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Activity induced turbulence in driven active matter
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Turbulence in driven stratified active matter is considered. The relevant parameters
characterizing the problem are the Reynolds number Re = ūL/ν and an active matter
Rayleigh number, R = |ζ |S2L/Dū. Here ū is the mean velocity of flow, L is the system size,
ν is the kinematic viscosity, ζ is the activity coefficient, S is the concentration gradient,
and D is the active matter diffusion coefficient. In the mixing limit, Re � 1, R � 1, we
show that the standard Kolmogorov energy spectrum law, E (k) ∝ k−5/3, is realized. On the
other hand, in the stratified limit, Re � 1, R � 1, there is a new turbulence universality
class with E (k) ∝ k−7/5. The crossover from one regime to the other is discussed in detail.
Experimental predictions and probes are also discussed.
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I. INTRODUCTION

Over the last couple of decades, a new variety of hydrodynamic instabilities and turbulence
has been extensively studied [1–5] in the context of “active matter” hydrodynamics (e.g., bacteria
swimming in a fluid). The earliest such studies involved “active nematics” [6–8] where a transition
from a quiescent state to a spontaneously flowing state was predicted by Simha and Ramaswamy
[9] and observed by Voituriez et al. [10]. A large number of interesting results have also been
obtained on turbulence in living fluids (e.g., Wensink et al. [11]). The special feature of active
matter hydrodynamics is that, because of its own energy source, active matter can introduce large
additional stress terms in the Navier Stokes equation. The usual stress term for the velocity (�u)
dynamics of an incompressible fluid is Tαβ = −pδαβ + η(uα,β + uβ,α ) where “p” is the pressure,
uα,β = ∂βuα , and η is the shear viscosity. The additional contribution to Tαβ because of the active
matter can take different forms depending on what is being studied. A particular form [12] of this
extra term is reminiscent of the model “H” among the different universality classes of dynamic
critical phenomena [3–16]. The form of the contribution in the lowest nontrivial order allowed by
symmetry considerations is a nonlinear Burnett term [17,18] and can be written as

	αβ = −ζ

(
∂αφ∂βφ − δαβ

3
(∇φ)2

)
, (1)

where φ(�r, t ) is the concentration of the active matter and ζ is a constant which can be
termed the activity coefficient. It should be noted that unlike inactive matter, the activity coef-
ficient in dimensionless units need not be small. The dynamics of the system in the presence
of statistical forcing for both velocity and concentration fields at large distance scales can be
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described by

∂t uα + uβ∂βuα = −∂α p + ν∇2uα + ∂β	αβ + fα, (2a)

∂αuα = 0, (2b)

∂tφ + uα∂αφ = D∇2φ + g. (2c)

The incompressibility condition is expressed by Eq. (2b). The statistical forces �f (�r, t ) and g(�r, t )
are Gaussian noise terms specified by zero mean and nonzero two-point correlation function. This is
precisely as in the pioneering work of De Dominicis and Martin [19] and followed up extensively by
Yakhot and Orszag [20,21] and by Smith and Reynolds [22]. We focus on this particular model as
it allows for the existence of an inertial range of wave numbers which do not contribute to the total
energy input or dissipation as opposed to the active nematics [23] or systems with more complicated
couplings in the fluid flow dynamics [24,25].

A driven version of the above model was introduced in Ref. [26] where a fixed concentration
gradient of the active matter was maintained across two parallel surfaces separated by a distance L.
It was shown that for negative values of ζ , an instability sets in when the dimensionless quantity
N = |ζ |S2L2/Dν, which we will call the active matter Rayleigh number, exceeds a critical value
Nc = 4π2. This instability is analogous to the convective instability in a fluid heated from below. It
was shown by Das et al. [27] that if the active matter Rayleigh number is increased beyond Nc, then
a cascade of period-doubling bifurcations occur, culminating in a chaotic state for N ≈ 50Nc.

In this work we show that a new universality class for turbulence can be induced in this system by
tuning the active matter Rayleigh number to values such that the parameter R = N/Re = |ζ |S2L/Dū
becomes much larger than unity. The quantity Re is the usual Reynolds number defined by Re =
ūL/ν where ū is mean flow velocity and ν is the kinematic viscosity. Conventional Kolmogorov
turbulence occurs for Re � 1, R � 1. In this work we concentrate on the new regime characterized
by R � 1, i.e., N � Re (the Reynolds number Re is still greater than unity) and find that.

