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Shell model intermittency is the hidden self-similarity
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We show that the intermittent dynamics observed in the inertial interval of the Sabra shell
model of turbulence can be rigorously related to the property of scaling self-similarity. In
this connection, the space-time scaling symmetries [like in the Kolmogorov 1941 (K41)
theory] are replaced by the hidden scaling symmetry, which is an exact symmetry of in-
viscid dynamics represented in special rescaled coordinates and times. We derive formulas
expressing the anomalous scaling exponents in terms of Perron-Frobenius eigenvalues of
linear operators based on the self-similar statistics. Theoretical conclusions are verified by
extensive numerical simulations.
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I. INTRODUCTION

Small-scale intermittency remains one of the major open problems in the theory of developed
turbulence. This intermittency features alternating regions of intense turbulence and extended
laminar behaviors, becoming more pronounced at smaller scales. Quantitative observables usually
associated with the intermittency are structure functions, e.g., Sp(�) = 〈δvp

� 〉, defined as the average
moments of velocity differences δv� at scale � [1]. In Kolmogorov’s theory from 1941 (K41), the
self-similarity assumption leads to the power-law scaling Sp(�) ∝ �ζp with the linear dependence
of the scaling exponents ζp = p/3 on the order p. This, however, contradicts experimental and
numerical observations indicating that the dependence of ζp on the order p is nonlinear, also called
anomalous scaling. Anomalous scaling implies that all space-time scaling symmetries are broken
in the statistics of developed turbulence, leading to a much higher complexity of the flow. Such
intermittent flows may be considered in the context of the multifractal approach [1]. We recall that
the discussed properties refer to the scales in the so-called inertial interval, where both forcing and
viscous terms are negligible.

Shell models were introduced as toy models with the aim of revealing mechanisms that lead
to intermittency. Among the numerous shell models considered up to now, the most popular are
probably the Gledzer-Ohkitani-Yamada (GOY) model [2,3] and its modification, named the Sabra
model [4]. These models demonstrated the principal features of the Navier-Stokes intermittency,
including the anomalous scaling of structure functions with the exponents ζp rather close to
their values in the full Navier-Stokes system. Multiple efforts were made to understand the shell
model intermittency theoretically [5], e.g., with the multifractal approach [6] or computing scaling
exponents [7,8] with the use of fusion rules [9,10]. However, these derivations are not free from
phenomenological assumptions. Therefore, a theoretical explanation of intermittency from first
principles is still missing for shell models.

In this work we show that intermittency in the Sabra shell model can be derived from the hidden
scaling symmetry reported in [11,12]. We demonstrate that this symmetry arises when the inviscid
equations of motion are represented in a rescaled form with an intrinsic (solution-dependent) time.
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We show that the property of hidden scale self-similarity in the inertial interval yields the anomalous
scaling of structure functions. Thus, it is the hidden rather than the usual self-similarity that controls
the statistics of developed turbulence. Following the general group-theoretical approach of [11],
we express the scaling exponents ζp in terms of Perron-Frobenius eigenvalues of certain operators
derived from self-similar statistics. The suggested formalism develops and provides a first-principles
explanation for earlier ideas related to the concept of multipliers, first appearing in the famous work
of Kolmogorov in 1962 [13]. These originally phenomenological ideas were inspired by the theory
of multiplicative stochastic processes and were later discussed in relation to intermittency for shell
models [14–16].

Our formalism naturally unifies the ideas of Kolmogorov with those of the Parisi-Frisch mul-
tifractal theory of turbulence [1,17]. The latter proposes that all space-time scaling symmetries
are restored in the inertial interval of developed turbulence, but each symmetry occurs within a
corresponding fractal subset of space-time depending on the scaling exponent h. We prove that
our construction fuses the one-parameter family of space-time scaling symmetries (depending on h)
into a single hidden symmetry, therefore reducing the Parisi-Frisch argument to the restoration of the
hidden symmetry alone and in the usual sense. Note that the existence of this kind of symmetry in
intermittent turbulence was anticipated by She and Leveque in 1994 [18]; they wrote, “We believe
that this relation is a consequence of some hidden (statistical) symmetries in the solution of the
Navier-Stokes equations.”

We start with the description of the Sabra shell model in Sec. II. Section III introduces the
hidden scaling symmetry. Structure functions are expressed in terms of rescaled variables and
times in Sec. IV, and these expressions are used in Sec. V to derive scaling exponents in terms of
Perron-Frobenius eigenvalues. Section VI provides a detailed verification of the obtained results
with numerical simulations. In Sec. VII, we discuss the results and their implications for the
Navier-Stokes turbulence. The Appendix contains some technical derivations.

II. MODEL

The shell model of turbulence mimics the Navier-Stokes flow using a geometric sequence of
wave numbers kn = λn, with λ = 2 and corresponding complex velocities un ∈ C indexed by integer
shell numbers n. Spatial scales are defined as �n = 1/kn; that is, larger shell numbers correspond to
smaller scales. The equations of the Sabra model [4] are formulated in dimensionless form as

dun

dt
= ikn

(
2un+2u∗

n+1 − un+1u∗
n−1

2
+ un−1un−2

4

)
− Re−1k2

nun, n � 1. (1)

The right-hand side of these equations contains the quadratic nonlinear term and the viscous term
multiplied by the inverse of the Reynolds number Re > 0. Shell model (1) possesses two inviscid
invariants interpreted as the energy E = 1

2

∑
n |un|2 and helicity H = ∑

n(−1)nkn|un|2 [4]. It is
convenient to set

u0(t ) ≡ 1 (2)

as the boundary (forcing) condition with un(t ) ≡ 0 for negative n.
We consider the regime of developed turbulence corresponding to very large Reynolds numbers

Re � 1. In the statistically stationary state, the inertial interval is defined as the range of shells n
such that

k0 	 kn 	 K. (3)

This interval is distant from the large-scale forcing condition (2) at k0 = 1 (forcing range) and
from large wave numbers of order K , for which the viscosity starts playing a role (viscous range).
The K41 theory estimates K ∼ Re3/4 [1]. Considering shells with wave numbers kn 	 K , i.e., the
inviscid scales of the forcing range and inertial interval, we can neglect the viscosity by setting
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Re−1 = 0 in system (1). This yields the equation

dun

dt
= ikn

(
2un+2u∗

n+1 − un+1u∗
n−1

2
+ un−1un−2

4

)
, (4)

which mimics the Euler system for an ideal fluid. One can see that Eq. (4) is invariant with respect
to a family of space-time scalings,

t, un �→ λ1−ht, λhun+1. (5)

Here the exponent h ∈ R defines an arbitrary temporal scaling factor λ1−h, and the shifting of all
shells by unity induces the change in the spatial scale kn+1 = λkn, with λ = 2. Transformations (5)
mimic space-time scaling symmetries of the Euler equations [1].

