between 1 and 40 approaching droplet pairs to be recorded in the same measurement
before the memory of the cameras filled up. The droplet pairs were generated slowly enough that
no more than two droplets were in the observation volume at once. Charge was imparted to the
droplets by applying a DC voltage to an electrode near the dispenser nozzle as in Hanstorp et al.
[19]. Each measurement was stored in the Phantom camera .cine format, which includes both the
image data and metadata such as date of collection and frame rate. The data files are labeled as
follows: YYYY_MM_DD_measure_XX_collision_XX. Here, YYYY_MM_DD refers to the date
on which the measurement was performed. The numbers following measure and collision are labels
for different measurements. The sampling rate of the cameras were set to either 8500 or 25 000
frames per second, depending on the experiment.

A total of 1291 droplet pairs were observed, with radii between 20 and 26 μm (see Table I)
and impact parameters b̃ between about 0.1 and 6. As explained in the main text, this approximate
impact parameter was computed at the observed initial separation of the droplets, which varied
between 2(a1 + a2) and 6(a1 + a2). In the absence of external forces, it is equal to 0 when the
droplets approach each other head on, and approximately 1 during a grazing collision where the
droplets touch edges with the relative velocity perpendicular to the separation vector. The impact
parameter varied from event to event because of randomness in the droplet generation process,
and it varied between different sets of experimental conditions because of changes to the droplet
generators’ positions and angles. The initial velocity of the droplets could be controlled by changing
the signal sent to the droplet generators, but this signal was not altered during the experiments. In
this Appendix and in Appendix B, we describe all available data collected, although not all data are
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FIG. 4. Estimated droplet charge-per-mass ratios. (a) Primary droplet, before the data were collected.
(b) Satellite droplet, before the data were collected. (c) Primary droplet, after the data were collected.
(d) Satellite droplet, after the data were collected. The color of each distribution indicates the name of the
measurement according to the legend.

used in the main paper. Two video recordings of representative near-contact events are included as
Supplemental Material [33].

The charge-per-mass ratio was measured before and after data collection by allowing single
droplets to fall between two parallel capacitor plates, where each trajectory was observed by a web
camera with a large field of view so that the full path of the droplet between the plates could be
observed [19]. The linear size of the plates was much larger than that of the region of observation,
so it can be assumed that the electric field was homogeneous. The voltage on the charging electrode
was changed manually until the desired deflection of the droplet path was achieved for each of the
two dispensers. To determine the direction of gravity, the single droplets were first observed falling
without any voltage applied.

The deflection angle α of the settling path due to charge on the plates was used to calculate the
charge per mass by

q

m
= gd

U
tan α, (A1)

where g is the acceleration due to gravity, d is the separation distance between the plates (d =
17 mm), and U is the applied voltage difference across the plates (which was set to 100 V). The
distribution of q/m estimated from Eq. (A1) for each set of data is shown in Fig. 4. We refer to the
smaller droplet in each pair as the primary droplet and the larger droplet as the satellite droplet. The
charge-to-mass ratio varies between 1 × 10−6 and 3 × 10−3 C/kg.

The variation in charge-to-mass ratio before and after data collection for each measurement was
within 5 × 10−5 C/kg except for the measurement 2018_07_26_measure_00 wherein it varied by
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FIG. 5. Distribution of estimated parameters. (a) Distribution of droplet-Reynolds numbers. (b) Distribu-
tion of initial speeds divided by the Stokes terminal velocity vg. (c) Distribution of droplet radii. (d) Distribution
of the droplet-Strouhal number. (e) Distribution of droplet charges in number of electrons. (f) Distribution of
radius ratio between primary and satellite droplet.

1 × 10−4 C/kg for the primary droplet. The large shift in the distribution of charge-to-mass ratio in
Fig. 4 from before to after data collection was most likely due to misalignment between the axis of
the web camera and the direction of gravity; an upward or downward tilt of the camera would tend to
cause an overestimate of the deflection angle. Additionally, it was necessary to clean the dispenser
nozzles at regular intervals to prevent clogging, which may have altered the charge imparted to the
droplets.

