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We investigate the dynamics of sedimenting Brownian filaments using experimental,
computational, and theoretical approaches. The filaments under consideration are com-
posed of linked colloidal particles that form bead-spring-like chains. Under the action of
gravitational forces, the nonlocal hydrodynamic interactions cause the filaments to bend
and rotate to get their end-to-end direction perpendicular to gravity. Different reorientation
mechanisms are verified for different regimes of flexibility, characterized by the elastograv-
itational number. The thermal forces promote shape and orientation fluctuations around the
steady configurations of the reciprocal non-Brownian chains. The competition between the
reorientation mechanisms and the Brownian effects results in normal distributions of the
orientation of the chains. In the stiff regime, these fluctuations cause the chains to fall faster
than their reciprocal non-Brownian cases. With increasing flexibility, thermal fluctuations
lead to more compact configurations of the chains and higher average settling velocity.
Nonetheless, chain flexibility plays an important role on lateral migration. The interplay
between elastic, gravitational, and thermal forces leads to important secondary influences
on the filament settling dynamics.
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I. INTRODUCTION

The sedimentation of elastic filaments is a problem of great interest in the fields of biological
systems and the fabrication of complex materials. The coupling between elastic and hydrodynamic
effects induce complex dynamics of deformation and reorientation, impacting in the micro and
macrotransport phenomena [1]. As pioneers in the subject, Xu and Nadin [2] were the first to attack
the problem from a theoretical point of view. They described an analytical solution for the regime
of small deformation amplitudes using the slender body model together with the Euler-Bernoulli
beam theory. Their model predicted the mechanism of reorientation, in which the elastic filaments
rotate to get perpendicularly oriented with the driven force of gravity. Approximately ten years later
(2005), Lagomarsino et al. [3] and Schlagberger and Netz [4] conducted numerical investigations
on the sedimentation of the single elastic filaments problem using the bead-spring model. Due to
the applied numerical techniques, both works were able to explore regimes of larger amplitude
deflections compared to Xu and Nadin. In fact, Lagomarsino et al. identified a marginally stable
W-like shape configuration for highly flexible chains. From conducting numerical simulations, but

*These authors contributed equally to this work.
†Corresponding authors: fcmack@rice.edu; biswal@rice.edu

2469-990X/2022/7(3)/034303(19) 034303-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9613-0659
https://orcid.org/0000-0002-2607-9541
https://orcid.org/0000-0002-0610-835X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.034303&domain=pdf&date_stamp=2022-03-30
https://doi.org/10.1103/PhysRevFluids.7.034303


CUNHA, ZHAO, MACKINTOSH, AND BISWAL

using the slender body theory, Li et al. [5] observed that in the highly flexible regime the filaments
are susceptible to a buckling instability when sedimenting along its long axis.

Later works came up with investigations on the dynamics of interacting particles and filaments
in Stokes’ regimes. Jung et al. [6] described tumbling orbits dynamics for pairs of identical rigid
particles sedimenting in the Stokes’ regime from both experiments and numerical simulations.
The particles mutually induce an in-phase rotational motion together with periodic modulations
of separation distance. Similar mechanisms were observed by Bukowicki and Ekiel-Jezewska [7]
for the sedimentation of interacting elastic trumbbells. Llopis and Pagonabarraga [8] described the
interactions between inextensible semi-flexible filaments. From numerical simulations using the
bead-spring model, they concluded that the sedimentation of a pair of semi-flexible filaments is
qualitatively different from that of rigid rods. For initially parallel coplanar filaments, the top one
presents a larger deformation and sediments faster, leading to pair collision (an effect also observed
by Saggiorato et al. [9]). The authors identified other rich behaviors, such as periodic trajectories,
unsteady conformations, and filament rotations due to asymmetric initial conditions. Buckowicki
and Ekiel-Jezewska [10] extended investigations in this matter by considering a large family of
initial pair of filaments configurations. Using large-scale numerical simulations, Gustavsson and
Tornberg [11] studied the complex sedimentation dynamics of a cluster of rigid fibers. They
considered up to 800 fibers through their simulations. Investigating the average fibers orientation
and the fluctuations in the sedimentation velocity, they observed that the dynamical behavior of the
system is very sensitive to small random differences in the initial configuration. Recently, Marchetti
et al. [12] presented experimental results for a single non-Brownian filament sedimenting a viscous
fluid. The authors observed good agreement with numerical predictions for both the slender body
and the bead-spring models. The limited flexibility of the experimental filaments prevented the
observation of W-like shapes predicted by numerical simulations.

Recent works explored the development of sophisticated techniques that made it possible for
the synthesis of sophisticated colloidal structures to mimic diverse types of molecular systems
[13–19]. Colloidal model systems have shown to be of great value to study the behavior of polymers
and fibers in the more diverse conditions [20,21]. The particles are large enough to be observed
with optical microscopy, however, small enough so that their dynamics are influenced by thermal
motion. By tracking the chain position and shape in time, we can obtain a precise description
of its dynamics. In practice, the colloidal chains experimentally mimic the classic mathematical
bead-spring model used for polymers and fibers [22–24]. Also, the tunable elasticity and contour
length make it possible to investigate a vast range of physical regimes. The complex dynamics of
such chains when subjected to external flows and body forces is given by the interplay between
the particles’ hydrodynamics interactions, internal elastic forces, and stochasticity of thermal
fluctuations.

