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The search of finite-time singularity solutions of Euler equations is considered for the
case of an incompressible and inviscid fluid. Under the assumption that a finite-time blow-
up solution may be spatially anisotropic as time goes by such that the flow contracts more
rapidly into one direction than into the other, it can be shown that the dynamics of an axially
symmetric flow with swirl may be approximated to a simpler hyperbolic system. By using
the method of characteristics, it can be shown that generically the velocity flow exhibits
multivalued solutions appearing on a rim at a finite distance from the axis of rotation, which
displays a singular behavior in the radial derivatives of velocities. Moreover, the general
solution shows a genuine blow-up, which is also discussed. This singularity is generic for
a vast number of smooth finite-energy initial conditions and is characterized by a local
singular behavior of velocity gradients and accelerations.
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I. INTRODUCTION

Despite more than 250 years of history, a general understanding of the properties of solutions of
Euler equations remains an open problem. In particular, we have the so-called regularity problem
or the possible existence of finite-time singularity solutions: Does a smooth initial condition for
the velocity field remain regular for all times as the velocity flow evolves in accordance with Euler
equations for an inviscid and incompressible fluid? By smooth, we mean that the initial condition
is differentiable everywhere and of finite energy [see the definition equation (8) below], which
is one of the invariants of the dynamics. Although Euler’s (and Navier-Stokes’) equations look
simple, they are partial differential equations that are hard to solve because they are of nonlinear and
nonlocal character, therefore the above-mentioned question remains elusive, as does, for instance,
the turbulent motion in the Navier-Stokes equations.

The search for singularities of solutions of Euler equations for fluids in three space dimensions is
not new. In fact, the first attempts date back to the early 20th century [1,2]. In the 1930s, Leray [3]
suggested the possibility of a self-similar solution of Navier-Stokes equations in which the velocity
field scales as a power law in time. Following Leray’s endeavor, Pomeau [4–7], Chae [8–10],
and others revisited the possible existence of pointlike spatiotemporal singularities. Nevertheless,
Leray’s explicit self-similar equations for singularities led to a very challenging problem that is far
from being fully understood. Unfortunately, this approach has not been successful in providing an
explicit example of this type of singularity.

In general, theoretical physics allows for the possible existence of singular behaviors that may
be regarded as internal paradoxes. Some examples of singular solutions in partial differential
equations are the electric field created by a pointlike charge, the magnetic field induced by a current
in a wire, a vortex ring in an incompressible fluid [11,12], and the space-time singularities in general
relativity [13], to name a few examples.
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In the context of fluid motion, a geometric approach based on singular structures such as vortex
sheets successfully manifests a singular behavior [14]. Similarly, Siggia suggested that interactions
of vortex filaments may result in this kind of self-similar reconnection [15,16]. However, an
asymptotic limit for a solution of Euler equations in singular manifolds is not entirely satisfactory
because of the lack of any intrinsic length in the Euler equations.

In the past 40 years, as a consequence of improvements in computer technology, the question
of regularity saw renewed interest from a numerical and theoretical standpoint. Both physicists
and mathematicians made an enormous effort in the search for possible singular solutions of Euler
equations. To mention a few, the Taylor-Green initial condition was considered in Refs. [17–19],
antiparallel vortex tubes were considered in Refs. [20–22], and highly symmetric Kida flow was
addressed in Ref. [23]. The reader is referred to the article by Gibbon [24], who carefully reviews
the most notable progress, including a summary table with expectations of the existence, or not, of
finite-time blow-up solutions of Euler equations as well as Navier-Stokes equations. More recently,
Luo and Hou [25] provided numerical evidence of the existence of a finite-time blow-up for the
axially symmetric Euler equations at the outer boundary of the domain, and Barkley [26] analyzed
this singularity from a hydrodynamic aspect, showing that the formation of the singularity is driven
by the wall. Lastly, Elgindi and Jeong proved the existence of a finite-time singularity of axially
symmetric Euler equations in an “hourglass”-like domain excluding the axis of rotation [27]. The
question of the existence of such singularities in the whole space remained as an open problem
until 2021, when Elgindi [28] showed how, under certain assumptions, the nonlocal contribution of
vorticity can be simplified in the case of an axisymmetric flow without swirl exhibiting a self-similar
blow-up in finite time.

In this article, we consider the possibility that due to fluid stretching, the flow could destroy
the spatial isotropy, modifying the temporal evolution of the flow, ruled by Euler equations, and
spontaneously the dynamics generates a space anisotropy inducing a flow that may shrink more
rapidly in one direction than the other. Indeed, this process is supported by the numerical work
of Kerr (see Figs. 2 and 4 of Ref. [20]), as well as some recent work by Brenner, Hormoz, and
Pumir [29]. Under this assumption, we show that the axisymmetric flow may be approximated by a
hyperbolic system, which is solved using the method of characteristic. It is shown that, generically,
the radial and swirl velocities become multivalued functions at a rim at a finite distance from the
axis of rotation exhibiting a singularity of some velocity derivatives.

The current singularity appears to be different from that found recently by Elgindi [28]. In the
current paper, the singularity is a consequence of the advective structure of the flow dynamics
together with the swirl and an adequate initial condition for the velocity flow. The advection effect
causes the velocity flow to be a multivalued function at some time tc; in addition, ∂vr

∂r ∼ 1/(tc − t ).
Contrarily, in Ref. [28], as a consequence of a property exhibited by the axisymmetric flow without
swirl, the advective term, v · ∇, can be discarded in the vorticity equation [Eq. (5) below], while
the nonlocality (a simplified Biot-Savart integral) exhibits a genuine finite-time singularity, similar
to the one studied by Constantin, Lax, and Majda [30] and De Gregorio [31,32] in the 1980s and
1990s, respectively.

A better knowledge of the nature of solutions of Euler or Navier-Stokes equations may pave
the way from Leray’s original idea for approaching the problem of turbulence [5,6]. Indeed, based
on the self-focusing nonlinear Schrödinger equation, in collaboration with Josserand and Pomeau,
we suggested a singularity-mediated turbulent scenario for the observed intermittency in fully
developed turbulence [33].

The paper is organized as follows: Section II introduces Euler equations and their basic proper-
ties, namely symmetries and conserved laws. Further, the Leray finite-time singularity approach is
briefly reviewed. In Sec. III, the equations for an axially symmetric flow with swirl are introduced.
In this situation, a tridimensional velocity field plus pressure is reduced to a coupled system of
two partial differential equations. Next, the main assumption of the paper allows us to simplify
the axisymmetric flow, making it possible to obtain an explicit solution. Section IV presents the
main result of the paper, in which we show, via the method of characteristic, that the simplified
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anisotropic model shows two consecutive singularities in time. A primary singularity arises as the
radial and swirl velocities become multivalued functions in the Eulerian description. This singularity
is formally followed by a later singularity inside the multivalued domain. Section V concludes with
a general discussion and future perspectives. Appendix A presents a qualitative point of view by
employing tools taken from the Hamiltonian dynamical system theory, and Appendix B presents
a particular infinite energy solution exhibiting a finite-time singular behavior in the axisymmetric
reduced model.

