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In the quasiclassical regime of quantum turbulence, it has long been hypothesized that
there exist coherent vortical structures, made up of bundles of quantized vortices. More
recently, there has been significant experimental evidence that points to their presence.
Here, we perform a quantitative study of the reconnection of bundles of quantized vorticity
and show that the approach and separation of bundles during a reconnection is consistent
with the symmetric § ~ ¢'/2 scaling which is consistent with studies of individual quantized
vortex reconnection and classical vortex reconnections. We also examined the phenomena
of “bridge” structures that form between the vortex bundles during the reconnection
process and have also been observed during the reconnection of classical vortices. We study
their persistence and suggest that their dissipation is driven by vortex-vortex interactions
within the bridge itself.
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I. INTRODUCTION

Theoretical and experimental work exploring turbulence in the quantum phases of “He, 3He, and
atomic Bose-Einstein condensates (BECs), so-called quantum or superfluid turbulence, has attracted
a wealth of attention in recent years [1]. Early studies [2—4], focused on finite (nonzero) temperature
turbulence in superfluid “He. This is a complex system in which a viscous normal fluid interacts with
an inviscid superfluid, via mutual friction. In the former vorticity is unconstrained; the building
blocks of the turbulence are “swirling” motions, eddies, which can take any size and strength. In the
superfluid component vorticity can only exist in the form of topological defects, quantized vortex
lines, with atomic thickness and fixed circulation I", whose value is specific to the atomic properties
of the fluid.

As the temperature is decreased towards zero the relative density of the normal fluid vanishes
and we are left with a state of pure superfluid turbulence, with vorticity constrained to these line
defects. Remarkably, experimental evidence has repeatedly shown that the statistical properties of
this turbulence at absolute zero shares many features observed in classical turbulence [5—-7]. At first
glance this may seem surprising, that vortex stretching, believed to be an important mechanism in
the transfer of energy across length scales, is absent as the radius of the superfluid vortex core
is fixed [8]. Subsequent theory suggested the appearance of this quasiclassical behavior could
plausibly be due to the formation of coherent structures, bundles of quantized vorticity, which could
mimic classical vortex stretching [9]. More recently there has been experimental evidence [10] and
subsequent analysis [11] that seems to validate this theory. Prior work [12] has also shown that these
structures are robust, and are not destroyed due to vortex reconnections.

Reconnections, in this case topological rearrangements of the vorticity field, are another funda-
mental process in hydrodynamic systems. In a turbulent system they are responsible for randomizing
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the velocity field, play a role in the energy cascade, contribute to the fine-scale mixing, and
enhance diffusion [13-15]. In superfluid turbulence they also act to transfer kinetic energy from
a three-dimensional hydrodynamic cascade to a one-dimensional Kelvin wave cascade [16]. This
ultimately mediates energy transfer to scales where it is dissipated acoustically [17]. Quantum fluids
such as superfluid helium and BECs are particularly conducive to the study of reconnections as the
interacting filaments are isolated effectively one-dimensional vortex lines which are topological
defects of the governing order parameter. Thus, unlike in the continuous fields of classical physics,
reconnections in quantum fluids are isolated dramatic events, strongly localized in space and time
and hence conceptually and practically easier to study.

Separately, bundles of quantized vorticity and vortex reconnection have received a wealth of
attention in the literature [18-25]. However, the study of the reconnection of bundles has not
received attention since the work of Alamri et al. [12]. Given the recent detection of these structures
experimentally [10] we believe it is timely to revisit the problem and extract quantitative informa-
tion. Indeed, a natural question to ask is how the approach and separation of a vortex bundle during
a reconnection compares to a single vortex, by analyzing how the minimum separation between
vortices (or vortex bundles) §(¢) scales in time.

Building on the pioneering work of de Waele and Aarts [20], it is now well established [21,25]
that in a system such as turbulent superfluid helium (away from the boundaries), the quantum of
circulation dictates the dynamics and a symmetric power-law scaling §(t) ~ t'/? is observed as
vortices approach, and separate from, a reconnection. We note the recent study of Galantucci et al.
highlighted a linear scaling regime when extrinsic factors, for example, image vortices arising from
external potentials in BEC systems, drive the vortices. Our work here will focus on the regime where
a mutual interaction between the vortex bundles drives the reconnection process.

