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Analytical all-induction state model for wind turbine wakes
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Analytical wind turbine wake models are an integral component of wind farm design
and optimization. However, when the turbine induction factor increases, these models
are prone to failure, as they do not account for the increasingly important effects of low
wake pressure. To resolve this issue, this paper proposes an analytical wake model which
incorporates the effect of wake pressure in its predictions. The model is based on inviscid
flow theory for the initial wake region [K. Steiros and M. Hultmark. J. Fluid Mech. 853, R3
(2018)] and an extension of Morton’s [B. R. Morton. J. Fluid Mech. 10, 101 (1961)] theory
for the far wake, both of which include the effects of wake pressure. Comparison with
high-fidelity wind turbine simulations shows that the model is comparable to conventional
ones at low induction factors, but continues to be accurate at higher induction factors where
existing models break down.

DOI: 10.1103/PhysRevFluids.7.034605

I. INTRODUCTION

Analytical wake models are tools that predict the velocity deficit downstream of a wind turbine,
and ultimately the flow within a wind farm. These models play a pivotal role in the design and
optimization of wind farm control and layout due to their simplicity, low cost, and practicality [1,2].
As a result, a large number of analytical wake models have been developed over the past 40 years
(see, for instance, the review articles by Crespo et al. [3], Göçmen et al. [4], Porté-Agel et al. [5]
and the references therein).

The bulk of these models share the same principle. The wake is divided into its near and far
regions. The former is modeled using an inviscid actuator disk analysis and sets the boundary
condition for the latter, which is modeled using arguments borrowed from the theory of self-
preserving turbulent wakes [6]. A critical assumption is that the pressure in both of those regions
does not deviate from its ambient value po. This can be thought to be approximately true when the
turbine’s induction factor (its effective solidity) is low. Indeed, most modern wind turbines operate
at sufficiently low induction regimes, rendering the use of these models justified.

Situations arise, however, where the turbine operates at relatively high induction states. These
might occur when the tip-speed ratio of the turbine assumes high values or in nonstandard turbine
designs, as, for instance, in vertical axis wind turbines [7,8] or highly loaded horizontal axis wind
turbines [9,10] (e.g., with multiple or very wide blades). In such cases, the turbine reaches a state
where the wake pressure lowers significantly (a phenomenon also called base suction), rendering
conventional wake models prone to failure.

The emergence of base suction sets a firm upper bound to the permissible induction factors of
conventional wake models. In practice, however, the bound can be stricter than the one imposed
by base suction, as an additional complication may arise when trying to enforce conservation of
momentum in the wake. The momentum budgets that wake models employ are valid either very
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close to the turbine (near region) or very far from the turbine (far region). Their coupling may be
incompatible when a critical induction factor is exceeded. An additional constraint is thus set, which
may be interpreted physically as the turbine having sufficiently low effective solidity, so the flow is
only minimally perturbed, leading to marginally different physics in the near and far wake regions.

It is perhaps instructive to give some numbers to the above constraints. The induction factor
is defined as α = 1 − ut/Uo, where ut is the spatially averaged flow velocity through the turbine
and Uo the free stream velocity. The base suction constraint sets an upper limit for α around
0.3–0.4 [10,11], while the coupling constraint in the widely popular Frandsen family of momentum-
conserving models [12,13] sets a stricter upper limit of α = 0.25.

There are, however, ways to circumvent the coupling constraint. One way is by relaxing the
momentum conservation principle in the far wake. This is the approach followed in the model of
Jensen [14] and its variants, which produce robust predictions at the cost of diminished accuracy.
Another way is to use an entrainment-based closure of the far wake [15–17], which is capable
of producing sensible solutions at the whole extent of the wake without having to sacrifice the
fundamental physics of the problem. Still, these representations do not account for base suction in
the wake.

In the present paper, we address both issues and derive a generalized turbine wake model
that is not subject to the above two constraints (coupling and base suction). In the near wake,
we circumvent the base-suction constraint by substituting the classical theory of Rankine-Froude
(which assumes wake pressures equal to the ambient) with a generalized version of it [18,19],
which takes into account base suction. In the far wake, we circumvent the coupling constraint by
employing an entrainment-based representation [15,16] which we first extend so it also includes the
effects of base suction. The result is an analytical turbine wake model which is equally accurate to
conventional ones at low induction factors but continues to be accurate even at higher (in principle,
for all, if vortex shedding is absent) induction factors, where other models break down.