II. EULER EQUATIONS

Euler equations for an inviscid and incompressible fluid read

∂

∂t
v(x, t ) + v · ∇ v = −∇p, (1)

∇ · v = 0. (2)

These equations are complemented by boundary conditions plus the initial flow velocity. For the
boundary conditions, as we clarify later on, we assume that the velocity field decreases at infinity
such that limr→∞ |v|2r3 → 0. In addition to Eqs. (1) and (2), one needs a divergence-free initial
condition that reads

v(x, t = 0) = v0(x),

∇ · v0 = 0. (3)

Equivalently, taking the curl of (1) eliminates the pressure term. This procedure gives an
equation for the vorticity field:

ω = ∇ × v. (4)

The vorticity (or the Helmholtz) equation reads

∂tω + v · ∇ω = ω · ∇v. (5)

The right-hand side in (5) represents vorticity stretching: everywhere in the space, locally, the
vorticity experiences a growth in one direction and a contraction into the other direction.

From a more taxonomic point of view, Euler equations are a set of nonlinear and nonlocal partial
differential equations. The nonlocality comes from the pressure term, p(x, t ), which, after taking
the divergence of (1), follows as a solution of a Poisson equation:

∇2 p = −∂ik (vivk ) ≡ −∂ivk∂kvi. (6)

Here repeated indices stand for a sum, as in Einstein’s convention. Thus, the pressure contribution
becomes a nonlocal functional of the right-hand side of (6). Similarly, the Helmholtz equation (5) is
also a nonlinear and nonlocal partial differential equation: the velocity in (5) is a nonlocal functional
of vorticity (4) as follows from the Biot-Savart law:

v(x) = 1

4π

∫
ω(x′) × (x − x′)

|x − x′|3 dx′. (7)

Euler equations, as well as Helmholtz equations, possess a number of symmetries and conserved
quantities. Among these are space-time translational symmetry, time reversibility, rotational in-
variance, Galilean invariance, and scale invariance. The last symmetry tells us the following: if
∀ � ∈ R& τ ∈ R, and if v(x, t ) and p(x, t ) are solutions of (1) and (2), then �

τ
v(x/�, t/τ ) and

�2

τ 2 p(x/�, t/τ ) are also solutions of (1) and (2). This scale-invariance symmetry is the basis of
Leray’s self-similar solutions, which are discussed later on.
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Some conserved quantities in the Euler equations are the kinetic energy, linear momentum, total
vorticity, circulation conservation, and helicity conservation, among others. We refer the reader to
relevant textbooks for a deeper and additional review on conserved quantities [11,34,35].

The kinetic energy reads

E = 1

2

∫
R3

|v(x, t )|2 dx. (8)

Then, from (1) and (2), we obtain the conservation of energy (8), i.e.,

dE
dt

= 0.

In the following, except for Appendix B, we restrict the discussion to finite energy flows, therefore
the initial condition must satisfy ∫

R3
|v0(x)|2 dx < ∞.

It is worth mentioning that infinite energy blow-up solutions could be found in the existing literature
[36].

In 1934, Leray [3] suggested a pointlike singularity at the origin solution of equations of fluid
dynamics (1) and (2) of the form

v(x, t ) = 1

(tc − t )1−β
V

(
x

(tc − t )β

)
.

Originally, Leray set β = 1/2 as it was a parameter fixed by viscosity in the Navier-Stokes
equations. In that situation, i.e., β = 1/2, Nečas, Růžička, and Šverák showed that the only solution
for V (·) satisfying the Navier-Stokes-Leray equations is V = 0 [37]. However, the absence of
viscosity together with scale-invariance symmetry leaves open any possible relation between length
and time, thus, a priori, β is not fixed by dimensional analysis. We underline that a given initial value
of energy or circulation may set a characteristic length, e.g., β = 2/5 characterizes a flow in which
the initial energy, E , fixes the scales; β = 1/2 corresponds to a scale fixed by circulation. Different
exponents have been considered by Pomeau et al. [4–7] and Chae [8–10] in a series of papers.
Despite those efforts, a satisfactory solution of the resulting self-similar Euler-Leray equations,
satisfying the right boundary conditions, has become a very challenging problem, perhaps harder
than the original time-dependent Euler Eqs. (1) and (2).

Until now, the still unknown Leray singularities have been supposed as isotropic. That is, presum-
ably the flow evolves independently of initial fluctuations toward a similar scaling of all coordinates
in time, or in other words, all principal axes scale in time with the same rate. Nevertheless, there is
no reason to exclude the possibility that the self-similar velocity field may scale in an anisotropic
way in time. It is plausible that initial fluctuations may be amplified in one direction more than
in another. This process is supported by the numerical work of Refs. [20] and [29]. Indeed, it
has been suggested that vorticity stretching [the right-hand side of (5)] deforms vorticity to the
extent that an initial elliptic vortex distribution is deformed in such a way that it becomes a vortex
sheet as time evolves. Moreover, a simple argument based on a generic feature of the strain tensor,
∂kvi + ∂ivk , indicates the existence of a dynamical “shrink” of at least one coordinate: because of
incompressibility, this symmetric tensor is locally traceless at all points in the domain, therefore
everywhere at least one eigenvalue must be negative and another must be positive.

By following an idea by Kasner [38] for an anisotropic scaling of the space-time metric in general
relativity, the following anisotropic self-similar velocity field is suggested:

vi(x, t ) = 1

(tc − t )1−βi
Vi

(
x1

(tc − t )β1
,

x2

(tc − t )β2
,

x3

(tc − t )β3

)
. (9)
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The advantage of this dependence is that the divergence-free condition (2) is preserved in the
self-similar variables, and more importantly, spatial gradients along with different components are
weaker than others, allowing a simpler systematic asymptotic analysis as t → t−

c . Replacing (9)
in the Euler equations, one gets that the pressure term −∇p becomes relevant just in the direction
of the largest βi. This observation opens the door to a new approach in the search for finite-time
singularities of Euler equations, and it is the general approach that will be pursued in a separate
publication.

In the following section (Sec. III), the assumption is applied of the anisotropic scaling to the
simpler case of an axisymmetric flow. In that situation, the assumption β1 = β2 < β3 allows the
approximation for the ith component of the velocity,∣∣∣∣∂vi

∂x

∣∣∣∣ ≈
∣∣∣∣∂vi

∂y

∣∣∣∣ 

∣∣∣∣∂vi

∂z

∣∣∣∣, (10)

simplifying the original 3D Euler equations.

III. THE AXISYMMETRIC FLOW WITH SWIRL

In the case of an axisymmetric flow, there is no dependence of any velocity on the angular
variable, φ, in cylindrical coordinates [12]. The velocity and vorticity fields read, respectively,

v = (vr (r, z, t ), vφ (r, z, t ), vz(r, z, t )),

ω =
(

−∂vφ

∂z
,
∂vr

∂z
− ∂vz

∂r
,

1

r

∂ (rvφ )

∂r

)
.