(i) For R � 1, the Kolmogorov 5/3 law changes to a 7/5 law for the energy spectrum, i.e., E (k) ∝
k−7/5 in the inertial range of wave numbers, setting up a new universality class of turbulence. This
result is obtained in two ways: first via a scaling argument and then from the dynamical equations
themselves.

(ii) For a given value of R, the new spectrum is seen for wave numbers k � k1 and the
Kolmogorov spectrum for k � k2. Denoting the Prandtl number (ν/D) by σ , the wave number
k1 is found to be proportional to (ζS2/σ )5/4 and the wave number k2 to (ζS2/σ )3/2. Clearly for very
large values of ζS2/σ the spectrum is almost entirely the 7/5 variety, and for very small values of
ζS2/σ , the spectrum is almost entirely Kolmogorov like. This result is obtained from the dynamical
equations. We emphasize that the new scaling law for the turbulent energy spectrum is relevant at
large length scales (small wave number) compared to length scales where the Kolmogorov scaling
holds and that is what makes it different from normal stratified fluid turbulence.

It is interesting to note a special feature of this driven active model H by contrasting it with
the convective fluid system where a fluid layer is subjected to an adverse temperature gradient.
For the latter case, using a three-mode model (a three-dimensional dynamical system for the
convecting fluid layer), Lorenz [28] found that as the gradient reaches a critical value the dynamics
becomes extremely sensitive to initial conditions (chaotic dynamics). In real experiments, however,
the dynamics evolves from stationary-in-time states to time periodic states (Hopf bifurcation)
followed by more complicated time dependences before making a transition to a chaotic state.
The subsequent discovery of dynamical systems showing period-doubling [29], intermittency [30],
inherent instability [31] of more than two incommensurate frequency states had a very strong impact
on hydrodynamic turbulence. These chaotic systems exhibited a complicated time dependence with
the Fourier spectrum showing a continuous distribution of frequencies [32] but the spatial dynamics
was ordered and characterized by only a few length scales and therefore not turbulent which requires
a very large or infinite number of length scales.
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Turbulence had long been a difficult problem to handle as it involved not only the complicated
time dependence characteristic of chaotic systems but also involved an infinite number of length
scales from the smallest (scale of viscous dissipation) to the largest (scale over which energy was
supplied to the system, e.g., the length L introduced above). It has always been a challenge to
find a physical system which, by changing a few parameters, can be taken from a zero velocity
nonequilibrium steady state (NESS) to a nontrivial steady state followed by a passage to chaos
through a sequence of instabilities modeled by an appropriate low-dimensional dynamical system
and then to a fully turbulent state by a further manipulation of the parameters.

To the best of our knowledge the driven active model H is the first example where one can study
the passage to chaos (increase the value of N at a low Reynolds number) and then study the passage
to turbulence by either increasing the Reynolds number way beyond the Rayleigh number or by
increasing the Rayleigh number way beyond the Reynolds number, which for us is still high enough
to ignore the effects of the viscous drag. In Sec. II, we obtain the scaling laws in the Kolmogorov
limit (small values of R) and a new scaling regime in the large R limit. In Sec. III, we discuss the
rather unexpected nature of crossover between the two scaling regimes. We conclude with a short
summary and the possibility of experimental investigation in Sec. IV.

II. THE SCALING LAWS

A turbulent state [33–35] in a homogeneous isotropic fluid is generally observed at very high
values of the Reynolds number Re. In steady state turbulence, the simplest and one of the most
well-known results is the 5/3 law of Kolmogorov [36,37]. The steady state means that the amount
of energy (ε) introduced in unit time at large length scales is dissipated in unit time at the short
viscous scales. In the intermediate length scales (smaller than the typical system size and larger than
the viscous boundary layer thickness) the inducted energy cascades from the large length scales to
small length scales at a constant rate ε independent of the scale. This defines the inertial range. The
total kinetic energy per unit mass of the system defines the energy spectrum E (k) by the relation

E = 1

2V

∫
d3r〈uα (�r)uα (�r)〉 =

∫
d3k

(2π )3 〈uα (�k)uα (−�k)〉 =
∫

E (k)dk. (3)

The assumption made by Kolmogorov was that the energy spectrum E (k) is determined by ε and
k. A dimensional analysis leads to E (k) ∝ k−5/3, the 5/3 law [36]. For the case of the stratified fluid
when the anisotropy is still not too big, the 5/3 changes to 11/5 as first predicted by Bolgiano [38]
and Obukhov [39].

