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In this paper, we report numerical results of turbulent transport of heat Nu and angular
momentum νt/ν in Taylor-Couette (TC) flows subjected to a radial temperature gradient.
Direct numerical simulations are performed in a TC cell with a radius ratio η = 0.5 and
an aspect ratio � = 8 for two Rayleigh numbers (Ra = 105, 106) and two Prandtl numbers
(Pr = 0.7, 4.38), while the Reynolds number Re varies in the range of 0 � Re � 15 000.
With increasing Re, the flows undergo evolution of different flow states: a first transition
being from the convection-dominated regime to the transitional regime, with the large-scale
meridional circulation evolving into spiral vortices; a second flow evolution occurring in
the rotation-dominated regime when Taylor vortices turn from a weakly nonlinear state into
a turbulent state. In particular, when the flows are governed by turbulent Taylor vortices,
we find that both transport processes exhibit power-law scaling: Nu ∼ Re0.619±0.015 for
Pr = 4.38, Nu ∼ Re0.590±0.025 for Pr = 0.7 and νt/ν ∼ Re0.588±0.036 for both Pr. These scal-
ing exponents suggest an analogous mechanism for the radial transport of heat and angular
momentum, which is further evidenced by the fact that the ratio of effective viscosity
to diffusivity is independent of Re. To illustrate the underlying mechanism of turbulent
transport, we extract the coherent structures by analyzing the spatial distributions of heat
and momentum flux densities. Our results reveal mutual turbulent structures through which
both heat and angular momentum are transported efficiently.

DOI: 10.1103/PhysRevFluids.7.043501

I. INTRODUCTION

Turbulent transport processes of heat, mass, and momentum are the central aspects in study-
ing turbulence, owing to their close relations to various natural flows [1–5]. To understand the
mechanism of turbulent transport is a challenging task in fluid physics and crucial for the related ap-
plications. Taylor-Couette (TC) flow, a fluid layer driven by two concentrically rotating cylinders, is
of fundamental interest in many perspectives [4,6], for example, in probing the angular momentum
transport in accretion disks [7–9]. It is also relevant to various applications in industry such as drag
reduction [10,11] and solidification [12,13].

In TC flows, the toroidal motion of a Taylor vortex (TV) may enhance the mixing and
transport efficiency. Hence, TC reactors are extensively applied to chemical, food, and biology
processes [14–16]. In these applications, a heated or cooled cylinder is inevitable. It is thus
desirable to investigate the flow structures and transport properties in the TC systems subjected
to a radial temperature gradient. For modest Reynolds number (Re), studies of flow regimes,
instabilities, and pattern formations in such TC systems have attracted a lot of attention, including
experiments [17–22], stability analyses [23–26], and numerical simulations [27–30]. However, in
turbulent TC flows, much less effort has been made to investigate the complex problem of the
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turbulent transport processes, which are supposed to be more relevant to most applications in
geophysical and industrial flows [8–10]. To better understand the relationships between the scalar
and momentum transport in a high-Re regime, it is crucial to predict the interior structures and states
of the flows. Furthermore, determination of the scaling laws of heat and momentum transport is vital
to extrapolate the existing results from laboratories to large-scale geo- and astrophysical flows. It
remains a challenging question to date whether the scalar and momentum transport by TC flows
share similar scaling behaviors in the turbulent regime [31–33].

Coherent structures play an important role in turbulent transport processes [3]. In turbulent TC
flows, the momentum transport is implemented by the coherent structures in forms of turbulent TVs
and turbulent plumes between adjacent TVs [34–36]. The meridional advection of TVs sweeps the
radial and axial boundaries simultaneously, potentially providing a similar transport mechanism in
both directions. Indeed, in recent simulations [33], we find that when an axial temperature gradient
is applied in turbulent TC flows, the axial heat-transport scaling is analogous to that of the radial
transport of angular momentum [33]. This result confirms the existence of analogy between the axial
dispersion of a passive scalar and the radial transport of momentum [31,32]. In the scenario that a
radial temperature difference is applied in TC systems, both heat and angular momentum can be
transported radially. In this system, how the large-scale structures, such as TVs, affect the turbulent
transport processes is a natural question of great interest.

In this paper, we utilize the paradigmatic model of TC systems consisting of a heating (cooling)
inner (outer) cylinder with two adiabatic end walls. We consider the radial transport processes
of angular momentum and heat in a high-Reynolds-number regime. The results suggest that,
in the regime of turbulent TVs, the radial transport of heat and angular momentum possess
similar scaling relationships. Furthermore, by extracting fluid domains of high flux densities, we
demonstrate that the heat and momentum transport are manipulated mainly by similar turbulent
structures.

II. NUMERICAL SIMULATIONS

A. Physical model

We investigate the three-dimensional flow of an incompressible viscous fluid contained between
two concentric cylinders of radii r1, r2, and height h. The inner wall is rotating about the z axis (ez )
with angular velocity ω1, while the outer one is set to be fixed. A radial temperature difference � is
imposed on the cylinders with the hot inner (t1) and cold outer (t2) walls. The fluid properties includ-
ing kinematic viscosity ν, thermal expansion coefficient β, and thermal diffusivity κ are assumed to
be constant. The governing parameters are the Rayleigh number Ra = βg�d3/(νκ ), the Prandtl
number Pr = ν/κ , and the Reynolds number Re = ω1r1d/ν, respectively, where d = r2 − r1 is
the gap width and g is the gravitational acceleration. The Richardson number Ri = Ra/Pr/Re2,
defined as the ratio of the free fall velocity to the inner-wall velocity, is adopted here to measure the
relative strength between thermal convection and TC flow. Two important geometrical parameters
entering into the problem are the aspect ratio � = h/d and the radius ratio η = r1/r2. The gap
width d , imposed temperature difference �, and inner-wall velocity u1 = ω1r1 are introduced as
the length, temperature, and velocity scales. Therefore, within the Boussinesq approximation, the
dimensionless Navier-Stokes equations are

∂U
∂τ

+ (U · ∇)U = −∇p + 1

Re
∇2U + RiT ez, ∇ · U = 0, (1)

∂T

∂τ
+ (U · ∇)T = 1

RePr
∇2T, (2)

where τ , p, and T are, correspondingly, time, pressure, and temperature. And U (Ur , Uθ , Uz) are
the components of velocity in radial, azimuthal, and axial directions for cylindrical coordinates
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TABLE I. A summary of the transitional values Re∗
1 (Ri∗1) and Re∗

2 (Ri∗2).