Structure functions are traditional observables for the analysis of intermittency in stationary
developed turbulence. For the shell model, they are introduced as

Sp(kn) = 〈|un|p〉t , (6)

where 〈·〉t denotes the temporal average and p � 0 is the order of the velocity moment. Numerical
simulations [4] demonstrate an accurate power-law scaling,

Sp(kn) ∝ k
−ζp
n , (7)

in the inertial range. The nonlinear dependence of exponents ζp on p is a distinctive feature of the
intermittency because the K41 theory, based on the scale invariance, predicts the linear dependence
ζp = p/3. Deviations ζp − p/3 of the actual exponents from the K41 theory are called anomalous
corrections. These corrections are relatively small, vanishing for ζ0 = 0 and ζ3 = 1 but becoming
large for high-order moments. Power laws (7) with anomalous corrections are the main focus for
our work.

III. HIDDEN SCALING SYMMETRY

Let us fix some reference shell number m and introduce the corresponding momentary turnover
time as

Tm(t ) =
(∑

j<m

k2
j |u j (t )|2

)−1/2

. (8)

The expression in the parentheses is an analog of enstrophy for shells j = 0, . . . , m − 1. Then, we
define the rescaled variables UN as functions of the intrinsic time τ implicitly as [12]

dτ = dt

Tm(t )
, UN = ikmTm(t )uN+m(t ), (9)

with the initial condition τ = 0 at t = 0. Writing Eq. (4) for the inviscid dynamics in terms of the
new variables (9), we have (see Sec. A 1 for the derivation)

dUN

dτ
= −kN BN + UN

−1∑
J=1−m

k3
J Re(U ∗

J BJ ), (10)

where Re(·) denotes the real part and

BN = 2UN+2U
∗
N+1 − UN+1U ∗

N−1

2
− UN−1UN−2

4
. (11)

Notice that the sum in (10) represents the derivative dTm/dt .
Using the K41 estimate u j ∼ k−1/3

j in Eqs. (8), (9), and (11) yields

k2
j |u j |2 ∼ k4/3

j , Tm ∼ k−2/3
m , UN ∼ k−1/3

N , k3
JU ∗

J BJ ∼ k2
J . (12)
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The intermittency adds small corrections to the exponents. We see that the sum in expression (10) is
dominated by J close to zero. Therefore, considering the reference shell m with km � k0 from the
inertial interval (3), we can write Eq. (10) formally as

dUN

dτ
= −kN BN + UN

∑
J<0

k3
J Re(U ∗

J BJ ), (13)

i.e., ignoring the cutoff of the sum at J = 1 − m.
The key observation is that the resulting system (13) and (11) does not depend explicitly on m.

Hence, the change in the reference shell m defines a symmetry transformation for this system. This
transformation can be written in an explicit form. For example, increasing the reference shell by
unity yields a new intrinsic time and rescaled variables (denoted by hats) for m̂ = m + 1 as [12]

d τ̂ =
√

1 + |U0|2 dτ, ÛN = 2UN+1√
1 + |U0|2

. (14)

Transformations (14) represent the simultaneous state-dependent change in time and nonlinear
change in variables. The invariance of Eqs. (13) and (11) with respect to transformation (14) can be
verified by a direct substitution (see Sec. A 2).

We conclude that transformations (14) define the hidden scaling symmetry of system (13) and
(11). It is a weaker symmetry: The hidden scale invariance can be restored in a statistical solution
despite all original symmetries (5) being broken [11,19]. We remark that the particular choice of
expression (8) for turnover times is not unique, and equivalent formulations of the hidden symmetry
can be obtained with other definitions [11].

Let us now relate the hidden symmetry with the original space-time scaling symmetries (5).
Specifically, let us consider the scaled shell velocities and times as

ûn(t̂ ) = λhun+1(t ), t̂ = λ1−ht, (15)

which are obtained by the scaling (5) for an arbitrary h ∈ R. We can easily verify that velocities
(15) satisfy the inviscid equations of motion (4) if the original velocities un(t ) do. By substituting
(15) into expressions (8) and (9), we can show (see Sec. A 3) that the corresponding rescaled
velocities ÛN (τ̂ ) are given by the hidden symmetry relations (14). Although it appears that the
hidden symmetry is a rescaled version of the original space-time scaling symmetry, the crucial
difference is that the hidden symmetry does not depend on the exponent h. Hence, the rescaling
procedure fuses the one-parameter family of space-time scaling symmetries into a single hidden
symmetry. This fusion is not just a property of a particular model under consideration but a general
consequence of commutation relations in the symmetry group, as shown in [11].

The fusion of scaling symmetries into the hidden symmetry connects our formalism with the
Parisi-Frisch multifractal theory of turbulence [1,17]. The latter proposes that all space-time scaling
symmetries are restored in the inertial interval of developed turbulence, but each symmetry occurs
within a corresponding fractal subset of space-time depending on h. The fusion property of our
construction reduces the Parisi-Frisch argument to the restoration of the hidden symmetry alone and
in the usual sense. Indeed, we show below that the restoration of hidden scale invariance is both the
case for and the cause of the intermittent turbulent dynamics.

