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Diffusiophoresis in a Taylor-dispersing solute
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We consider the diffusiophoresis of a suspension of charged colloidal particles in the
presence of a nonuniform solute concentration, where each species experiences Taylor
dispersion from spanwise velocity gradients. We describe the two-dimensional evolution
of both solute and particle concentration fields in a narrow channel with background
Poiseuille flow by applying the lubrication approximation along with the assumption
of constant particle ζ potential. We compare the theoretical predictions with the results
of numerical simulations for fixed particle ζ potential, demonstrating good agreement.
Finally, we comment on three-dimensional effects, long-time dynamics, and the validity
of the constant particle ζ potential assumption for our model. We perform additional
simulations with a simple variable-ζ potential model that treats the particle ζ potential
as a logarithmic function of solute concentration. The results show good qualitative and
quantitative agreement, supporting the use of the constant particle ζ potential assumption
for this system under certain circumstances.
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I. INTRODUCTION

Flows containing both dissolved solute molecules and dispersed colloidal particles are common
in filtrations, microfluidic devices, and laboratory-on-a-chip sensors. Often, such flows occur in
narrow channels, such as blood vessels or medical tubing. An understanding of solute–particle
interactions and the dynamics of each species in a flow is critical for the design and evaluation
of such systems, and analytical models for such dynamics can reduce computational effort and
development time relative to direct numerical simulation or provide insight into observed behaviors.
There are multiple timescales in practical applications of diffusiophoresis, owing to fluid velocity
and differences in solute and particle diffusivity. We describe how two-dimensional features that
develop in particle concentration profiles on short timescales can persist on much longer timescales
by considering the early-time dynamics of diffusiophoresis in a narrow channel.

The motion of particles in flows with solute gradients is the result of bulk fluid motion, diffusion,
and diffusiophoresis, which arises due to interactions between the particles and solute molecules.
Diffusion is enhanced by shear stresses in the flow; velocity gradients cause nonuniform solute
transport, which leads to cross-stream solute gradients [1]. The diffusiophoretic motion is the result
of interactions between solute molecules and the colloidal particles and consists of contributions due
to both electrophoresis and chemiphoresis [2]. Its direction is dependent on the gradient of solute
concentration and the species present in the flow [3]. The diffusiophoretic velocity is proportional
to the gradient of the logarithm of solute concentration, and the proportionality constant, known as
the diffusiophoretic mobility, varies with the ζ potential of the particles [3].

The earliest descriptions of diffusiophoresis were provided by Derjaguin et al. [4,5], who
modeled particle velocities and described diffusioosmotic flows resulting from solute gradients near
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solid surfaces. Many studies have explored diffusiophoresis and its applications in recent decades,
reflecting an increased interest in the dynamics of particles in the presence of nonuniform solute
concentrations. Such works may have direct applications in industry, medicine, or biology, or they
might provide the means for measuring physical properties of the species in a flow. Anderson [6]
described diffusiophoresis and commented on an apparent lack of appreciation for the phenomenon;
early works demonstrated diffusiophoresis and described experimental measurements of particle
dynamics [7–9], but applications were limited. Since then, numerous studies have provided context
and applications for diffusiophoretic flows. Shin et al. [10], for example, performed microfluidic
experiments and numerical simulations to study the dynamics of colloidal particles in junctions
between flows. Particles were packed into pores and their aggregation caused irreversible clogging.
Such interactions have significant implications for the design and maintenance of medical and
industrial equipment. Other works have also examined diffusiophoresis and diffusioosmosis as a
mechanism for particle transport in porous media [11,12]. Shin et al. [3] also considered colloid
transport in dead-end channels, commenting that the transport of particles to or from channels
is inefficient when dependent on stochastic processes alone. They employed diffusiophoresis to
effectively enhance particle transport. Shim and Stone [13] described the aggregation of charged
particles in channel flows with CO2 leakage through gas-permeable walls, and Shim et al. [14]
have recently used diffusiophoresis driven by CO2 to prevent the aggregation of bacteria near
interfaces and potentially inhibit the formation of biofilms. Similarly, Florea et al. [15] commented
on the development of an exclusion zone caused by the diffusiophoretic migration of particles,
with potential applications in filtrations and separations [16]. Recently, Lee et al. [17] examined
diffusiophoresis with a pseudospectral method and commented on the effects of parameters like the
surface charge density and electrolyte strength.

Other studies focus on modeling diffusiophoresis, either to provide descriptions of solute and
particle dynamics or to suggest novel techniques to measure electrical or chemical properties.
Raynal et al. [18], for example, studied the dispersion of solute and particles in linear veloc-
ity fields. Ault et al. [19] studied the diffusiophoretic motion of colloidal particles, assuming
solute gradients are one-dimensional. They provided theoretical descriptions of particle dynam-
ics to inform techniques for controlled particle injection or removal. Chu et al. [20] modeled
one-dimensional advective–diffusive particle spreading via diffusiophoresis. More recently, they
considered the long-time behavior—after spanwise variations in concentration have diminished—of
colloidal species undergoing diffusiophoresis in a channel flow under the influence of Taylor
dispersion [21]. They provided a macrotransport equation and numerical results for comparison,
demonstrating agreement and commenting on the relatively low computational effort needed to
calculate the long-time dynamics. Ault et al. [22] found analytical expressions for the dynamics
of solute and particles in long, narrow channels, focusing on quasi-one-dimensional dynamics and
providing leading-order corrections for two-dimensional diffusioosmotic effects. They commented
on potential applications in particle sorting and ζ potentiometry. Ault et al. [23] later applied
diffusiophoresis to measure either ζ potentials or interaction length scales for surfaces exposed to
electrolyte or nonelectrolyte solutes, respectively. They gave analytical solutions for each, allowing
microfluidic experiments to be used for the measurement of parameters. Similarly, Rasmussen et al.
[24] used diffusiophoresis and diffusioosmosis to measure the ζ potential and size of nanoparticles
with applications in medical diagnostics, while Shi et al. [25] introduced steady-state gradients
of solute and commented on applications in measuring diffusiophoretic mobility. Alessio et al. [26]
recently described diffusiophoresis in two-dimensional pores with gradients of multiple electrolytes.
There are numerous other potential applications of diffusiophoresis; Velegol et al. [27] listed sources
of solute concentration gradients, including chemical reactions, sedimentation, and evaporation, and
various situations where diffusiophoresis could be applied or studied.

Other works describe the two-dimensional dynamics of species in channel flows, which is a
cornerstone of the present work. Taylor dispersion, the enhanced effective diffusion of a substance
in the presence of a background shear flow, has been previously studied by numerous researchers.
Taylor [1] first provided a description of the enhancement of diffusion in shear flows, which
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was later generalized by Aris [28]. Shear stresses in the flow in a channel change the direction
of concentration gradients, resulting in cross-stream diffusion and, ultimately, enhanced diffusion
in the streamwise direction. Descriptions of this phenomenon have been improved and extended
with time; other works, such as those by Frankel and Brenner [29] and Barton [30], have given
mathematically rigorous descriptions of dispersion phenomena. More recent works have continued
to extend earlier results to novel applications; Chu et al. [31], for instance, studied the dynamics of
solute in a narrow channel with an oscillatory velocity, developing a generalized Taylor dispersion
theory. Taylor dispersion is particularly relevant to channel flows and has been considered in the
context of diffusiophoresis. Specifically, recent work by Chu et al. [21] considered the addition
of charged colloidal particles to such a system in which a solute concentration field experiences
Taylor dispersion, and they considered the long-time (approximately one-dimensional) behavior
of their coupled dynamics via diffusiophoresis. At such times, variations in concentration across
the channel can be neglected [32]. Here, we perform a theoretical and numerical modeling of the
early-time coupled dynamics in a channel flow, which has not previously been explored. While
previous work by Chu et al. [31] focused on the quasi-one-dimensional and long-time dynamics
and recent work by Raynal et al. [18] considered dynamics in linear velocity fields, to the best of
our knowledge there are no descriptions of the coupled solute and particle dynamics in channel
flows at early times. Furthermore, a key feature and motivation behind this work that we will show
is that the “early-time” dynamics can in fact persist significantly longer than might be expected.