APPENDIX B: RANGE OF PARAMETERS STUDIED

Figure 5 shows a summary of some important droplet characteristics. Droplet Reynolds numbers
are shown in Fig. 5(a). We define Rep = av

ν
as in the main text, where a is the droplet radius,

v is the average speed of the droplet over the entire time it is observed, and ν = 1.48 × 10−5

m2/s is the kinematic viscosity of air. The data where the satellite droplet achieved Rep > 0.2 are
from 2018_06_20 and 2018_06_27. In these events, the satellite droplets had initial velocities that
were large compared to their Stokes settling speed because they retained momentum from their
emission from the droplet generator. In later measurements, the droplet generators were adjusted so
the satellite droplets had more time to relax to their settling speed. The droplet Reynolds numbers
were small but nonzero.

The ratios of the initial speed of the droplets v0 to their Stokes settling speed vg are shown in
Fig. 5(b). The settling speed is calculated using vg = 2

9
ρp

νρf
a2g, where ρp = 1000 kg/m3 is the mass

density of water, ρf = 1.23 kg/m3 is the mass density of air, and g = 9.81 bm/s2 is the acceleration
due to gravity. The initial speed of the droplets was of the same magnitude as the Stokes settling
speed except for measurements performed on 2018_06_20 and 2018_06_27, where, as mentioned
above, the satellite droplets had initial velocities that were large because they retained momentum
from their emission from the droplet generator.
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The measured droplet radii are shown in Fig. 5(c). An estimate for the droplet radius was
measured at each time the cameras observed a droplet. As discussed in Sec. III B, we used only
size estimates from camera 1 and applied a correction factor of 0.85 to map from the radius of
the shadows cast by the droplets to their actual radii. The values shown here are the distribution
of the 10th percentile from each droplet trajectory. The uncertainty in measuring the droplet radius
from the particle identification algorithm is no more than half a pixel, which corresponds to about
0.9 μm. The dominant source of uncertainty in measuring the radii comes from uncertainty in the
spatial resolution, which is ±10%.

The distribution of the Strouhal number, Sl = a/(vτc) is shown in panel (d). Here τc is the
characteristic acceleration timescale due to electrical charges on the droplets, τc = √

a/ac, where ac

is the Coulomb acceleration upon contact. The distributions show that the Strouhal number ranges
up to 0.3.

The droplet charges are shown in panel (e). We estimated the charges using the average charge-
per-mass for each measurement obtained from the calibration procedure (results shown in Fig. 4)
and the mass of the droplets measured from their size assuming the density was 1000 kg/m3. The
droplets in the present experiment carried between several hundred to about 105 elementary charges,
either positive or negative. The oppositely charged droplets carried between 0.6 × 105 and 1.2 × 105

elementary charges; see Table I. For comparison, 25 μm radius droplets in thunderstorm clouds
carry an average charge of about 0.2 × 105 elementary charges while warm clouds can contain
droplets with an average charge of about 0.2 × 104 elementary charges [38].

Most other studies considered much larger charges. Abbott [15] studied droplets droplets settling
in still air with 1 × 106 to 8 × 106 elementary charges (near 1 × 10−5 C/m2). Lu et al. [23–25]
measured how charges affect spatial clustering of particles in turbulence. Their droplets carried
from 3 × 105 to 4 × 105 elementary charges. The maximum charge a droplet can contain before
electrostatic forces overwhelm surface tension and the droplet bursts is given by q2 = 64π2ε0γ a3

[47], where q is the maximum charge the droplet can sustain, ε0 is the permittivity of free space,
and γ is the surface tension of the droplet. For a droplet with a radius of 20 μm, for example, the
maximum charge it can contain is about 107 elementary charges. The charges in this experiment are
well below this limit.

Uncertainty in estimating the charge on each droplet arises from uncertainty in the mass of
the droplets, which is calculated from the measured radii, and from uncertainty in the charge per
mass measured from the calibration procedure. For measurements with approximately uncharged
droplets, uncertainty from the calibration procedure dominates; these droplets may contain between
0 and several thousand electrons. For measurements with highly charged droplets (excluding
2018_07_26_measure_00, discussed below), uncertainty in the mass of the droplets dominates;
these droplets may contain ±30% the number of electrons indicated in Fig. 5(e). As discussed in
Appendix A, the uncertainty in measuring the charge-per-mass of the droplets in the measurement
2018_07_26_measure_00 was substantially larger, so both uncertainty in the mass of the droplets
and uncertainty in the charge per mass play a role in the total uncertainty. For this measurement only,
the uncertainty in charge contained on the droplets is ±56% for the primary droplet and ±37% for
the satellite droplet. The distribution of ratio of primary droplet radius to satellite droplet radius is
shown in Fig. 5(f).
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