IV. STRUCTURE FUNCTIONS IN TERMS OF RESCALED VARIABLES

Our next goal is to express the structure functions in terms of rescaled variables. For this purpose,
we introduce the auxiliary real variables, which we call multipliers, as

σN = TN+m

TN+m+1
, N > −m. (16)
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Using definitions (8) and (9) in (16), we can see that

σN =
√∑

J�N k2
J |UJ |2∑

J<N k2
J |UJ |2 . (17)

Clearly,

σN � 1 (18)

for all multipliers. Notice that ratios of turnover times (16) are analogous to the Kolmogorov multi-
pliers defined as ratios of velocities, whose universality was discussed in several previous works
[14,15,20]. However, expressions (16) have the advantage of avoiding vanishing denominators.
Notice that k2

J |UJ |2 ∼ k4/3
J using the K41 estimate (12) with a small correction to the exponent

due to intermittency. Hence, the sums in (17) are dominated by J close to N .
Let us consider a statistically stationary state of developed turbulence. We assume the existence

of a probability distribution with ergodic properties, which expresses averages with respect to the
intrinsic time τ . Specifically, let us introduce the vectors

σ = (σ0, σ−) ∈ Rm, σ− = (σ−1, . . . , σ−m+1) ∈ Rm−1. (19)

We consider a probability measure μ(σ ) in the space σ ∈ Rm such that

〈ϕ〉τ =
∫

ϕ(σ ) dμ(σ ) (20)

for any continuous observable ϕ(σ), where 〈·〉τ denotes the average with respect to time τ . We
denote by ρ(σ0|σ−) a conditional probability density defined in the standard way by the relation

dμ(σ ) = ρ(σ0|σ−) dσ0 dμ−(σ−), (21)

where μ−(σ−) is a probability measure for the vector σ− ∈ Rm−1. The following statement (see
Sec. A 4 for the proof) expresses the structure functions in terms of the measure μ.

Theorem 1. Structure functions (6) at reference shell number m can be expressed as

Sp(km) =
∫ (

σ 2
0 − 1

)p/2
dμp(σ) (22)

integrated with the measure

dμp(σ) = k−p
m

〈
T −1

m

〉
t

( −1∏
J=1−m

σ
p−1

J

)
dμ(σ ). (23)

Under the unit increase of the reference shell, m̂ = m + 1, the new multipliers are expressed as
σ̂N = σN+1, and the corresponding new measure μ̂p(σ̂) satisfies the iterative relation

dμ̂p(σ̂) =
(

σ̂−1

λ

)p

ρ̂(σ̂0|σ̂−) d σ̂0 dμp(σ̂−), (24)

where

σ̂ = (σ̂0, σ̂−) ∈ Rm̂, σ̂− = (σ̂−1, σ̂−2, . . . , σ̂−m̂+1) ∈ Rm̂−1, (25)

and the conditional probability density ρ̂(σ̂0|σ̂−) corresponds to the new reference shell m̂.

V. ANOMALOUS EXPONENTS AS PERRON-FROBENIUS EIGENVALUES

In this section, we study the dependence of statistics on the reference shell m and, for clarity,
adopt slightly different notations. Let us write the iterative relation (24) in Theorem 1 as

dμ(m+1)
p (σ0, σ−1, . . . , σ−m) =

(σ−1

λ

)p
ρ (m+1)(σ0|σ−1, . . . , σ−m) dσ0 dμ(m)

p (σ−1, . . . , σ−m), (26)
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where we specified reference shells m and m̂ = m + 1 explicitly in the superscripts and dropped the
hats. This iterative relation can be written in short form as

μ(m+1)
p = L(m+1)

p

[
μ(m)

p

]
, (27)

where L(m+1)
p is defined by (26) as a linear operator acting on measures μ(m)

p . By induction, for any
m, we write

μ(m)
p = L(m)

p ◦ L(m−1)
p ◦ · · · ◦ L(2)

p

[
μ(1)

p

]
. (28)

For m = 1, expressions (9) and (A16) and (A18) from Sec. A 4 yield T1(t ) ≡ 1, |U0| = k1|u1|, and
σ0 =

√
1 + k2

1 |u1|2. Thus, the measure μ(1)
p is found from (23) as

dμ(1)
p (σ0) = k−p

1 dμ(1)(σ0), (29)

where μ(1)(σ0) is the probability measure for the statistical distribution of σ0 =
√

1 + k2
1 |u1|2 with

respect to the original time τ1 = t .
We define the statistical hidden self-similarity as the invariance of a probability distribution

with respect to the hidden symmetry transformations (14). For the developed turbulence, this
self-similarity may be expected in the inertial interval, where equations of motion are invariant
with respect to the hidden symmetry. Recall that transformations (14) are equivalent to a change
in the reference shell m. Hence, the hidden self-similarity implies that the conditional probability
density ρ (m) does not depend on the reference shells m in the inertial interval:

ρ (m)(σ0|σ−1, . . . , σ1−m) ≈ ρ∞(σ0|σ−1, σ−2, . . .), (30)

where we use ∞ in the superscript to denote self-similar quantities. We also require that correlations
between σ0 and σJ with J < 0 are local; that is, the dependence of ρ∞ on variables σJ decays for
large negative J .

The self-similarity assumption (30) implies the invariance property of the linear operator from
(26) and (27). Thus, we have

L(m)
p ≈ L∞

p (31)

for reference shells m in the inertial interval. Here L∞
p is a linear operator defined by (26) and (30)

as

μ̂ = L∞
p [μ], dμ̂(σ0, σ−1, σ−2, . . .) =

(σ−1

λ

)p
ρ∞(σ0|σ−1, σ−2, . . .) dσ0 dμ(σ−1, σ−2, . . .),

(32)
which acts on measures μ(σ0, σ−1, σ−2, . . .) in the infinite-dimensional space.