For a physical system such as this, there are multiple important timescales of interest. In general,
these are the characteristic times of fluid advection both along and across the channel (L/U and
h/U ), the particle and solute diffusion both along and across the channel (h2/Ds, L2/Ds, h2/Dp,
and L2/Dp), and the particle diffusiophoresis both along and across the channel (h2/�p and L2/�p).
Here, L is the channel length, h is the channel width, U is the mean flow velocity in the channel,
Ds is the solute diffusivity, Dp is the particle diffusivity, and �p is the particle diffusiophoretic
mobility. To characterize the dynamics of such a system, it is valuable to understand the relative
magnitudes of the different timescales. In particular, since diffusiophoresis is coupled to the solute
diffusion, it is typically reasonable to assume that �p ∼ O(Ds). Furthermore, depending on the
size of the colloidal particles, it should typically be the case that Dp < Ds, and in fact we often
have Dp � Ds. For example, with NaCl as the solute and particles with radius 100 nm, we have
Ds = 1.61 × 10−9 m2 s−1 and Dp ≈ 2.45 × 10−12 m2 s−1, such that Dp/Ds = O(10−3). This leads
us to consider the “early” and “late” time dynamics for the system. In the context of the recent
work [21], we consider the late time dynamics to be reached over the timescale h2/Dp. Over this
timescale, the particle concentration smooths out across the channel, and the quasi-1D model by
Chu et al. [21] successfully describes the dynamics.

Thus, in the current work, we consider the early-time regime to be that before t ∼ O(h2/Dp),
where we must still account for spatial variations in particle concentration across the channel. Before
proceeding with the following analysis, we must first consider whether such a time regime is relevant
to any real physical systems. As mentioned, if we consider particles with radius 100 nm, and typical
microfluidic channels on the order of h = 10 to 100 μm, we find that the early-time regime can
potentially last from t = O(10 s) up to O(1000 s). For colloidal particles on the order of one micron
or larger, the early-time regime will persist even longer. Thus, a general guideline for considering
the dynamics in such a system is that when the typical time of the experiment is on the order of
h2/Dp or larger, the long-time quasi-1D solution of [21] will reasonably approximate the dynamics.
For all shorter time periods, the spatial variation in particle and solute concentrations across the
channel needs to be accounted for, as will be shown in our theoretical descriptions.

Here, we provide a description of these early-time dynamics—at times t on the order of h2/Ds,
where h2 is the channel height and Ds is the solute diffusivity—of solute molecules and dispersed
colloidal particles with both numerical solutions and analytical models. Our model applies for
Dp both on the order of Ds as well as when it is much smaller. As mentioned, we assume the
diffusiophoretic mobility �p is on the order of Ds. For a typical case of interest (e.g., NaCl
solute and 100 nm particles), the timescale for diffusion of solute across the channel is small
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relative to that of the particles because of the contrast between Ds and the particle diffusivity Dp.
With (species-dependent) diffusivity values estimated in Sec. V, the difference between diffusive
timescales for solute and particles is on the order of 103. We expect, therefore, that two-dimensional
variations in particle concentration that develop in the early-time regime will persist for an extended
time. That is to say that solute concentration profile will evolve and smooth out across the channel
over the relatively fast timescale h2/Ds, driving the particles toward or away from the channel walls
via diffusiophoresis. Even though the driving force for cross-stream diffusiophoresis decays over
this relatively fast timescale, the spatial variation in the particle concentration across the cross-
section will persist for much longer [i.e., until t ∼ O(h2/Dp)]; we demonstrate this in Appendix C.

To study the early-time dynamics, we apply the lubrication approximation [33] to develop
solutions as series expanded about the aspect ratio of the channel. We briefly comment on the appli-
cability of a two-dimensional model in a laboratory setting and later extend the analysis to consider
the long-time dynamics. Our analytical solutions assume the ζ potential of the particles is constant,
which is generally a reasonable assumption with symmetric electrolytes when the background solute
concentration is low and the solute concentration gradients are not too large [34]. While numerous
works assume the particle ζ potential or diffusiophoretic mobility are constant [10,19,23,35], in
reality the ζ potential is affected by concentration, pH, and temperature, among other factors [34].
A parallel work by Lee et al. [36] demonstrates that the constant-ζ potential assumption can fail to
capture all relevant dynamics of diffusiophoretic and diffusioosmotic transport in various contexts.
Therefore, we also evaluate the solute and particle dynamics with a variable-ζ potential model and
compare the results to a case with constant-ζ potential, assuming the particle size is large relative to
the thickness of the Debye layer in each case [37].

II. MODELING EARLY-TIME DYNAMICS

Here, we describe the early-time dynamics of dissolved solute and suspended particle concen-
tration fields in a narrow channel in the presence of a background flow that is fully developed. We
develop expressions for the solute concentration c and the particle concentration n and describe
approximate solutions for each.

A. Governing equations

We consider a long, narrow channel that contains solute and particles with initial concentrations
cinit (x) and ninit (x), respectively. The initial concentrations are functions only of x; we assume,
to simplify models, that the initial concentrations of both solute and particles do not vary in the
spanwise direction.

The channel has a length L and height h with an aspect ratio ε = h/L � 1. The channel geometry
is shown in Fig. 1(a). We assume there is no slip at the walls, so the velocity profile in the channel
is typical of Poiseuille flow. We further assume the flow is fully developed and therefore a function
of the spanwise position y alone. To keep the dynamics of interest of the solute and particle
concentrations centered in our reference frame, we shift our reference frame to move at the average
velocity Ū such that the fluid velocity profile is given by

u(y) = −6Ū

h2

(
y2 − h2

4

)
− Ū . (1)

The concentration of a species undergoing Taylor dispersion is centered about a point that moves
with the mean velocity [1], so this velocity profile keeps the dynamics centered in the moving
reference frame.

The solute concentration c is governed by the advection–diffusion equation,

∂c

∂t
= Ds∇2c − �u · ∇c, (2)

034202-4



DIFFUSIOPHORESIS IN A TAYLOR-DISPERSING …

FIG. 1. The geometry of the channel and velocity profile. Image (a) shows the geometry; the aspect ratio
ε = h/L is small and has been exaggerated in the figure. Image (b) shows the nondimensional velocity profile,
which has been shifted by the average velocity to better show the relevant dynamics.

where Ds is the diffusivity of the solute. An illustration of the evolution of the solute concentration
profile in a Poiseuille flow is shown in Fig. 2. Here, the solute along the channel centerline is
advected downstream more rapidly than the solute near the channel walls, leading to cross-stream
concentration gradients. These cross-stream gradients lead to enhanced diffusion via the typical
Taylor dispersion mechanism: diffusion is enhanced by the relative motion of fluid at different radial
positions y and, within the early-time regime where t < O(h2/Ds), spanwise diffusion is significant.

The particle concentration n can be found in a similar manner. The particle velocity �up, however,
has an additional component due to diffusiophoresis that arises from the interactions of particles
with solute. The particle concentration is therefore governed by

∂n

∂t
= Dp∇2n − ∇ · (�upn), (3)

FIG. 2. An illustration of the evolution of the solute concentration in the early-time regime. The solute
concentration, initially forming a Gaussian distribution in panel (a), evolves due to both advection and
diffusion. After a finite time in the early-time regime, the distribution resembles that shown in panel (b). The
cross-stream concentration gradients that exist because of the shear gradients in the flow lead to cross-stream
diffusion and enhanced diffusion in the streamwise direction via Taylor dispersion. A slice of the concentration
profile, shown in panel (c), shows the direction of net diffusion in the spanwise direction; the concentration
varies between the background concentration β and a bounding value M < 1.
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FIG. 3. The mechanism for the migration of particles. Here, the shear gradients in the Poiseuille flow
introduce cross-stream gradients of the solute concentration profile. These cross-stream gradients introduce an
additional cross-flow diffusiophoretic velocity to the particles. The direction of �up has been exaggerated.

where Dp is the diffusivity of the particles, and the total velocity of the particles �up is given by �up =
�u + �p∇ ln c where �p is the diffusiophoretic mobility of the particles [38]. This relationship has
been confirmed in several experiments [3,10,11,39–41]. We do not consider diffusioosmotic flow at
the channel walls. The mechanism for particle migration is shown in Fig. 3, which demonstrates the
importance of the spanwise component of the gradient of solute concentration. Here, we assume �p

is constant to facilitate the theoretical modeling of the particle concentration profile. In general, the
diffusiophoretic mobility is a function of particle ζ potential, which varies with conditions such as
the solute concentration, temperature, and pH [34]. This assumption is discussed in Sec. V.