In this work, we investigate the settling dynamics of Brownian colloidal chains in a vis-
cous fluid using microscopical experiments and numerical simulations. The experimental chains
are fabricated by connecting micron-sized beads with DNA [19,21,25,26]. The multiple chain
lengths permits us to explore in a singe experiment a wide range of ratios between gravitational
to elastic forces, characterized by the elastogravitational number β. Conveniently, we use the
classical bead-spring model to perform numerical investigations. This methodology allows us to
better understand the mechanisms of reorientation observed for the settling flexible filaments, as
well as the dynamic that leads the filaments to the meta-stable W-like configuration recurrently
verified in the literature. Moreover, we account for Brownian motion effects to statistically study
its implications on the chain settling dynamics. The numerical approach allows us to provide
investigations considering wide ranges of parameters associated with the chains’ flexibility and
thermal fluctuations. From scale analysis, we describe the orientation distribution of the chains
overtime for the rigid limit, elucidating the increase in the settling velocity caused by the Brownian
motions.
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II. EXPERIMENTAL VISUALIZATION

A. Colloidal chains preparation

The Brownian colloidal filaments used in these experiments were synthesized using a directed as-
sembly method with double-stranded DNA (dsDNA) linkers. The particles used in the experiments
are streptavidin-coated superparamagnetic polystyrene spheres (Dynabeads MyOne Streptavidin
C1, Thermo Fisher Scientific Inc.). The particle diameter is 2a = 1.05 ± 0.1 μm. The particle
density ρp = 1.8 g/cm3. The linkers used are 4000 base pair dsDNA that are biotinylated on the 5′
ends. A solution of 0.01 wt% of particles, 5 nM of dsDNA linkers and 10 mM phosphate buffer
solution (PBS) (pH 7.4) were mixed and placed in a horizontal chamber with an approximate
size 2 cm × 2 cm × 80 μm. On applying a constant external magnetic field, the superparam-
agnetic particles align into linear chain-like structures. The biotinylated dsDNA linkers crosslink
neighboring particles by forming biotin-streptavidin bonds. Filament properties such as length and
flexibility can be tuned by modifying the time under the external magnetic field, the strength of the
external field, and the temperature of the filament linking system. The filaments synthesized have a
persistence length to contour length ratio (Lp/L) that varied from approximately 5 to 17. A detailed
description of filament fabrication and control of chain rigidity was reported by Byrom et al. [21].

B. Experimental setup and data acquisition

To visualize the gravity-driven settling dynamics of the colloidal filaments, we placed the glass
chamber containing the chains samples on an inverted microscope with a 85◦ tilt angle from
horizontal. The chains dynamics were first observed using a 40X/0.95 (air) Olympus objective.
The filaments stay within the focal plane for the entire experimental recording. The density of the
particles and and the inclination of the system, along with electrostatic repulsive interactions with
the wall, induce quasi-two-dimensional (2-D) dynamics of the chains while settling.

To record and analyze the sedimentation dynamics, a charge coupled device (CCD) camera
(Orca-HR from Hamamatsu Inc., Sewickley, PA) was attached to the microscope with a 10X/0.30
(air) or a 40X/0.60 (air) Olympus objective. Images of the filaments were captured at a rate
of 10 frames/s using HCIMAGE, an image acquisition software from Hamamatsu Corporation
(Bridgewater, NJ). A snapshot taken from the experiment is presented in Fig. 1(a) as a matter
of illustration. The contours of filaments are tracked using JFILAMENT plugin [27,28] in Fiji,
an open-source NIH software [29], which searches for the darkest ridges at the central line of
each filament based on stretching and deforming open active contours, as presented in Fig. 1(b).
Lastly, the gyration tensor was calculated from the images to compute geometrical parameters
of the chains, as shown by the schematic in Fig. 1(c). The gyration tensor is calculated as
Gnm = 1/L

∫ L
0 [(rn(s, t ) − r̄n(t )][rm(s, t ) − r̄m(t )]ds, where r is the position along the filament, r̄

is the center of mass of the chain under analysis, and t is time.

C. Experimental results and analysis

The chains’ configurations were monitored over time and used to determine distributions of the
chains’ orientation. Figure 2 shows the various configurations observed for the three experimental
cases in Fig. 1(b). The dynamics of the chains are dictated by the elastogravitational number which
is defined as the ratio between gravitational and elastic forces, β = 4πa3L2�ρg′N/3σb, and the
persistence length, Lp = σb/kBT . Here, a is the average radius of the colloidal particles, L is the
contour length, �ρ is the density difference between the colloidal particles and the solvent, g′ is
the magnitude of the gravitational acceleration projected in the direction of motion, N is the number
of beads in the respective chain, σb is the bending modulus of the chain, kB is the Boltzmann
constant, and T the temperature. Interchain hydrodynamic interactions are not taken into account in
our analysis. Although such effects are known to play a key role in the dynamics of concentrated
filaments suspensions [9,30,31], these are not relevant for the system in Fig. 1(a). Not only are the
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FIG. 1. Visualization of the settling dynamics of semiflexible chains. (a) Snapshot of the chains settling in
the chamber with the effective gravity g′. (b) Tracking the contour evolution of three different chains. From
top to bottom, these configurations represent chain sedimentation over a period of 20 minutes, taken at a time
interval of 1 min. The contours are normalized by the length of each filament. (c) Schematic drawing of the
relationship between a filament and the eigenvectors of its gyration tensor. The ending points of eigenvectors
are marked in hollow dots, with the primary vector marked in red and the secondary vector marked in blue.

densities low, but any long-range hydrodynamic interactions will be screened out by the presence
of the walls of the chamber [32].