Since the operator L∞
p is positive (mapping positive-valued measures to positive-valued mea-

sures), it has a unique dominant eigenvalue Rp with the corresponding eigenvector (measure) μ∞
p :

L∞
p

[
μ∞

p

] = Rp μ∞
p ; (33)

see the Perron-Frobenius theorem for positive matrices [21] and the Krein-Rutman theorem [22] for
positive operators with proper assumptions of compactness. The Perron-Frobenius eigenvalue Rp is
real positive and larger than the absolute values of all remaining eigenvalues. Hence, for a generic
measure (29) in the forcing range and large m in the inertial interval, expressions (28) and (31) yield
the asymptotic form of measure μ(m)

p as

μ(m)
p ≈ cpRm

p μ∞
p , (34)

where the coefficient cp depends on statistical properties in the forcing range.
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Substituting (34) into expression (22) yields

Sp(km) ≈ CpRm
p ∝ k

−ζp
m , (35)

with the scale-independent coefficient

Cp = cp

∫ (
σ 2

0 − 1
)p/2

dμ∞
p (σ0, σ−1, . . .) (36)

and the exponent

ζp = − lnλ Rp. (37)

If the constant Cp in (36) is finite (neither vanishing nor infinite), then expression (37) yields our
main result: The statistical hidden self-similarity implies power-law scaling of structure functions
with the exponents (37) given by Perron-Frobenius eigenvalues of linear operators (32). From the
form of these operators, we can argue [11] that exponents (37) can be and typically are anomalous;
that is, they depend nonlinearly on p. See, e.g., [19] for an explicit calculation in a solvable
intermittent shell model.

We finally notice that, for the mathematical definition of asymptotic relations (30), (31), and
(34), we should consider the double limit: the first limit of a large Reynolds number Re → ∞ and
the subsequent limit of a large wave number km → ∞. Convergences may be understood in terms
of the standard product topology in infinite-dimensional space (σ0, σ−1, σ−2, . . .) ∈ R∞ (see, e.g.,
[23]).

VI. NUMERICAL TESTS

In this section, we use the results of numerical simulations for a detailed confirmation of the
hidden self-similarity and its relation to the intermittency. In these simulations, we used a total
number of n = 40 shells and the Reynolds number Re = 1012. Equation (1) was simulated with
high accuracy in the large time interval 0 � t � 2000 corresponding to the statistically stationary
regime. Simultaneously, intrinsic times (9) were integrated for different reference shells. As initial
conditions, we considered the K41 state un(0) = eiθn k−1/3

n with random phases and omitted the
initial interval of length �t = 20 to remove transient behavior.

Figure 1(a) shows the numerical results for structure functions (6) corresponding to the orders
p = 1, . . . , 6. With the linear interpolation (red dashed lines), estimated values of the anomalous
exponents in (7) are

ζ1 = 0.3945 ± 0.0008, ζ2 = 0.7225 ± 0.0018, ζ3 = 1.0023 ± 0.0019,

ζ4 = 1.2536 ± 0.0032, ζ5 = 1.4843 ± 0.0051, ζ6 = 1.6943 ± 0.0042, (38)

which agree with the results obtained in [4] for a random large-scale forcing. Figures 1(b)–1(g)
show the compensated structure functions k

ζp
n Sp(kn). They indicate that prefactors in the power law

(7) remain constant up to small numerical fluctuations for the shells of inertial interval 6 � n � 22.
Notice that this interval gets smaller for larger orders p.

A. Hidden scale self-similarity

A detailed analysis of the hidden self-similarity was done in an earlier work [12]. Since our
analysis requires only the multipliers σN defined in (16), we focus here on their statistical properties
in the inertial interval. The hidden self-similarity means that the joint probability distribution of the
multipliers does not depend on the choice of the reference shell m. This property is confirmed in
Fig. 2, where Fig. 2(a) shows the probability density functions (PDFs) of σ0. These PDFs collapse
into a single curve when computed for different reference shells m = 11, . . . , 18. These shells span
roughly two and a half decades of wave numbers from the central part of inertial interval. Similarly,
Fig. 2(b) demonstrates the hidden self-similarity in terms of the joint probability density of σ−1
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FIG. 1. (a) Logarithms of structure functions, ln2 Sp, depending on shell numbers n = ln2 kn for p =
1, . . . , 6 (from top to bottom). Red dashed lines show the power laws ∝ k

−ζp
n in the inertial interval. (b)–(g)

Compensated structure functions k
ζp
n Sp for p = 1, . . . , 6 depending on the shell number n. Red dashed lines

show constant prefactors corresponding to power laws ∝ k
−ζp
n .

and σ0. Figure 2(c) shows absolute values of correlation coefficients corr(σ0, σN ) depending on the
shell separation N and computed for m = 14, . . . , 18. Figure 2 verifies the locality of self-similar
statistics: the decay of correlations among multipliers at distant shells.

B. Anomalous exponents in the self-similar statistics

Next, we consider measures μ(m)
p defined in (23) and verify their self-similarity property (34) with

the Perron-Frobenius eigenvalues Rp related by (37) to the anomalous exponents. These measures
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FIG. 2. (a) Probability density function (PDF) of the multiplier σ0 computed for reference shells m =
11, . . . , 18; the inset shows the same functions but in logarithmic vertical scale. The accurate collapse of these
graphs for different m confirms the hidden scale self-similarity. (b) Level curves for the joint PDF of multipliers
σ−1 and σ0. The results are shown for m = 11, . . . , 18, and the resulting graphs collapse to single curves up
to small numerical fluctuations. (c) Absolute values of correlation coefficients between σ0 and σN depending
on N . The graphs are shown for m = 14, . . . , 18 and demonstrate the locality property: decay of correlations
among multipliers at distant shells.
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FIG. 3. Each panel shows compensated marginal densities k
ζp
m g(m)

p (σ0 ) for reference shells m = 11, . . . , 18
and fixed p. (a)–(f) correspond to p = 1, . . . , 6. The collapse of the graphs for different m verifies the relation
between hidden self-similarity and anomalous scaling, as described by expressions (34) and (43). For contrast,
we show in the insets the same functions but with ζp replaced by their K41 estimates p/3.

will be analyzed by using the corresponding density functions f (m)
p (σ0, σ−1, . . . , σ1−m). We express

these functions from relation (23) as

f (m)
p (σ0, σ−1, . . . , σ1−m) = k−p

m

〈
T −1

m

〉
t

( −1∏
J=1−m

σ
p−1

J

)
f (m)(σ0, σ−1, . . . , σ1−m), (39)

where f (m)(σ0, σ−1, . . . , σ1−m) is a joint probability density function of multipliers for a specific
choice of reference shell m.