The most pertinent question is, do we see the same separation scaling during the reconnection
of a bundle of quantized vortices? Since the formation of bundles allows stretching to occur, as
the relative position of vortex strands within a bundle changes during its evolution, it is natural
to consider how it compares to the reconnection of classical vortices [26,27]. Thus, the aim of
this paper is to revisit the problem of reconnecting bundles of quantized vorticity and track their
approach to, and separation from, reconnection.

II. METHODOLOGY

Hereafter we use parameters which refer to superfluid “He, circulation I' = 9.97 x 10~* cm?/s,
and vortex core radius ay &~ 1078 cm, however, our results can be generalized to turbulence in low-
temperature 3He-B, or atomic BECs. Following the seminal work of Schwarz [28], we describe
vortex filaments as space curves s = s(&, t), where £ is the arclength and ¢ is time. In the absence
of mutual friction and of any externally applied superflow, the self-induced velocity of a superfluid
filament at the point s is given by the Biot-Savart law

ds r (s—r)

S__2 dr. I
- anfeps—rp M

The line integral extends over the entire vortex configuration £, which is discretized into a
large number of points s; (i = 1,...N). The singularity at s =r is removed in a standard way
by considering local and nonlocal contributions to the integral. If s; is the position of the ith
discretization point along the vortex line, Eq. (1) becomes [29]
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Here, £; and ¢, are the arclengths of the curve ¢ between points s;_; and s; and between s; and s; 1,
and L’ is the original vortex line without the section between s;_; and s; .

Vortex lines reconnect [30] when they become sufficiently close to each other, provided that the
total length (as a proxy for energy) is reduced [31]. Within the framework of the vortex filament
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FIG. 1. Snapshots from a numerical simulation of the reconnection of vortex bundles. Here, the initial
bundle separation is D = 0.1 cm, the bundle radius is A = 0.03 cm, and the number of vortices in each bundle
isN = 8.

model (VEM) we use here, an algorithmic approach to incorporate reconnections is required, and
its implementation has been described elsewhere in the literature [32]. Likewise for the sake of
brevity, other numerical approaches used here including adaptive discretization, adaptive finite-
difference schemes, and time stepping can be found in Ref. [33]. We work in a periodic domain of
size D = 1 cm, the numerical discretization As is held between 0.005 and 0.01 cm, and a time step
of At =5 x 107* s is used.

In this work, we study the interaction of two bundles of a given number N of (initially) straight
parallel vortex strands, which are initially orthogonal to one another; within a bundle vortices are
randomly distributed. This choice of initially orthogonal vortices is perhaps the most well-studied
reconnection process [22,24,25]; moreover, numerical results [34] suggest this is the dominant
process in quasiclassical quantum turbulence. We denote the initial separation between the axes of
the two bundles to be D and .A be the half width of each bundle. Figure 1 shows the evolution of the
reconnection process with N = 8, D = 0.1 cm, and A = 0.03 c¢m, and is qualitatively comparable
with the results presented in Ref. [12]. In order to go further and track the dynamics of the vortices
we must be able to track the axes of the two bundles as they evolve in time. To do this we follow
the approach developed in Ref. [19] to define a coarse-grained vorticity by smoothing the singular
vorticity field onto a three-dimensional grid using a cubic spline.

Thus, we define a smoothed vorticity field @(x) using a cubic-spline kernel with finite support.
In the smoothed particle hydrodynamics (SPH) literature the kernel used here is typically denoted
the My kernel [35], and allows us to construct @ through

N
w(x) =K Y ;W (rij. h)AE, 3)
j=1
where r;; = X —s;|, A§; = Isj1 —s;|, W(r, h) = g(r/h)/(h?), h is a characteristic length scale,
and
-3¢ +34° 0<q<l,
8q)=132-q), 1<g<2, )
0, q=2.