For the case of β = 20, thermal fluctuations were observed throughout the chain contour;
however, deflections induced by gravity are not significant. As the chain settles, the thermal motion
promotes rotations of the chain, creating an orientation distribution. This orientation distribution
swipes all the possible inclinations, i.e., −π/2 to π/2, but a weak tendency to stay perpendicular
to gravity was evidenced by the increase in the red intensity in such a direction. One should not
associate the eventual complete rotations of the chain with tumbling dynamics, given that it is
induced by Brownian motion and not hydrodynamic phenomena.

034303-4



SETTLING DYNAMICS OF BROWNIAN CHAINS …

FIG. 2. Configurational and orientational fluctuations during Brownian chains’ sedimentation. Superimpo-
sitions of the configurations over time of three sediment filaments. They are examples of the three dynamical
regimes with β = 20, 175, 830, and Lp/L = 16.7, 8.1, 4.8, respectively. One hundred snapshots of configu-
rations are plotted out for each case. They were evenly sampled during the 20 min of experimental observation.
Shapes were normalized by filament contour length with their center of mass at the origin. Items (e)–(g) are
the eigenvector plots of the shapes shown in (a)–(c), respectively. The color bar shows the possibility for the
end points to show up in each position during the experimental observation.

For β = 175, the chain deflection due to gravity is evident, resulting in the U-like shape adopted
by the chain. The thermal motion induces fluctuations of both arms of the chain around the
equilibrium configuration, but fluctuations of the chain orientation were not as pronounced as in
the first case. In this sense, the distribution of the primary axis of the gyration tensor orientation was
restricted to directions mostly perpendicular to the gravity. Hence, one does not observe complete
rotations.

Lastly, for β = 830 the flexible chain presented a J-like shape with strong fluctuations along its
contour. During the experiment, the shorter arm readily flipped sides, however, due to a limited
sedimentation length of the observable domain, we were unable to verify the periodicity of this
dynamics. Unlike the two other cases, the primary axis of the gyration tensor is mostly parallel to

034303-5



CUNHA, ZHAO, MACKINTOSH, AND BISWAL

the gravity. Also, despite it showing strong fluctuations along its contour, no significant orientation
distribution was observed.

It is also important to mention that slight asymmetries with respect to the y-direction are possible
in the distribution of the eigenvectors, which may be a result of insufficient configuration samplings
due to the limitations related to the observable domain of the system and the fact that the chains are
not perfectly homogeneous along their length due to the particles-size distribution and stochastic
phenomena in the chains assembly process [21].

III. THEORETICAL MODEL

To model the settling dynamics of the colloidal chains, we used the bead-spring model [3,22] in
which the N spherical beads with the same radius a have their centers connected by massless springs
of length l0 = 3a. Naturally, the colloidal particles and dsDNA linkers represented the beads and
springs, respectively. The suspending phase was assumed to be a Newtonian fluid of viscosity η. In
the view of the small size of the chains and the characteristic velocity of sedimentation, we have that
the surrounding flow is governed by the Stokes equations and the beads dynamics are free of inertia.
Nonlocal hydrodynamic interactions were only taken into account between the beads, ignoring the
presence of the DNA. Moreover, interacting colloidal particles follow stochastic Brownian dynamics
due to thermal fluctuations in the solvent. Thus, the spatial disposition of the particles was evolved
in time using [33,34]

X(t + �t ) = X(t ) + M · Fnh�t + ∇ · (kBTM)�t + �(�t ),

〈�〉 = 0, and 〈�(�t )�(�t )〉 = 2kBTM�t, (1)

where X is the particles position vector of dimension 3N , Fnh is the force vector of dimension 3N
which accounts for all nonhydrodynamic forces acting on the particles, M is the mobility matrix
of dimension 3N × 3N which couples the dynamic of the particles in the view of hydrodynamic
interactions, �t is the time step used in the numerical simulations, and �(�t ) is a vector of
dimension 3N that accounts for the particles displacement due to Brownian motion [35].

The mobility matrix can be constructed by the properly assembly of the 3 × 3 mobility tensors
correlating the dynamics of all possible pairs of particles Mmn, for m, n = 1, 2, 3, . . . , N [24,34,35].
In this work, we use the Rotne-Prager-Yamakawa mobility tensor [36,37], given by

Mmm = I
6πηa

(2)

and, for m �= n,

Mmn =
{ 1

8πη

[
1
r (I + r̂r̂) + 2a2

3r3 (I − 3r̂r̂)
]
, r > 2a,

1
6πηa

[(
1 − 9r

32a

)
I + 3r

32a r̂r̂
]
, r � 2a,

(3)

where r is the distance vector between the center of the particles m and n, r = |r|, r̂ = r/|r|, and
I is the identity tensor. Important to mention that, for the chosen mobility tensor, ∇ · (kBTM) = 0.
Moreover, by construction, M is a positive-definite matrix for all particles’ configuration even when
particles overlap [24,38]. Therefore, we can compute the thermal fluctuations, obeying the relations
in Eq. (1), as

�(�t ) =
√

2kBT �tB · z, B · B = M, (4)

where z is a standard normal random vector of dimension 3N . In this work, the product B · z
is calculated using the methodology introduced by Fixman based on the Chebyshev polynomial
expansion [39]. The order of the Chebyshev polynomial is defined using the criteria presented by
Jendrejack et al. [40–42] considering a relative error of 10−3.
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FIG. 3. Definition of the angle θ used for the computation of bending forces.