We define two types of convenient observables by integrating functions (39) with respect to all
arguments but σ0 or (σ0, σ−1), i.e.,

g(m)
p (σ0) =

∫
f (m)

p (σ0, σ−1, . . . , σ1−m) dσ−1 · · · dσ1−m, (40)

h(m)
p (σ0, σ−1) =

∫
f (m)

p (σ0, σ−1, . . . , σ1−m) dσ−2 · · · dσ1−m. (41)

Notice that functions (40) and (41) represent marginal densities on the spaces of σ0 and (σ0, σ−1),
respectively. Hence, these functions can be computed numerically by using one- or two-dimensional
histograms for the variables σ0 and (σ0, σ−1): According to expression (39), functions (40) and (41)
are estimated within each histogram bin as sums of the quantities

k−p
m

〈
T −1

m

〉
t

( −1∏
J=1−m

σ
p−1

J

)
�τ (m)

τ
(m)
tot �b

. (42)
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FIG. 4. Isolines of compensated marginal densities k
ζp
m h(m)

p (σ0, σ−1) for (a) p = 2 and (b) p = 4. Each
isoline is presented by eight graphs, which correspond to reference shells m = 11, . . . , 18. Their collapse
verifies the relation between hidden self-similarity and anomalous scaling, as described by expressions (34)
and (44).

Here �τ (m) is the segment of intrinsic time spent in a particular bin, τ
(m)
tot is the total intrinsic time

of the simulation, and �b is the length (or area) of the bin.
Let Rp be the Perron-Frobenius eigenvalue with the corresponding eigenvector (measure) μ∞

p
defined by the eigenvalue problem (33). Like for (40) and (41), we denote the corresponding
marginal densities by g∞

p (σ0) and h∞
p (σ0, σ−1). Our result in (34) and (37) implies the asymptotic

relations

g(m)
p (σ0) ≈ cpRm

p g∞
p (σ0) = cpk

−ζp
m g∞

p (σ0), (43)

h(m)
p (σ0, σ−1) ≈ cpRm

p h∞
p (σ0, σ−1) = cpk

−ζp
m h∞

p (σ0, σ−1). (44)

The scaling in these relations can be verified by showing that the functions

k
ζp
m g(m)

p (σ0), k
ζp
m h(m)

p (σ0, σ−1) (45)

with the anomalous exponents (38) do not depend on the reference shell m within the inertial
interval. Numerical graphs of functions k

ζp
m g(m)

p (σ0) indeed collapse as shown in Fig. 3 for m =
11, . . . , 18. In order to see the quality of this collapse, we present the same functions in the
insets, but with the anomalous exponents ζp replaced by their K41 estimates p/3, demonstrating
a clear dependence on m. Further tests are presented in Fig. 4, where we can see a similar collapse
for isolines of functions k

ζp
m h(m)

p (σ0, σ−1). Therefore, we have verified numerically the asymptotic
relation (34), which derives the anomalous scaling from the hidden self-similarity.

C. Anomalous exponents from Perron-Frobenius eigenvalues

Finally, we verify relation (37) deriving the anomalous exponents from the Perron-Frobenius
eigenvalues of linear operators L∞

p , as well as the functional form in (34) given by the corresponding
eigenvectors (measures) μ∞

p . For this purpose we must solve the eigenvalue problem (33). Since
the Perron-Frobenius eigenvalue Rp is real and positive and has a large absolute value, it can be
computed by iterative methods, i.e., by applying the linear operator L∞

p iteratively to an initial
arbitrarily chosen measure. These iterations converge to the eigenvector of the dominant Perron-
Frobenius eigenvalue.
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To estimate the operator L∞
p numerically, we use the decay of correlations among multipliers at

distant shells. Namely, given N > 0, we approximate the conditional density of σ0 as

ρ (m) ≈ ρ̃ (m)(σ0|σ−1, σ−2, . . . , σ−N ). (46)

This approximation, denoted with the tilde, takes into account a fixed number N of preceding
multipliers σ−1, σ−2, . . . , σ−N and neglects the statistical dependence of σ0 on the multipliers
σ−N−1, σ−N−2, . . . at larger scales. Densities (46) do not depend on the reference shell m in
the inertial interval as a consequence of the hidden self-similarity, as we already established in
Sec. VI A. Let us write expression (26) for the operator L(m+1)

p in terms of densities f (m)
p and f (m+1)

p
as

f (m+1)
p (σ0, σ−1, . . . , σ−m) =

(σ−1

λ

)p
ρ (m+1)(σ0|σ−1, . . . , σ−m) f (m)

p (σ−1, . . . , σ−m). (47)

Substituting approximation (46) for m + 1 into Eq. (47) and integrating with respect to
σ−N , . . . , σ−m yield

f̃ (m+1)
p (σ0, . . . , σ−N+1) =

∫ (σ−1

λ

)p
ρ̃ (m+1)(σ0|σ−1, . . . , σ−N ) f̃ (m)

p (σ−1, . . . , σ−N ) dσ−N , (48)

where we introduced the partially integrated (marginal) densities

f̃ (m)
p (σ0, . . . , σ−N+1) =

∫
f (m)

p (σ0, . . . , σ1−m)
−N∏

J=1−m

dσJ . (49)

Relation (48) written in the compact form

f̃ (m+1)
p = L̃(m)

p

[
f̃ (m)

p

]
(50)

defines a linear integral operator L̃(m)
p . For sufficiently large N , this operator L̃(m)

p yields an accurate
approximation of the operator L(m)

p from (26) and (27) expressed in terms of densities. The latter
approximates the limiting self-similar operator L∞

p in (31) and (32) for reference shells m from the
inertial interval. Therefore, we can compute the Perron-Frobenius eigenvalues Rp numerically as
dominant eigenvalues of operators L̃(m)

p , with the accuracy controlled by increasing the number N
of conditioned multipliers.