Re∗
1 (Ri∗1) Re∗

2 (Ri∗2)

Ra = 105, Pr = 0.7 500 (0.57) 2000(0.036)
Ra = 105, Pr = 4.38 150 (1.01) 2000(0.006)
Ra = 106, Pr = 0.7 1000(1.43) 4000(0.089)
Ra = 106, Pr = 4.38 300 (2.54) 2000(0.057)

(R, Θ , Z), respectively. The lower case letters t , u (ur , uθ , uz), and (r, θ , z) denote the dimen-
sional temperature, velocity, and coordinates. The dimensionless fluid angular velocity is ω. It
is demonstrated in Appendix A that the effect of centrifugal buoyancy [26,28] does not change
the main results and is thus neglected. The inner and outer cylinders are maintained at fixed
temperatures T1 = 1 and T2 = 0, respectively, while end walls are set to be thermally insulating.
No-slip boundaries are applied for velocities at all walls. We use a wide gap with the radius ratio
η = r1/r2 = 0.5, and the aspect ratio is � = h/d = 8. This small-η system has been discussed
widely by numerical simulations [37] and experiments [35,38].

Heat and angular momentum are two important transport quantities in the present system. In
general, the global heat and angular momentum transport are expressed by Nu [39] and Nuω [40], re-
spectively. The Nusselt number is defined as Nu = a−1(RePr〈UrT 〉V − ∂r〈T 〉V ), where 〈〉V denotes
the volume- and time-averaging and the geometry factor a = 2d2/[ln(r2/r1)(r2

2 − r2
1 )] is induced

by the annular gap (see Appendix B). However, owing to the braking effect of the fixed end walls,
Nuω decreases along the radial direction in our system [33]. As introduced in Appendix B, we
use the dimensionless effective viscosity νt/ν = (2Reτ )2/Re to represent the angular momentum
transport instead of Nuω. Here, Reτ = 0.5uτ d/ν is the friction Reynolds number with the friction
velocity u2

τ = −νr(∂〈uθ /r〉θz/∂r) at the inner wall, where 〈〉θz denotes the azimuthal-, axial-, and
time-averaging.

B. Numerical method

The equation system is solved using the finite difference scheme developed in Ref. [41] and
modified for the cylindrical coordinate [33,42,43]. The numerical scheme is a second-order ap-
proximation based on the spatial discretization, which is nearly fully conservative with regard
to mass, momentum, and kinetic energy. The second-order explicit Adams–Bashforth/backward-
differentiation scheme is employed for the time discretization. The viscous terms are treated
explicitly, and implicit treatment is applied for the diffusion term. At every time step, two Poisson
equations, the projection method equation for pressure and the equation for temperature, are solved
using fast-Fourier transforms in the azimuthal direction and the cyclic reduction direct solver [44].
Toward the walls, the clustered grid is implemented using the hyperbolic tangent coordinate
transformation.

The grid sensitivity studies as well as the main results are listed in Tables II–IV in Appendix A.
For each set of Ra, results from previous low-Re convections are used as the initial condition for
the following high-Re case. Data from initial transient state are excluded, and data taken over a
statistically steady state are averaged to determine the heat and angular momentum transport. The
time convergence is checked by comparing the time averages over the whole and last halves of the
simulation, and the resulting discrepancy is less than 3%. For the temporal resolution, the chosen
time step �τ satisfies the Courant-Friedrichs-Lewy (CFL) condition and the CFL number remains
less than 0.5. The total run time for each case (including the initial and the averaging stages) is
greater than 200 large eddy turnover time units, and the averaging time is not less than 100 large
eddy turnover time units.
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FIG. 1. (a) Global heat transport Nu as a function of Re for Pr = 0.7 and 4.38. Symbols are defined in
panel (b). Solid lines denote the power-law fitting Nu = αReγ with γ = 0.619 for Pr = 4.38 (blue) and γ =
0.590 for Pr = 0.7 (red). Vertical dashed lines denote the first transition Re∗

1. Inset: An expanded view of the
compensated plot of Nu as a function of Re. Vertical dotted lines denote the second transition Re∗

2. Dashed
auxiliary lines indicate the values for the prefactor α = Nu/Reγ =0.106 with γ = 0.619 (blue) and α=0.068
with γ = 0.590 (red). (b) Nu as a function of Ri.

III. RESULTS AND DISCUSSIONS

A. Global transport of heat and angular momentum

1. Radial heat transport

We first examine the global transport of heat. Data of the Nusselt number Nu are shown as a
function of Re in Fig. 1(a) for Ra = (105, 106) and Pr = (0.7, 4.38). Without or with weak rotations
(0 � Re � 100), the flow and heat transfer are dominated by vertical convection [45], and Nu is
nearly independent of Re. We see that in this buoyancy-dominant flow regime, Nu is larger for a
greater Ra for a given Re, but nearly independent of Pr. With increasing Re, Nu starts to grow when
Re exceeds a critical value Re∗

1 given in Table I. Interestingly, Nu for each Pr converges and becomes
independent of Ra, indicating the fading away of buoyancy-driven convection. Further increasing
Re, an obvious evolution of flow state takes place at Re∗

2, after which Nu exhibits a power-law
scaling Nu ∼ Reγ with γ = 0.590 ± 0.025 for Pr = 0.7 and γ = 0.619 ± 0.015 for Pr = 4.38 [see
the compensated plot in the inset of Fig. 1(a)]. Both scalings for Pr = 0.7 and 4.38 suggest the
existence of a new flow regime for heat transfer. All the transitional values Re∗

1 and Re∗
2 are listed

in Table I. We find that at lower Pr or higher Ra, the more vigorously convective flows postpone the
transitions.