The gravitational force acting on each particle is taken into account considering the Archimedes’
principle

fg = 4
3πa3π�ρg′, (5)

where g′ is the effective gravitational acceleration oriented towards −ŷ. The mechanical properties
of the dsDNA linkers define the elastic properties of the chains, and, therefore, their rigidity.
Considering the stretching and bending energies distributed through the chain respectively defined
as

U s = σs

2l0
(r − l0)2 and U b = σb

2l0
(θ − θ0)2, (6)

where σs and σb are the stretching and bending moduli, and θ is defined as shown in Fig. 3. From a
Hamiltonian perspective, we calculated the elastic forces acting on each particle as

f s = −∇U s and fb = −∇U b. (7)

This very same methodology was vastly used in the literature to study the dynamics of semi-
flexible fibers [1,25,43]. More recently Marchetti et al. [12] highlighted the good agreement between
the dynamics of settling non-Brownian continuum fibers obtained from numerical simulations
using the bead-spring model and observed in experiments. The authors also pointed out important
geometrical aspects when using the bead-spring model to represent a continuous filament.

In the present mathematical model, we do not consider the hydrodynamic interaction of the
colloidal particles with the walls of the chamber, thus, screening effects are not captured. However,
to capture the 2-D nature of the settling chain dynamics described in Sec. II, an artificial parabolic
potential was introduced in the z-direction such that

φ(z) = 4

3
πa2�ρg′ z

2

2
. (8)

Due to the stochastic dynamics of the chains introduced by the thermal forces, it becomes of great
importance to consider the steric interactions between the beads to avoid nonphysical configurations
and singularities related to the hydrodynamic formulation. To this end, we account for the interaction
of two beads as elastic spheres following the well-known Hertz description. The elastic modulus and
Poisson’s ratio of the particles were empirically chosen to minimize the particles’ interpenetration
and also avoid numerical instabilities. As soon as these conditions are satisfied, the Hertz forces do
not play a significant role in the chain dynamics.

The non-dimensionalization of the problem was done using the chain’s contour length L and the
Stokes terminal velocity 2a2�ρg/9η as characteristic scales. In this sense, we get that the dynamics
of the settling Brownian chains are defined by three dimensionless groups. The first is β, as previ-
ously described in Sec. II. Second, the chain’s stretching-to-bending ratio λ = σsL2/σb, which, from
the Euler-Bernoulli beam-theory for a circular cross-section becomes λE = 4L2/a2 assuming the
radius of the cross-section as the particle radius. Throughout this work, we presented the results as a
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function of λ∗ = λ/λE . Third, the gravitational Peclet number defined as Peg = 2πa3�ρgL/3kBT .
Note that NPeg/β equals Lp/2L.

A. Non-Brownian chains

Here, we studied the settling dynamics of non-Brownian chains. A better understanding of the
chains’ dynamics in the absence of thermal motion is needed for further analysis related to the
Brownian cases. First, we investigated the steady-state chain configurations as a function of β.
Then, we analyzed the dynamics leading the filaments to the metastable W-like shape. Lastly, we
focused on the mechanisms of reorientation observed for elastic polymers.

1. Steady-state sedimenting chain configurations

First, we considered a single chain initially straight and perpendicular to gravity. For all cases
in this section we set λ∗ = 1. As the chain started to settle, the hydrodynamic interactions lead the
center region to fall faster than the ends, causing the chain to bend until it reached a steady-state
configuration defined by the balance between drag and elastic forces [5]. It is important to note
that these bending dynamics are a consequence of nonlocal hydrodynamic interactions between the
beads, otherwise, the chain would settle in a straight configuration [2,3,12].

Figure 4(a) presents the bending amplitude of the chains at the steady-state configuration as a
function of β for different N values. The bending amplitude was measured as the indentation δ,
normalized by L. The configuration of the chains for the respective values of β and N = 31 are
indicated by the black arrows. Notably, the curves collapsed as N increased. This behavior suggests
that the chain recovers the dynamics of a continuum filament at sufficiently large N . Additionally,
Fig. 4(b) illustrates the computed frictional coefficient in the gravity direction normalized by the
rigid filament case γ /γ0, where γ0 = γ (β → 0). The frictional coefficient is simply calculated by
the settling velocity of the chain divided by the total gravitational force. Finally, Fig. 4(c) shows the
bending energy E∗, normalized by the gravitational potential. As these two physical parameters are
dictated by the configuration of the chains, they are also a function of β.

In the limiting case of β → 0, chain elasticity dominates over gravitational forces, resulting in a
filament settling as a rigid rod perpendicularly oriented to gravity. In this limit, γ is maximum and
E∗ is the lowest since chain curvature was insignificant. The regime of small deformations occurs
for β < 200 where 2δ/L � 0.4. This regime is characterized by a linear relationship between δ

and E∗ with β. The chains presented V-like shapes, curved at the center, but with wide open and
straightened arms. Due to the small deflections, the chain remained mainly orthogonal relative to
gravity and γ /γ0 is approximately unity.

For 200 < β < 800, chain elasticity and gravitational forces are of similar magnitude. In this
regime, the chain configuration transitioned from a V-like to a U-like shape. The 2δ/L plateaus to a
saturated value. The curvature increased at the center of the chain, which caused the arms to become
parallel to each other. As a consequence, a strong decay of γ /γ0 is observed, falling from values
close to unity to 0.7. Also, E∗ peaked at β ≈ 350 due to the larger deflections along the relatively
rigid filament.