In our numerical procedure, we approximate the conditional probability density (46) using
multidimensional histograms. Such an analysis is limited because of the high requirements of both
the memory and computational resources, as well as of available statistics, which are all crucial for
the design of a numerical method. For each σJ , J = 0,−1,−2, . . . ,−N , we consider the interval
1 � σJ � 23.84 ≈ 14.32 covering all observed values [see the inset in Fig. 2(a)]. This interval is
partitioned into exponentially increasing bins. The binning is controlled by a single parameter �

determining the smallest bin size 2� − 1 ≈ � ln 2. The bins are defined by setting their edges at
σJ = 2s�J , with s = 0, 1, 2, . . ., where

�0 = �, �−1 = �−2 = 2�, �−3 = �−4 = 4�, �−5 = �−6 = 8�. (51)

The best approximation we could access numerically in (46) was N = 6 for � = 0.06 and N = 4
for � = 0.03. The chosen form of binning has two optimal properties: It uses smaller bins in the
region of moderate values of σJ with larger probabilities, and larger bins capture rare large values of
σJ . Also, the choice (51) assigns larger bins for larger |J|, which allows capturing the dependence
on distant multipliers σJ within limited computational resources. The same bins are used for the
numerical approximation of functions (49), and the integrals in (48) are computed as Riemann
sums.

To compute the Perron-Frobenius eigenvalue Rp and the corresponding eigenvector, we fix
the reference shell m = 18 from the inertial interval and select arbitrarily the initial function
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FIG. 5. Anomalous exponents ζp of orders (a)–(f) p = 1, . . . , 6 obtained in terms of the Perron-Frobenius
eigenvalues (37). The latter are computed numerically for different numbers N = 1, . . . , 6 in the approximation
(46), and the eigenvalue problem is solved using the iterative method. All functions are estimated with
multidimensional histograms: solid circles connected by solid lines correspond to the binning parameter (size
of the smallest bin) � = 0.03, and open circles with dotted lines correspond to � = 0.06. Red horizontal solid
lines denote the expected values of anomalous exponents from (38), and horizontal dotted lines indicate the
K41 estimates p/3.

F̃ini(σ0, . . . , σ−N+1). Then, we iterate the relation

F̃i+1 = L̃(m)
p [F̃i], F̃0 = F̃ini. (52)

Before each iteration, the functions are renormalized to the unit L1 norm: F̃i+1 �→ F̃i+1/‖F̃i+1‖L1 .
This iteration method converges (we used 30 iterations for a very accurate convergence) and yields
the Perron-Frobenius eigenvalue Rp with the corresponding eigenvector (density function):

‖F̃i+1‖L1

‖F̃i‖L1

→ Rp, F̃i → f̃ ∞
p . (53)

We control the accuracy of our numerical method by refining the bins (decreasing �) and improving
the statistical approximation (increasing N).

The proposed numerical scheme was implemented with different numbers of conditioned multi-
pliers in (46) for the binning parameters (sizes of smallest bin) � = 0.03 and � = 0.06. The results
are presented in Fig. 5, where solid circles connected by solid lines correspond to � = 0.03 and
open circles connected by dotted lines correspond to � = 0.06. The statistical error of the results
is small (does not exceed the size of the plotted circles), which we verified by comparing with
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FIG. 6. Difference �ζp between the values of ζp from (38) and the values of ζp computed in terms of the
Perron-Frobenius eigenvalues for different N (see Fig. 5). The graphs are shown in (a) linear and (b) logarithmic
vertical scales.

a simulation in a two times smaller time interval, 0 � t � 1000. Solid horizontal lines in Fig. 5
mark the expected values (38), and dotted horizontal lines correspond to the K41 estimates p/3.
We observe excellent agreement for ζ1 in Fig. 5(a) and convergence to values (38) with increasing
N for the exponents ζ2, . . . , ζ6 in Figs. 5(b)–5(f). The latter convergence is better seen in terms
of differences �ζp between the exponents (38) and the estimates in terms of Perron-Frobenius
eigenvalues for different N and �, as shown in Fig. 6. Figure 6(b) shows the results in logarithmic
vertical scale, suggesting that all the exponents converge following the same pattern (supposedly,
the same exponentially decaying mode) with the increase of N .

Recall that the exact value ζ3 = 1 of the third-order exponent is associated with the conservation
of energy and agrees very well with the observations [1] [see (38)]. In our theory, we did not
use the energy conservation, and therefore, the value ζ3 = 1 is not distinguished a priori. This
is why we observe the gradual convergence in Figs. 5(c) and 6 for ζ3, just as for other higher-order
exponents. Using relations (8), (9), and (17), we can express the energy E = 1

2

∑
n |un|2 in terms of

multipliers, but this would give an expression with a sophisticated nonlinear dependence. It may be
beneficial to explore this expression to understand the interplay between the hidden symmetry and
conservation laws and to improve the numerical convergence; we leave such a study for a future
work.

Another interesting comparison is presented in Fig. 7. Here thin solid curves are isolines of
the functions h(m)

p (σ0, σ−1) for m = 11, . . . , 18. These functions were defined in (41), and their
universality (independence of m) was established in Sec. VI B (see Fig. 4). According to the theory
of hidden self-similarity formulated in expression (44), these functions are equal (up to a constant
factor) to the functions h∞

p (σ0, σ−1) computed in terms of Perron-Frobenius eigenvectors. Recall
that while the former functions h(m)

p (σ0, σ−1) are obtained directly from the simulation statistics as
described in Sec. VI B, the Perron-Frobenius eigenvectors are computed by the iterative method
with a random initial density function [see (52) and (53)]. The functions h∞

p (σ0, σ−1) computed
numerically in terms of Perron-Frobenius eigenvectors with our finest approximation (� = 0.03

034604-13



ALEXEI A. MAILYBAEV

1 1.5 2 2.5
1

1.5

2

1

0.6

0.3

0.15

1 1.5 2
1

1.5

2

0.
63

0.
3

0.14

FIG. 7. Thin black curves are isolines of compensated marginal densities k
ζp
m h(m)

p (σ0, σ−1) for (a) p = 1 and
(b) p = 2. Each isoline is presented by eight graphs, which correspond to reference shells m = 11, . . . , 18 as
in Fig. 4. Red dotted lines are the properly scaled functions h∞

p (σ0, σ−1) obtained in terms of Perron-Frobenius
eigenvectors f̃ ∞

p from (53). The agreement among all graphs verifies the asymptotic relation (44) of the hidden
self-similarity.

and N = 4) are shown by dotted lines in Fig. 7 for p = 1 and 2. Excellent agreement verifies our
theoretical conclusions based on the hidden self-similarity.