The structure of the paper is as follows. Section II describes the flow solver which is used to
provide reference data. Section III presents the derivation of the analytical turbine wake model. The
predictions of the proposed model are compared against those of a well-established wake model
and numerical simulations of the flow around model wind turbines in Sec. IV. Finally, Sec. V
summarizes and concludes the paper.

II. NUMERICAL METHODOLOGY AND SETUP

The predictions of the developed model are tested against data from a series of large-eddy simula-
tions (LESs) of the flow around model wind turbines. To this end, we use XCOMPACT3D (previously
INCOMPACT3D/WINC3D), a well-established finite-difference framework that uses high-order com-
pact schemes (sixth in the present paper) to solve the incompressible (filtered) Navier-Stokes
equations [20–22]. XCOMPACT3D was recently extended and applied to the study of wind turbines
and their wakes [23,24]. The wind turbines can be modeled by the actuator line or the actuator disk
method; in the present paper, we use the former approach. The Smagorinsky model is used to model
the effects of the unresolved fluid motions. Finally, a third-order Runge-Kutta method is used for
time integration.

The configurations under consideration loosely follow the experiments of the “Blind Test 1”
(BT1) workshop [25]. XCOMPACT3D has been previously used to study this particular problem,
showing good agreement with the experimental results (for details, see Deskos et al. [23]). The
BT1 experimental configuration is replicated in this paper as well, with the resolution that will be
used for the simulations in the main body of this paper. Figure 1 shows the predicted wake velocity
profiles at a horizontal cut at the hub height at different distances downstream of the turbine, and
compares them with the available experimental measurements. Good agreement between the two
sets of results can be observed, except in the vicinity of the tower (which, however, will not be
considered in the simulations that follow) at the location immediately downstream of the turbine
(x/D = 1).
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FIG. 1. Mean streamwise velocity profiles at a horizontal cut at the hub height at different distances
downstream of the turbine, (left) x/D = 1, (middle) x/D = 3, and (right) x/D = 5. Numerical simulations
(solid lines), experimental data (markers) [25].

For the comparison with the model that is derived in Sec. III, we consider an enlarged channel
(compared with the BT1 experiments) to reduce blockage effects. The modified channel has a cross
section spanning four turbine diameters in both spanwise and vertical directions, and runs 12 turbine
diameters long. This results in a blockage ratio (defined as the ratio of gross turbine area and channel
cross section) below 5%. Free-slip conditions are used at the channel walls, and laminar inflow is
set at the inlet (very low turbulence levels, I � 0.3%, were present in the experiments). The model
wind turbine is constructed based on the description and data given in Krogstad and Adaramola [26]
and Krogstad and Eriksen [25], and is placed at the center of a vertical plane x = 3.5D downstream
of the inlet. The turbine operates at a constant tip speed ratio TSR = 6. A uniform grid consisting
of 721 × 241 × 241 points is used (resulting in a mesh of size � 42 × 106 points); this resolution
can be considered sufficient for the purposes of this paper (see also Fig. 1), particularly since we
will be considering the first moment of velocity only. Each blade/actuator line is discretized with
52 elements and no tower or nacelle is present to allow comparisons with the proposed analytical
model. Simulations are run for a total time corresponding to more than 200 turbine rotations, with
statistics extracted over the last � 85. The wake boundaries are detected as the locations where the
velocity is 0.95 times the free stream velocity, and the induction factor is obtained by computing the
rotor-averaged mean streamwise velocity at the turbine plane.

High induction states are accessed by changing the turbine’s number of blades. These regimes
could also be accessed by changes in the geometry of the turbine or its rotational speed, or by
reducing the free stream velocity. Out of the above options, we opted for changing the number
of blades, as fewer modifications in the setup were required. Three different simulations are thus
performed; one with the model three-bladed turbine described in Refs. [25,26], labeled T1, and two
with its six- and nine-bladed variants, labeled T2 and T3, respectively. The induction factors were
measured as α = 0.279, 0.467, and 0.569, respectively.