We discretize @ on a grid of size M> over the entire computational domain. Figure 2 shows a
snapshot of the initial configuration of vortices with N = 6, D = 0.2 cm, and .A = 0.03 cm, overlaid
with a translucent isosurface of the smoothed vorticity field @. From this it is straightforward to
identify the axis of the vortices as these are associated with the grid points with the largest magnitude
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FIG. 2. The initial condition used in our simulations, two straight orthogonal bundles of quantized vortices,
where the initial bundle separation is D = 0.1 cm, the bundle radius is .4 = 0.03 cm, and the number of vortices
in each bundle is N = 6. Overlaid is an isosurface in blue showing a level set of constant vorticity obtained
through our kernel smoothing procedure [see Eq. (3)].

of vorticity. Due to the compact support of the kernel, Eq. (4), it is also feasible to compute @ on a
grid of size M = 643 at frequent points during the evolution of the bundles’ approach and separation
during a reconnection. From this we can extract the key quantity of interest, the bundle separation
8(1).

III. RESULTS

The two quantities of interest in this study are the role the number of vortices (N) within a bundle
and the initial width of the bundle (2.4) both play in determining the dynamics of the reconnection.
In order to make progress we introduce a dimensionless distance §* = §/D and time t* = ¢ /7, where
7 is based on the azimuthal velocity of the bundle,

D 2xDA
= Vg a NI '

Preliminary simulations confirmed our results were essentially independent of the initial sepa-
ration (assuming this was large enough that the scaling of the approach of the bundles could be
studied) and so we fix D = 0.1 cm for all simulations presented here. For a given parameter of
interest we perform ten simulations, with all parameters fixed, but with the position of the vortices
within the two bundles randomized, the results presented in the paper are then ensemble averaged
over these ten simulations.

The first results we shall present have a fixed bundle radius A = 0.03 cm, and varying number
of vortices in the bundle N. Figure 3 shows the approach and separation in unscaled (inset) and
dimensionless units. We see that the choice of nondimensionalization based on the azimuthal
velocity of the bundle leads to the collapse of the data onto a single curve. Note there is a minimum
separation between the bundles that can be resolved due to both the reconnection scheme and our
approach to identify the center of vorticity.

To further our understanding of the reconnection of bundles of quantized vortices we seek
to gain an understanding of the functional form for §*(¢), and in particular if we observe
the symmetric power-law scaling 8*(t) ~ ¢!/2 which has been observed in numerous studies of

(&)
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FIG. 3. The main panel shows the nondimensionalized minimum distance between the two bundles §* as a
function of the rescaled time 7* through the reconnection process; the inset shows the corresponding unscaled
plot. In all cases the bundle radius is fixed at A = 0.03 cm with the number of vortices within a bundle N
varying.

single-vortex reconnection. Our results are presented in Fig. 4, with the separation of the vor-
tices displayed in the main panel and the approach as an inset. Both appear to be consistent
with the ¢!/ scaling, emphasizing the conclusions of Ref. [12], that bundles of quantized vor-
tices remain coherent structures. Our results mean we can take this statement further and show
bundles of quantized vortices approach and separate a reconnection as intense classical vortex
structures [27].
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FIG. 4. A log-log plot of the data presented in Fig. 3. The inset shows the approach to reconnection and the
main panel shows the subsequent separation of the bundles. Both approach and separation are consistent with
the time-symmetric /2 scaling observed for single quantized vortices [25] and classical vortex tubes [27].
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FIG. 5. Snapshots from a numerical simulation of the reconnection of vortex bundles. The left panel shows
the vortices before reconnection, and in the central panel a “bridge” structure is clearly visible, which forms
during the reconnection process, before dissipating due to internal reconnections (right panel). Here, the initial
bundle separation is D = 0.1 cm, the bundle radius is .A = 0.03 cm, and the number of vortices in each bundle
isN =8.

Interestingly, a further comparison with the reconnection of classical vortices can be drawn. In
Ref. [26] an interesting feature, denoted “bridges,” is thin strands of vorticity which form during
the reconnection and remain attached to the main vortical structures as they move away from one
another after the reconnection. We see analog structures which form during the reconnection of
bundles of quantized vorticity. Such bridges are clearly visible in Fig. 5, and in a typical simulation
they form during the reconnection process, and persist for a period of time before dissipating due to
reconnections between the strands which form the bridge, which may generate a number of small
vortex rings [36].