The incompressibility condition

∇ · v = 1

r

∂ (rvr )

∂r
+ ∂vz

∂z
= 0

introduces a stream function, ψ (r, z), defined through the relationships

vr = −1

r

∂ψ

∂z
, vz = 1

r

∂ψ

∂r
. (11)

The axial vorticity component reads, in terms of the stream function,

ωφ = ∂vr

∂z
− ∂vz

∂r
= −1

r

(
∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2

)
. (12)

Finally, both the vorticity, ωφ , as well as the axial velocity, vφ , rule the self-contained system of
partial differential equations [12]:(

∂

∂t
+ vr

∂

∂r
+ vz

∂

∂z

)(ωφ

r

)
= 1

r2

∂v2
φ

∂z
, (13)

(
∂

∂t
+ vr

∂

∂r
+ vz

∂

∂z

)
(rvφ ) = 0. (14)

Equations (13) and (14) together with (11) and (12) are formally a set of two partial differential
equations for the fields ψ (r, z, t ) and vφ (r, z, t ). The previous system was already numerically
studied in the early 1990s [39,40], and more recently, but in a finite domain, in Refs. [25–27].

The boundary conditions for the axisymmetric flow with swirl at the axis of rotation, r = 0, are
such that

vr (r = 0, z, t ) = 0,

vφ (r = 0, z, t ) = 0,

∂rvz(r, z, t )|r=0 = 0. (15)
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Moreover, vr and vφ are odd functions of the radial variable. The velocity boundary conditions (15)
imply that the stream function ψ is an even function in the radial coordinate. Thus [25]

∂3ψ

∂r3

∣∣∣∣
r=0

= 0, (16)

and similarly in all other derivatives of odd order. Lastly, the velocity field decreases as r → ∞ and
z → ±∞ to ensure a finite energy flow.

A. Anisotropic approximation

As previously mentioned, if the flow evolves in an anisotropic fashion, then the z-derivatives are
usually larger than the radial ones. Therefore, the relevant approximation for Eq. (12) becomes

ωφ ≈ −1

r

∂2ψ

∂z2
,

or, in other terms, | ∂vr
∂z | � | ∂vz

∂r |. This approximation allows us to simplify Eqs. (13) and (14).
By replacing the above approximation and Eqs. (11) for vr, vz into Eq. (13), one obtains (after

some simplification)

∂

∂z

(
∂2ψ

∂t∂z
− 1

r

∂ψ

∂z

∂2ψ

∂r∂z
+ 1

r

∂ψ

∂r

∂2ψ

∂z2
+ 1

r2

(
∂ψ

∂z

)2

+ v2
φ

)
= 0,

from which the expression inside the large parentheses must be independent of z,

∂2ψ

∂t∂z
− 1

r

∂ψ

∂z

∂2ψ

∂r∂z
+ 1

r

∂ψ

∂r

∂2ψ

∂z2
+ 1

r2

(
∂ψ

∂z

)2

+ v2
φ = I (r, t ).

Here I (r, t ) is a function that may be solved by considering the asymptotic behavior of ∂ψ

∂z , ∂ψ

∂r ,
and vφ as z → ±∞. In the case of finite energy solutions, we impose that both fields vφ → 0
and ∂ψ

∂z → 0 as z → ±∞, therefore the function I (r, t ) must be identically zero. Then, by setting
I (r, t ) = 0 and adding the swirl velocity equation (14), one gets the final coupled partial differential
equations model:

∂2ψ

∂t∂z
− 1

r

∂ψ

∂z

∂2ψ

∂r∂z
+ 1

r

∂ψ

∂r

∂2ψ

∂z2
+ 1

r2

(
∂ψ

∂z

)2

+ v2
φ = 0, (17)

∂

∂t
(rvφ ) − 1

r

∂ψ

∂z

∂

∂r
(rvφ ) + 1

r

∂ψ

∂r

∂

∂z
(rvφ ) = 0. (18)

The axisymmetric approximation makes it possible to perform a first integration of ωφ ≈ − 1
r

∂2ψ

∂z2

leading to the set of local partial differential equations (17) and (18) for ψ and vφ . Nevertheless,
it must be emphasized that this model is “less nonlocal” because it provides a direct dynamics for
∂ψ

∂z , however ∂ψ

∂r is also required in Eq. (17) for a complete specification of the dynamics. It should
be remarked that the approximation considered here (10) for the present model (17) and (18) is the
opposite of Barkley’s work [26].

B. Time-dependent reduced model

By defining the following new variables:

q = r2, qJ = ∂ψ

∂z
, zK = ∂ψ

∂q
, and vφ = √

qw, (19)
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and by introducing this change of variable into Eqs. (17) and (18), one gets the following coupled
system of partial differential equations:

∂J

∂t
− 2qJ

∂J

∂q
+ 2zK

∂J

∂z
= J2 − w2, (20)

∂w

∂t
− 2qJ

∂w

∂q
+ 2zK

∂w

∂z
= 2Jw, (21)

∂ (qJ )

∂q
= ∂ (zK )

∂z
. (22)

Equation (22) follows from the condition

∂2ψ

∂r∂z
= ∂2ψ

∂z∂r
,

and, more important, it traces back the nonlocal aspect of the original Euler equations already
discussed.

Equations (20) and (21) are complemented by the initial conditions

J (q, z, t = 0) = J0(q, z), w(q, z, t = 0) = w0(q, z). (23)

Lastly, the boundary conditions read

J (q = 0, z, t ) = J0 < ∞, w(q = 0, z, t ) = W0 < ∞,

lim
q→∞ J (q, z, t ) → 0, lim

q→∞ w(q, z, t ) → 0,

lim
z→±∞ J (q, z, t ) → 0, lim

z→±∞ w(q, z, t ) → 0, (24)

and they must be consistent with a finite-energy solution.
It should be remarked that the question of the existence of a solution exhibiting a finite-time

singularity does not depend on the knowledge of K (q, z, t ). The vertical velocity and the field
K (q, z, t ) are both estimated later in Sec. IV E.

IV. SINGULARITY BEHAVIOR IN THE AXISYMMETRIC SIMPLIFIED MODEL

A. Solution of Eqs. (20) and (21) by Riemann’s characteristic method

It can be noticed that the set of partial differential equations (20) and (21) together with the initial
conditions (23) are written in an Eulerian fashion in which the coordinates (q, z) are fixed in time.
In the following, the hyperbolic system (20) and (21) is solved by the method of characteristics.
Basically, it consists of passing from an Eulerian description to a Lagrangian one, which reduces
(20) and (21) into a system of four ordinary differential equations (ODEs):

dq

dt
= −2qJ, (25)

dz

dt
= 2zK, (26)

dJ

dt
= J2 − w2, (27)

dw

dt
= 2Jw. (28)
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This ODE system is complemented by the continuous set of initial conditions:

q(q0, z0, t = 0) = q0, (29)

z(q0, z0, t = 0) = z0, (30)

J (q0, z0, t = 0) = J0(q0, z0), (31)

w(q0, z0, t = 0) = w0(q0, z0). (32)

The initial conditions (29) and (30) are such that the original Eulerian initial condition (23) is
perfectly parametrized by (q0, z0).

As already mentioned, condition (22) is only required for the integration of z(t ) by using Eq. (26).
Otherwise, Eqs. (25), (27), and (28) are independent of (26). In this sense, the variable z(t ) just
follows, in neither an easy nor a direct way, the dynamics of other variables q(t ), J (t ), and w(t ).