We nondimensionalize Eqs. (1), (2), and (3) with

y∗ = y

h
, x∗ = x

L
, u∗ = u

Ū
, and t∗ = tDs

h2
,

where we have chosen h2/Ds as the characteristic timescale. We later discuss the extension of
our theory to the long-time regime in Sec. IV. Our choice of nondimensionalization yields a
nondimensional velocity profile given by

u∗(y∗) = −6y∗2 + 1

2
, (4)

which is shown in Fig. 1(b). Similarly, the governing equations for the solute and particle concen-
trations become, respectively,

∂c

∂t∗ = ε2 ∂2c

∂x∗2 + ∂2c

∂y∗2 − ε Pe u∗ ∂c

∂x∗ (5)

and

∂n

∂t∗ = Dp

Ds
ε2 ∂2n

∂x∗2 + Dp

Ds

∂2n

∂y∗2 − ε Pe u∗ ∂n

∂x∗ − �p

Ds
ε2 ∂

∂x∗

(
n

∂

∂x∗ ln c

)
− �p

Ds

∂

∂y∗

(
n

∂

∂y∗ ln c

)
, (6)

where Pe = Ūh/Ds is the Péclet number, defined as the relative balance of advection along the
channel and solute diffusion across the channel. The units of concentration are arbitrary; Eqs. (5)
and (6) hold regardless of the choice of units.
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We seek analytical solutions by writing both concentrations as series expansions about small ε.
The series expansions are

c(x∗, y∗, t∗) = c0(x∗, y∗, t∗) + εc1(x∗, y∗, t∗) + ε2c2(x∗, y∗, t∗) + . . . (7)

and

n(x∗, y∗, t∗) = n0(x∗, y∗, t∗) + εn1(x∗, y∗, t∗) + ε2n2(x∗, y∗, t∗) + . . . . (8)

We solve for the terms in each equation to acquire an approximate solution for the solute and particle
concentrations. To achieve the analytical solutions given below, it will be convenient to first write
the nondimensional velocity profile given in Eq. (4) as a cosine series,

u∗(y∗) =
∞∑

λ=1

−6(−1)λ

λ2π2
cos 2λπy∗. (9)

This will be used for both the solute and particle concentration, for which we solve leading-order
equations to acquire an approximate solution. We assume both the solute and particles have initial
distributions that are dependent on x∗ alone. Where numerical results are given, we assume each
species has a Gaussian distribution initially, such that

cinit = (1 − βc) exp

[
−1

2

(
x∗ − μc

σc

)2]
+ βc and

ninit = (1 − βn) exp

[
−1

2

(
x∗ − μn

σn

)2]
+ βn, (10)

with βc = 0.01, μc = 0.5, σc = 0.05, βn = 0.5, μn = 0.5, and σn = 0.05. These are centered in
the channel in the x direction as a result of the choice of μc and μn. The values βc and βn give
the background concentration of solute and particles, respectively, and are arbitrary; the governing
equations hold for any units of concentration. The values σc and σn define the width of the regions
of high concentration in the center of the channel. The nonzero background concentrations ensure
the contribution to particle velocity from diffusiophoresis is finite.

B. Leading-order solute concentration

The leading-order solute concentration profile can be obtained by first substituting the expansion
in Eq. (7) into Eq. (5). This gives

∂c0

∂t∗ + ε
∂c1

∂t∗ + ε2 ∂c2

∂t∗ = ε2 ∂2c0

∂x∗2 + ε3 ∂2c1

∂x∗2 + ε4 ∂2c2

∂x∗2 + ∂2c0

∂y∗2 + ε
∂2c1

∂y∗2 + ε2 ∂2c2

∂y∗2

− Pe

[
εu∗ ∂c0

∂x∗ + ε2 u∗ ∂c1

∂x∗ + ε3u∗ ∂c2

∂x∗

]
. (11)

At O(ε0), the governing equation simplifies to ∂c0
∂t∗ = ∂2c0

∂y∗2 , where the initial condition is independent
of y∗ as stated. Thus, the leading-order solute concentration c0 must be independent of y∗ and t∗, and
the advection and streamwise diffusion terms are order ε or higher. With these nondimensionaliza-
tions, the leading-order solute concentration profile is simply equal to the initial condition, and all of
the dynamics appear at O(ε1) or higher. This is primarily due to the choice of timescale in the nondi-
mensionalization, since the evolution of the solute profile along the channel occurs over the slower
timescale L2/Ds. We will later use a multiple-timescale analysis to extend our results to the late-time
regime to illustrate this development. Thus, for now, we have c0(x∗, y∗, t∗) = c0(x∗) = cinit (x∗) and,
by a similar argument for the particle concentration, n0(x∗, y∗, t∗) = n0(x∗) = ninit (x∗). At order ε,
Eq. (11) is

Pe u∗ dc0

dx∗ + ∂c1

∂t∗ − ∂2c1

∂y∗2 = 0;
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FIG. 4. The first five terms, indicated with index λ, of c1 for t∗ = 0.1 at two values of x∗. The initial
concentrations are given in Eq. (10). The selected values x∗ are μc − σc and μc + σc, where | dc0

dx∗ | is a maximum.
The magnitude of contributions diminishes rapidly as λ increases. The difference in shape at the two values x∗

shows the cross-flow solute concentration gradient is toward the walls to the left of the peak (x∗ = 0.45) and
toward the center of the channel to the right of the peak (x∗ = 0.55).

the initial concentration c0 is known, but the term c1 must be found. We separate variables and write
c1(x∗, y∗, t∗) = dc0

dx∗ F (y∗, t∗). This, along with the velocity profile given in Eq. (9), yields

∞∑
λ=1

−6Pe(−1)λ

λ2π2
cos 2λπy∗ + ∂F

∂t∗ − ∂2F

∂y∗2 = 0,

which has no dependence on x∗. We now seek a solution of the form

F (y∗, t∗) =
∞∑

λ=0

aλ(t∗) cos 2λπy∗.

This yields

a′
0(t∗) = 0 and − 6(−1)λ

λ2π2
+ a′

λ(t∗) + 4λ2π2aλ(t∗) = 0, λ = 1, 2, 3, . . . ;

since F (t∗ = 0) = 0 to maintain an initial concentration that is dependent only on x∗, we require
that aλ(0) = 0. The solutions are then

a0(t∗) = 0 and aλ(t∗) = 3 Pe (−1)λ

2λ4π4
[1 − exp(−4λ2π2t∗)], λ = 1, 2, 3, . . . .

With these coefficients, the solution for the solute concentration is defined to O(ε1). The first five
terms λ of (c1)λ = dc0

dx∗ Fλ are shown at t∗ = 0.1 for selected slices of x∗ to the right and left of the
peak concentration in Fig. 4. The magnitude of the terms decreases rapidly with increasing λ, and
nearly all of the variation is captured by the first term. Furthermore, we see that the cross-stream
solute concentration gradient reverses sign to the left and right of the peak, suggesting that the cross-
stream diffusiophoretic velocity also changes direction from the upstream to downstream relative to
the solute peak. That is, depending on the sign of �p, particles are expected to focus either at the
channel center or at the walls upstream of the peak and viceversa downstream of the peak.
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FIG. 5. The first five terms of c2 for t∗ = 0.1 at values of x∗ where | d2c0
dx∗2 | is a maximum. The initial

concentrations are given in Eq. (10). The magnitude of each term is small relative to the first term in c1.

C. Higher-order solute concentration

We now extend our approach to seek the next higher-order correction to the solute concentration
profile. The next leading-order equation is

∂c2

∂t∗ = ∂2c2

∂y∗2 + d2c0

dx∗2 − Pe u∗ ∂c1

∂x∗ .

As before, we separate variables and consider c2 = d2c0

dx∗2 G(y∗, t∗), which eliminates dependence on
nondimensional streamwise position x∗ and yields

∂G

∂t∗ = ∂2G

∂y∗2 + 1 − Pe u∗F (y∗, t∗). (12)

The details of the calculation of G are given in Appendix A. The solute concentration is now defined
to O(ε2) with the initial concentration c0 and the series c1 and c2. The first five terms λ of (c2)λ =
d2c0

dx∗2 Gλ are shown at various x∗ in Fig. 5. The magnitudes of terms in c2 appear small relative to
terms in c1, and the higher order of ε associated with c2 further lessens its contribution to c. For
the purposes of predicting the particle dynamics, we see that this theoretical prediction for the
solute concentration profile is of sufficiently high order, since it captures the cross-stream solute
concentration gradients that drive the two-dimensional particle effects. These distinguish this work
from the long-time behaviors previously studied, in which the cross-stream behaviors are effectively
averaged out and the results become quasi-one-dimensional. In Sec. II D, we extend our analysis to
predict the particle concentration dynamics that are dependent on this solute concentration profile.