For the active stratified fluid, we begin by rewriting Eqs. (2a) and (2c) in terms of variables
which are centered around the NESS, characterized by �u = 0, constant pressure, and a concentration
distribution φ0(�r) which is written as φ0(�r) = φ00 + Sz, where φ00 is a constant. We use the variable
ψ (�r, t ) = φ(�r, t ) − φ0(�r) and introduce the curl-free vector field �B = �∇ψ . Our interest being in the
inertial range where the distance scale is always much larger than the viscous scale, the �B field can
be considered small (small means small compared to S and hence in what follows the B field that
will be written is actually B/S and we can linearize in it to arrive at the system (we write the fields
in wave-number space to facilitate calculations later)

∂t uα (k) + Mαβγ (k)
∫

d3 p

(2π )3 uβ (p)uγ (k − p) = −iS2ζ [δα3kβBβ (k) − k3Bα (k)]

− ηk2uα (k) + fα (k), (4a)

Mαβγ (k) = i

2
[kβPαγ (k) + kγ Pαβ (k)], kαuα (k) = 0, (4b)

∂t Bα + ikα

∫
d3 p

(2π )3 uβ (p)Bβ (k − p) = −Dk2Bα (k) + iS2u3kα + ikαg(k). (4c)

The tensor Pαβ (k) = δαβ − ( kαkβ

k2 ) in Eq. (4b) above stands for the projection operator.
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We need to focus on the conserved quantity in the inviscid, unforced limit (η = D = �f = g = 0).
We define the total energy per unit mass for the active fluid as

E =
∫

d3 p

(2π )3 [uα (p)uα (−p) + ζS2Bα (p)Bα (−p)]. (5)

The difference from the Kolmogorov situation of Eq. (3) is that the energy, in addition to the usual
kinetic energy term, has a term which we label as the potential energy. It is the total energy given
above which is dissipated at large values of the wave vector by the viscosity η and the concentration
diffusion D. To keep the total energy constant in the presence of the dissipative terms, we have
added the small (in wave-vector) scale noise terms �f (k, t ) and g(k, t ) in Eqs. (2a)–(2c). The time
derivative of the total energy is seen to be [using Eqs. (2a)–(2c) in Fourier space]

Ė = −
∫

d3 p

(2π )3 p2[2νuα (p)uα (−p) + 2DBα (p)B(−p) − {uα (p) fα (−p) + φ(p)g(−p) + c.c.].

(6)

In the inviscid and unforced limit, the energy E is a conserved quantity. From the right-hand side
of Eq. (6), it is seen that the energy input is at small p (large length scales) and the dissipation is at
large p (small length scales). What is very important to note is that even if there is no external stirring
force in the velocity equation (i.e., f = 0), it is possible to have a steady state due to the “stirring
action” in the dynamics of the B field alone. This is the signature that the B field can generate and
sustain the velocity field under the appropriate circumstances. We take this as the signature for active
matter.

The rate of energy flow across a given wave number in the inertial range is given by

ε(k) = ∂t

∫ k

0

d3 p

(2π )3 [uα (p)uα (−p) + ζS2Bα (p)Bα (−p)]

= 2
∫ k

0

d3 p

(2π )3 [u̇α (p)uα (−p) + ζS2Ḃα (p)Bα (−p)]. (7)

When the applied concentration gradient is small, the second term is negligible and the energy
spectrum E (k) is the Kolmogorov variety. Our primary interest is in the limit when the second term
is dominant. In this case we have the interesting situation where the energy spectrum, which is by
definition the kinetic energy, is dominated by the flux of the potential energy. To proceed further, we
need to first discuss the different length scales (inverse of the momentum or wave-number scales)
in the problem.

The largest length scale is the extension L of the system. The shortest length scale is the
Kolmogorov scale lK beyond which the viscous dissipation controls the dynamics. This is known
to be lK = (ν3/4/ε1/4). In the situation considered, because of the diffusion of the concentration
field, there will be an analogous length scale D3/4/ε1/4. However, the turbulent Prandtl number
ν/D is close to unity and hence we will not treat this scale separately. There is the larger length
scale lR, determined by the Reynolds number. This is known to be lR = (Re)3/4lK . For Kolmogorov
turbulence, the range of length scales where the energy cascades to lower and lower length scales
without loss is set by the condition lR � k−1 � lK . A significant inertial range is obtained for
Re � 1. In our case, we have a new length scale which is independent of those discussed so far. This
can be constructed from the activity coefficient ζ , which from Eqs. (1) and (2a) has the dimension
L10/T 2, and the energy transfer rate ε. We denote this scale by lζ and find by dimensional analysis
that lζ = (ζ/ε2/3)3/26. The new regime of turbulence that we are putting forward is relevant at large
length scales provided lζ > (Re)3/4lK . Thus we have a sequence of scales L > lζ > lt > lK . The new
scaling behavior E (k) ∝ k−7/5 is dominant for lζ > k−1 > lt and will cross over to the E (k) ∝ k−5/3