III. DERIVATION OF THE MODEL

A. Near wake

The first few diameters of a high Reynolds number turbine wake are customarily modeled
using inviscid flow theory. The rationale here is that at such small downstream distances, the
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FIG. 2. Wake area (top left) and characteristic velocity (top right) after initial expansion, turbine thrust
coefficient (bottom left), and pressure coefficient (bottom right) as a function of the induction factor α.
Predictions of the theories of Rankine-Froude (black) and Steiros and Hultmark [18] (red). Included also are
the wake velocity predictions of the model of Frandsen et al. [12] (blue), and data from numerical simulations
(markers).

turbulent/shear stresses are cumulatively small compared to the effect of the initial wake expansion,
and therefore do not significantly affect the flow quantities of the wake (see also relevant discussions
in Refs. [19,27]). The near region typically spans about two turbine diameters downstream of the
turbine [12]. In practice, however, most turbine wake models (e.g., Refs. [12–14,16]) assume that it
is negligible. The main function of the near region is thus to impose the boundary condition on the
far wake description that follows.

The basis of the inviscid analysis is the classical Rankine-Froude theory [11]. As mentioned
in the Introduction, this theory neglects base-suction effects, thus limiting its applicability to low
induction factors. Figure 2 shows the predictions of Rankine-Froude theory for the wake area Aw

and characteristic velocity Uw after the initial expansion (denoted with the subscript 0), as well as
for the thrust coefficient CT . For completeness, these expressions are given below:

Aw0

A
= 1 − α

1 − 2α
,

Uw0

Uo
= 1 − 2α, CT = 4α(1 − α), (1)

where A = πD2/4 is the turbine area. At an induction factor of α = 0.5, the wake is unrealistically
predicted as infinite and stagnant, while for larger induction factors the theory predicts negative
wake velocities and areas (i.e., a complex wake characteristic size), and decreasing thrust. α =
0.5 thus sets a mathematical base-suction upper limit, but we note that Rankine-Froude theory
predictions are already inaccurate for induction factors larger than approximately 0.3 − 0.4 [11].

We reiterate that the stricter coupling constraint has to be added to the above restriction when
considering the momentum-conserving model of Frandsen et al. [12] and its variants. In particular,
Frandsen et al. [12] derived Uw0/Uo = 0.5 + 0.5

√
1 − 8α(1 − 2α) for the very near wake. This

expression needs to be consistent with the original prediction of the Rankine-Froude theory.
However, Fig. 2 shows that the two predictions agree only when α � 0.25 thus limiting, in principle,
the applicability of the models of the Frandsen family to low-induction regimes.
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FIG. 3. Infinitesimal segment of the wake (solid lines) and outer control volume (dotted lines) where mass
and momentum budgets are applied.

In the current paper, we substitute the Rankine-Froude theory of the near wake with the inviscid
theory of Steiros and Hultmark [18], itself an extension of the porous flat plate theory of Taylor [28].
Using a seemingly different methodology, Taylor produced identical predictions to Rankine-Froude;
the two theories can be thus thought equivalent. Steiros and Hultmark [18] proposed a correction
to the Taylor model by imposing continuity and adding the effect of base suction, leading to the
following expressions for the wake area and characteristic velocity after the initial expansion, as
well as for the thrust and pressure coefficients:

Aw0

A
= 1 + α,

Uw0

Uo
= 1 − α

1 + α
, CT = 4α(3 − α)

3(1 + α)
, Cpw = −8

3

( α

1 + α

)2
. (2)

The reader is referred to the original publication for more details on the assumptions and
derivation of the Steiros and Hultmark [18] model. Figure 2 shows that the above expressions
provide sensible, monotonic results for the whole range of induction factors. The same figure also
includes data extracted from the numerical simulations (presented in Sec. IV), which correspond
to the location immediately after the initial expansion (approximately one diameter downstream of
the turbine). The data show that the model of Ref. [18] captures the initial wake properties more
faithfully compared with the theory of Rankine-Froude, when the induction factor assumes high
values.

B. Far wake

In the far wake, the turbulent stresses can no longer be neglected and, as a result, the wake
continually expands. We model this expansion by using an entrainment-based closure, as it bypasses
the coupling constraint that was previously discussed. Our entrainment-based representation is
based on the work of Morton [15], with the difference that Morton only considered the very far wake
case where pressure has regained its ambient value, i.e., pw = po. Here, we require an estimate for
the whole extent of the wake—even close enough to the turbine where p < po. We therefore need
to extend Morton’s theory to account for base suction.