D. Particle concentration

We follow a solution approach similar to that used for the solute concentration to solve for the
particle concentration profile. Here, the leading-order equation of interest is

∂n1

∂t∗ = −�p

Ds

n0(x∗)

c0(x∗)

∂2c1

∂y∗2 − Pe u∗ ∂n0

∂x∗ .
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FIG. 6. The terms of n1 to λ = 5 for t∗ = 0.1 at values of x∗ where | n0
c0

dc0
dx∗ | is a maximum. The initial

concentrations are given in Eq. (10). The largest contribution is from the λ = 1 term.

Following the approach above, the solution to this is

n1(x∗, y∗, t∗) = −�p

Ds

n0

c0

dc0

dx∗

∞∑
λ=1

−6Pe(−1)λ

λ2π2

[
exp(−4λ2π2t∗)

4λ2π2
+ t∗

]
cos (2λπy∗)

− Pe u∗ dn0

dx∗ t∗ + N1(x∗, y∗).

With n1(x∗, y∗, 0) = 0, we have

N1(x∗, y∗) = −�p

Ds

n0

c0

dc0

dx∗

∞∑
λ=1

3Pe(−1)λ

2λ4π4
cos 2λπy∗.

Extending the solution to the next-highest order is nontrivial. However, here the solution already
captures the two-dimensional effects to leading order, and additional terms are expected to be
small relative to the O(ε) term, as observed with c1 and c2 in Sec. II C. The largest contribution
to n1 is from the first few terms, as shown in Fig. 6. The contribution from terms decreases with
increasing λ.

III. NUMERICAL SOLUTIONS FOR CONCENTRATIONS

We use numerical simulations to calculate the concentration profiles of both the solute and
particles. The solute and particle concentrations are found by numerically solving Eqs. (5) and
(6), respectively. The results give insight into the dynamics of each species and provide a basis for
comparison with the analytical solutions.

A. Overview and approach

We calculate the concentrations of the solute and particles numerically using a simple finite
difference approach with first-order accuracy in time and second-order accuracy in space. Numerical
results in Sec. VI use a 601 × 61 discretized grid. The time step for all simulations is 
t∗ =
(
y∗)2/20, where the factor of 1/20 is included to guarantee stability. This is smaller than the
typical factor of 1/2 required by the Courant–Friedrichs–Lewy condition due to the extra nonlinear
diffusiophoresis term; this factor of safety was found to work well in ensuring convergence.
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FIG. 7. The cumulative change in concentrations (the difference between the current and initial concentra-
tions) after a time t∗ with Pe = 1, ε = 10−3, �p/Ds = 1, and Dp/Ds = 10−3, based on numerical simulations.
The solute and particle concentrations have Gaussian distributions initially; the initial concentrations are given
in Eq. (10). The evolution of the solute concentration is characteristic of a species experiencing advection and
diffusion. The particle concentration, however, shows a significantly different focusing behavior due to the
diffusiophoresis. In addition to having a significantly faster growing solution, the particle concentration also
expands more quickly along x∗ and shows a reversed focusing behavior in front of and behind the peak.

We use second-order no-flux boundary conditions along the top and bottom of the channel for
both solute and particle fields; that is, we enforce ∂c

∂y∗ |y∗=±1/2 = 0 and ∂n
∂y∗ |y∗=±1/2 = 0. We impose

zero-gradient solute and particle concentration fields at the inlet and outlet with ∂c
∂x∗ |x∗∈{0,1} = 0 and

∂n
∂x∗ |x∗∈{0,1} = 0. Here, the concentration does not change appreciably over the times we consider
and for the initial concentrations used in Sec. VI, and local concentration gradients therefore remain
small at the inlet and outlet. That is, the concentrations of solute and particles do not change
appreciably at the entrance and exit of the channel over the values of t∗ used in simulations.
We ascertain that the numerical solutions have converged with a convergence study given in
Appendix E.

B. Results

The results of numerical simulations for several values of t∗ are given in Fig. 7 for Pe = 1,
ε = 10−3, �p/Ds = 1, and Dp/Ds = 10−3. The evolution of the solute concentration profile is in-
tuitive for the background Poiseuille flow; the increase in concentration in the streamwise direction
at the center of the channel is expected for a parabolic velocity profile. The changes in the particle
concentration profile are notably different in shape and sign—though this may vary with different
choices for parameters such as the diffusiophoretic mobility [2]—as a result of diffusiophoresis.
In the absence of diffusiophoresis, the change in particle concentration would resemble that of
the solute. The difference between the solute and particle dynamics suggests that two-dimensional
structures in the particle distribution develop in the early-time regime where t is on the order of
h2/Ds. These structures may persist for a significant time because of the significant difference
between solute and particle diffusivity.

IV. EXTENDING THE ANALYSIS TO LONG TIMES

The analysis in Sec. II is valid only within the early-time regime of order h2/Ds. The model does
not extend to long times; a multiple-timescale approach is necessary to recover the long-time solute
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and particle behaviors. Whereas the previous approach was fully general to any initial condition
(with the limitation that it is uniform in y∗), here we limit ourselves to a single precise initial
condition to illustrate the multiple-timescale approach that can be expanded for more general initial
conditions. Here, except for the leading-order solute and particle concentration solutions, we have
maintained generality to help the reader extend this approach to other initial conditions. To illustrate
the process, we choose initial conditions of cinit (x∗) = ninit (x∗) = exp(−x∗2) and note that the
nondimensional governing equation for the solute concentration can be written as, from Eq. (5),

∂c

∂t∗ = ε2 ∂2c

∂x∗2 + ∂2c

∂y∗2 − ε2 PeL u∗ ∂c

∂x∗ , (13)

where here we have selected the different Péclet number PeL = ŪL/Ds defined with the channel
length L for convenience. The early timescale h2/Ds and the timescale for diffusion along the
channel, L2/Ds, are separated by a factor of ε2 = h2/L2 � 1. We therefore introduce a second
time variable, T ∗ = ε2t∗, to describe the long-time dynamics. We can then map any time-dependent
quantity as

f (t∗) �→ f (t∗, T ∗) with
∂ f

∂t∗ �→ ∂ f

∂t∗ + ε2 ∂ f

∂T ∗ . (14)

With this mapping, Eq. (13) becomes

∂c

∂t∗ + ε2 ∂c

∂T ∗ + ε2 PeL u∗ ∂c

∂x∗ = ε2 ∂2c

∂x∗2 + ∂2c

∂y∗2 , (15)

and we can write the solute concentration as the series c(x∗, y∗, t∗, T ∗) = c0(x∗, y∗, t∗, T ∗) +
ε2c1(x∗, y∗, t∗, T ∗) + ε4c2(x∗, y∗, t∗, T ∗) + O(ε6). Note that this expansion does not include odd
powers of ε, which were present in Sec. II, because no such terms appear in Eq. (13) with the choice
of Péclet number PeL. The details of the calculation of c0 and c1 are given in Appendix B1. The
leading-order terms for the solute concentration are

c0(x∗, t∗) = 1√
1 + 4ε2t∗ exp

(
− x∗2

1 + 4ε2t∗

)
and

c1(x∗, y∗, t∗) = PeL
∂c0

∂x∗

[
− 1

480
(7 − 120y∗2 + 240y∗4)

−
∞∑

λ=1

3(−1)λ

2λ4π4
exp[−(2λπ )2t∗] cos(2λπy∗)

]
.

As a final step in solving for the leading-order solute concentration profiles c0 and c1, we undo the
mapping and replace each T ∗ with ε2t∗. Here, we can see that the leading-order solute concentration
c0 only evolves with ε2t∗. That is, the time for the evolution of c0 is t∗ ∼ O(ε−2) � 1, illustrating
the slow dynamics of spreading along the channel.

The same approach can be used to describe the long-time behavior of the particles by considering
Eq. (6) with the new Péclet number PeL. With the transformation in Eq. (14), this is

∂n

∂t∗ + ε2 ∂n

∂T ∗ = Dp

Ds

(
ε2 ∂2n

∂x∗2 + ∂2n

∂y∗2

)
− PeL ε2u∗ ∂n

∂x∗ − �p

Ds
ε2 ∂

∂x∗

(
∂ ln c

∂x∗ n

)

− �p

Ds

∂

∂y∗

(
∂ ln c

∂y∗ n

)
.