spectrum for lt > k−1 > lK . We are now in a position to redo the Kolmogorov scaling argument.
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To do this we need to find the scaling dimension of the B field. It is simplest to do so by
considering Eq. (4a) in real space and looking at the linear terms where the acceleration is driven by
the gradient of the B field. The scaling dimension is the dimension that leaves the real-space version
unchanged when the length scale changes by a factor α, i.e., when we consider the transformation
l → αl . If time scales under this transformation as αz, then the acceleration scales as α1−2z and
hence B as α2−2z . The quantity ε(k) consequently scales as α4−5z

. For the flux to be k independent
we need z = 4/5. The energy spectrum E (k) has the dimension L3/T 2 and thus scales as l3−2z,
which is k2z−3. Using z = 4/5, we have the spectrum E (k) ∝ k−7/5 for ζ � 1. Denoting the B field
flux by εB, we have the kinetic energy spectrum given by

E (k) = K ′ε2/5
B k−7/5. (8)

In Eq. (8) above the universal numerical constant K′ is the analog of the Kolmogorov constant
for the usual turbulence. Note that if S = 0, the same sort of arguments lead to the Kolmogorov
result E (k) ∝ k−5/3.

Next we show that the dynamics specified by Eqs. (4a)–(4c) is consistent with the conclusion
above. This can be seen by working directly in the approximation ζS2 � 1, where the nonlin-
earity in Eq. (4a) is overwhelmed by the ζ -containing term and thus uα (k, t ) = −iζS2(δα3kβ −
δαβk3)

∫ t
0 dt ′Gu(k, t−t ′)Bβ (k, t ′), where Gu(k, t ) is the dressed propagator for the velocity field. To

obtain the dynamics of Bα (k, t ), we write the solution of Eq. (4c) as

Bα (k, t ) = i
∫ t

0
dt ′GB(k, t − t ′)

∫
d3 p

(2π )3 kαuβ (p, t ′)Bβ (k − p, t ′). (9)

The dressed propagator GB(k, t ) is written in wave-number frequency space by the usual Dyson
equation GB

−1(k, ω) = G−1
0 (k, ω) + 	B(k, ω) where the dressed one-loop self-energy is given by

	B(k, ω) = k2
∫∫

dω′

2π

d3 p

(2π )3 GB(p, ω′)Cu(k − p, ω − ω′). (10)

In the above equation, Cu(k, ω) is the velocity correlation function. We now match the scaling
dimensions of either side. The inverse of the Green’s function and the self-energy scale as the
frequency and hence behave as kz. The equal time B-field correlation function

∫
dωCB(k, ω) is

taken to scale as k−n. The relation between the velocity and the B field shown above gives the
scaling dimension of

∫
dωCu(k, ω) as k−n+2−2z. The matching of scaling properties of the two

sides of Eq. (10) yields 4z = 7−n.
We need the energy transfer rate ε(k) of Eq. (7) at the lowest dressed order of perturbation theory

in the ζ � 1 limit. We drop the first term in the right-hand side of Eq. (7) and use the nonlinear term
of Eq. (4c) to obtain

ε(k) = −2iζ

〈∫ k

0

d3 p

(2π )3 pα

∫
d3q

(2π )3 Bα (−p, t )Bβ (p − q, t )uβ (q, t )

〉
, (11)

where the angular brackets stand for the average over the random forcing term in Eq. (4c). Because
of the dynamics involved in the term Bβ (p−q, t ) of Eq. (11) above, we write from Eq. (4c)

Bβ (p − q, t ) = i
∫ t

0
dt ′GB(p − q, t − t ′)

∫
d3l

(2π )3 (p − q)βuγ (l, t ′)Bγ (p − q − l, t ′). (12)

We substitute for Bβ (p−q, t ) in Eq. (11) from Eq. (12) and use the connection between uα and
Bβ given above Eq. (9) to arrive at