We see in Fig. 1(a) the intriguing trend that in a TC system the radial heat transport Nu
is insensitive to the variation of Pr in a low-Re flow regime (Re < Re∗

1), but becomes strongly
dependent on Pr (independent of Ra) with sufficiently high Re. In the intermediate regime of Re,
our data curves of Nu(Re) show complicated Ra and Pr dependence. To better clarify the variations
of the heat transport with changing control parameters, we show in Fig. 1(b) the Nusselt number
as a function of Richardson number Ri which measures the relative strength of buoyancy and
rotation. In a high-Ri regime where the buoyancy-driven convection is dominant [corresponding
to the low-Re regime shown in Fig. 1(a)], we see that Nu remains a constant. The first transition
for Nu enhancement takes place at Ri∗1 that depends on both Ra and Pr. When Ri � Ri∗1(Ra, Pr),
the strong rotations start to affect the flows and Nu increases monotonically as Ri decreases. With
further decreasing Ri � 1, we find that Nu becomes larger for a greater Pr or Ra when Ri is given.
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FIG. 2. (a) Dimensionless effective viscosity νt/ν as a function of Re for Pr = 0.7 and 4.38. Symbols are
defined in panel (b). Solid line denotes the power-law fitting νt/ν = Reγ with γ = 0.588. Inset: An expanded
view of the compensated plot of νt/ν as a function of Re. Dashed auxiliary line indicates the value for the
prefactor α = (νt/ν )/Reγ =0.135 with γ = 0.588. (b) νt/ν as a function of Ri.

2. Angular momentum transport

Figure 2(a) presents the dimensionless effective viscosity νt/ν as functions of Re for various
Pr and Ra, which reveals the global angular momentum transport. In a low-Re regime where
vigorous convection governs the flows, νt/ν is independent of Re but increases with a larger Ra
or with a smaller Pr. Analogous to the heat transport data, we see that νt/ν starts to increase when
Re exceeds the transitional value Re∗

1(Ra, Pr) obtained in Fig. 1(a). For various Ra and Pr, data
of νt/ν(Re) converge to the same curve for Re > Re∗

1, and follow a unifying power-law scaling
νt/ν ∼ Re0.588±0.036 after the evolution of flow state for Re > Re∗

2 (see the compensated plot in
inset). In Fig. 2(b), where the data are plotted as a function of Ri, we see that with decreasing Ri,
νt/ν starts to increase at Ri∗1. For very low Ri � 1, we find that νt/ν increases with increasing Ra,
but decreases as Pr increases when Ri is given.

Further analyses are performed regarding the similar properties of heat and momentum transport
for high Reynolds number. In Fig. 3, we show the ratio of the dimensionless effective viscosity
νt/ν to the diffusivity κt/κ as a function of Re. The dimensionless effective diffusivity is defined as
κt/κ = aNu, where a = 2d2/[ln(r2/r1)(r2

2 − r2
1 )] is the geometry factor (Appendix B). It is found

FIG. 3. The ratio of νt/ν over κt/κ as a function of Re. Vertical dotted lines denote Re∗
2.
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that the ratio remains approximately a constant close to unity irrespective of Ra for Pr = 4.38 when
Re > Re∗

2. The ratio appears larger for a lower Pr.
For each set of Ra and Pr, we have seen from above that the Reynolds-number dependencies

of heat and angular momentum transport exhibit a similar trend. We argue that it is the evolution
of the flow structures that governs the processes of both heat and angular momentum transport in
the present system. In the following, we will gain some insights into the transport properties by
analyzing the flow morphology and structures in different flow regimes.

B. Flow morphology

To illustrate the evolution of flow structures, we show two- and three-dimensional temperature
fields in Fig. 4. Without rotations [Re = 0 as seen in Figs. 4(a) and 4(b)], the convective structure
is axisymmetric, with a large-scale meridional circulation carrying ascending hot flows along the
inner cylinder and descending cold flows along the outer cylinder. These are the typical temperature
distributions in vertical convection [45–47]. For Re < Re∗

1, since the rotation is too weak to affect
the circulation, we thus see that the Nu and νt/ν remain at their nonrotating values shown in Figs. 1
and 2. When the rotation effect becomes comparable to the buoyancy for Re � Re∗

1, the flow under-
goes the first transition from the meridional circulation to spiral vortices [see Figs. 4(c) and 4(d)],
which starts to enhance the radial transport of heat and angular momentum. In this rotation-affected
regime, we find that both the flow morphology and the transport properties are dependent on both Ra
and Pr. With further increase in Re, rotation gradually dominates buoyancy, and the spiral vortices
are replaced by the toroidal TVs [see Figs. 4(e) and 4(f)]. In this TC-dominated regime, Nu(Re) and
νt/ν(Re) collapse, respectively, onto one curve that is independent of Ra [Figs. 1(a) and 2(a)]. The
spiral vortices exist in an intermediate Ri-regime 0.089 � Ri � 2.54 depending on Ra and Pr. In a
similar system [48], the onset of spiral flow is reported in the range of 0.12 < Ri < 0.47, showing a
reasonable consistency with the present results. We note that the convection states of corotating and
counterrotating vortices reported in Ref. [28] are not observed in the present study, presumably due
to the different geometry of fluid domain used in the present study.

We see that with sufficiently large Reynolds number Re � Re∗
2, the flow structure evolves into the

turbulent TV flow [Figs. 4(g) and 4(h)], which is in good accord with previous studies in adiabatic
TC systems [37] and in TC systems with a vertical temperature gradient applied [33]. In this flow
regime, the turbulent transport of heat and momentum follows a unifying power-law scaling as
shown in Figs. 1(a) and 2(a). In contrast to the flow fields with a lower Re (Re < Re∗

2 ), we can
see that the temperature field with Re � Re∗

2 consists of rich small-scale structures, with hot fluids
pumped more efficiently into the bulk flow from the inner cylinder, resulting in a higher transport
efficiency. Note that for Ra = 106 and Pr = 0.7, the vigorous buoyancy-driven turbulence largely
postpones the evolution of flow state at Re∗

2. We thus find that the spiral vortices can persist for
Re > 2000, and then turn into the turbulent TVs directly when Re > 4000.