We expand the particle concentration as n(x∗, y∗, t∗, T ∗) = n0(x∗, y∗, t∗, T ∗) +
ε2n1(x∗, y∗, t∗, T ∗) + ε4n2(x∗, y∗, t∗, T ∗) + O(ε6). The details of the calculation of n0 and n1
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are given in Appendix B 2. The resulting solution for the particle concentration is

n(x∗, y∗, t∗) = n0(x∗, t∗) + ε2
[
n∞

1 (x∗, y∗, t∗) + n̂1(x∗, y∗, t∗) + ñ1(x∗, y∗, t∗)
]
.

The term n0 is

n0(x∗, t∗) = exp
[−[B(t∗)]−1(1 + �p

Ds

)
(1 + 4ε2t∗)

�p
Ds x∗2]√

B(t∗)(1 + 4ε2t∗)−
�p
Ds

(
1 + �p

Ds

)−1
,

with

B(t∗) = 1 + �p

Ds
+ Dp

Ds

[−1 + (1 + 4ε2t∗)1+ �p
Ds

]
,

while n1 has components

n∞
1 (x∗, y∗, t∗) = −PeL

480

Ds

Dp

1

c0
(7 − 120y∗2 + 240y∗4)

(
�p

Ds
n0

∂c0

∂x∗ + c0
∂n0

∂x∗

)
,

n̂1(x∗, y∗, t∗) =
∞∑

λ=1

aλ(x∗, t∗) exp[−(2λπ )2t∗] cos(2λπy∗), and

ñ1(x∗, y∗, t∗) =
∞∑

λ=1

3(−1)λDs PeL

2Dp(Dp − Ds)λ4π4

[
�p

n0

c0

∂c0

∂x∗ + (Ds − Dp)
∂n0

∂x∗

]

× exp

[−(2λπ )2t∗Dp

Ds

]
cos(2λπy∗),

where

aλ(x∗, t∗) = −3(−1)λ

2λ4π4
PeL

n0

c0

∂c0

∂x∗
�p/Ds

Dp/Ds − 1
.

As with the solution for the solute concentration, after we solve for the leading-order terms n0,
n∞

1 , n̂1, and ñ1, we finally undo the mapping by replacing each T ∗ with ε2t∗ to recover the final
solution. As mentioned, here we have used a simple Gaussian initial condition to illustrate the
multiple-timescale approach, whereas the early-time solution approach described above remains
general with respect to the initial condition. The early-time results, shown in Fig. 8, demonstrate the
same behavior described in earlier sections: two-dimensional structures in the particle concentration
profile develop quickly over the early timescale h2/Ds. Here, where t∗ is O(1), the early-time
dynamics occur, and the particle dynamics evolve to approach the long-time behavior captured
by n∞

1 alone, which decays where t∗ is O(ε−2). This long-time behavior is illustrated in Fig. 9,
where the results first show a focusing of the particles in the axial direction, corresponding to the
diffusiophoretic timescale in the flow direction. After this, the cross-stream variation (and indeed the
full particle concentration itself) decays over the timescale t∗ > O(ε−2). The variations in particle
concentration decay as expected because of the inclusion of terms associated with the long timescale
in this analysis.

V. COMMENTING ON THE ASSUMPTION OF CONSTANT-ζ POTENTIAL

The analytical solutions previously developed for the particle concentration are based on an
assumption of constant particle ζ potential. However, in many practical systems of interest, the ζ

potential is variable; it is a function of parameters such as the background solute concentration and
pH. Kirby and Hasselbrink [34] discuss the variable-ζ potential of silica. They describe two scalings
for the ζ potential, based on the counterion concentration in the supporting univalent electrolytes,
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FIG. 8. Comparison between (a) the numerical result for the leading-order particle concentration variation
in the channel nnum − n0 and (b) the theoretical prediction given by ε2n1. The particle variation across the
channel quickly develops over the timescale h2/Ds. Here, Dp/Ds = 10−3, �p/Ds = 1, ε = 0.1, and PeL = 10.
Details of calculations are provided in Appendix B 3.

FIG. 9. Visualization of the long-time behavior of the particle concentration up to t∗ = 5000 (correspond-
ing to 50 of the slow-time units ε2t∗). There is first a focusing in the axial direction. This corresponds to the
diffusiophoretic timescale along the flow, after which there is a smoothing decay of the cross-stream variation
over the slow timescale. Here, Dp/Ds = 10−3, �p/Ds = 1, ε = 0.1, and PeL = 10. Details of calculations are
provided in Appendix B 3.
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for both high and low ζ . The high-ζ limit, which the researchers claim to be better for general
applications, has the form

ζ = m0 + m1 log10

∑
k

ck,

where ck is the concentration of a counterionic species in mM and the values m0 and m1 are found
experimentally [34]. We consider the ionic species Na+ and Cl−, corresponding to diffusion coeffi-
cients D+ = 1.33 × 10−9 m2 s−1 and D− = 2.03 × 10−9 m2 s−1, respectively [3]. Shin et al. [3] give
expressions for β, Ds, and �p, from which we find β = (D+ − D−)(D+ + D−)−1 = −2.08 × 10−1,
Ds ≡ (2D+D−)(D+ + D−)−1 = 1.61 × 10−9 m2 s−1, and

�p = ε

μ

(
kBT

Ze

)2(
β

Zeζ

kBT
+ 4 ln cosh

Zeζ

4kBT

)
, (16)

where ε = ε0εr is the permittivity of the medium, μ its viscosity, T its absolute temperature, and
kB the Boltzmann constant. Here, for illustration, we assume the Debye layers are thin relative
to the size of the particles, which reduces the complexity of potential calculations by neglecting
size effects [37]. In general, the Debye layer thickness is also a function of the background solute
concentration which can be accounted for, but for the purposes of highlighting the differences
between the variable- and constant-ζ potential models, this is unnecessary in the current work.
The permittivity is estimated with a relative permittivity of εr = 78.4, based on water at T =
25◦ = 298.15 K [42]. We estimate the viscosity as μ = 8.9 × 10−4 Pa · s and use a vacuum per-
mittivity of ε0 = 8.854 × 10−12 F m−1, Boltzmann constant kB = 1.381 × 10−23 J K−1, and charge
Ze = e = 1.602 × 10−19 C.

From Kirby and Hasselbrink [34, Fig. 3], we note that m0 = 0 and estimate a value m1 =
53.7 mV (based on an aqueous solution with counterion Na+ at T = 25◦ = 298.15 K). For compari-
son between cases of constant and variable particle ζ potential, we use an initial solute concentration
c0 that varies between 0.1 mM and 10 mM; this is within the range of concentration considered by
Kirby and Hasselbrink [34] that we use to estimate m1. We therefore define the initial solute and
particle concentrations as

c0(x∗) = Mc

{
(1 − βc) exp

[
−1

2

(
x∗ − μc

σc

)2]
+ βc

}
and

n0(x∗) = (1 − βn) exp

[
−1

2

(
x∗ − μn

σn

)2]
+ βn, (17)

with Mc = 0.01, βc = 0.01, μc = 0.5, σc = 0.05, βn = 0.5, μn = 0.5, and σn = 0.05. These are
the similar to the initial concentrations used previously, except we have scaled c0 to work with the
empirical relationship of [34], since it requires solute concentration in mM. For this comparison,
we assume the particles are spherical with radius 1 μm and the Reynolds number is small. The
particle diffusivity is estimated with the Stokes–Einstein equation [43] as Dp = kBT/(6πμr) ≈
2.45 × 10−13 m2 s−1.