B. The Eulerian-Lagrangian passage of the boundary conditions

The boundary conditions for the original problem (24) must be consistent with the Lagrangian
solution by the use of the dynamical system (25)–(28). In particular, the boundary conditions at the
axis of rotation are such that both velocities vr = vφ = 0 at r = 0. The above implies

lim
r→0

vr = − lim
q→0

√
q J (q, z, t ) = 0,

lim
r→0

vφ = lim
q→0

√
q w(q, z, t ) = 0. (33)

Therefore, it is assumed that both J (0, z0, t ) and w(0, z0, t ), remain bounded, a result shown in the
following section. Therefore, the boundary conditions (33) at the axis of rotation are fully satisfied.
Indeed, the axis is characterized by an initial condition for the dynamical system (25)–(28), i.e.,
q0 = 0 for z0 ∈ (−∞,∞). Finally, the axis is well characterized by

q(0, z0, t = 0) = 0, (34)

z(0, z0, t = 0) = z0, (35)

J (0, z0, t = 0) = J0(0, z0) < ∞, (36)

w(0, z0, t = 0) = w0(0, z0) < ∞. (37)

More importantly, the evolution, as given by Eq. (25), preserves the axis, q = 0, since

q(0, z0, t ) = 0, ∀ t � 0, and − ∞ < z0 < ∞. (38)

In the terminology of the theory of dynamical systems, the axis r = 0 (q = 0) is called a fixed point
of system (25), (27), and (28) (see Appendix A).

C. Exact solution of the dynamical system (25), (27), and (28)

Equations (27) and (28) can be directly integrated by setting Z = J + iw, which leads to

dZ

dt
= Z2,

whose general solution is

Z (q0, z0, t ) = 1

C(q0, z0) − t
, (39)

034401-8



POTENTIAL ANISOTROPIC FINITE-TIME SINGULARITY …

and where C(q0, z0) is a complex number related to the initial condition by

C(q0, z0) = 1

J0(q0, z0) + iw0(q0, z0)
.

In what follows, in order to simplify the notation, we set C(q0, z0) ≡ τ (q0, z0) − i
(q0, z0), an
expression that contains all the required information regarding the initial condition. By splitting
into real and imaginary parts in (39), one gets

J (q0, z0, t ) = τ (q0, z0) − t

[τ (q0, z0) − t]2 + 
(q0, z0)2
, (40)

w(q0, z0, t ) = 
(q0, z0)

[τ (q0, z0) − t]2 + 
(q0, z0)2
. (41)

Next, we proceed by integrating (25), obtaining

q(q0, z0, t ) = q(q0, z0, 0)e−2
∫ t

0 J (t ′ )dt ′

= q0
[τ (q0, z0) − t]2 + 
(q0, z0)2

τ (q0, z0)2 + 
(q0, z0)2
. (42)

In what follows, we explore the consequences in the behavior of the exact solutions as given by
Eqs. (40), (41), and (42).

D. On the appearance of a multivalued velocity flow

The solution of the dynamical system (25)–(28) provides well-defined expressions for
J (q0, z0, t ), w(q0, z0, t ), and q(q0, z0, t ) as functions of parameters q0 and z0 [Eqs. (34) and (35)]
and of the time t . However, the mapping from the Lagrangian to an Eulerian description allows us
to show that J (q, z, t ) and w(q, z, t ) may not necessarily be a single-valued function of q predicting
a Riemann-like singularity at some time tc > 0.

Usually, this kind of mechanism is generic and requires only that the coordinate q(q0, z0, t ), given
by (42), becomes a saddle in a point (q(c)

0 , z(c)
0 ) at some time tc. Qualitatively, following Eq. (42),

initially (t = 0) the coordinate q(q0, z0, t ) represents an inclined plane with unit slope along the q0

direction. However, as time goes by this plane becomes deformed, enabling the appearance of a
saddle point.

The conditions for the existence of such a saddle read

∂q

∂q0

∣∣∣∣
q(c)

0 ,z(c)
0 ,tc

= 0,
∂q

∂z0

∣∣∣∣
q(c)

0 ,z(c)
0 ,tc

= 0 and

∣∣∣∣∣
∂2q
∂q2

0

∂2q
∂q0∂z0

∂2q
∂z0∂q0

∂2q
∂z2

0

∣∣∣∣∣
q(c)

0 ,z(c)
0 ,tc

= 0. (43)

The saddle condition (43) determines a critical time tc for which the multivalued behavior manifests
for the first time, as well as its location, (q(c)

0 , z(c)
0 ), in terms of the initial conditions. In the Eulerian

description, the parametric representation of J (t ) versus q(t ) shows a singular behavior for t = tc
at a circular rim of finite radius rc = √

qc. Through, Eqs. (40) and (41), it is noticed that both J (tc)
and w(tc) are finite but their derivatives ∂J/∂q or ∂w/∂q diverge. For t � tc, the functions J (t ) and
w(t ) become multivalued functions of q in a region near q ≈ qc.

To illustrate this transition in a simpler way, let us consider the saddle on the q0-direction such
that the saddle condition (43) arises at q(c)

0 finite and z(c)
0 = 0 (because of translational invariance

along the z axis, it is possible to set z(c)
0 = 0). From the catastrophe theory, it can be seen that near

the transition point the coordinate q behaves locally (q0 ≈ q(c)
0 ) as

q(q0, z0, t ) ≈ qc + A(tc − t )
(
q0 − q(c)

0

) + 1

3
B
(
q0 − q(c)

0

)3 + 1

2
Cz2

0 + · · · , (44)
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where A, B, and C are constants and qc = q(q(c)
0 , tc) is the value of q at the critical point imposed by

the condition (43).
After (44), the basic scaling suggests

q − qc ∼ (tc − t )3/2, q0 − q(c)
0 ∼ (tc − t )1/2, and z0 ∼ (tc − t )3/4. (45)

Notice that from these scaling laws, the scaling of the z coordinate cannot be accessed. However,
the scaling for the flow velocities, vr (r, z, t ) and vφ (r, z, t ), follows from the formulas

vr = −rJ = −
√

q(q0, z0, t )J (q0, z0, t ), (46)

vφ = rw =
√

q(q0, z0, t )w(q0, z0, t ). (47)

At the singularity point, t = tc and q = qc, the values of J (tc) and w(tc) are finite, thus both vr (tc)
and vφ (tc) are also finite. However, their radial derivatives becomes singular. Indeed, the singular
behavior comes from expression (44), which leads to

∂vr

∂r
= 2

√
q
∂vr

∂q
= −J (q) − 2q

∂J

∂q
. (48)

Because the singularity arises on a rim at finite q ≈ qc and J (qc) is also finite, it means that the
first term in the previous equation is finite. By writing the second term as

∂J

∂q
=

(
∂J

∂q(c)
0

)/(
∂q

∂q(c)
0

)
,

one notices that after (44) or (45) the denominator vanishes as (tc − t ), while the numerator is
regular. Therefore, the radial velocity gradient on the local plane on which the swirl velocity vϕ

vanishes scales as

∂vr

∂r
≈ − γ

(tc − t )
, (49)

where the constant

γ = 2qc

A

∂J

∂q0

∣∣∣∣
qc

0

(50)

depends on the parameters at the critical point, and more importantly, it depends on the initial
conditions of the flow through J0(q0, z0) and w0(q0, z0). Consequently, by the condition of in-
compressibility, one also expects ∂vz