ε(k) =
∫ k

0

d3 p

(2π )3

∫ t

0
dt ′

∫
d3q

(2π )3

∫
d3l

(2π )3 pα (p − q)βGB(p − q, t − t ′)

×〈Bα (−p, t )Bγ (p − q − l, t ′)〉〈uβ (q, t )uγ (l, t ′)〉. (13)
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Using the relation between the velocity field and the B field, and the Kolmogorov condition of
ε(k) being independent of k leads to 3z + 2n = 10. Combining with the other relation between the
two exponents found from the self-energy consistency leads to z = 4/5, n = 19/5. The relation
between the velocity and the B field now gives E (k) with E (k) ∝ k−7/5 once again. In terms of the
wave number and energy flux, we have the new scaling regime where the energy spectrum follows
a 7/5 law.

III. THE CROSSOVER

Having established that for S2ζ � 1, the turbulent kinetic energy spectrum follows a new scaling
law with the dynamical equations, we now ask the question of how the crossover from Kolmogorov
variety to this new variety of turbulence occurs as the control parameter N is varied. We begin
by recalling the Heisenberg [40,41] theory of turbulence and the extension of it by Chandrasekhar
[42] to account for the crossover from the Kolmogorov regime to the viscosity-dominated regime.
Heisenberg began by noting that the energy transfer due to viscosity from small to large wave
numbers across a given wave number k in Eq. (4a) is given by −η

∫ k
0

d3 p
(2π )3 〈uα (p)uα (−p)〉 =

−η
∫ k

0 d p p2E (p). In analogy with this he decided to write the transfer caused by the nonlinear

term in Eq. (4a) as a nonlocal effective viscosity term given by −ηeff (k)
∫ k

0 d p p2E (p). Since the
transfer occurs to all scales larger than k, Heisenberg used dimensional arguments to write the ηeff

(eddy viscosity) in terms of E (p) and p as

ηeff (k) =
∫ ∞

k

d p

p

√
E (p)

p
. (14)

In our case, in addition to the viscous dissipation there is an additional term from the concentra-
tion diffusion. The total dissipation for us is

∫ d3 p
(2π )3 [η〈uα (p)uα (−p)〉 + DζS2〈Bα (p)Bα (−p)〉]. The

first term of the dissipation is automatically −η
∫

E (p)d p and is treated as above. The second term
will be written in an analogous fashion. We need to write the second term in the dissipation in terms
of a Deff analogous to the ηeff of Eq. (14) and express the B-field correlation function in terms of
E (p) and p by a dimensional analysis. This makes its contribution of the form νeff

ζS2

σ

∫
p3E2(p)d p

where σ = νeff/Deff is the turbulent Prandtl number and is assumed to be a simple number.
Absorbing all numerical factors of O(1) in νeff and σ , we write the energy flux in the inertial range
as

ε(k) = ηeff (k)

[∫ k

0
E (p)p2d p + ζS2

σ

∫ k

0
E2(p)p3d p

]
= ηeff (k)y(k) (15)

It is convenient to define a function g(k) by the relation

g(k) = k
dy

dk
= E (k)k2 + ζS2

σ
E2(k)k3. (16)

This leads to

2ζ

σ
kE (k) =

√
1 + 4

g(k)

k

ζS2

σ
− 1. (17)

Substituting for ηeff (k) in Eq, (15) from Eq, (14) and imposing the scale-independent energy flux
condition, i.e., ε(k) is independent of k, gives

∫ ∞

k

√
E (p)

p3
d p = y(k)

√
E (k)

k3

1

k2E (k) + ζ

σ
k3E2(k)

= y(k)

k2g(k)

(√
1 + 4ζS2

σ

g(k)

k2
− 1

)1/2

. (18)
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Further, the left-hand side of Eq, (18) can be rewritten as an integral over y(p) and thus Eq, (18)
becomes

∫ ∞

y(k)

dy(p)

pg(p)

(√
1 + 4ζS2

σ

g(p)

p2
− 1

)1/2

= y(k)

kg(k)

(√
1 + 4ζS2

σ

g(k)

k2
− 1

)1/2

. (19)

A derivative with respect to y(k) now yields the exact differential equation satisfied by g(k) and
hence by E (k). The most relevant information about the crossover can, however, be extracted from
Eq. (19) itself. The vital point about the crossover is that it is not determined by ζS2/σ alone as
could have been naively expected but by the quantity ξ = ζS2g(k)/σk2, showing that along with
ζ/σ , the wave number plays a very important role in the crossover. For ξ � 1, the energy spectrum
is Kolmogorov, while when it is much greater than 1 it is the new variety E (k) ∝ k−7/5 established
in Eq. (7). For ξ � 1, Eq. (19) becomes