For the case with constant particle ζ potential, we calculate ζ by finding the mean value based
on the initial concentration profile. We first calculate ζ from the initial solute concentration and
take the mean. This yields a mean-ζ potential in our system of ζ ≈ −0.138 V, from which we
find an effective diffusiophoretic mobility of �p ≈ 2.10 × 10−9 m2 s−1. We then reproduce the
calculation using a variable-ζ potential model using the previously described model of Kirby and
Hasselbrink [34]. The results of a comparison of constant- and variable-ζ potential models are
provided in Fig. 10. The particle concentration profiles that result from the two different models
show reasonable qualitative and quantitative agreement with some distinct features. In particular,
one key difference between the two predictions is the relative lack of particle focusing near the
center of the channel x∗ ∼ 0.5. Thus, in this particular example, we see that the greatest difference
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FIG. 10. The change in particle concentration n at t∗ = 1 with Pe = 1 and ε = 10−3. The initial concentra-
tions are given in Eq. (17). Particle concentrations are calculated with numerical simulations. Image (a) shows
the concentration when the particle ζ potential varies as ζ = m1 log10 c; image (b) shows the concentration
with constant-ζ potential, calculated as the mean-ζ potential associated with the initial solute concentration c0.

in the predictions of the two models occurs where the background solute concentration is expected
to be greatest—that is, near the center of the initial Gaussian peak. A physical explanation for this
can be seen by calculating the spatial variation in ζ and �p for the variable-ζ potential model. This
spatial variation in ζ and �p can be seen in Fig. 11, where we see that the relative minimum
in both ζ and �p occurs precisely in the region of largest solute concentration. This region of
relatively low diffusiophoretic mobility can account for the relative lack of particle focusing either
at the channel walls or channel center in the region near the peak that was seen in Fig. 10. Since
the cross-channel solute concentration gradients are independent of the choice of ζ potential model,
the diffusiophoretic velocity of particles near x∗ ∼ 0.5, where �p is small, is expected to be small
in the variable-ζ potential model.

Thus, in comparing the predictions of both the constant- and variable-ζ potential models, we
recognize that, based on the model of Kirby and Hasselbrink [34], the assumption of constant-ζ
potential strictly applies only where absolute solute concentrations or concentration gradients are
small. However, even in this specific system, where the solute concentration varies by two orders
of magnitude and both ζ and �p vary by over 100% throughout the system, the qualitative and
quantitative particle focusing behaviors for the two models shown in Fig. 10 have reasonable
agreement. One exception to this is at the solute concentration peak, where the diffusiophoretic
mobility has the greatest deviation from the value associated with the mean-ζ potential. The
diffusiophoretic focusing is a highly nonlinear process, especially when the variable-ζ potential
is considered, and we must remember that it is always also coupled to the particle diffusion, which
will ultimately limit the degree of focusing. These facts complicate the determination of specific
statements on the applicability of the constant-ζ potential assumption. However, if we consider
the early-time dynamics of specific systems where particle diffusiophoresis dominates over particle
diffusion, then clearly the rate of particle focusing is proportional to the diffusiophoretic velocity,
which is proportional to �p. Thus, if the spatially varying local �p differs from the calculated �p

based on the mean ζ by a given percentage, then the rate of particle focusing predicted by the
constant-ζ potential model should be expected to have errors on the same order of magnitude as
that deviation. Beyond this general guideline, more specific statements about the validity of the
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FIG. 11. The particle ζ potential, shown in panel (a), and diffusiophoretic mobility �p, shown in panel
(b). The initial concentrations are given in Eq. (17). The mean value of ζ is used for the case of constant-ζ
potential. Both ζ and �p have significant variation over the channel length.

constant-ζ potential model can be informed by performing a similar simulations over a range of
various initial conditions, geometries, and flow parameters, which is an interesting study that we
will continue to investigate in future work.

VI. DISCUSSION

To validate our theoretical predictions for the early-time dynamics, we compare the predictions
with numerical simulations. We choose Pe = 1, ε = 10−3, �p/Ds = 1, and Dp/Ds = 10−3 for an
example calculation. These parameters correspond to particles with very low diffusivity relative
to the solute, which is expected for particles of size 1 μm and larger, and with a diffusiophoretic
mobility on the same order as the diffusivity of the solute. A comparison of results from numerical
solutions and analytical approximations is given in Fig. 12, which shows how solute and particle
concentrations evolve upstream and downstream of the solute peak and demonstrates agreement
between the theoretical predictions and the numerical simulations. An additional comparison with
Pe = 50 is presented in Fig. 13. At early times t∗ and relatively low values of ε and Pe, the analytical
results match the numerical solutions closely, which suggests that the models accurately capture
the solute and particle dynamics over this range of parameters. Note that, strictly speaking, the
early-time model also requires that ε Pe be small, which is why we have used a smaller value of ε

in Fig. 13.
To quantitatively evaluate the performance of the models, we compare the analytical and nu-

merical results for several values of ε and Pe, keeping all else constant and utilizing the same
initial concentration distributions. We calculate relative error assuming the numerical results are
correct. This does not provide a comprehensive view of the accuracy of the analytical results;
the concentrations are, of course, also dependent on the initial distribution of solute and particles,
and on parameters like diffusivity and diffusiophoretic mobility, which vary by species. It does,
however, show how changing the aspect ratio or Péclet number affects the results. Estimates of the
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FIG. 12. The cumulative change in concentration (the difference between the current and initial concen-
trations) after a time t∗ with Pe = 1, ε = 10−3, �p/Ds = 1, and Dp/Ds = 10−3. The initial concentrations are
given in Eq. (10). The numerical and analytical results match closely.

error are provided in Fig. 14. Intuitively, the error tends to increase with increasing ε—likely a
result of increasing truncation error in the perturbation series and a breakdown in the lubrication
approximation—and with increasing Pe.

The analytical solutions that we have presented here are for the coupled solute–particle–fluid
dynamics in a simple two-dimensional geometry with a pressure-driven flow. The dynamics in more
complex geometries, including cross-sections of three-dimensional channels or channels with pores
or junctions, such as those considered by Shin et al. [10,3] and Ault et al. [23], or in situations
with other effects like moving boundaries and diffusioosmotic flow, are more complex and would
necessitate modifications to our models. However, the methods and theoretical approach we have
presented here can be extended and applied to more complicated systems and are relevant to flows

FIG. 13. The cumulative change in concentration as a function of t∗ with Pe = 50, ε = 2 × 10−5, �p/Ds =
1, and Dp/Ds = 10−3. The numerical and analytical results match closely.
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FIG. 14. The relative error associated with the analytical estimates of solute and particle concentrations,
assuming numerical results are correct. The initial concentrations are given in Eq. (10). The images and
contours are generated with 400 simulations with parameters ε and Pe equally spaced (20 values each) on
a logarithmic scale and a 601 × 61 grid. The error is shown for t∗ = 0.1 with �p/Ds = 1 and Dp/Ds = 10−3.

The mean and maximum values are found by calculating the error at each point on the grid as
|cnumerical−canalytical |

cnumerical

and
|nnumerical−nanalytical |

nnumerical
for solute and particles, respectively. The error in the approximate solutions increases with

increasing ε and Pe.

in porous media and various microfluidic devices and systems. These results may provide key
insights into understanding dispersions in such systems [44]. As an example extension of this
work, we briefly consider how applicable these two-dimensional results are to a more general
three-dimensional system in Appendix D. The numerical results show a strong focusing of particles
in the corners of the channel, as seen in Fig. 16, which clearly require a fully three-dimensional
treatment. Away from the the corners, however, the particle concentration resembles that predicted
by our two-dimensional model, as seen in Fig. 17, which shows a comparison between the results of
the two-dimensional model and the results on the midplane of the three-dimensional simulations. As
can be seen, away from the channel corners, the particle dynamics in the three-dimensional channel
agree well with the two-dimensional predictions.

One other limiting assumption of the current present work is our assumption that the initial
conditions of the solute and particle concentrations are both functions only of x, and therefore
uniform across the channel width. Thus, the precise application of the early-time solutions is limited
to such cases. Furthermore, we have assumed that the fluid velocity profile is simply fully developed,
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pressure-driven flow. In such systems with solute concentration gradients, however, it may be
expected that the channel walls would experience a diffusioosmotic effect and have a modified,
transient wall-slip boundary condition, thus altering the flow profile and consequently affecting the
solute and particle dynamics. We believe that the methods described herein can be extended to
consider such systems, and we leave these ideas for future work.