∂z ∼ 1
(tc−t ) . Although other components of the full stretching

tensor, such as ∂rvz, ∂zvr , and the vorticity components cannot be determined without the explicit
knowledge of z or vz, the energy dissipation rate

∂kvi∂kvi = v2
r + v2

ϕ

r2
+

(
∂vr

∂r

)2

+
(

∂vr

∂z

)2

+
(

∂vϕ

∂r

)2

+
(

∂vϕ

∂z

)2

+
(

∂vz

∂r

)2

+
(

∂vz

∂z

)2

(51)

diverges at least as 1/(tc − t )2.
Summarizing, in this section it is shown that the general evolution of the velocity field gives

rise to a Riemann-like mechanism for which ∂vr
∂r , as well as ∂vφ

∂r , both diverge at a circular rim. The
velocity gradient may also diverge, as discussed at the end of the paper. Moreover, in the case of
zero swirl velocity, vφ = 0, a singularity is also expected, but only ∂vr

∂r and ∂vz

∂z diverge in finite time,
while other velocity gradients or vorticity components remain bounded (see Sec. IV H).

Finally, one should notice that, as occurs for compressible fluids, this transition from a single to
a multivalued flow could possibly be regularized by viscosity. We shall investigate this issue in a
future publication.
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E. Vertical velocity field

Up to this stage, through Eqs. (25)–(28), the variables J (q0, z0, t ), w(q0, z0, t ), and q(q0, z0, t )
were solved explicitly, however the function z(q0, z0, t ) requires knowledge of K (q0, z0, t ), which
hides the nonlocal structure of the incomprehensible Euler equations. However, the velocity field
may be estimated by making use of the magnetostatic analogy (∇ · v = 0 and ∇ × v = ω) through
the Biot-Savart law (7) for an axisymmetric configuration (this calculation is inspired by a note on
Elgindi’s approximation by Tao [41]):

ψ (r, z, t ) = r

4π

∫
cos φ′

[r′2 + r2 − 2r′r cos φ′ + (z − z′)2]1/2 ωφ (r′, z′, t ′) r′dr′dφ′dz′.

Assuming ωφ (r′, z′, t ) = −r′ ∂J
∂z′ for consistency, and after an integration by parts that requires a

decaying dependence of J (r′, z′, t ) as z′ → ±∞, we obtain

ψ (r, z, t ) = 1

4π

∫
(z − z′)rr′ cos φ′

[r′2 + r2 − 2r′r cos φ′ + (z − z′)2]3/2 J (r′, z′, t ) r′dr′dφ′dz′.

Computing the vertical velocity via (11) gives the following expression for the vertical velocity:

vz = 1

4πr

∫
(z − z′)r′ cos φ′ J (r′, z′, t )

[r′2 + r2 − 2r′r cos φ′ + (z − z′)2]3/2 r′dr′dφ′dz′

− 3

4π

∫
(z − z′)r′ cos φ′(r − r′ cos φ′) J (r′, z′, t )

[r′2 + r2 − 2r′r cos φ′ + (z − z′)2]5/2 r′dr′dφ′dz′. (52)

It is noticed that because |J (r′, z′, t )| is bounded, then for the inner behavior, i.e., for r′ < r
and |z′| < |z|, the vertical velocity (and the radial velocity) scales as a length. This property, which
is known from magnetostatics (the magnetic field generated by a uniform current is linear in the
distance), was used by Elgindi to approximate the Biot-Savart integral. In short, the integrals in (52)
are approximated taking r′ � r via a multipolar expansion. After a direct calculation, we obtain

vz ≈ 3

2

∫
r′>r

(∫
|z′|>|z|

(z − z′)J (r′, z′, t )dz′
)

dr′

r′2 . (53)

Similarly, the leading order for the radial velocity gives

vr ≈ −3r

4

∫
r′>r

(∫
|z′|>|z|

J (r′, z′, t )dz′
)

dr′

r′2 . (54)

In particular, in the special case of an odd symmetry (see Sec. IV F), the field J (r′, z′, t ) is an even
function with respect to the plane z′ = 0, and then the integration of

∫
|z′|>|z| z′J (r′, z′, t )dz′ vanishes

in (53). By comparing both expressions (53) and (54) up to leading order in r, it is found that

vz ≈ −2z
∂vr

∂r
≈ 2γ z

(tc − t )
.

Therefore, the function K must scale also as K ∼ 1
(tc−t ) , from which we obtain

dz

dt
= 2Kz = − β3

(tc − t )
z,

thus

z(t ) ∼ (tc − t )β3 .

The parameter β3 = −2γ does not seem to be universal in the sense of phase transitions or
catastrophe theory, but it depends explicitly on the parameter γ defined in (49) and also on the
more accurate value of the integrals (54) and (53).
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FIG. 1. (a) Plot of the radial coordinate q vs q0. The saddle condition (43) is sketched in the plot. The
critical saddle transition appears for qc

0 ≈ 0.69 and for a time tc ≈ 0.61. (b) Plot of the function J (q0 ) (57) as
a function of q0. The plots are done using the initial flow represented by (55) and (56), with the parameters
t∗ = q∗ = a = b = 1. In the above figures, the curves are plotted at z0 = 0 and for times spanning into in
0 � t � t∗.

The main lesson of this section is that the hypothesis of an anisotropic exponent is plausible, and
the value and sign of β3 depend essentially on the initial value for the velocity field.

F. Qualitative singular flow

Let us address a situation in which one considers an antisymmetric initial flow [25,26]. This flow
is invariant under z → −z (z0 → −z0), vφ → −vφ , vz → −vz, and vr → vr . The flow corresponds
to an initial condition that causes the swirl velocity to vanish in the line z0 = 0, ∀ q0 � 0. A
simple choice would be 
(q0, 0) = 0 and τ (q0, 0) = τ0(q0), where τ0(q0) is a function that has
a minimum at q∗

0 and τ (q∗
0 ) = t∗ > 0. The advantage in choosing this kind of up-down symmetric

flow is that the velocity flow is exactly computed on the plane z = 0. The velocity components are
vr = −√

q J (q, z = 0, t ), vφ = 0, and vz = 0 at z = 0. Therefore, the scaling (49) becomes exact at
the plane of symmetry z = 0.

To illustrate the multivalued behavior, the initial condition can be modeled by setting

τ (q0, z0) = τ0(q0) = t∗ + a(q0 − q∗)2, (55)


(q0, z0) = bz0. (56)

Although the above initial condition exhibits an infinite energy flow, the ansatz (55) and (56)
characterizes the relevant features that the initial flow must possess, that is, 
(q0, z0) vanishes and
τ (q0, z0) has a minimum both in the same line.