We are motivated to understand if their lifetime is dependent on the number of vortices within
a bundle, which for a fixed bundle radius A dictates the timescale for the rotation of the bundle
[see Eq. (5)]. Recall for each value of N we have ten simulations of the bundle reconnection, and
for each we record the lifetime of the bridge, which we denote #;,. If the breakdown of the bridge
is caused by a vortex interaction within this structure, driving a Crow instability [37], we would
expect 1, to be independent of N. Instead, if it is driven by the turbulent motions within the bundles
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FIG. 6. The average bridge duration (f,), where angle brackets denote ensemble averaging, over ten
simulations of bundle reconnections with a varying number of vortices N in each bundle. The shaded area
depicts the range of 7, over these simulations.
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FIG. 7. The main panel shows the nondimensionalized minimum distance between the two bundles 6* as a
function of the rescaled time ¢* through the reconnection process; the inset shows the corresponding unscaled
plot. In both curves the number of vortices within a bundle is fixed at N = 8 with the radius of a bundle .4
varying.

we may expect 1, to be related to N. In Fig. 6 we present evidence that the bridge lifetime is plausibly
independent of N and thus a vortex-vortex interaction within the bridge is most likely responsible
for its breakdown.

The final question we seek to address here is the role of the bundle width. Our motivation
is twofold: First, it provides a secondary test of the nondimensionalization presented in Eq. (5).
Primarily, however, we seek a comparison with the results of Hussain’s two studies of classical
vortex reconnection [26,27]. In their first work [26], with relatively diffuse vortex structures they
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FIG. 8. A log-log plot of the data presented in Fig. 7. The inset shows the approach to reconnection and
the main panel shows the subsequent separation of the bundles.
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observed asymmetry in the approach and separation of the vortices to reconnection, with scalings
of 8§ ~ ¢3/4 prior to and § ~ t? after reconnection. In a further study [27] with substantially more
concentrated vortical filaments they recovered the symmetric ¢!/2 scaling widely observed in the
quantum fluid literature. Hence a natural question is if we increase the core size of the bundles
A, do we observe a transition to a different scaling regime? From a suite of ten simulations with
D =0.1 cm and A = 0.06 cm, twice as large as the previous simulations with N = 8, we see no
evidence of a different scaling.

Indeed, in Fig. 7 we demonstrate that the nondimensionalization presented in this paper leads
to a reasonable collapse of the data onto a single curve. Figure 8 shows that for both bundle radii
considered the reconnection scaling is consistent with the symmetric ¢!/? scaling. We attempted
simulating the reconnection of bundles with larger widths .4 ~ 0.1 cm, however, identifying the
center of vorticity for these very diffuse bundles proved challenging and the results were dominated
by noise.

We also note that Hussain and Duraisamy [26] observed the asymmetric scalings during the
reconnection of antiparallel vortex tubes. It would therefore be of interest to study the role of the
geometry of the initial condition and its affect on both the scaling laws and bridge formation in a
future study.

IV. SUMMARY

To conclude, we have presented a quantitative study of the reconnection of bundles of quantized
vorticity. The approach and separation of bundles during a reconnection is consistent with the
symmetric § ~ t!/2 scaling which has been observed in a large number of studies of quantized
vortex reconnection [25] and a recent study of classical vortex reconnections [27]. We demonstrate
a simple nondimensionalization based on the azimuthal velocity within the bundle captures much
of the dynamics of the reconnection process. Finally, we examined the persistence of “bridge”
structures which form between the vortex bundles during the reconnection process. Our results
suggest that their dissipation is driven by vortex-vortex interactions within the bridge following a
Crow-like mechanism.

Given recent experimental evidence for the existence of the coherent vortex structures in quan-
tum turbulence, understanding their interactions is fundamental to our understanding this unique
hydrodynamic system; our results present a step in this direction. One important aspect of the
reconnection of bundles which we did not address here are topological changes that occur in
the reconnection process. Visually the bundles after reconnection appear more complex with the
appearance of braided structures. This may prove an opportunity to draw parallels with studies of
magnetohydrodynamics (MHD) reconnection [38] in the future.

ACKNOWLEDGMENT

We thank C. F. Barenghi for suggestions and discussions.

[1] C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, Introduction to quantum turbulence, Proc. Natl. Acad.
Sci. USA 111, 4647 (2014).