VII. CONCLUSION

The motion of particles in a flow with a solutal concentration gradient has numerous possible
applications in biological, medical, and industrial flows. Such flows often occur in narrow channels,
where the effects of shear on diffusion are significant. While some researchers have studied possible
applications of diffusiophoresis in microfluidic devices, most existing studies focus on the long-time
behavior or require one-dimensional gradients in concentration. We show the two-dimensional dy-
namics of solute and particles in narrow channels. Analytical approximations capture the dynamics
of each species accurately for early times, low aspect ratios ε, and modest Péclet numbers Pe. The
approximations assume a constant particle ζ potential, and we describe how and where such an
assumption can contribute as a source of error. We also extend the theoretical predictions to the
long-time dynamics, and use numerical simulations to validate the theoretical predictions.
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APPENDIX A: DETAILS OF HIGHER-ORDER SOLUTE CONCENTRATION CALCULATION

We describe the process of finding the solute concentration term c2, necessary in Sec. II C, here.
The concentration has the form c2 = d2c0

dx∗2 G(y∗, t∗). We solve for G to obtain a solution for the solute
concentration to O(ε2). First, we express the forcing term (1 − Pe u∗ F ) as a cosine series, noting

u∗F (y∗, t∗) =
∞∑

λ=1

aλ(t∗) cos (2λπy∗)

(
1

2
− 6y∗2

)
. (A1)

The terms dependent on y∗ can be written as a separate cosine series,

cos (2λπy∗)

(
1

2
− 6y∗2

)
=

∞∑
θ=0

Aλθ cos 2θπy∗.

The coefficients of this series are given by

Aλθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3(−1)λ

λ2π2 , if θ = 0,

−3
4λ2π2 , if θ = λ,

−6(θ2+λ2 )
(θ2−λ2 )2π2 (−1)θ+λ, otherwise.

Equation (A1) can then be simplified as

u∗F (y∗, t∗) =
∞∑

λ=1

aλ(t∗)Aλ0 +
∞∑

θ=1

cos 2θπy∗
∞∑

λ=1

aλ(t∗)Aλθ . (A2)
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Substituting Eq. (A2) into Eq. (12) yields

∂G

∂t∗ = ∂2G

∂y∗2 + 1 − Pe

[ ∞∑
λ=1

aλ(t∗)Aλ0 +
∞∑

θ=1

cos 2θπy∗
∞∑

λ=1

aλ(t∗)Aλθ

]
.

We assume a solution of the form

G(y∗, t∗) =
∞∑

θ=0

bθ (t∗) cos 2θπy∗.

For θ = 0, this yields

b0(t∗) = κ1 + (t∗ − 1) − Pe
∞∑

λ=1

Aλ0I∗
λ (t∗),

where

I∗
λ (t∗) = 3(−1)λPe

8λ6π6
[− exp(−4λ2π2) + exp(−4λ2π2t∗) + 4λ2π2(t∗ − 1)].

Note that bθ (0) = 0. For θ � 1, we then have

b′
θ (t∗) = −4θ2π2bθ (t∗) − Pe

∞∑
λ=1

aλ(t∗)Aλθ .

This has solution

bθ (t∗) =
∞∑

λ=1

Iλθ (t∗) + κ2 exp(−4θ2π2t∗),

for which

Iλθ =
{ 3(−1)λPe2Aλθ

8λ4π6

[− 1
θ2 + exp(−4λ2π2t∗ )

θ2−λ2

]
, if θ �= λ,

−3(−1)λPe2Aλλ

2λ4π4

[
1

4λ2π2 − t∗ exp(−4π2λ2t∗)
]
, if θ = λ.

With bθ (0) = 0, this yields

κ2 = −
∞∑

λ=1

Iλθ (0),

which provides enough information to calculate G.

APPENDIX B: DETAILS OF LONG-TIME CONCENTRATION CALCULATIONS

This section provides the details of the calculation of solute and particle concentrations for the
multiple-timescale approach described in Sec. IV.

1. Long-time solute concentration calculations

At O(ε0), the governing equation for the solute concentration is

∂c0

∂t∗ = ∂2c0

∂y∗2 ,

with c0(t∗ = 0, T ∗ = 0) = cinit (x∗) and ∂c0
∂y∗ (y∗ = ±1/2) = 0. This requires c0(x∗, y∗, t∗, T ∗) =

c0(x∗, T ∗) and c0(T ∗ = 0) = cinit(x∗).
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At O(ε2), the governing equation is

∂c0

∂T ∗ + ∂c1

∂t∗ + PeL u∗ ∂c0

∂x∗ = ∂2c0

∂x∗2 + ∂2c1

∂y∗2 . (B1)

To isolate c0, we average this equation across the channel and assume that the average of c1 vanishes,
such that 〈c1〉 = 0. We check this assumption later. Note that the average of PeL u∗ ∂c0

∂x∗ across the
channel is 0 because the nondimensional velocity profile u∗, given in Eq. (4), has a mean value of
0. Therefore, we have

∂c0

∂T ∗ = ∂2c0

∂x∗2 with c0(T ∗ = 0) = cinit(x
∗).

To make analytical progress, we select an initial condition cinit (x∗) = exp(−x∗2). This is similar to
the initial concentration we selected in Sec. II, though it is simpler to facilitate calculations. Here,
we follow a slightly different approach and consider an infinite domain −∞ < x < ∞, where the
characteristic length scale L is defined by the initial Gaussian solute distribution (it is, in effect, its
width) rather than the length of the finite domain as before. The solution for c0 is then given by

c0(x∗, T ∗) = 1√
1 + 4T ∗ exp

(
− x∗2

1 + 4T ∗

)
,

which is similar to results given by Chu et al. [20]. Then, substituting back into Eq. (B1), we have

∂c1

∂t∗ + PeL u∗ ∂c0

∂x∗ = ∂2c1

∂y∗2 , (B2)

subject to the initial condition c1(t∗ = T ∗ = 0) = 0. To solve this, we note that at long times the
time derivative is not important and find

c1(t∗ → ∞) ∼ c∞
1 (x∗, y∗, T ∗) = A(x∗, t∗, T ∗) + 1

2
PeL

(
y∗2

2
− y∗4

)
∂c0

∂x∗ ,

where A(x∗, t∗, T ∗) is a constant of integration. We assumed that 〈c1〉 = 0, so for consistency we
find that A(x∗, t∗, T ∗) = − 7

480 PeL
∂c0
∂x∗ . Therefore, we have

c∞
1 (x∗, y∗, T ∗) = − 1

480
PeL (7 − 120y∗2 + 240y∗4)

∂c0

∂x∗ .

Note that c∞
1 only depends on the slow time T ∗. This does not satisfy the initial condition, so it is

not the full solution. We consider an additional term ĉ1 and look for a solution c1(x∗, y∗, t∗, T ∗) =
c∞

1 (x∗, y∗, T ∗) + ĉ1(x∗, y∗, t∗, T ∗). Substituting this new form into Eq. (B2) yields

∂ ĉ1

∂t∗ = ∂2ĉ1

∂y∗2 ,

with the initial condition ĉ1(t∗ = 0) = −c∞
1 (T ∗ = 0); the solution to this is

ĉ1 = −PeL
∂c0

∂x∗

∣∣∣∣
T ∗=0

∞∑
λ=1

3(−1)λ

2λ4π4
exp[−(2λπ )2t∗] cos(2λπy∗).

We can then construct a composite solution c1 = c∞
1 + ĉ1 valid for all t∗, where

c1 = PeL
∂c0

∂x∗

[
− 1

480
(7 − 120y∗2 + 240y∗4) −

∞∑
λ=1

3(−1)λ

2λ4π4
exp[−(2λπ )2t∗] cos(2λπy∗)

]
.
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2. Long-time particle concentration calculations

At O(ε0), the governing equation for the particle concentration is

∂n0

∂t∗ = Dp

Ds

∂2n0

∂y∗2 ,

with n0(t∗ = 0, T ∗ = 0) = ninit(x∗) and ∂n0
∂y∗ (y∗ = ±1/2) = 0. This requires, as with the solute, that

n0(x∗, y∗, t∗, T ∗) = n0(x∗, T ∗) and n0(T ∗ = 0) = ninit(x∗).
At O(ε2), we have

∂n0

∂T ∗ = Dp

Ds

∂2n0

∂x∗2 + �p

Ds

[
n0

c2
0

(
∂c0

∂x∗

)2

− 1

c0

∂c0

∂x∗
∂n0

∂x∗ − n0

c0

∂2c0

∂x∗2 − n0

c0

∂2c1

∂y2

]

− PeL u∗ ∂n0

∂x∗ − ∂n1

∂t∗ + Dp

Ds

∂2n1

∂y∗2 . (B3)

As before, to isolate n0, we average this equation across the channel and assume that 〈n1〉 = 0,
which we enforce later. This gives

∂n0

∂T ∗ = �p

Ds

[
n0

c2
0

(
∂c0

∂x∗

)2

− 1

c0

∂c0

∂x∗
∂n0

∂x∗ − n0

c0

∂2c0

∂x∗2

]
+ Dp

Ds

∂2n0

∂x∗2 . (B4)

Substituting the form for c0(x∗, T ∗) from Appendix B 1 and again utilizing a simple Gaussian initial
condition ninit (x∗) = exp(−x∗2), we have

∂n0

∂T ∗ = 2

1 + 4T ∗
�p

Ds

(
n0 + x∗ ∂n0

∂x∗

)
+ Dp

Ds

∂2n0

∂x∗2 . (B5)

Following the work of Chu et al. [20], we can find the solution to Eq. (B5). We first define a function

B(T ∗) = 1 + �p

Ds
+ Dp

Ds

[−1 + (1 + 4T ∗)1+ �p
Ds

]
for convenience and subsequently find the solution

n0(x∗, T ∗) = exp
[−[B(T ∗)]−1

(
1 + �p

Ds

)
(1 + 4T ∗)

�p
Ds x∗2]√

B(T ∗)(1 + 4T ∗)−
�p
Ds

(
1 + �p

Ds

)−1
.