In the current case, on the plane z = 0, the solutions for J and q read (w vanishes exactly)

J (t ) = 1

τ0(q0) − t
, (57)

q(t ) = q0

(
1 − t

τ0(q0)

)2

. (58)

Therefore, after Eq. (42) one notices that as t increases, the function q(q0, z0, t ) changes its
monotonicity: it switches from a monotonic increasing function for t < tc to a nonmonotonic
function with at least one maximum and a minimum for t > tc. Figure 1(a) shows the change of
concavity in the radial coordinate q versus q0. Additionally, Fig. 1(b) shows the regular behavior of
the function J (q0, t ) at the critical point.

In that situation, one notices that a given q may arise from three different values of q0, thus J (q)
takes three different values. In this way, the function J becomes multivalued, and this transition
from a single-valued to a multivalued function represents a singularity.
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FIG. 2. (a) Parametric plot (with q0 as the parametrization) of the J (q0) (57) as a function of the distance
from the axis of rotation r(q0) (58). (b) Parametric plot of the function vr (q0) as a function of the distance from
the axis of rotation r(q0). The plots are done using the same representation as in Fig. 1. The swirl velocity is
zero for a given initial condition such that 
 = 0.

Figure 2(a) displays parametrically the function, J , as function of the radial distance, r, and,
Fig. 2(b) shows the radial velocity, vr , versus r. Both plots show curves for various times such that
t � t∗. One notices that initially both J and vr in Figs. 2(a) and 2(b) are single-valued functions, but
they become multivalued as soon as t > tc.

In the following, we focus on the qualitative behavior of the flow velocities: vr (r, z, t ) and
vφ (r, z, t ) as given by (46) and (47) for the fluid velocity off the z0 = 0 plane. Figure 3 shows
J , vr , and vφ as a function of r for different times as well as different initial planes z0 = 1/4 and
1/2. One notices that all quantities remain multivalued in the neighborhood of z0 = 0, however
these may become single-valued as z0 increases.

As was already shown, both vr (46) and vφ (47) vanish at the axis of rotation, r = 0. Moreover,
one notices the existence of a shear structure of the flow defined by the plane in which 
(q0, z0)
vanishes. For points such that initially 
(q0, z0) ≈ 0, the radial and the swirl velocity read

vr ≈ − (t∗ − t )√
(t∗ − t )2 + 
(q0, z0)2

,

vφ ≈ 
(q0, z0)√
(t∗ − t )2 + 
(q0, z0)2

.

FIG. 3. Parametric plot of the functions: (a1),(a2) J; (b1),(b2) vr ; and, (c1),(c2) vφ vs the distance from
the axis of rotation r, for different times varying between t = 0 to t = t∗. The plots are done using the same
parameters as in Fig. 1. The top row 1 corresponds to z0 = 1/4, while the second row corresponds to z0 = 1/2.
For the case z0 = 1/2, the quantities J , vr , and vφ are single-valued functions for all values of r.
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FIG. 4. Qualitative sketch of the singular flow. The radial velocity, vr , is directed into the axis; the vertical
velocity, vz, shows an outflow coming from the z = 0 plane; and the azimuthal velocity, vφ , is drawn into
the plane by the symbol ⊗ for z > 0 and out of the plane by the symbol � for z < 0 showing a tangential
discontinuity. The curves represent the qualitative behavior of streamlines attained by the swirl flow. The
swirl velocity vφ is directed downward from the plane for z > 0 and in the opposite upward direction for
z < 0. The radial velocity, vr , is directed toward the axis of symmetry. Because of the condition ∇ · v = 0,
the vertical velocity, vz, must be as shown in the figure. The superposition of the three motions is schematized
with streamlines of the swirl flow. The segmented region highlights a spatial zone in which the velocity flow is
multivalued.

The radial velocity contracts the flow into the axis, while the swirl flow vφ changes its sign as
one crosses the line 
(q0, z0) = 0. Lastly, as a result of the divergence-free flow condition, the vz

component of velocity repels the flow out of the plane defined by 
(q0, z0) = 0. Therefore, the flow
suffers a tangential discontinuity. A qualitative sketch of the flow is shown in Fig. 4 and is based on
the exact solutions (40) and (41) by using the expressions for the initial velocities described by (55)
and (56).

The most striking feature of the flow is that at a time tc, the radial velocity gradient ∂vr
∂r becomes

singular located on the plane z = 0 at a rim at a finite distance rc = √
qc. Similarly, ∂vφ

∂r becomes
singular in the vicinity of the symmetry plane z = 0. For t � tc, this singular rim grows into a
toroidal volume inside which the velocities are multivalued. As t → t∗, the inner side of the toroidal
region reaches the axis of rotation, as sketched in Fig. 4.

G. On the existence of a finite-time singularity of J(t )

In this section, we show how the formal solution (40), (41), and (42) exhibits a divergence in
finite time. Nevertheless, this divergence arises after the formation of multivalued solutions at tc.
Although it appears to be a pure formal singularity, the natural continuation of the solution of (29)
and (30) into the multivalued domain still presents some interest because it may play a role whenever
multivalued solutions may be regularized by viscosity. Moreover, this kind of singularity resembles
the one found by Elgindi [28], and the mathematics has a similarity to the ones that can be found
in the works of Constantin, Lax, and Majda [30], and De Gregorio [31,32]. However, the physical
mechanisms seem to be different.

Next, we prove the following statement: Let (q∗
0, z∗

0 ) be a point such that 
(q∗
0, z∗

0 ) = 0, and
τ (q∗

0, z∗
0 ) is the absolute minimum in the manifold 
(q∗

0, z∗
0 ) = 0; then J (q, z, t ) diverges at time

t∗ = τ (q∗
0, z∗

0 ) > 0. This singularity is shown in Fig. 1(b) for t = t∗.
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FIG. 5. (a) A generic initial condition for the ODE system (25)–(28). The parameter 
(q0, z0) vanishes on
the curve, and the function τ (q0, z0) reaches a minimum along the curve at t∗ = τ (q∗

0, z∗
0 ). (b) Sketch of the

flow of the dynamical system (25)–(28). Initially, (q, z) matches perfectly with (q0, z0), and J (q∗
0, z∗

0 ) ≡ 1/t∗.
Then the evolution of J (t ), q(t ), z(t ) drifts away from the original point (1/t∗, q∗

0, z∗
0 ) to the origin q = 0 and

z = 0 (notice that because of translational invariance in z, we settled the singularity at z = 0). Furthermore, at
the origin, J → ∞.

The proof of this statement is as follows. Consider an initial point (q̄0, z̄0) such that 
(q̄0, z̄0) =
0. Then the denominator in (39) is a pure real number, therefore Z (q̄0, z̄0, t ) is real and diverges as

Z (q̄0, z̄0, t ) = 1

[τ (q̄0, z̄0) − t]

when t → τ (q̄0, z̄0). This singular behavior occurs for all points (q̄0, z̄0) on the curve given by the
implicit relation 
(q̄0, z̄0) = 0. However, the singularity arises first for the minimal value of all
possible τ (q̄0, z̄0), i.e.,

t∗ = min
q̄0,z̄0

{τ (q̄0, z̄0) | 
(q̄0, z̄0) = 0} > 0,

from which we obtain Z (q∗
0, z∗

0, t ) = 1/(t∗ − t ) as t → t∗ [see Fig. 5(a)].
In conclusion, it should be remarked that this later or secondary singularity arises as the radial

velocity touches the axis of rotation r = 0, as seen in Fig. 2(b), thus at t∗ the multivalued region
reaches the axis of rotation, as shown in Fig. 2(b) for the curve corresponding to t = t∗.