[2] W. F. Vinen, Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction, Proc.
R. Soc. London, Ser. A 242, 493 (1957).

[3] W. F. Vinen, Mutual friction in a heat current in liquid helium II. II. Experiments on transient effects,
Proc. R. Soc. London, Ser. A 240, 128 (1957).

[4] W. F. Vinen, Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents,
Proc. R. Soc. London, Ser. A 240, 114 (1957).

[5] J. Maurer and P. Tabeling, Local investigation of superfluid turbulence, Europhys. Lett. 43, 29 (1998).

034701-8


https://doi.org/10.1073/pnas.1400033111
https://doi.org/10.1098/rspa.1957.0191
https://doi.org/10.1098/rspa.1957.0072
https://doi.org/10.1098/rspa.1957.0071
https://doi.org/10.1209/epl/i1998-00314-9

APPROACH AND SEPARATION OF BUNDLES OF ...

[6] J. Salort, B. Chabaud, E. Lévéque, and P.-E. Roche, Energy cascade and the four-fifths law in superfluid
turbulence, Europhys. Lett. 97, 34006 (2012).
[7] P. Walmsley, D. Zmeev, F. Pakpour, and A. Golov, Dynamics of quantum turbulence of different spectra,
Proc. Natl. Acad. Sci. USA 111, 4691 (2014).
[8] L. Procaccia and K. Sreenivasan, The state of the art in hydrodynamic turbulence: Past successes and
future challenges, Physica D 237, 2167 (2008).
[9] A. W. Baggaley and C. F. Barenghi, Vortex-density fluctuations in quantum turbulence, Phys. Rev. B 84,
020504(R) (2011).
[10] E. Rusaouen, B. Rousset, and P.-E. Roche, Detection of vortex coherent structures in superfluid turbu-
lence, Europhys. Lett. 118, 14005 (2017).
[11] J. Laurie and A. W. Baggaley, Coarse-grained pressure dynamics in superfluid turbulence, Phys. Rev.
Fluids 5, 014603 (2020).
[12] S.Z. Alamri, A. J. Youd, and C. F. Barenghi, Reconnection of Superfluid Vortex Bundles, Phys. Rev. Lett.
101, 215302 (2008).
[13] A. F. Hussain, Coherent structures—reality and myth, Phys. Fluids 26, 2816 (1983).
[14] A. F. Hussain, Coherent structures and turbulence, J. Fluid Mech. 173, 303 (1986).
[15] P. E. Dimotakis, Turbulent mixing, Annu. Rev. Fluid Mech. 37, 329 (2005).
[16] V. S. Lvov, S. V. Nazarenko, and O. Rudenko, Bottleneck crossover between classical and quantum
superfluid turbulence, Phys. Rev. B 76, 024520 (2007).
[17] B. V. Svistunov, Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995).
[18] K. Morris, J. Koplik, and D. W. 1. Rouson, Vortex Locking in Direct Numerical Simulations of Quantum
Turbulence, Phys. Rev. Lett. 101, 015301 (2008).
[19] A. W. Baggaley, J. Laurie, and C. F. Barenghi, Vortex-Density Fluctuations, Energy Spectra, and Vortical
Regions in Superfluid Turbulence, Phys. Rev. Lett. 109, 205304 (2012).
[20] A. T. A. M. de Waele and R. G. K. M. Aarts, Route to Vortex Reconnection, Phys. Rev. Lett. 72, 482
(1994).
[21] G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, Characterization of reconnecting
vortices in superfluid helium, Proc. Natl. Acad. Sci. USA 105, 13707 (2008).
[22] S. Zuccher, M. Caliari, A. W. Baggaley, and C. F. Barenghi, Quantum vortex reconnections, Phys. Fluids
24, 125108 (2012).
[23] C. Rorai, J. Skipper, R. M. Kerr, and K. R. Sreenivasan, Approach and separation of quantised vortices
with balanced cores, J. Fluid Mech. 808, 641 (2016).
[24] A. Villois, D. Proment, and G. Krstulovic, Universal and nonuniversal aspects of vortex reconnections in
superfluids, Phys. Rev. Fluids 2, 044701 (2017).
[25] L. Galantucci, A. W. Baggaley, N. G. Parker, and C. F. Barenghi, Crossover from interaction to driven
regimes in quantum vortex reconnections, Proc. Natl. Acad. Sci. USA 116, 12204 (2019).
[26] F. Hussain and K. Duraisamy, Mechanics of viscous vortex reconnection, Phys. Fluids 23, 021701 (2011).
[27] J. Yao and F. Hussain, Separation scaling for viscous vortex reconnection, J. Fluid Mech. 900, R4 (2020).
[28] K. W. Schwarz, Three-dimensional vortex dynamics in superfluid “He": Line-line and line-boundary
interactions, Phys. Rev. B 31, 5782 (1985).
[29] K. W. Schwarz, Three-dimensional vortex dynamics in superfluid “He*: Homogeneous superfluid turbu-
lence, Phys. Rev. B 38, 2398 (1988).
[30] J. Koplik and H. Levine, Vortex Reconnection in Superfluid Helium, Phys. Rev. Lett. 71, 1375 (1993).
[31] M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams, Sound Emission Due to
Superfluid Vortex Reconnections, Phys. Rev. Lett. 86, 1410 (2001).
[32] A. W. Baggaley, The sensitivity of the vortex filament method to different reconnection models, J. Low
Temp. Phys. 168, 18 (2012).
[33] A. W. Baggaley and C. F. Barenghi, Tree method for quantum vortex dynamics, J. Low Temp. Phys. 166,
3(2012).
[34] A. W. Baggaley, L. K. Sherwin, C. F. Barenghi, and Y. A. Sergeev, Thermally and mechanically driven
quantum turbulence in helium II, Phys. Rev. B 86, 104501 (2012).
[35] J. J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30, 543 (1992).