C. Mutual coherent structures for heat and angular momentum transport

In this section, we demonstrate that mutual coherent structures in forms of turbulent TVs exist,
through which both heat and angular momentum are transported efficiently in the high-Re flow
regime. To verify this viewpoint, we present in Fig. 5 the flow fields and the spatial distributions
of heat and angular velocity fluxes, respectively. In Fig. 5(a), three pairs of TVs characterize the
time-averaged velocity field. The instantaneous temperature field shown in Fig. 5(b), however, is
dominated by turbulent fluctuations. TVs can be recognized roughly as the hot (cold) plumes which
are emanating from the inner (outer) cylinder toward the bulk flow. In the instantaneous fields of
ω [Fig. 5(c)], we observe large-scale coherent structures, while TVs are hard to be identified. In
Figs. 5(d) and 5(e), we further show the spatial distributions of convective flux densities of heat
(qc

t /〈qc
t 〉V ) and angular velocity (qc

ω/〈qc
ω〉V ), normalized by their averaged values (see definitions

of flux densities in Appendix B). We can see that both the instantaneous flux densities exhibit a
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FIG. 4. Two-dimensional distributions of temperature and velocities in the meridional plane [(a), (c), (e),
(g)] and three-dimensional temperature isosurfaces (T = 0.52) in the whole domain [(b), (d), (f), (h)] for Re=
0 [(a), (b)], 1000 [(c), (d)], 2000 [(e), (f)], and 4000 [(g), (h)] with Ra = 106 and Pr = 4.38. Vertical arrow on
the left side of each panel denotes the velocity scale of free-fall velocity uf = √

βg�d .

similar spatial distribution at any time. The plots of time-averaged flux densities of heat and angular
velocity are given in Figs. 5(f) and 5(g), respectively. It is clear that the outward and inward jets of
TVs govern the convective transport radially. Therefore, we conjecture that the turbulent heat and
angular momentum transport are achieved through mutual coherent structures in forms of TVs in
the high-Re regime.
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FIG. 5. Time-averaged velocity and temperature fields (a). Instantaneous distributions of fluid temperature
T (b), angular velocity ω (c), the convective heat flux density qc

t /〈qc
t 〉V (d), and the convective angular velocity

flux density qc
ω/〈qc

ω〉V (e). Panels (a)–(e) are plotted in the same meridional plane. Time-averaged heat flux
density 〈qc

t 〉θ /〈qc
t 〉V and angular velocity flux density 〈qc

ω〉θ /〈qc
ω〉V (g). For all panels Re = 6000, Ra = 105, and

Pr = 4.38. The arrow on the left of panel (a) denotes the velocity scale of free-fall velocity uf . For comparisons,
panels (d)–(g) are plotted using the same coloration.

To gain more insight into the mutual coherent structures for heat and angular momentum
transport, we present data analysis of the spatial distribution of the local flux densities. We denote
each spatial position of the fluid domain studied as P(r, θ, z). Following the strategy used in
Refs. [49,50], we identify the pronounced structures of efficient turbulent transport, determining the
spatial regions where the flux densities (qc

t , qc
ω) are greater than their averaged values (〈qc

t 〉V , 〈qc
ω〉V ).

Thus, for heat transport we define (i) hot plumes Pt,hot(r, θ, z) where qc
t (r, θ, z) � C〈qc

t 〉V and (ii)
cold plumes Pt,cold(r, θ, z) where qc

t (r, θ, z) � −C〈qc
t 〉V . Similarly, for angular velocity transport, we

define (iii) hot (positive) plumes Pω,hot(r, θ, z) where qc
ω(r, θ, z) � C〈qc

ω〉V and (iv) cold (negative)
plumes Pω,cold(r, θ, z) where qc

ω(r, θ, z) � −C〈qc
ω〉V . The first subscript (t , ω) denotes heat and

angular velocity, and the second subscript (hot, cold) denotes the hot and cold plumes, respectively.
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FIG. 6. Volume ratios of the hot (positive) (a), (d) and cold (negative) (b), (e) plumes for heat, angular
velocity, and the mutual parts as functions of coefficient C for Re = 6000. (c), (f) Volume ratios of the hot
(positive) plumes as functions of Re for various C. For all panels, we use Ra = 105. Results in panels (a)–(c) are
for Pr = 4.38 and (d)–(f) are for Pr = 0.7.

The factor C is an empirical parameter chosen to be in the range of 1 � C � 40 in this study.
The mutual coherent structures are then defined as the overlapping volume of Pt (r, θ, z) and
Pω(r, θ, z) as follows, (v) the mutual hot plumes Pt,ω,hot(r, θ, z) where qc

t (r, θ, z) � C〈qc
t 〉V and

qc
ω(r, θ, z) � C〈qc

ω〉V , and (vi) the mutual cold plumes Pt,ω,cold(r, θ, z) where qc
t (r, θ, z) � −C〈qc

t 〉V

and qc
ω(r, θ, z) � −C〈qc

ω〉V . Through time- and volume-averaging, we obtain the mean volumes of
the hot plumes

Vt,hot = (V0τ0)−1
∫

V,τ

Pt,hotdV dτ, Vω,hot = (V0τ0)−1
∫

V,τ

Pω,hotdV dτ, (3)

the cold plumes

Vt,cold = (V0τ0)−1
∫

V,τ

Pt,colddV dτ, Vω,cold = (V0τ0)−1
∫

V,τ

Pω,colddV dτ, (4)

and the mutual plumes

Vt,ω,hot = (V0τ0)−1
∫

V,τ

Pt,ω,hotdV dτ, Vt,ω,cold = (V0τ0)−1
∫

V,τ

Pt,ω,colddV dτ, (5)

where V0 = ∫
V PdV and τ0 denote the whole volume and time period.