1. Momentum integral

Consider the idealized segment of the turbulent wake shown in Fig. 3. The solid lines mark the
turbulent-nonturbulent interface which we refer to as the wake boundary. Outside the wake, the
velocity and pressure assume their ambient values Uo and po, while inside the wake the velocity
assumes profiles which may be modeled as Gaussian [6,29]. Here, for simplicity, we assume a
top-hat velocity profile (much like Morton [15] and Frandsen et al. [12]), and expect that this will
not introduce large inaccuracies, given that we consider integral quantities. Mass conservation inside
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the wake-segment yields

ṁE = ρd (UwAw ), (3)

where d (·) is a differential and ṁE is the mass flux due to entrainment, which will be later
estimated using the entrainment hypothesis. A combination of Eq. (3) with mass conservation inside
the dotted control volume yields the following expression for the mass flux ṁ:

ṁ = ṁE − ρUodAw. (4)

By applying momentum conservation in the dotted control volume and noting that in the outer
flow the Reynolds stresses are negligible, we obtain

d
(
ρU 2

wAw

) = UoṁE + d (Aw(po − pw )). (5)

In the above equation and in the analysis that follows, the effect of the axial Reynolds stress
term is not considered, as its role in the momentum budget can be neglected (see Appendix A). By
combining the above with Eq. (3) and integrating, we obtain

ρUwAw(Uo − Uw ) + Aw(po − pw ) = T . (6)

The first term on the left-hand side is the momentum deficit flux of the wake, while the second is
the pressure deficit net force. Thus, the constant of integration T must be the thrust of the turbine.
Equation (6) shows that our analysis is momentum conserving (in contrast to the Jensen [14] model
and its variants), whether we consider the near or the far wake. In the special case of the very far
wake, we have pw ≈ po and Eq. (6) reduces to the well-known momentum integral for bluff bodies
[6].

2. Wake pressure and entrainment

Our model’s predictions rely on being able to solve Eq. (5). To do that, we first need to model
the mass flux ṁE and the pressure deficit po − pw.

The mass flux ṁE is due to turbulent mixing or entrainment of ambient fluid. This can be modeled
using the entrainment hypothesis which states that the fluid outside the turbulent region crosses
the turbulent interface with an entrainment velocity ue = E (Uo − Uw ) [15], where the entrainment
constant E needs to be empirically determined. Therefore, the mass flux due to entrainment at the
wake segment of Fig. 3 is

ṁE = ρE (Uo − Uw )πDwdx. (7)

The pressure deficit term needs to be expressed as a function of mean flow variables and our
turbulence closure expression, i.e., the entrainment velocity ue. Consider the annular control volume
shown in Fig. 4, which is crossed by the wake boundary (red line). Above the wake boundary, the
flow is assumed unperturbed and potential, and inside the wake boundary, turbulent. The velocity
which crosses the wake boundary is assumed to be that of the outer flow Uo.

The control volume is bounded by two streamlines. When outside of the wake, they remain
parallel (as the velocity between them is constant and equal to Uo), with negligible Reynolds stresses.
After crossing the wake boundary, the Reynolds stresses become non-negligible, and the term u′

ru′
x

continually transports momentum to the core of the wake. As a result, the streamlines converge
toward the center due to mass conservation. The velocity inside the wake is Uw.

Given the above, we may derive an expression for the entrainment velocity ue, which is defined
as the velocity normal to the wake boundary. Therefore, ue = Uo sin θ̂ , with θ̂ = arctan 1

2
dDw

dx . For
small wake expansion angles θ̂ (this was verified to hold in our simulations), we obtain

ue

Uo
= 1

2

dDw

dx
. (8)
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FIG. 4. Section of the annular control volume at the wake boundary. The red line represents the
turbulent/nonturbulent interface. The control volume is bounded by two streamlines (black lines), which are
initially parallel, but after entering the wake, they diverge.

Conservation of mass on the control volume yields dAx = Uo
Uw

dAw, while conservation of mo-
mentum yields

po − pw

ρ
dAw − u′2

x dAw + U 2
o dAw = u′

ru′
xπDwdx + U 2

w

Uo

Uw

dAw. (9)

Combining Eqs. (8) and (9) and noting that dAw = πDw

2
dDw

dx dx, we obtain

po − pw

ρ
= u′

ru′
x

Uo

ue
− Uo(Uo − Uw ). (10)

In the above equation, similar to Eq. (5), the axial Reynolds stress term is dropped, as its role
compared to the velocity deficit term is negligible (see Appendix A). On the contrary, the shear
Reynolds stress term is retained, as it is multiplied by Uo/ue, rendering its effect at least an order of
magnitude larger compared to that of the axial Reynolds stress term.