VII. DISCUSSION

We showed that intermittency in a shell model of turbulence is a direct consequence of hidden
scale self-similarity. The hidden scaling symmetry appears when equations of motion are written
in rescaled variables and times intrinsic to different scales of motion. Then, anomalous scaling
of structure functions in the inertial interval was derived using the Perron-Frobenius eigenvalues
of certain linear operators based on the self-similar statistics. We may conclude that the basic
hypothesis of Kolmogorov that the scaling symmetry is restored statistically in the developed
turbulence [1] is true for the shell model, but not in the conventional sense. The key novelty is
the choice of the symmetry: It is the hidden scaling symmetry which is relevant for turbulence
rather than original scaling symmetries.

We showed earlier within the general group-theoretical approach [11] that the existence of
hidden symmetries follows from noncommutativity of the temporal scaling (and also of the Galilean
transform) with the evolution operator. Therefore, our approach can be extended to other systems,
including the original Navier-Stokes equations [24]. We know that the latter has a sweeping effect:
Large-scale motions affect the Eulerian small-scale statistics, and this feature is not captured by
oversimplified shell models. However, the sweeping effect can be taken into account in the context
of hidden symmetries, as shown in [11,24].

We remark that chaotic dynamics is a complex phenomenon, and its understanding does not
generally provide analytic procedures for computing all relevant quantities; one may recall the
theory of Lorenz attractor as an example [25]. In our case, the hidden self-similarity explains
the intermittent dynamics with anomalous scaling, but we need numerical simulations to compute
accurate anomalous exponents. On the other hand, we can design specific models in which the
analytic computation is carried out in full [19]. Hence, for further development of the presented
theory, more relevant studies may address the robustness of hidden self-similarity, which ensures
the importance of specific solvable examples, along with numerical investigations of the hidden
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self-similarity in real-world models. Another interesting direction that we did not address here is
the relation of hidden symmetries to conservation laws like the conservation of energy.
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APPENDIX

1. Derivation of rescaled inviscid Equations (10) and (11)

Using (9), we write

dUN

dτ
= ikmT 2

m

duN+m

dt
+ ikmTmuN+m

dTm

dt
= ikmT 2

m

duN+m

dt
+ UN

dTm

dt
. (A1)

Substituting Tm from (8) yields

dUN

dτ
= ikmT 2

m

duN+m

dt
+ UN T 3

m

m−1∑
j=0

k2
j Re

(
−u∗

j

du j

dt

)
. (A2)

Expressing derivatives using (4) and (2), we have

dUN

dτ
= − kmT 2

m kN+m

(
2uN+m+2u∗

N+m+1 − uN+m+1u∗
N+m−1

2
+ uN+m−1uN+m−2

4

)

+ UN T 3
m

m−1∑
j=1

k3
j Re

(
−iu∗

j

[
2u j+2u∗

j+1 − u j+1u∗
j−1

2
+ u j−1u j−2

4

])
. (A3)

It remains to write kmT 2
m kN+m = kN (kmTm)2 in the first term and k3

j = k3
j−mk3

m in the second term.
Then, using the second relation in (9) we obtain Eqs. (10) and (11), where J = j − m.

2. Explicit demonstration of hidden scale invariance

Let us explicitly demonstrate the invariance of system (13) and (11) with respect to the hidden
scaling transformation (14). Using expressions (14), we write

dÛN

d τ̂
= 2√

1 + |U0|2
d

dτ

UN+1√
1 + |U0|2

= 2

1 + |U0|2
dUN+1

dτ
− 2UN+1

(1 + |U0|2)2
Re

(
U ∗

0
dU0

dτ

)
. (A4)

Substituting the derivatives from (13) yields

dÛN

d τ̂
= 2

1 + |U0|2
(

−kN+1BN+1 + UN+1

∑
J<0

k3
J Re(U ∗

J BJ )

)

− 2UN+1

(1 + |U0|2)2

(
−k0Re(U ∗

0 B0) + |U0|2
∑
J<0

k3
J Re(U ∗

J BJ )

)
. (A5)

Manipulating the terms and recalling that kN+1 = 2kN , k0 = 1, and kJ = 2kJ−1, we have

dÛN

d τ̂
= −kN

4BN+1

1 + |U0|2 + 16UN+1

(1 + |U0|2)2

∑
J�0

k3
J−1Re(U ∗

J BJ ), (A6)
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where the sum is now taken over J � 0. Using the last expression from (14) twice for N and J − 1,
we reduce Eq. (A6) to the form

dÛN

d τ̂
= −kN

4BN+1

1 + |U0|2 + ÛN

∑
J�0

k3
J−1Re

(
Û ∗

J−1
4BJ

1 + |U0|2
)

. (A7)

After the substitution J = J ′ + 1, this expression becomes (dropping primes)

dÛN

d τ̂
= −kN

4BN+1

1 + |U0|2 + ÛN

∑
J<0

k3
J Re

(
Û ∗

J

4BJ+1

1 + |U0|2
)

. (A8)

Using expression (11), we have

4BN+1

1 + |U0|2 = 4

1 + |U0|2
(

2UN+3U
∗
N+2 − UN+2U ∗

N

2
− UNUN−1

4

)

= 2ÛN+2Û
∗
N+1 − ÛN+1Û ∗

N−1

2
− ÛN−1ÛN−2

4
= B̂N , (A9)

where we used the last expression from (14) in the second equality. Similarly,

4BJ+1

1 + |U0|2 = B̂J . (A10)

Combining (A8)–(A10), we obtain

dÛN

d τ̂
= −kN B̂N + ÛN

∑
J<0

k3
J Re(Û ∗

J B̂J ). (A11)

Thus, we obtained the same equation as in (13) but written in terms of the new variables and time,
which proves that the transformation (14) is the symmetry in the inertial interval.