034701-9


https://doi.org/10.1209/0295-5075/97/34006
https://doi.org/10.1073/pnas.1312544110
https://doi.org/10.1016/j.physd.2008.01.025
https://doi.org/10.1103/PhysRevB.84.020504
https://doi.org/10.1209/0295-5075/118/14005
https://doi.org/10.1103/PhysRevFluids.5.014603
https://doi.org/10.1103/PhysRevLett.101.215302
https://doi.org/10.1063/1.864048
https://doi.org/10.1017/S0022112086001192
https://doi.org/10.1146/annurev.fluid.36.050802.122015
https://doi.org/10.1103/PhysRevB.76.024520
https://doi.org/10.1103/PhysRevB.52.3647
https://doi.org/10.1103/PhysRevLett.101.015301
https://doi.org/10.1103/PhysRevLett.109.205304
https://doi.org/10.1103/PhysRevLett.72.482
https://doi.org/10.1073/pnas.0806002105
https://doi.org/10.1063/1.4772198
https://doi.org/10.1017/jfm.2016.638
https://doi.org/10.1103/PhysRevFluids.2.044701
https://doi.org/10.1073/pnas.1818668116
https://doi.org/10.1063/1.3532039
https://doi.org/10.1017/jfm.2020.558
https://doi.org/10.1103/PhysRevB.31.5782
https://doi.org/10.1103/PhysRevB.38.2398
https://doi.org/10.1103/PhysRevLett.71.1375
https://doi.org/10.1103/PhysRevLett.86.1410
https://doi.org/10.1007/s10909-012-0605-8
https://doi.org/10.1007/s10909-011-0405-6
https://doi.org/10.1103/PhysRevB.86.104501
https://doi.org/10.1146/annurev.aa.30.090192.002551

GEORGE S. E. GRIMES AND ANDREW W. BAGGALEY

[36] M. Kursa, K. Bajer, and T. Lipniacki, Cascade of vortex loops initiated by a single reconnection of
quantum vortices, Phys. Rev. B 83, 014515 (2011).

[37] S. C. Crow, Stability theory for a pair of trailing vortices, AIAA J. 8, 2172 (1970).

[38] A.R. Yeates, G. Hornig, and A. L. Wilmot-Smith, Topological Constraints on Magnetic Relaxation, Phys.
Rev. Lett. 105, 085002 (2010).

034701-10


https://doi.org/10.1103/PhysRevB.83.014515
https://doi.org/10.2514/3.6083
https://doi.org/10.1103/PhysRevLett.105.085002