Lastly, for β > 800, the resulting chain configuration was dominated by gravitational forces. The
U-like shapes slowly transitioned to horseshoe-like shapes, where the ends become closer with β.
However, there is no significant variation in 2δ/L, which remains approximately 0.85 [12]. This
saturated regime also showed small variations of the friction factor γ ∼ β−0.03 and a decay in the
bending energy of E∗ ∼ β−0.9.

Moreover, for β > 3000, the presence of metastable W-like shapes was observed, represented in
Fig. 4 by the solid symbols. These W-like shapes evolved to the stable horseshoe-like shapes after
small numerical disturbances — O(10−16) — associated with the precision of the computer. The
W-like shapes are characterized by larger values of γ /γ0 and E∗ due to, respectively, the larger chain
section perpendicular to gravity, and the creation of two more bending modes. A deeper analysis of
this configuration is presented in Sec. III A 2.
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FIG. 4. Chains steady configurations as a function of β for different numbers of beads. (a) Bending
amplitude δ. As insets, we have the chains configurations for N = 31 at different values of β, as indicated by
the arrows. (b) Friction coefficient for motion in the gravity direction γ , normalized by the friction coefficient at
the rigid limit γ0. (c) Bending energy normalized by the gravitational potential E∗. The solid symbols represent
the measurements for the chains at the “W” configuration. All plots are in log-log scale.

2. Metastable W-like chain configurations

The W-like metastable chain configuration has been reported in simulations of the sedimentation
of highly flexible fibers, but experimental observations have not been reported [3,9,12]. In this
section, we offer a deeper investigation of this phenomenon. Figure 5 presents the shape evolution
of three different chains λ∗ = 1, 0.1, and 0.01, for β = 3100 and N = 31. Although λ∗ = 0.01 is
typically difficult to realize, studying such a case helps our understanding of the dynamics that lead
the chains to the W-like configuration. Initially, for all the studied λ∗, the nonlocal hydrodynamic
interactions induce the beads at the center to fall faster, causing the inclination of both ends while
the center remains in the original orientation. In this configuration, due to the difference between
the drag coefficients perpendicular to and parallel to the segment’s longitudinal axis, the inclined
arms at both ends are pushed towards the center while their relative settling speed is increased.
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FIG. 5. Evolution of the chain to the W -like configuration for λ∗ = 1, 0.1, and 0.01, setting β = 3100 and
N = 31.

Under such circumstances, the chain is driven to the W-like shape, with the center region being
compressed by the lateral motion of the inclined arms. For λ∗ = 1 and 0.1, the filament reached the
metastable W-like shape. However, for λ∗ = 0.01, the density of beads per chain length increased
in the center as a result of transverse movement of the beads because there is little resistance to
compression, which also results in a greater mobility of the segment. The result is that the center
of the chain falls faster than the arms; hence, the metastable W-like shape is not observed. From
these simulations, the metastable W-like shape arises from dynamics in which a buckling mode in
the filament is formed to relieve stresses due to the compression of a region. Experimentally, this
shape is rare to be observed given that the dynamics leading to it is highly dependent on the filament
initial condition, the high flexibility of the filament, and due to its metastable nature [12]. However,
buckling-like dynamics might be induced to chains by means of dipolar interactions [26].

3. Elastogravitational reorientation

The lack of rotation in the sedimentation of individual rigid rods is a well-known phenomenon
in the literature. However, when small deflections are present, the filaments rotated to align their
end-to-end direction with gravity [2,4,12]. This rotation is due to the asymmetry in the inclination
angles between the sides of the chain with respect to gravity. Here, we define the chain inclination
θ as the angle between the primary axis of the gyration tensor and the horizontal direction, such
that at equilibrium θ = 0. For highly deflected chains, for which the primary axis of the gyration
tensor may flip from parallel to perpendicular to the end-to-end direction, θ is defined from the
secondary eigenvector of the gyration tensor. Given that the hydrodynamic torque is a consequence
of the chain’s deflection, it must be dependant on β. Moreover, as a restorative mechanism, it does
also depend on θ . Lastly, in view of the linearity of the Stokes equations, the angular velocity
of the chains should follow a linear relationship with the hydrodynamic torque. Following this
argument and assuming small deflections, the chain dynamics are governed by θ̇ = −θ/τH , with a
characteristic time of hydrodynamic reorientation τH ∼ 1/β. Chain reorientation can be interpreted
as a relaxation of the chain inclination driven by a hydrodynamic torque [3].

The results for reorientation dynamics of settling chains initially inclined at θ0 = π/4, for λ∗ = 1
and N = 31 are shown in Fig. 6. The time required �t for a chain to evolve from θ0 to θ � 0.0175,
as a function of β is shown in Fig. 6(a). Included in the figure are representations of the chain
shape evolution for the respective cases, as indicated by the arrows. Three distinct mechanisms
of reorientation based on the flexibility of the chain are observed. To better understand these
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FIG. 6. Reorientation dynamics of settling chains, for N = 31 and λ∗ = 1. (a) Reorientation time �t as a
function of β. Schematics of the chains’ shape evolution for the respective cases are indicated by the arrows.
(b) The plot in the top-right presents θ as a function of time. The plot in the top-left presents angular velocity
θ̇ as function of the the inclination. The plots in the bottom presents vx and vy as a function of time. The cases
under consideration are β = 31.62 (solid black line); β = 100 (solid red line); β = 316.2 (solid blue line);
β = 1000 (solid green line); β = 3162 (dashed black line).

mechanisms, Fig. 6(b) plots the chain’s reorientation dynamics for key parameters, such as θ , θ̇ ,
and the velocity of the chain’s center of mass parallel to and perpendicular to gravity, vy and vx,
respectively. For β � 300, chain rotation about its center of mass was the dominant mechanism,
identified as rotating. The curves for θ (t ) presented a monotonic exponential decay behavior,
indicating a single mechanism of relaxation. Moreover, from a linear regression 1/τH ≈ 0.0059β.