The volume ratios Vt/V0, Vω/V0 and Vt,ω/V0 for Pr = 4.38 are plotted as functions of C in
Figs. 6(a) and 6(b). As shown in Fig. 6(a), these ratios for hot plumes are about 0.42 for C = 1,
and decrease as C increases. Interestingly, data of the ratios Vω,hot/V0 and Vt,ω,hot/V0 collapse, both
decreasing more rapidly than Vt,hot/V0. A similar trend is shown in Fig. 6(b) for the volume ratios of
cold plumes. We see that the ratios of thermal plumes Vt,hot/V0 and Vt,cold/V0 are always greater than
the angular velocity and the mutual ones, indicating a broader distribution of thermal structures. In
Fig. 6(c), the volume ratios of hot (positive) plumes are plotted as functions of Re for two values
of C. We see that with increasing Re, the ratios Vt,hot/V0, Vω,hot/V0 and Vt,ω,hot/V0 first increase and
then the slopes become smaller when Re � 4000.

For the flows with low Pr = 0.7 [Figs. 6(d)–6(f)], the data show almost similar trends when the
parameters C and Re change. We see that the volume ratios become greater when Re increases
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FIG. 7. Probability distribution functions of the area ratio Si for Pr = 4.38 (a) and 0.7 (b), when Re = 6000
and Ra = 105. Here, Si = S(i)/S0 is defined as the area ratio of each plume in the meridional plane, where S(i)
denotes the ith plume’s area that is identified by the C criteria and S0 = hd is the area of the meridional plane.
To include more structures, we use a conventional value C=1 as the criteria, since a greater C corresponds to
the smaller area with the higher density.

or when C decreases. However, here we find that Vω/V0 becomes slightly greater than Vt/V0 and
Vt,ω/V0 for low Pr. We attribute these to the Pr dependence of the flow properties, since heat is more
likely to accumulate within the turbulent coherent structures for high Pr = 4.38 but becomes easier
to diffuse for low Pr = 0.7. Results in Fig. 6 imply that in the high-Re regime, heat and angular
momentum are transferred mainly through highly similar coherent structures. The flow regions of
large angular momentum fluxes are nested within the regions of large heat fluxes for high Pr = 4.38
and vice versa for low Pr = 0.7.

To further reflect the distributions of the plumes’ areas in the whole spatial and temporal domains,
we show in Fig. 7 the probability distribution function of Si = S(i)/S0 in meridional planes. It is
found that for each Pr, the plumes of heat and angular velocity have the same distributions all the
time. We suggest that it is the similarities of the turbulent structures, which deliver efficiently both
the heat and angular momentum transport, giving rise to the same scaling properties of Nu and νt/ν

observed in Figs. 1–3.

IV. CONCLUDING REMARKS

We investigate numerically the heat and angular momentum transport processes in the turbulent
TC flows which are subjected to a radial temperature gradient. A large range of Reynolds numbers
is considered, extending the present study of the heat transport to the unexplored regime of turbulent
TVs.

We find that the flows undergo a first transition at Re∗
1 from the convection-dominated state in

the form of a large-scale meridional circulation to the transitional regime typified by spiral vortices.
After this transition, we observe enhanced transport of heat and angular momentum since rotations
start to influence the flow structures. With increasing Re, the flow turns into the TC-dominated
regime where the heat and angular momentum transport become independent of Ra. Eventually,
the turbulent TVs start to dominate the turbulent transport processes at Re∗

2, after which the heat
and angular momentum transport are dictated by power-law scalings, i.e., Nu ∼ Re0.619±0.015 for
Pr = 4.38, Nu ∼ Re0.590±0.025 for Pr = 0.7 and νt/ν ∼ Re0.588±0.036 for both Pr. Our results also
show that the transitional values Re∗

1 and Re∗
2 depend on both Ra and Pr.

From the point of view of Reynolds analogy, one can predict the momentum possesses similar
transport behaviors as heat in turbulent flows [51]. However, an interesting finding here is the
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existence of an analogous scaling law for radial transport of heat and angular momentum in turbulent
TC flows. Besides their similar scaling exponents, our data show that the effective viscosity (νt/ν)
and diffusivity (κt/κ) have almost the same efficiency for Re > 2000. The similar properties of both
types of transport are found to persist in the turbulent TV regime, which was attributed to the mutual
structures through which heat and momentum are efficiently transported. Further analysis shows
that the structures for high-efficiency angular momentum transport are nested inside the thermal
ones for high Pr = 4.38 or vice versa for low Pr = 0.7. We note that the analogy between heat and
momentum transport in rotating flow has been interpreted through the one-dimensional simplified
model by Bradshaw [52]. To further connect the present results with Bradshaw’s analogy is an
intriguing subject for future studies. In addition, the similarity of TC, RB, and pipe flows has been
found in Ref. [53]. The turbulent transport processes in these flows remain to be compared. In a TC
system where an axial destabilized temperature gradient is applied, it has been reported that the axial
heat transport has the same scaling as the radial angular momentum transport in the turbulent TV
regime [33]. Hence, we suggest that it is the structures in forms of turbulent TVs that provide the TC
systems with equal transport efficiencies in both the radial and axial directions. A direct application
of the present study is to predict the global heat transfer based on the known driven torque and vice
versa. Our results may be also applicable to understand the turbulent transport processes and the
interior structures of stars, and to control the heat transport in industrial production processes of the
TC-type reactors.