∫ ∞
y(k)

dy(p)
p2

√
g(p)

= y(k)
k2

√
g(k)

and a derivative with respect to y(k)
leads to

dg

dy
− 4

g

y
+ 4 = 0. (20)

The solution corresponds to the Kolmogorov spectrum in the inertial range as shown by
Chandrasekhar [42]. Since the above equation corresponds to a solution g(k) ∝ k4/3, the condition
ξ � 1 holds for wave numbers k which are larger than k2, which is proportional to (ζS2/σ )3/2.

The limit ξ � 1, on the other hand, leads to
∫ ∞

y(k)
dy

p3/2g(p)3/4 = y(k)
k3/2g(k)3/4 . The analog of Eq. (20) is

dg

dy
− 8g

3
= −2. (21)

Remembering dy
dk = g

k implies ln k = ∫ dy
g , we can integrate the above equation to obtain g(k) =

6k6/5

5(1+βk2 )8/5 where β is a constant of integration. Since our concern is with the inertial range, the wave

number k can be considered smaller than the scale β−1/2 (dissipative scale for the concentration
fluctuations) and we have g(k) ∝ k6/5. From Eq. (16), this yields E (k) ∝ k−7/5 for ζS2/σ � 1.
More accurately, we need ζS2

σ

g(k)
k2 � 1, which requires k � k1 where k1 ∝ (ζS2/σ )5/4. Clearly for

ζS2/σ > 1, we have k2 > k1. Hence, the final picture that emerges is that for wave numbers k < k1,
the spectrum is purely of the k−7/5 variety and for k > k2 it is of the Kolmogorov variety. The region
between k1 and k2 corresponds to the crossover from one scaling to another.

We conclude by pointing out that if measurements are done in real space, then the relevant
quantity is the two-point correlation function S2(r) = 〈[�u(�r + �x) − �u(�x)]2〉. This can be obtained
from the Fourier transform of E (k) by the relation

S2(r) = 4
∫ ∞

0
E (k)

[
1 − sin kr

kr

]
dk. (22)

The scaling behavior of the energy spectrum leads to the conclusion that at short length scales
the correlation function will behave as r2/3 (Kolmogorov), while at larger length scales the scaling
relation will be S2(r) ∝ r2/5. In the case of buoyancy driven turbulence, the Kolmogorov regime is
obtained at large length scales and the short scales lead to the Bolgiano-Obukhov scaling of r6/5.
This crossover was found numerically and experimentally by Kunnen et al. [43]. For this case of
driven active matter turbulence, we predict that the Kolmogorov behavior will be seen at short spatial
scales and an r2/5 behavior at large length scales.

IV. CONCLUSION

We have considered an active matter suspension described by a model H stress tensor [13]. We
envisage a situation where a gradient of the active matter concentration is maintained across a fluid
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layer. It was shown earlier that this can show convective instabilities [26] as the gradient reaches a
threshold value. It was further shown [27] that increasing the gradient can lead to period-doubling
instabilities. Here we show that increasing the gradient further (keeping the Reynolds number low)
can induce a turbulent flow of the suspension where the usual kinetic energy spectrum will have
a non-Kolmogorov spectrum given by E (k) ∝ k−7/5. At low gradients and high Reynolds number,
the usual Kolmogorov (k−5/3) spectrum holds. An unusual feature of the crossover is that it is
determined not by the gradient alone but by a combination of the gradient S and a function of the
wave number k.

We would like to point out that the recent experimental advances for generating linear concen-
tration gradients of chemoattractants in a channel [44–46] makes it possible to test our predictions.
It is possible that experimentally it would be easier to probe the concentration fluctuations and thus
the correlations of the �B field. To this end, we point out that a simple dimensional argument yields
the “potential energy” spectrum, EB(k), defined by

∫
EB(k)dk = V −1

∫
d3r〈Bj (r)Bj (r)〉. We find

that EB(k) ∝ k−7/5 if the kinetic energy flux dominates and EB(k) ∝ k−9/5 if the kinetic energy flux
dominates. The crossover is now reversed. The Kolmogorov mechanism now holds at the higher
wave numbers. In real space the two-point function will scale as r2/5 at short distance scales and as
r4/5 at larger ones.
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