To proceed, we need to link the Reynolds stress u′
ru′

x with known quantities. Using an analogy
with free shear flows, Tennekes and Lumley [6] proposed the expression u′

ru′
x ≈ 0.4u′2

r for the far
wake; this is indeed close to experimental observations (see, for instance, Uberoi and Freymuth
[30]). However, in the far wake it can be shown that ρu′2

r = po − pw (see Tennekes and Lumley [6]
for the planar wake and Appendix B for the axisymmetric wake). Combining the above expressions,
we finally obtain our model for the pressure deficit term

po − pw

ρU 2
0

= E (1 − Uw/Uo)2

0.4 − E + EUw/Uo
≈ λ(1 − Uw/Uo)2, (11)

with λ = 2.5E . The approximation is most accurate for a combination of small E (typically close
to 0.1), and Uw → Uo. Equation (11) becomes asymptotically valid as the distance from the turbine
increases. In Appendix C, we show that it provides a reasonably good approximation for the pressure
term for the whole extent of the wake, increasingly so as the turbine induction factor (and therefore
the importance of the pressure term in the budget equation) increases. We therefore use Eq. (11) for
the whole extent of the wake. We are now in a position to derive the turbine wake model.

3. Wake model

Injecting Eq. (6) (for the wake area), (7) (for the entrainment mass flux), and (11) (for the wake
pressure) into Eq. (5), and noting that CT = 2T

ρU 2
o A , with A = πD2/4 being the turbine area, we obtain

d

dx

[
u2 − λ(1 − u)2

u(1 − u) + λ(1 − u)2

]
=

(
2

CT

)1/2 4E

D

[
1 − u

u + λ(1 − u)

]1/2

, (12)
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where we have made the substitution u = Uw/Uo. Equation (12) can be integrated to yield

(4λ2 − 5λ + 1)u2 + (−8λ2 + 8λ)u + 4λ2 − 3λ

(1 − u)3/2(λ + (1 − λ)u)1/2
= 6E

(
2

CT

)1/2 x − xv

D
, (13)

where λ = 2.5E . In the case where λ = 0, pressure recovery is assumed to not affect the wake
evolution, and Eq. (13) reduces to the standard far wake solution of Morton [15] and Luzzatto-Fegiz
[16].

The constant of integration, xv , expressed as a virtual origin, can be calculated by coupling the
far wake solution of Eq. (13) with the near wake solution of Eq. (2). Indeed, for a particular turbine
induction factor α, our near-wake inviscid model yields a prediction for the thrust coefficient CT

and the wake velocity after the initial expansion (see Sec. III A). The latter can be considered to
occur at a small distance downstream of the rotor xi, selected from a model for wake expansion.
For simplicity, here we consider xi = 0, as is typical for turbine wake models (e.g., Frandsen et al.
[12], Jensen [14]). The only tuning parameter of the model is the entrainment constant E , which is
known to be around 0.1 for turbulent wakes [15].

Having determined the wake velocity Uw, we can have an estimate for the wake area Aw using
the momentum integral of Eq. (6) coupled with our closure for the wake pressure of Eq. (11), i.e.,

Aw

A
= CT

2
[u(1 − u) + λ(1 − u)2]−1. (14)

Equations (13) and (14) fully predict the wake development of a single wind turbine, and can
be used in conjunction with wake-interaction models [5] to predict the flow field of an entire wind
farm.

IV. WAKE MODEL VALIDATION

Figure 5 presents an assessment of the performance of the developed model at different induction
regimes by comparing its predictions for the wake velocity, diameter, and pressure coefficient
with the results of the numerical simulations and the predictions of the well-established, industry-
standard model of Frandsen et al. [12]. In all cases, we take E = 0.13 for the presently developed
model; this was the average value of E measured in the simulations (with a standard deviation
of 0.035) and is within the range of values suggested by Morton [15] and Luzzatto-Fegiz [16].
The entrainment coefficient was found to be weakly depending on the turbine induction factor
(coefficient of variation � 0.02). However, slightly different values of E can be expected as the
levels of stratification or background turbulence vary [31,32]. We note that the model does not
consider, explicitly, the effects of stratification, Reynolds number, and background turbulence,
which can be thought to be implicit in the empirical coefficient E . Appendix D presents a brief
study on the sensitivity of the model to different values of E . For the model of Frandsen et al. [12]
the wake spreading parameter was taken k∗ = 0.027, which yielded a good fit to the numerical and
entrainment model results.