The ultimate regime of TC flows [54,55] sets in at a much larger Reynolds number (Re > 6 × 104

for η = 0.5 [34,35,38]) than the parameters considered in the present paper. Whether a similar
scaling of heat and angular momentum transport exists at higher Re and even in the ultimate regime
remains a challenging problem for future studies.
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APPENDIX A: NUMERICAL DETAILS

1. Grid sensitivity studies and main results

The results of the grid sensitivity studies are listed in Table II. It is shown that results of
Nu and Reτ show a good convergence as resolutions increase. The main results are listed in
Tables III and IV. For all our runs, the smallest mean scales are, respectively, determined by the
mean Kolmogrov scale 〈λk〉V = (ν3/〈εν〉V )1/4 for Pr = 0.7 and the mean Batchelor scale 〈λb〉V =
(κ2ν/〈εν〉V )1/4 for Pr = 4.38, where 〈εν〉V is the volume- and time-averaged turbulent kinetic energy
dissipation rate [56–59]. At high Reynolds number, the flow enters into the shear-dominated regime
that 〈λb〉V decreases rapidly with the increasing kinetic energy dissipation. Thus, the ratios of the
greatest grid spacing Lmax [60] to 〈λk〉V and 〈λb〉V [61] do not exceed 2.7 and 4.5, respectively, in this
paper. Meanwhile, the minimal radial grid spacing in wall units is always less than unity. Besides

TABLE II. A summary of the grid sensitivities study for Ra = 105, Re = 8000, and Pr = 0.7.

Nθ (Lθ )×Nz×Nr Nu Reτ σεT Lmax/(〈λk〉V , 〈λb〉V )

128(0.5π ) × 1025 × 225 13.54 232.95 0.02 2.45, 2.05
192(0.5π ) × 1537 × 225 13.29 229.24 0.01 1.86, 1.56
256(0.5π ) × 2049 × 225 13.20 229.53 0.01 1.51, 1.26
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TABLE III. A summary of the main results for Pr = 4.38.

Re Pr Ra Nθ (Lθ )×Nz×Nr Nu Reτ σεT Lmax/(〈λk〉V , 〈λb〉V ) r+
min, r+

max

0 4.38 105 128(2π ) × 257 × 33 3.27 0.00 0.90, 1.89
25 4.38 105 128(2π ) × 257 × 33 3.27 4.99 0.00 0.91, 1.91 0.07, 0.59
50 4.38 105 128(2π ) × 257 × 33 3.27 7.06 0.00 0.94, 1.96 0.10, 0.84
70 4.38 105 128(2π ) × 257 × 33 3.28 8.42 0.00 0.97, 2.02 0.12, 1.00
100 4.38 105 128(2π ) × 257 × 33 3.32 10.16 0.00 1.02, 2.13 0.14, 1.20
150 4.38 105 128(2π ) × 257 × 33 3.75 13.83 0.01 1.14, 2.39 0.19, 1.64
200 4.38 105 128(2π ) × 321 × 41 4.22 16.64 0.01 1.27, 2.66 0.23, 1.72
300 4.38 105 128(2π ) × 321 × 41 4.88 21.41 0.01 1.33, 2.79 0.23, 1.77
400 4.38 105 128(2π ) × 321 × 41 5.37 25.29 0.02 1.54, 3.22 0.27, 2.40
500 4.38 105 128(2π ) × 321 × 41 6.28 29.89 0.02 1.77, 3.69 0.32, 2.83
800 4.38 105 128(2π ) × 385 × 49 7.70 40.88 0.02 2.05, 4.29 0.36, 3.23
1000 4.38 105 192(2π ) × 513 × 65 8.43 47.74 0.02 1.76, 3.69 0.23, 3.09
1000 4.38 105 64(0.5π ) × 513 × 65 8.47 47.89 0.02 1.60, 3.36 0.23, 3.10
2000 4.38 105 256(2π ) × 721 × 91 11.63 77.46 0.03 1.93, 4.04 0.26, 3.57
2000 4.38 105 96(0.5π ) × 721 × 91 11.74 77.65 0.03 1.69, 3.54 0.26, 3.58
3000 4.38 105 128(0.5π ) × 897 × 129 14.98 105.63 0.04 1.64, 3.42 0.25, 3.42
4000 4.38 105 128(0.5π ) × 1025 × 161 18.16 131.90 0.04 1.74, 3.65 0.25, 3.42
6000 4.38 105 192(0.5π ) × 1281 × 193 23.19 183.50 0.04 1.73, 3.62 0.29, 3.96
8000 4.38 105 256(0.5π ) × 1537 × 225 27.40 228.16 0.03 1.69, 3.53 0.30, 4.20
10000 4.38 105 256(0.5π ) × 1793 × 257 31.90 275.04 0.04 1.77, 3.71 0.32, 4.46
15000 4.38 105 256(0.5π ) × 2001 × 301 41.79 384.76 0.04 2.11, 4.43 0.38, 5.32
0 4.38 106 256(2π ) × 513 × 65 5.75 0.00 0.93, 1.95
25 4.38 106 256(2π ) × 513 × 65 5.75 5.70 0.00 0.93, 1.95 0.04, 0.34
100 4.38 106 256(2π ) × 513 × 65 5.75 11.42 0.00 0.94, 1.97 0.07, 0.68
200 4.38 106 256(2π ) × 513 × 65 5.76 16.25 0.00 0.97, 2.03 0.11, 0.96
300 4.38 106 256(2π ) × 513 × 65 6.21 21.93 0.00 1.01, 2.11 0.14, 1.30
500 4.38 106 256(2π ) × 513 × 65 6.89 30.66 0.01 1.15, 2.42 0.20, 1.82
800 4.38 106 256(2π ) × 513 × 65 7.92 41.98 0.02 1.46, 3.06 0.20, 2.72
1000 4.38 106 256(2π ) × 513 × 65 8.67 48.69 0.03 1.64, 3.43 0.24, 3.15
1500 4.38 106 256(2π ) × 641 × 81 10.37 63.72 0.03 1.77, 3.69 0.24, 3.25
2000 4.38 106 384(2π ) × 721 × 91 11.75 77.97 0.02 1.69, 3.55 0.27, 3.59
4000 4.38 106 128(0.5π ) × 1025 × 161 17.97 131.67 0.04 1.74, 3.65 0.25, 3.42
6000 4.38 106 192(0.5π ) × 1281 × 193 23.38 181.11 0.04 1.72, 3.60 0.28, 3.90
8000 4.38 106 256(0.5π ) × 1537 × 225 27.40 228.16 0.03 1.69, 3.53 0.30, 4.20

this, the relative error measurement σεT is employed to check the deviation of the exact balance
between the thermal dissipation and the global heat transfer [58,59,62]. To reduce the computational
requirements for high-Re flows, the azimuthal computational extents Lθ are reduced to a quarter of
the cylinder (0.5π ) for Re � 4000. This strategy has been proven to be effective [63,64]. And, as
shown in Tables III and IV, the simulations for Lθ = 2π and 0.5π are both performed in the range
of 1000 � Re � 4000, and the results suggest that the shortened extents do not change the main
results.