3. Fusion of space-time scaling symmetries

Here we show that applying the rescaling procedure (8) and (9) to the velocities ûn(t̂ ) from (15)
yields the hidden symmetry relations (14). First, using new shell velocities and time (15), we express
the new turnover time (8) as

T̂m(t̂ ) =
(∑

j<m

k2
j

∣∣λhu j+1(t )
∣∣2)−1/2

= λ1−h

( ∑
j<m+1

k2
j |u j (t )|2

)−1/2

= λ1−hTm+1(t ). (A12)

Using (A12) with the temporal scaling relation t̂ = λ1−ht from (15), we have

d τ̂ = dt̂

T̂m(t̂ )
= dt

Tm+1(t )
= Tm(t )

Tm+1(t )

dt

Tm(t )
= Tm(t )

Tm+1(t )
dτ, (A13)

where we started with first relation in (9) for the rescaled time τ̂ and then used it again for time τ .
Using (8) and (9), we obtain

Tm(t )

Tm+1(t )
=

√√√√∑
j�m k2

j |u j |2∑
j<m k2

j |u j |2 =
√

1 + k2
m|um|2∑

j<m k2
j |u j |2 =

√
1 + k2

mT 2
m |um|2 =

√
1 + |U0|2. (A14)

Combining (A13) and (A18) yields the first hidden symmetry relation in (14).
Similarly, expressing the new rescaled velocity ÛN from (9) and (15), we have

ÛN = ikmT̂mûN+m = ikmλ1−hTm+1λ
huN+m+1 = 2Tm+1

Tm
ikmTmuN+m+1 = 2UN+1√

1 + |U0|2
, (A15)
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where we used (A12), (A14), and, again, expression (9) for UN+1. This yields the second hidden
symmetry relation in (14).

4. Proof of Theorem 1

First, let us reveal some basic properties of multipliers. Because of the boundary condition (2),
expression (8) yields

T1(t ) ≡ 1. (A16)

Using (A16) and (16), we have

Tm =
−1∏

J=1−m

1

σJ
. (A17)

For N = 0, using (16) and (A14), we obtain

σ0 =
√

1 + |U0|2. (A18)

The resulting expression can be inverted as

|U0| =
√

σ 2
0 − 1. (A19)

Recall that hidden symmetry relations (14) are equivalent to the change in the reference shell m̂ =
m + 1. Thus, using (16), we see that multipliers change under the hidden symmetry transformation
(14) as

σ̂N = σN+1. (A20)

In particular, from (19) and (25) we have

σ = σ̂−. (A21)

For the reference shell m, it follows from (9) that

1

t

∫ t

0
|um|pdt ′ = k−p

m

(
1

t

∫ t

0
T −1

m dt ′
)(

1

τ

∫ τ

0
|U0|pT 1−p

m dτ ′
)

, (A22)

where we expressed τ = ∫ t
0 T −1

m dt ′. Taking the limit of large times and using expressions (A17) and
(A19), structure functions (6) are found as

Sp(km) = lim
t→∞

1

t

∫ t

0
|um|pdt ′ = k−p

m

〈
T −1

m

〉
t

〈(
σ 2

0 − 1
)p/2

−1∏
J=1−m

σ
p−1

J

〉
τ

. (A23)

Writing the last average in (A23) in terms of the probability measure from (20) yields expressions
(22) and (23).

Now let us consider the unit increase of the reference shell, m̂ = m + 1, with the corresponding
quantities denoted by the hats. Using (21) in expression (23) written for the new reference shell m̂,
we have

dμ̂p(σ̂) = k−p
m̂

〈
T −1

m̂

〉
t

( −1∏
J=1−m̂

σ̂
p−1

J

)
dμ̂(σ̂)

= k−p
m̂

〈
T −1

m̂

〉
t

(
σ̂

p−1
−1

−2∏
J=1−m̂

σ̂
p−1

J

)
ρ̂(σ̂0|σ̂−) d σ̂0 dμ̂−(σ̂−), (A24)
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where we also placed the factor σ̂
p−1
−1 outside the product. We recast the resulting expression using

m̂ = m + 1, km̂ = λkm, and σ̂J = σJ+1 from (A20) as

dμ̂p(σ̂) =
(

σ̂−1

λ

)p

k−p
m

〈
T −1

m+1

〉
t

( −2∏
J=−m

σ
p−1

J+1

)
ρ̂(σ̂0|σ̂−) d σ̂0

dμ̂−(σ̂−)

σ̂−1
. (A25)

After some additional manipulations and changing J = J ′ − 1, we obtain (dropping the primes)

dμ̂p(σ̂) =
(

σ̂−1

λ

)p

ρ̂(σ̂0|σ̂−) d σ̂0

[
k−p

m

〈
T −1

m

〉
t

( −1∏
J=1−m

σ
p−1

J

)〈
T −1

m+1

〉
t〈

T −1
m

〉
t

dμ̂−(σ̂−)

σ̂−1

]
. (A26)

Expression (24) follows from (A26), (23), and (A21) if we prove that〈
T −1

m+1

〉
t〈

T −1
m

〉
t

dμ̂−(σ̂−)

σ̂−1
= dμ(σ̂−). (A27)

To prove relation (A27) let us consider an observable ϕ(σ). Using the relations (A21) and

dτ = d τ̂√
1 + |U0|2

= d τ̂

σ0
= d τ̂

σ̂−1
(A28)

following from (14), (A18), and (A20), we have

1

τ

∫ τ

0
ϕ(σ) dτ ′ = τ̂

τ

1

τ̂

∫ τ̂

0

ϕ(σ̂−)

σ̂−1
d τ̂ ′. (A29)

Using the first relation in (9) for both m and m̂ = m + 1, the prefactor is expressed as

τ̂

τ
= t−1

∫ t
0 T −1

m+1dt ′

t−1
∫ t

0 T −1
m dt ′ . (A30)

In the limit of large times, expressions (A29) and (A30) yield

〈ϕ(σ )〉τ =
〈
T −1

m+1

〉
t〈

T −1
m

〉
t

〈
ϕ(σ̂−)

σ̂−1

〉
τ̂

, (A31)

which implies expression (A27) by the assumed ergodic property (20) and relation (A21).
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