The numerical simulations show that in all tested cases the wake initially expands rapidly,
and the wake velocity accordingly drops. This trend continues until approximately one diameter
downstream of the turbine, where the wake velocity assumes its lowest value. This is the location
where the wake has concluded its initial expansion phase, marked with vertical dashed lines. Note
that the values measured at this location are used in Fig. 2 when comparing the two near-wake
theories with the simulation results. After this point, the wake expansion slows down considerably
and the wake velocity continually increases; this corresponds to the far-wake region in the analytical
models.

In the low induction case (T1), the predictions of both models are very similar for the wake
velocity and wake diameter, and in qualitative agreement with the LES results. This is because the
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a function of streamwise distance for turbines T1 (left), T2 (middle), and T3 (right). Numerical simulations
(black), present model (red), Frandsen et al. [12] (blue). The dashed lines mark the end of the initial expansion
phase of the wake.

induction factor is still small enough and base suction does not introduce appreciable effects. The
presently developed model exhibits a slightly different prediction for the wake diameter due to its
different initial condition. Neither of the two models is accurate very close to the turbine, as they
both assume a negligible near-wake length (see discussion in Sec. III A). However, the far wake
trends predicted by the models match those of the numerical simulation.

In the medium (T2) and high (T3) induction cases, the performance of the model of Frandsen
et al. [12] is critically affected by the pressure and coupling constraints. In the T2 case, the initial
condition is considerably far from the observations and, as a result, the overall wake evolution is
unrealistic. In the T3 case, the model breaks down, predicting negative initial wake velocity and area.
In contrast, the presently developed model remains consistent, producing sensible and qualitatively
accurate predictions for the wake velocities and diameters, in both cases.

In all three tested cases, the prediction of the current model for the wake pressure coefficient
is in relative agreement with the results of the numerical simulations. The agreement improves
for larger downstream distances, given that pressure recovery is modeled using arguments for the
very far wake. Conventional models (including Frandsen’s) assume that the wake pressure is equal
to the ambient. Our numerical results suggest that, for high induction factor rotors, this becomes
approximately true only far from the turbine.
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V. SUMMARY AND CONCLUSIONS

This paper introduced an analytical wake model for the prediction of the flow field downstream
of wind turbines operating at arbitrary induction states. Similar to previous works [12,13,16], the
turbine is represented as a porous plate, the effects of rotation are neglected, the wake is assumed
axisymmetric, and its evolution is obtained using arguments from the theory of self-preserving
turbulent wakes [6,15], setting the initial conditions from potential flow theory [18]. The main
contribution of the present paper is the inclusion of the wake pressure evolution in the modeling.
Whereas previous works assume a constant atmospheric wake pressure throughout the wake, here it
is estimated via a combination of potential flow theory results, with an approximation which links
pressure evolution and turbulent entrainment.

Comparison of the theoretical predictions with data from high-fidelity numerical simulations
showed that the currently proposed model has similar accuracy to the Frandsen model at low
induction factors but continues to be accurate at higher induction factors where conventional wake
models either display deteriorating accuracy or even break down.

In the future, it would be interesting to extend the model by applying it to yawed conditions
[33,34], by formulating a criterion for the determination of the near-wake length, or by implement-
ing it within wake-farm modeling toolboxes to enable assessments of the collective behavior of
highly loaded turbines within a wind farm.
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APPENDIX A: AXIAL REYNOLDS STRESS

At the far wake, the pressure and axial Reynolds stress terms are both negligible compared to the
momentum deficit term, as shown by the order-of-magnitude analysis of Tennekes and Lumley [6].
For that reason, inclusion or not of the pressure and/or Reynolds stress terms in the far wake does
not substantially affect the momentum budget [Eq. (5)]. Near the bluff body, however, the situation
is different; there are indications that the Reynolds stress term is negligible there, but the pressure
term is not (several potential flow models, e.g., Steiros and Hultmark [18], Yeung and Parkinson
[35], provide reliable predictions of the near field by including the wake pressure but neglecting the
Reynolds stresses).