In Tables II–IV, Nθ×Nz×Nr denote the resolutions in three directions, and Lθ is the azimuthal
computational extent; σεT is the relative error measured by Nu and the thermal dissipation rate;

Lmax
〈λk〉V ,〈λb〉V

are the maximal grid spacings compared with the Kolmogrov and Batchelor scales;

r+
min, r+

max are the minimal and maximal grid sizes in wall units.
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TABLE IV. A summary of the main results for Pr = 0.7.

Re Pr Ra Nθ (Lθ )×Nz×Nr Nu Reτ σεT Lmax/(〈λk〉V , 〈λb〉V ) r+
min, r+

max

0 0.7 105 128(2π ) × 257 × 33 3.17 0.00 2.36, 1.98
50 0.7 105 128(2π ) × 257 × 33 3.17 9.26 0.00 2.37, 1.99 0.10, 1.19
100 0.7 105 128(2π ) × 257 × 33 3.17 13.06 0.00 2.38, 1.99 0.14, 1.69
200 0.7 105 128(2π ) × 321 × 41 3.18 18.59 0.00 2.09, 1.75 0.15, 1.92
300 0.7 105 128(2π ) × 321 × 41 3.19 22.83 0.00 2.15, 1.80 0.18, 2.36
400 0.7 105 128(2π ) × 321 × 41 3.18 26.66 0.00 2.23, 1.86 0.22, 2.76
500 0.7 105 128(2π ) × 321 × 41 3.33 30.87 0.01 2.30, 1.92 0.25, 3.19
800 0.7 105 128(2π ) × 385 × 49 3.87 41.59 0.01 2.32, 1.94 0.28, 3.58
1000 0.7 105 192(2π ) × 513 × 65 4.40 48.59 0.01 2.10, 1.76 0.23, 3.12
1000 0.7 105 64(0.5π ) × 513 × 65 4.38 48.19 0.01 1.65, 1.38 0.23, 3.09
1500 0.7 105 192(2π ) × 641 × 81 5.34 63.12 0.01 1.95, 1.63 0.24, 3.27
2000 0.7 105 256(2π ) × 721 × 91 6.06 77.91 0.01 2.14, 1.79 0.27, 3.59
2000 0.7 105 96(0.5π ) × 721 × 91 6.10 78.25 0.00 1.94, 1.63 0.27, 3.60
3000 0.7 105 96(0.5π ) × 897 × 113 7.55 106.18 0.01 1.89, 1.58 0.29, 3.93
4000 0.7 105 256(2π ) × 1025 × 161 8.70 132.14 0.01 2.20, 1.84 0.25, 3.43
4000 0.7 105 128(0.5π ) × 1025 × 161 8.88 133.44 0.01 1.75, 1.47 0.25, 3.46
6000 0.7 105 128(0.5π ) × 1281 × 193 11.20 182.83 0.01 1.98, 1.66 0.28, 3.95
8000 0.7 105 192(0.5π ) × 1537 × 225 13.29 229.24 0.01 1.86, 1.56 0.31, 4.25
12 000 0.7 105 192(0.5π ) × 1793 × 257 17.13 320.74 0.02 2.20, 1.84 0.37, 5.20
0 0.7 106 256(2π ) × 513 × 65 5.49 0.00 2.41, 2.01
50 0.7 106 256(2π ) × 513 × 65 5.49 11.64 0.00 2.41, 2.00 0.06, 0.75
100 0.7 106 256(2π ) × 513 × 65 5.48 16.47 0.00 2.41, 2.00 0.08, 0.89
200 0.7 106 256(2π ) × 513 × 65 5.48 23.34 0.00 2.42, 2.03 0.11, 1.5
500 0.7 106 256(2π ) × 513 × 65 5.48 37.44 0.00 2.45, 2.05 0.18, 2.40
800 0.7 106 256(2π ) × 513 × 65 5.52 46.68 0.00 2.48, 2.07 0.23, 3.02
1000 0.7 106 256(2π ) × 513 × 65 5.58 68.53 0.00 2.54, 2.13 0.26, 3.44
1500 0.7 106 256(2π ) × 513 × 65 6.11 68.60 0.01 2.66, 2.22 0.33, 4.44
2000 0.7 106 256(2π ) × 721 × 91 6.55 84.49 0.01 2.29, 1.92 0.29, 3.89
3000 0.7 106 256(2π ) × 721 × 91 7.67 112.20 0.01 2.68, 2.24 0.38, 5.17
4000 0.7 106 256(2π ) × 1025 × 161 8.84 133.96 0.02 1.89, 2.26 0.25, 3.47
6000 0.7 106 128(0.5π ) × 1281 × 193 11.12 184.46 0.02 1.73, 3.62 0.29, 3.96

2. Discussions of the centrifugal buoyancy effects

In our system, the centrifugal buoyancy Fcb = −(β�)(U 2
θ /R)T er [26,28] is present because of

the azimuthal motion of the fluid. Here we perform the additional simulations for the experimental
conditions with β ≈ 0.004 K−1 and � = 10 K for air and with β ≈ 0.00038 K−1 and � = 10 K for
water. The results shown in Figs. 8(a) and 8(b) indicate that including the centrifugal buoyancy does
not change the results of heat transport. Therefore, in this paper, the effect of centrifugal force is
neglected.