H. The case of zero swirl velocity

The multivalued nature of solutions of Eqs. (25), (27), and (28) appears to be generic and
independent of the swirl velocity. Therefore, the singular behavior remains in the case of zero
swirl velocity; however, in the case of zero swirl velocity, the axial vorticity, driven by Eq. (13),
is materially conserved so that

d

dt

(ωφ

r

)
= d

dt

(
−∂J

∂z

)
= 0.

Moreover, in the case of zero swirl velocity, other components of vorticity vanish, i.e., ωr = ωz = 0.
As has been shown by Ukhovskii-Yudovich [42], if the initial vorticity is sufficiently smooth

(class C∞), then the axially symmetric flow without swirl is globally regular, excluding any singular
behavior of the vorticity in finite time. However, if the initial condition is differentiable but not
sufficiently smooth, then the global regularity is not known. Recently, Elgindi [28] has shown that
an axisymmetric flow without swirl may exhibit a self-similar blow-up in finite time if the initial
condition is sufficiently smooth C1,α , which is not excluded by the Ukhovskii-Yudovich theorem.

The existence of a multivalued solution exhibiting a singularity of ∂vr
∂r and ∂vz

∂z may indicate that,
despite the fact that initially J (q, z, t = 0) is C∞, higher derivatives of ∂J

∂z may not exist as time
evolves. This aspect must be regarded carefully in the future.
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V. DISCUSSION AND PERSPECTIVES

Under the assumption that Euler (and Helmholtz) equations generate a spatial anisotropy in time,
it is shown that the axisymmetric flow with swirl may be approximated by a hyperbolic nonlinear
system [Eqs. (17) and (18)], which is solved using the method of characteristics. It is shown that
generically, solutions of the approximate system of equations become multivalued in finite time.
Under these special conditions as time reaches a critical time tc, the radial velocity vr and the swirl
velocity vφ remain finite, but the radial derivatives diverge as

∂vr

∂r
∼ 1

(tc − t )
and

∂vφ

∂r
∼ 1

(tc − t )
.

A second result is that, if initially the axial speed vφ vanishes on a line in the (r, z) plane, then the
solution of the approximate model will develop a secondary singularity at some later time t∗ > tc.

The complete velocity flow cannot be computed exactly, but it is estimated via the Biot-Savart
integral validating a possible hypothesis of the existence of an anisotropic flow.

Lastly, under the assumption of an initial flow with an up-down symmetry, the qualitative velocity
flow near the singularity time involves a counter-rotative swirl flow that may be decomposed into an
inflow to the central axis, together with a counter rotative axial flow and an outflow from the plane
defined by z = 0. See the scheme in Fig. 4. In that scenario, and assuming that the flow shrinks into
the z = 0 plane according z ∼ (tc − t )β3 (here β3 is unknown) and the radial coordinate shrinks into
a rim of finite radius rc as r − rc ∼ (tc − t )3/2 with β3 > 3/2 [see (45)], then in accordance with
the observed scaling behaviors, one may try a Leray-type approach for Eqs. (17) and (18), which is
written as

ψ = (tc − t )β3�

(
r − rc

(tc − t )3/2
,

z

(tc − t )β3

)
,

with β3 > 3/2, and

vφ = zW

(
r − rc

(tc − t )3/2
,

z

(tc − t )β3

)
.

Here, the prefactor z must be included by the odd symmetry of the flow. According to this basic
scaling, one has

ψ ∼ vφ ∼ (tc − t )β3 , vr ∼ 1, vz ∼ (tc − t )β3−3/2, ωr ∼ 1,

ωφ ∼ 1

(tc − t )β3 ,
and ωz ∼ 1

(tc − t )3/2
. (59)

Thus, vz ∼ (tc − t )β3−3/2, so that vz → 0 as t → tc.
Moreover, according to the vorticity scaling ‖ω‖∞ ∼ (tc − t )−β3 , the Beale, Kato, and Majda

(BKM) [43] criterion diverges at least as 1/(tc − t )β3−1 as t → tc. In view of the fact that the
numerical singularity of Luo and Hou [25] is spatially isotropic, these results cannot be used for
the purpose of comparison. Nevertheless, the results of the simulations indicate that β3 ≈ 3.46
by employing the BKM criterion, and β3 ≈ 2.91 for the scaling for the radial component. Both
estimations are greater than 3/2, as expected.

On the other hand, it is easy to see that the resulting blow-up solution has a finite energy (8). For
β3 > 3/2, the kinetic energy coming from v2

z does not contribute, therefore the convergence only
concerns

v2
r + v2

φ = q(J2 + w2) ≡ q0

τ (q0, z0)2 + 
(q0, z0)2

[see the conservation in Appendix A], which converges for τ (q0, z0) and 
(q0, z0) because of the
assumption of a finite-energy initial flow.
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The recent numerical evidence by Luo and Hou [25], as well as the analytic contribution by
Elgindi [28], place a decisive step in the search of finite-time singularities in Euler equations. Both
studies regard axisymmetric flows; moreover, Elgindi imposes the extra condition of a null swirl
velocity. The question on singularities for an arbitrary flow, relaxing the axisymmetric configuration,
remains open. Could the singularity survive to small non-axially-symmetric perturbations? On the
other hand, some recent numerical study by Kerr [22] for an initial antiparallel vortex configuration
discarded the existence of a finite-time singularity. Could the manifestation of a singular flow depend
on the geometry and symmetries of the flow? It seems plausible, and this question deserves a more
careful study.

Another question that must be regarded in more detail concerns the differences and similarities
with Elgindi’s work [28]. A major difference is that Elgindi imposes a null swirl velocity, meaning
that the set of functions used is not class C∞. More importantly, the nonlocal dependence of the
velocity field is approximated (the Biot-Savart integral) by a simpler nonlocality. Elgindi considers
nonsmooth dependence in the angular variables (Ref. [28] uses spherical coordinates instead of
cylindrical coordinates used here), such that the radial dependence is a slowly varying variable
compared with the angular dependence. Although the treatment of the nonlocal terms differs in both
approaches, the nonsmooth dependence in the angular variables appears to be consistent with the
assumption of anisotropy discussed in the current paper. Perhaps the anisotropic assumption may be
relaxed by treating the nonlocal effects as Elgindi does, as has been sketched in Sec. IV E. Contrarily,
for the axisymmetric flow without swirl, Elgindi neglects the advective term, v · ∇, obtaining a
closed system that exhibits a finite-time singularity for the axial vorticity ωφ , while in the current
paper the nonlinear hyperbolic character of the equations emerges at the origin of the appearance of a
nonsmooth velocity field. Finally, the secondary singularity discussed in Sec. IV G and Appendix B
seems to be of the same nature as the one found by Elgindi [28].