For intermediate values of 300 � β � 2000, quasi-independent rotation of the two sides of the
chain about the center occurs. This is characterized as the bending mechanism, which aims to
maximize the chain bending for a respective value of β. Chain rotation may occur if the arms are not
parallel, or a faster settling velocity of the longer arm when the arms are parallel. One can observe
for the case β = 1000 that the inclination of the chain does not present a monotonic evolution, but,
rather, the presence of two mechanisms with different relaxation times, one for t � 0.1 and another
for t � 0.1. As previously mentioned, the first is characterized by the bending of the chain towards

034303-11



CUNHA, ZHAO, MACKINTOSH, AND BISWAL

the U-shape, with a rapid decrease of θ . However, this mechanism may lead to slight differences
between the lengths of the arms, which is more pronounced with increasing β. Such a unbalance is
corrected in the second period, when the largest arm falls faster until symmetry is reached.

For β > 2000, the sedimenting chains initially form J-like shapes. Here, the chain initially curls,
followed by a faster settling velocity of the longer arm until chain symmetry is reached. This snaking
mechanism has similar dynamics to those observed for semi-flexible filaments in shear flows [44].
For β = 3162, one can observe the flip of the main axis of the gyration tensor with respect to the
end-to-end direction highlighted by the discontinuity of the θ̇ (t ) at t ≈ 0.8. This discontinuity is not
shown in the plot of θ̇ (θ ) for convenience. In this regime, the reorientation time decreases with β

once the weak elastic forces result in reduced resistance to chain bending. It is important to mention
that the transitions between the reorientation dynamics with β are smooth and share mechanisms
characteristic of both regimes. Also, for all cases, a regime of exponential decay is reached, as
indicated by the linear relation θ̇ ∼ −θ .

The chain settling velocity and lateral migration is also investigated by measuring the hori-
zontal and vertical velocities of the chain center of mass, respectively, vx and vy, as presented
in Fig. 6(b). In the rigid limit, β → 0, vx ∼ (κ − 1) cos θ sin θ and vy ∼ κ sin2 θ + cos2 θ [22],
where κ = 2[log(L/2a) + χ‖]/[log(L/2a) + χ⊥] is the perpendicular-to-parallel friction coeffi-
cient ratio. Considering that the hydrodynamic interactions between the particles are governed by
the Yamakawa-Rotne-Prager, χ⊥ = 1.111 and χ‖ = 0.044 [45,46]. For β = 31.62, N = 31, and
λ∗ = 1, κ ≈ 1.525 is measured from the simulations. Despite the small deflections, good agreement
with the theoretical value κ ≈ 1.566 is obtained. Note that the negative value of vx indicates that
the chain translates to the left. Regardless of the different mechanisms of reorientation, the curves
of vx present a similar trend. On the other hand, the curves for vy are strongly influenced by β.
Initially, the settling velocities are the same for all cases, given that the initial chain configurations
are identical. For stiff chains, vy decreases as the chain reorients, until it reaches its steady-state
configuration. However, for flexible chains, an inflection of vy is observed as a consequence of the
large chain deflection, as discussed in Sec. III A 1. This configuration results in a faster settling
velocity for more flexible chains. In fact, the terminal settling velocity for the chains must obey an
inverse relation with γ /γ0 such that it can be obtained from the curve for γ (β ) in Fig. 4.

B. Brownian chains

In this section, Brownian motion is shown to be a determining factor governing the sedimentation
of colloidal chains. Thermal fluctuations not only generate local displacements along the chain,
measured by the ratio Lp/L, but also can give rise to stochastic chain rotation. In this case, there is
a competition between the elastogravitational and Brownian torques on the chain orientation. The
first effect works as a restorative mechanism (Sec. III A 3), while the second induces stochasticity
in the chain orientation.

The superposition of the chain configurations at distinct times, for different values of β and Peg

is shown in Fig. 7. For all cases N = 31 and λ∗ = 1. At small values of β � 200, the competition
between the elastogravitational and Brownian torques defines the distribution of the chain orien-
tation. Fluctuations over the contour length are not evident for the respective cases Lp/L � 7.8
across all values of Peg. Since the chains are relatively rigid, thermal fluctuations do not play a
significant role on the shape, but promote translation and rotation of the chain. Hence, the chains
remain in a slightly bent configuration, characteristic of their corresponding non-Brownian case.
For 400 � β � 1600, the chains present well-defined U-like configurations. As the chain becomes
less rigid, the propagation of elastic stress through the chain decreases, and thermal effects are
likely to promote local deformation rather than chain translation and rotation. Fluctuations of both
arms around the equilibrium configuration may lead to variations of θ , but this is not attributed to
chain rotation. As the values of β increases and Peg decreases, the shape of the chains becomes
amorphous. The shape fluctuations may lead the system to follow complex dynamics, e.g., the
snaking reorientation dynamics explored in Sec. III A 3, given the increased degrees of freedom
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FIG. 7. Configuration of sedimenting Brownian chains projected in the xy plane for various values of β

and Peg. The cases in the black, red, green, and blue boxes correspond, respectively, to Peg = 200, 100, 50, and
25. Each simulation corresponds to a non-dimensional period of time equal to 1000. Chain configurations at
distinct times are superimposed with respect to the center bead.

coupled with nonlocal hydrodynamic interactions. For the case β = 10 000 and Peg = 25, which
corresponds to Lp/L ≈ 0.16, the U-like chain shapes cannot be easily identified.