3. Comparison with experimental results

To validate our results for the high-Re regime, we compare the heat-transport data with the
previous experimental results in Fig. 8(a). Our results are consistent with the power-law scaling
obtained in Ref. [65] for 2000 � Re < 10 000. But for high Re > 10 000, it is found that Nu tends
to deviate from the scaling law. We argue that the difference results from their fitting errors, since
this scaling exponent is already same to the well-accepted value (>2/3) for ultimate turbulent
regime [4].
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FIG. 8. Comparison of Nu as functions of Re when the centrifugal buoyancy is included (Fcb > 0) and
excluded (Fcb = 0). Results for Pr = 4.38 (a), Pr = 0.7 (b) and Ra = 105. Solid line indicates the scaling law
obtained from experiments [65].

APPENDIX B: DERIVATIONS OF FLUX DENSITIES, EFFECTIVE VISCOSITY AND
DIFFUSIVITY

In our annular system, the ring surface increases as r increases, leading to a decreasing flux
density along the radial direction. Hence, in this section the heat flux density qt and the angular
velocity flux density qω are defined, respectively, in addition to the common definitions of the heat
and angular velocity currents.

1. Heat flux density qt

Here we consider the dimensional fields of velocity u(r, θ, z) and temperature t (r, θ, z). For
a pure thermal conductive state between the concentric cylinders, the one-dimensional radial
temperature distribution is t (r) = c1lnr + c2, with c1 = −�/ln(r2/r1) and c2 = t2 − c1ln(r2). From
Fourier’s law, the radial heat flux density (by thermal conduction) is qLam

t (r) = −κ∂rt = −κc1/r,
which decreases along the radial direction owing to the enlarging ring surface. For the turbulent
flow, the three-dimensional distributions of the heat flux density is defined as

qt (r, θ, z) = ur (r, θ, z)(t (r, θ, z) − t2) − κ∂r (t (r, θ, z) − t2), (B1)

where the temperature of the cold wall t2 is used as the reference temperature as done in
Ref. [24]. The first term on the right-hand side corresponds to the convective contribution qc

t =
ur (r, θ, z)(t (r, θ, z) − t2). Thus, the Nusselt number is defined as the ratio of the turbulent heat
transport to the thermal conduction

Nu = 〈qt 〉V〈
qLam

t

〉
V

= a−1(RePr〈UrT 〉V − ∂r〈T 〉V ), (B2)

where a = 2d2/[ln(r2/r1)(r2
2 − r2

1 )] denotes the factor caused by the annular geometry.

2. Angular velocity flux density qω

In circular Couette flow (CCF), the flow is laminar and has purely azimuthal velocity uθ =
Ar + B/r, with A = (r2u2 − r1u1)/(r2

2 − r2
1 ) and B = (r2

2r1u1 − r2r2
1u2)/(r2

2 − r2
1 ). Thus, its an-

gular velocity flux density could be written as qLam
ω (r) = 2νB/r, which also decreases along the

radial direction the same as qLam
t . Taking into account the increasing area in the radial direction,

after multiplication with r, the conventional formula of the angular velocity current (for CCF) is
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JLam
ω = 2νB [40]. In turbulent flows, according to the derivations from Ref. [40], the conventional

angular velocity current is expressed as

〈Jω(r, θ, z)〉θz = r2〈ur (r, θ, z)uθ (r, θ, z)〉θz − νr3∂r (〈uθ (r, θ, z)〉θz/r). (B3)

Here, without regard to the temporal and spatial averaging processes, the spatial distribution of Jω

is

Jω(r, θ, z) = r2ur (r, θ, z)uθ (r, θ, z) − νr3∂r (uθ (r, θ, z)/r). (B4)

When Jω is divided by r, one could obtain the definition of angular velocity flux density:

qω(r, θ, z) = rur (r, θ, z)uθ (r, θ, z) − νr2∂r (uθ (r, θ, z)/r). (B5)

The convective part is qc
ω = rur (r, θ, z)uθ (r, θ, z). It is worth noting that 〈Jω〉θz is the commonly

conserved transverse current, whereas the density 〈qω〉θz decreases along the radial direction the
same as the heat flux density.

3. Effective viscosity νt/ν and diffusivity κt/κ

The global heat transfer could be defined as Nu = Qt/QLam
t , where Qt = ∫

V,τ
qt dV dτ and

QLam
t = ∫

V,τ
qLam

t dV dτ . To describe the contribution of turbulent transport to the global heat
transfer, the effective thermal diffusivity κt is defined as Qt = ∫

V,τ
κt (�/d )dV dτ . Thus the dimen-

sionless effective diffusivity is
κt

κ
= aNu, (B6)

where a = 2d2/[ln(r2/r1)(r2
2 − r2

1 )].
In the axially periodical domain or very long cylinders, 〈Jω〉θz remains constant radially. How-

ever, owing to the braking effect of the fixed end walls, 〈Jω〉θz decreases along the radial direction
in our system. The angular velocity flux at the inner cylinder is [33],

Nuω = 〈Jω〉θz,r=r1

JLam
ω

= u1d

2B

(
R2

1

)
(2Reτ )2

Re
, (B7)

where the friction Reynolds number Reτ is defined as Reτ = 0.5uτ d/ν with the friction velocity
u2

τ = −νr(∂r〈uθ /r〉θz ) at the inner wall. Following Lathrop’s estimation [31,32], we define the ef-
fective viscosity (owing to the turbulent transport) νt = Gr1/(2πρu1r2

1hd−1), where the inner torque
Gr1 = 2πr3

1hρν∂r (〈uθ /r〉θz ) = 2πr2
1hρν2d−2(2Reτ )2. Thus, one could obtain the equation of the

dimensionless effective viscosity [33]:

νt

ν
= (2Reτ )2

Re
. (B8)

It is found that the dimensionless effective viscosity νt/ν and diffusivity κt/κ have the same
scaling with the global transport of angular momentum (Nuω) and heat (Nu), respectively.
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