The above are tested using data from one of our LESs (case T2, α = 0.467). In Fig. 6, we plot
the momentum deficit flux Uw(Uo − Uw ), the pressure deficit (po − pw )/ρ, and the axial Reynolds
stress u′2

x along the streamwise distance x/D (note that these are to a degree affected by blockage
and the omission of tower and nacelle in the modeling of the turbine). It can be seen that in the
near wake, the axial Reynolds stress term is much smaller compared to the momentum and pressure
deficit terms, and may thus be neglected. In the far wake, we observe that both the pressure and
Reynolds stress terms tend to zero, i.e., both can be safely neglected from the momentum budget,
as is long known from classical turbulence studies (see Refs. [6,15]).

We note that the Reynolds stress term cannot be currently modeled, but its inclusion is expected
to only act as a small correction to the existing pressure term. The latter is retained throughout the
wake, even far from the body, where it could be neglected as it no longer affects the evolution of the
wake. The reason for that is that if it is suddenly removed, this would lead to a discontinuity and a
piecewise analytical solution, which would only increase the complexity of the theory. We finally
note that, even if one is interested in the far wake only, it is still important to take into account
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FIG. 6. Momentum deficit (solid), pressure (dashed), and axial Reynolds stress (dotted) along streamwise
distance, case T2. The terms are averaged in the wake (left) and extracted at the center line (right).

the pressure in the first few diameters downstream of the turbine, as the initial pressure-dominated
region acts as a initial condition which determines the later evolution of the wake.

APPENDIX B: RADIAL REYNOLDS STRESS

Under the assumptions of stationarity and statistical axisymmetry, the radial component of
the Reynolds-averaged Navier Stokes equations projected on a cylindrical coordinate system, and
neglecting viscous stresses, becomes

rUr
∂Ur

∂r
+ rUx

∂Ur

∂x
+ ∂ru′2

r

∂r
+ r

∂u′
ru′

x

∂x
− u′2

θ = − r

ρ

∂ p

∂r
.

The far wake is slender, i.e., ∂/∂x � ∂/∂r. Then, following an order-of-magnitude analysis
similar to the one of Tennekes and Lumley [6], and using the continuity equation in cylindrical
coordinates, we find that, at first-order approximation, the above equation reduces to

∂u′2
r

∂r
+ u′2

r − u′2
θ

r
= − 1

ρ

∂ p

∂r
.

By integrating from r to infinity, the above becomes

u′2
r + p

ρ
− G(r) = const,

where G(r) = ∫ ∞
r

u′2
r −u′2

θ

r′ dr′. However, u′2
r ≈ u′2

θ in the far axisymmetric wake [30], and thus the

effective spatial average G(r) is negligible. Furthermore, u′2
r is negligible for r → ∞, where the

pressure assumes its ambient value po. The above equation then becomes

ρu′2
r = po − p,

which is the same result that Tennekes and Lumley [6] derived for planar wakes.

APPENDIX C: WAKE PRESSURE MODEL VALIDATION

The validity of our model for the wake pressure, i.e., Eq. (11), is assessed using data from the
numerical simulations (for details, see Sec. II). Figure 7 plots the pressure downstream of the three
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FIG. 7. Pressure deficit (dashed) and model expression for it (solid) as a function of streamwise distance,
integrated in the wake of the simulated wind turbines T1 (black), T2 (blue), T3 (red), corresponding to induction
factors α = 0.279, 0.467, and 0.569, respectively.

turbines, (po − pw )/ρ, along with the approximate expression for it, λ(Uo − Uw )2. In the latter, the
entrainment coefficient is calculated as E = sin (arctan ( 1

2
dDw

dx )) Uo
Uo−Uw

(see Sec. III). Equation (11)
is shown to be a reasonable approximation for the wake pressure, except for the region very close
to the body, where the wake is yet to transition to turbulence, and the entrainment parametrization
and far-wake assumptions cannot be expected to apply.

APPENDIX D: MODEL SENSITIVITY STUDY

Works in the literature (mainly for jets, plumes, and secondarily wakes) suggest that E takes
values in the range 0.1 − 0.16 [15,16]. In Fig. 8, we plot the predictions of the developed model
for the two limit values listed above, i.e., E = 0.1 and E = 0.16; the uncertainty can be seen to
increase with the turbine induction factor. Qualitatively, the expected behavior is recovered, where
larger values for the entrainment coefficient E result in faster wake recovery.
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FIG. 8. Characteristic wake velocity as a function of streamwise distance, as predicted by the presently
proposed model, for three different induction factors. The upper and lower solid lines are the model predictions
for E = 0.16 and E = 0.1, respectively.
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