Figure 8 provides statistical measurements for the chains inclination, settling velocity, and hori-
zontal displacement. The effect of Peg on the chains’ inclination distribution during sedimentation is
shown in Fig. 8(a). All cases present a Gaussian-like distribution with a zero mean, highlighting the
competition between restorative elastogravitational and stochastic thermal fluctuations. Such results
are in agreement with the analytical analysis developed by Manikantan et al. [30]. For β � 200,
the distribution narrows with β; while for β � 800, the standard deviations are, respectively, large
for all cases, and do not present clear dependence on the elastogravitational number. To better
elucidate this relationship, Fig. 8(b) shows the standard deviation of the inclination distributions,
σ (θ ), as a function of β. A clear scaling σ (θ ) ∼ β−0.5 is observed over all values of Peg when
β � 200. This corresponds to the regime in which the thermal fluctuations mainly induce chain
translation/rotation, rather than deformation. Also, this is the regime in which we verify that
rotation is the dominant mechanism governing the chains’ reorientation dynamics, as previously
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FIG. 8. Brownian chains dynamics during sedimentation. (a) Inclination distribution, p(θ ), for Peg = 100
and different values of β. (b) Standard deviation for θ as a function of β at different values of Peg. The open
symbols refer to cases in which, at the equilibrium, the primary eigenvector of the gyration tensor relies close
to the gravity direction. As the inset, we have the variance of θ as function of 1/Pegβ for the cases in which
β � 200. The open symbols refer to the cases β = 12.5 and Peg = 25 and 50. Since complete rotations are
observed for such cases (see Fig. 7), these are not taken into account in the linear regression. (c) Mean value
of the settling velocity vy as a function of β with respective standard deviation for the different values of Peg.
The dashed line corresponds to the settling velocity for the respective non-Brownian cases. The open symbols
at β = 10 000 correspond to the cases in which the parabolic potential in the z-direction is absent. As the
inset, we have the mean settling velocity as a function of 1/Pegβ for the cases in which β � 100. The cases
for β = 200 were excluded from this analysis given that the bent configuration induces a nonnegligible faster
settling velocity compared to the rigid cases. The open symbols refer to the cases β = 12.5 for Peg = 25 and
50. The dashed-dotted line correspond to the predictions obtained via Eq. (9). (d) Standard deviation for the
chain velocity in the horizontal direction vx as a function of β, for different values of Peg. The velocities vy and
vx are calculated from the displacement of the chain’s center of mass over a time period of 0.1. All simulations
for the Brownian cases were run for a computational time period of 1000.

discussed in Sec. III A 3. The linear dynamics characteristic of this regime allows us to define a
hydrodynamic reorientation potential as a function of the chain inclination H ∼ θ2/2τH . Therefore,
assuming equilibrium, the chain orientation distribution follows p(θ ) ∼ exp(−θ2τB/2τH ), where
τB ∼ Peg is the characteristic time of Brownian rotation. If τH � τB, a narrow distribution of θ is
observed. However, τH � τB leads to a uniform distribution due to the inclination periodicity. From
the described relationships, we determine that σ 2(θ ) ∼ 1/Pegβ, which is in accordance with the
presented results in Fig. 8(b), as highlighted in the inset. As β increases, more complex mechanisms
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FIG. 9. Configuration of sedimenting Brownian chains projected in the yz-plane for β = 10 000 and the
different values of Peg. The parabolic potential field φ(z) is represented at the bottom of each case by the blue
curve. Differently from Fig. 7, the beads are explicitly shown to elucidate the three-dimensional configuration.
Chain configurations at distinct times are superimposed with respect to the center bead.

governing chain reorientation are present; thus, the chains’ orientation distribution is no longer a
function of Pegβ. In fact, a nonmonotonic response of σ (θ ) with respect to β and Peg is verified.
By increasing β from 200 up to 800, σ (θ ) rapidly increases while the dependence on Peg decreases.
At β = 1600, the curves of σ (θ ) collapses for all cases of Peg. This unexpected result is due to
the continuous interchange between the primary and secondary eigenvectors of the gyration tensor
as a result of configuration fluctuations, rather than chain inclination. Notably, for β � 3200, σ (θ )
increases with β, however, with a weaker dependency with decreasing Peg. In fact, the curve for
Peg = 25 appears to be saturated, suggesting that elastic forces do not plays a significant role on the
chains’ orientation distribution at high β values.

In addition to changes in the chains’ orientation distribution and shape fluctuations, variations
in the settling velocity and horizontal diffusion are detected. Figure 8(c) presents the chain settling
velocity vy. For β < 100 the thermal fluctuations cause the chains to settle faster compared to their
respective non-Brownian case, as shown by the dashed curve in Fig. 8(c). Such an effect becomes
more pronounced with decreasing Peg and β, reflective of the longer time spent in a more inclined
configuration, i.e., wider distribution of θ . Combining the above results with the discussion from
Sec. III A 3, the theoretical value for the mean settling velocity 〈vy〉 of the chain follows