All of these promising results point to a possible new endeavor for numerical simulations, or
theoretical analysis based on anisotropic solutions in other simpler geometries, or the solution of
Euler-Leray equations for a more general anisotropic flow, as well as including viscosity for the
original axisymmetric flow. We shall follow this line of research in a future publication.
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APPENDIX A: THE SOLUTION OF (25)–(28) BY MEANS OF A DYNAMICAL
SYSTEMS APPROACH

The four-dimensional dynamical system (25)–(28) is formally reduced to a two-dimensional
dynamical system because of the existence of two constants of motion:

d

dt
(qw) = 0,

d

dt
(q(J2 + w2)) = 0.

Thus, by virtue of these conservation laws, one can compute explicitly

w(q) = q0

q
w0(q0, z0),
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FIG. 6. Left panel: Representative regions in the q0-z0 plane for given initial conditions. The magenta
vertical segmented line q0 = 0 represents the original axis r = 0. The light orange zone is the neighborhood of
the fixed point q0 = 0. The red segmented horizontal line z0 = 0 represents 
(q0, 0) = 0 and it corresponds to
z0 = 0. The red point q∗

0 corresponds to the minimum of τ (q0, z0 = 0), and we define t∗ = τ (q∗
0, z∗

0 = 0). The
two extra points (purple, light blue) are located in the neighborhood of q∗

0. The blue and green zones belong to
the neighborhood of the red segmented line z0 = 0 and 
(q0, z0) > 0 in blue and 
(q0, z0) < 0 in the green
region. Finally, the purple zone is an isolated region far from the q0 and z0 axes. Right panel: The resulting
mapping representing the evolution of the initial space (q0, z0) into the time-dependent phase space (q(t ), z(t ))
points through the dynamical system (25)–(28). Notice that this picture is only a qualitative sketch. The only
certain solutions are the orange points, and the points represented by red, light blue, and purple in the axis.

J2(q) = q0

q
[J (q0, z0)2 + w0(q0, z0)2] − q2

0

q2
w0(q0, z0)2, (A1)

where J (q0, z0) and w0(q0, z0) are initial values at (q0, z0). By solving (25), one recovers the
time-dependent evolution of q(t ) already calculated in Eq. (42), and the subsequent time-dependent
evolution of J (40) and w (41).

However, we are interested in a more qualitative approach of the dynamical system (25)–(28),
including z(t ). The coordinate variables q(t ), z(t ) rule the Hamiltonian dynamics (25) and (26):

dq

dt
= −2

∂ψ

∂z
, (A2)

dz

dt
= 2

∂ψ

∂q
(A3)

for a Hamiltonian H = 2ψ . Therefore, for a given stream function, ψ , the dynamics of q(t ) and z(t )
follows directly from Hamilton Eqs. (A2) and (A3).

Nevertheless, the evolution of (A2) and (A3) is not obvious since ψ depends formally on J
according to Eqs. (19) and (A1). From a qualitative point of view, one characterizes the mapping of
the dynamical system in the q-z plane (see Fig. 6).

Furthermore, the evolution of the points in phase space (q, z) is characterized by the following:
(i) The origin, q0 = 0 and z0 = 0, is a fixed point of the dynamics. Moreover, for any z0 and if

initially q0 = 0, then q(t ) = 0 for t � 0. Finally, because the q and z variables rule a Hamiltonian
evolution, this is a hyperbolic point.

(ii) The surrounding region around the rotation axis q0 = 0 flows according to (A2) and (A3),
resulting in a deformation of the phase space around the rotation axis.

(iii) Consider the evolution of the set of points (q0, z0), which initially belong to the manifold

(q0, z0) = 0 and τ (q0, z0) > 0. This set of point evolves in time according to (58). The point

034401-18



POTENTIAL ANISOTROPIC FINITE-TIME SINGULARITY …

(q∗
0, z∗

0 ) reaches the origin q → 0 as t → t∗ = τ (q∗
0, z∗

0 ), however neighboring points are excluded
from the axis for q > 0. This behavior is at the core of the multivalued behavior in Eulerian variables
J and w.

(iv) The surrounding region of the manifold 
(q0, z0) > 0 yields an axial velocity such that
vφ > 0. The divergence-free condition implies that vz > 0.

(v) The symmetric region such that 
(q0, z0) < 0 manifests the opposite previous flow configu-
ration vφ < 0 (and vz < 0).

(vi) Finally, the time evolution of other points preserves the area in the phase space in accordance
with Hamiltonian dynamics.

The dynamical evolution of the phase space of Eqs. (25) and (26) for 0 � t < t∗ is sketched
starting with the simple initial conditions (55) and (56).

APPENDIX B: INFINITE ENERGY BLOW-UP SOLUTION

We set the particular similarity dependence in the form

ψ (r, z, t ) = f (r2z, t ), (B1)

vφ (r, z, t ) = rw(r2z, t ). (B2)

This ansatz satisfies the boundary conditions at the axis of rotation, indeed vr = −r ∂
∂ζ

f (ζ , t ) with

ζ = r2z. Therefore, limr→0 vr = 0, and, according to (B2), limr→0 vφ = 0. By substituting (B1) and
(B2) into Eqs. (17) and (18), one obtains

∂

∂t

(
∂ f

∂ζ

)
=

(
∂ f

∂ζ

)2

− w2, (B3)

∂w

∂t
= 2

(
∂ f

∂ζ

)
w. (B4)

Therefore, the final result is a pure time-dependent ordinary differential equation for Z (ζ , t ) =
∂
∂ζ

f (ζ , t ) + iw(ζ , t ) : dZ
dt = Z2, in which the only dependence on the coordinate ζ = r2z comes

from the initial condition

Z (ζ , t ) = 1

τ (ζ ) − i
(ζ ) − t
,

which is characterized by the complex number τ (ζ ) − i
(ζ ), which is directly related to the initial
values for ∂

∂ζ
f (ζ , 0) and w(ζ , 0).

By following the same argument as in Sec. IV G, the function shows a finite-time singularity
such that if ζ∗ ∈ R / 
(ζ∗) = 0 and τ (ζ∗) = t∗ > 0, then

Z (ζ∗, t ) = 1/(t∗ − t ).

The above example reveals the existence of an underlying finite-time singularity. The simplified
similarity dependence on the variable ζ = r2z brings to light the presence of a special trajectory to
be understood. This trajectory is also present in the angular dependence of Elgindi’s solution [28].
Essentially, it comes because the ansatz (B1) leads for the radial velocity to vr = −r ∂ f

∂ζ
and for the

vertical velocity to vz = 2z ∂ f
∂ζ

. Both velocities imply that, after eliminating time in (25) and (26),
the characteristic equation for the axisymmetric Euler equations is

dr

dz
= − r

2z
,
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leading to r2z = Cte. Unfortunately, the ansatz (B1) and (B2) is characterized by a motion with
infinite energy. Indeed, the energy

E = 1

2

∫
v2 d3x = π

∫ ∞

0
rdr

∫ ∞

−∞

[((
∂ f

∂ζ

)2

+ w2

)
+ 4

r6
ζ 2

(
∂ f

∂ζ

)2]
dζ → ∞

diverges after the radial integration. However, Elgindi finds an extra radial decaying behavior
ensuring finite energy.
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