〈vy〉 = v0
y

∫ π/2

−π/2
(1.525 sin2 θ + cos2 θ )p(θ )dθ, (9)

where the variance in the normal distribution p(θ ) is σ 2 = ψ/Pegβ, for ψ being computed from
the linear regression shown in the inset of Fig. 8(b). The predicted values for 〈vy〉 are in great
accordance with the values obtained from the simulations for β � 100, as highlighted by the inset
of Fig. 8(c). For the cases Peg = 25 and Peg = 50 at β = 12.5, represented by the open symbols,
faster settling velocities than the predicted are observed given that the normal distributions p(θ )
do not reflect the complete rotation of chains presented in Fig. 7. At the limit τB/τH → 0, we
expect a uniform distribution of θ , and, consequently 〈vy〉 → 3.17. For β > 100, the mean settling
velocity converges to the one correspondent to the respective non-Brownian cases. However, an
interesting phenomenon is observed for β � 1600 and Peg � 50. In the presence of increasing
thermal fluctuations, the high flexibility of the chains leads to configurations in which the beads
are no longer confined to the xy-plane z = 0, i.e., beads can be seen side-by-side in the z-direction
as shown in Fig. 9. On top of that, the compression caused by the parabolic potential in the
z-direction reduces the overall distance between the beads, resulting in a faster average settling
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FIG. 10. Configuration of sedimenting Brownian chains in the absence of the parabolic potential, φ(z), for
β = 10 000, and Peg = 200, 100, 50, and 25, from top to the bottom (black, red, green, and blue), respectively.
From left to the right, we see the chains projected in the xy, zy, and xz planes, respectively. Chain configurations
at distinct times are superimposed with respect to the center bead.

velocity compared to the non-Brownian respective cases. Such an effect becomes more pronounced
as β increases and Peg decreases.

For a better understanding of this effect, we simulated the cases for β = 10 000 in the absence of
the parabolic potential field, i.e., for chains no longer confined to the xy-plane. We observed that for
all cases the settling velocity reduces compared to the respective cases with the parabolic potential.
By contrast, we found that the settling velocity is increased for lower values of Peg. When the
beads are free to spread into the z-direction due to thermal fluctuations, we observe configurations
less likely to have beads aligned in the direction of motion. Such an effect increases the average
drag on the chains, reducing the average settling velocity, similar to what happens for rigid rods
settling perpendicular to their orientation. This behavior is a direct consequence of the long-range
hydrodynamic interactions. Thus, thermal fluctuations lead to configurations less hydrodynamically
favorable to sedimentation. By contrast, lower values of Peg result in more compact configurations of
the chains, highlighted by the denser core regions in Fig. 10. These more compact chains experience
greater hydrodynamic interactions and faster sedimentation, similar to what is observed for the
sedimentation of blobs of particles [47].

Figure 8(d) shows the chain lateral diffusion represented by the standard deviation of the
horizontal velocity σ (vx ), as a function of β. A similar trend is observed for all values of Peg.
Initially, for β � 200, the chains’ lateral diffusion decreases as the orientation distribution narrows,
i.e., increasing β and Peg. We also found from simulations that in this regime σ (vx ) nearly scales
with β−0.3. Despite the fact that σ (θ ) increases significantly with β for 200 � β � 800, σ (vx )
barely responds to variations of β in this regime. In fact, for all cases of Peg, β = 400 presents
the smallest horizontal diffusion due to the characteristic U-like chain shape and small inclination
variance. For higher values of β and, consequently, more complex configurations, increasing lateral
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displacements are observed. It is worth noting that, from the responses observed for vy and σ (vx ),
we are able to define statistical trajectories and lateral migration for the settling Brownian chains.

IV. CONCLUDING REMARKS

We present an experimental and computational study aimed at understanding the settling dy-
namics of Brownian colloidal chains. The experimental system consists of colloidal particles linked
together with double-stranded DNA. Brownian motion is shown to play an important role in the
orientation dynamics of these filaments. Given their controllable elasticity and contour length,
such systems are of great value to study and understand the dynamics of Brownian filaments
under a vast range of physical regimes. A bead-spring model is used to simulate the sedimentation
of these filaments. We verify that the dynamics of the non-Brownian chains are defined by the
elastogravitational number β, which measures the ratio of the gravitational-to-elastic forces. As
the value of β increases, the equilibrium shape of the chains transit from linear to U-like shapes.
Also, the flexibility of the chains induces three distinct reorientation mechanisms, with different
characteristic times, driving the chains to orient with their end-to-end direction perpendicular to
gravity.

For the numerical simulations of the Brownian cases, we considered an artificial parabolic
potential in the direction perpendicular to gravity to mimic the approximate 2-D nature of the
experimental setup. We observed a strong dependence of the chain dynamics on the gravitational
Peclet number, Peg, which is the ratio of gravitational-to-thermal forces. For rigid filaments, thermal
fluctuations promote chain rotation/translation while gravitational-elastic effects cause chain reori-
entation. This results in a Gaussian-like distribution of the chains’ orientations, where the variance
is a linear function of 1/Pegβ. Nonetheless, the fluctuations of the chains’ inclination induce a faster
settling velocity when compared with their respective non-Brownian cases. As the chains become
more flexible, the thermal fluctuations induce larger shape fluctuations and less chain rotation. For
highly flexible chains, the thermal fluctuations result in amorphous chains configurations. Moreover,
for the cases in which the thermal fluctuations are strong enough to overcome the confinement
promoted by the parabolic potential, the chains presented faster settling velocity which increased
for lower values of Peg. In the absence of the parabolic potential, i.e., the fully three-dimensional
case, and at highly flexible regimes, reducing Peg also showed to increase the settling velocity. It is
clear that Brownian forces play an important role in the sedimentation of colloidal filaments. The
chain flexibility provides additional degrees of freedom that give rise to new and complex dynamics.
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