Substituting Eq. (B4) back into Eq. (B3), we have

�p

Ds
n0

∂2c1

∂y∗2 + c0

(
PeL u∗ ∂n0

∂x∗ + ∂n1

∂t∗ − Dp

Ds

∂2n1

∂y∗2

)
= 0. (B6)

Again, we first seek the solution at long times, so that ∂n1
∂t∗ is negligible. This gives

n1(t∗ → ∞) ∼ n∞
1 (x∗, y∗, T ∗) = −PeL

480

Ds

Dp

1

c0
(7 − 120y∗2 + 240y∗4)

(
�p

Ds
n0

∂c0

∂x∗ + c0
∂n0

∂x∗

)
.

We now look for a solution n1(x∗, y∗, t∗, T ∗) = n∞
1 (x∗, y∗, T ∗) + n̂1(x∗, y∗, t∗, T ∗), which we sub-

stitute into Eq. (B6) to find

∂ n̂1

∂t∗ + �p

Ds

n0

c0

∂2ĉ1

∂y∗2 = Dp

Ds

∂2n̂1

∂y∗2 .

Following the form of ĉ1 in Appendix B 1, we assume a form for n̂1 given by

n̂1 =
∞∑

λ=1

aλ(x∗, T ∗) exp[−(2λπ )2t∗] cos(2λπy∗).
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FIG. 15. A sample of the evolution of the particle concentration profile over a period of 1 h, based on
simulations in OpenFOAM. The channel is 50 μm × 34 mm (to ensure the changes in concentration near the
inlet and outlet are negligible). The kinematic viscosity is ν = 1 × 10−6 m2 s−1. The diffusivity values are
Ds = 1.6 × 10−9 m2 s−1 (corresponding to NaCl in water) and Dp = 1.07 × 10−12 m2 s−1 (corresponding
to 200 nm particles at 293 K with μ = 10−3). The diffusiophoretic mobility is taken to be �p = Ds/2 =
8 × 10−10 m2 s−1. The initial salt concentration is given by c0 = (1 − 0.01) exp[− 1

2 ( x
0.05·5×10−3 )2] + 0.01. The

velocity profile is parabolic with a mean velocity of 10−6 m s−1. The particle distribution is two-dimensional,
even after an hour, in part due to the relatively low particle diffusivity.
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FIG. 16. An illustration of the evolution of solute and particle concentration profiles in a three-dimensional
channel, based on simulations in OpenFOAM. The channel is 50 μm × 500 μm × 34 mm. The kinematic
viscosity is ν = 1 × 10−6 m2 s−1. The diffusivity values are Ds = 1.6 × 10−9 m2 s−1 (corresponding to NaCl
in water) and Dp = 1.07 × 10−12 m2 s−1 (corresponding to 200 nm particles at 293 K with μ = 1 × 10−3 Pa s).
The diffusiophoretic mobility is taken to be �p = Ds/2 = 8 × 10−10 m2 s−1. The initial salt concentration is
given by c0 = (1 − 0.01) exp[− 1

2 ( x
0.05·5×10−3 )2] + 0.01. The velocity profile is parabolic with a mean velocity

of 1 × 10−6 m s−1. A key distinction between the two- and three-dimensional results is the enhanced particle
focusing at the corners of the channel.
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Substituting into the governing equation, we find that

aλ(x∗, T ∗) = −3(−1)λ

2λ4π4
PeL

n0

c0

∂c0

∂x∗
�p/Ds

Dp/Ds − 1
.

However, we have not yet satisfied the initial condition that n1(t∗ = T ∗ = 0) = 0, so we further
extend the analysis to consider a solution n1(x∗, y∗, t∗, T ∗) = n∞

1 (x∗, y∗, T ∗) + n̂1(x∗, y∗, t∗, T ∗) +
ñ1(x∗, y∗, t∗, T ∗), where ñ1 satisfies

∂ ñ1

∂t∗ = Dp

Ds

∂2ñ1

∂y∗2 ,

with ñ1(t∗ = T ∗ = 0) = −n∞
1 (T ∗ = 0) − n̂1(t∗ = T ∗ = 0). This has the solution

ñ1(x∗, y∗, t∗, T ∗) =
∞∑

λ=1

3(−1)λDs PeL

2Dp(Dp − Ds)λ4π4

[
�p

n0

c0

∂c0

∂x∗ + (Ds − Dp)
∂n0

∂x∗

]

× exp

[−(2λπ )2t∗Dp

Ds

]
cos(2λπy∗).

Finally, we can combine the earlier results and find a solution

n(x∗, y∗, t∗) = n0(x∗, t∗) + ε2
[
n∞

1 (x∗, y∗, t∗) + n̂1(x∗, y∗, t∗) + ñ1(x∗, y∗, t∗)
]
,

where we have replaced every T ∗ with ε2t∗.

3. Description of simulations

Simulations for the multiple-timescale analysis are performed with a finite volume approach that
is second-order accurate in space and first-order accurate (explicit) in time. The simulations use a
200 × 40 grid with a time step of 2 × 10−4 dimensionless time units. Infinite sums are approximated
with 50 terms.

APPENDIX C: EXAMPLE OF LONG-TIME SIMULATION

Here, we demonstrate how, for certain parameter regimes, the “early-time” dynamics can persist
for what may be surprisingly long physical times. In particular, we show the persistence of two-
dimensional structures in the particle distribution for a channel of width 50 μm and with particles of

FIG. 17. A comparison of the concentration of particles from a two-dimensional simulation (see
Appendix C) and at the midplane (250 μm from the side walls) of the three-dimensional channel at t = 1 min.
The parameters in this simulation are the same as those given in Fig. 16. The simulation was performed in
OpenFOAM. The profiles are qualitatively and quantitatively very similar (though there is enhanced focusing
at walls in the case of the three-dimensional channel), which suggests the two-dimensional approximation is
useful for regions far from side walls.
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FIG. 18. A slice of concentrations at x∗ = 0.5 for various grid resolutions at t∗ = 1 with Pe = 1, �p/Ds =
1, Dp/Ds = 10−3, and ε = 10−3. The initial concentrations are given in Eq. (10). The concentration of each
species changes slowly near the grid resolution we employ, which suggests the results have converged.
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size 200 nm in Fig. 15. Here, the simulation represents a total duration of one hour in physical time,
after which the particle distribution still shows clear two-dimensional structures after a simulated
time period of one hour.

APPENDIX D: THREE-DIMENSIONAL SIMULATION

Here, we present a brief comparison of the two-dimensional predictions with the results of fully
three-dimensional numerical simulations. In particular, three-dimensional numerical simulation
results for the solute and particle concentrations are presented in Fig. 16. One key change of the
introduction of three-dimensional effects is the enhanced particle focusing that occurs at the corners
of the channel. In regions near the corners, the two-dimensional predictions breakdown due to
the fully three-dimensional nature of the flow. However, away from the corners, we find that the
particle concentration still agrees well with the predictions of the two-dimensional theory of Secs. II
and III. This is illustrated in Fig. 17, which shows a comparison of the two-dimensional results with
the particle concentration profile taken from the midplane of the three-dimensional channel results.

APPENDIX E: CONVERGENCE STUDY

To demonstrate that the numerical solutions from Sec. III have converged, we plot values of the
concentrations of solute and particles across the channel at x∗ = 0.5 and t∗ = 1 (the largest time
considered in Fig. 12). The results are shown in Fig. 18. Here, there is little variation between grids
of size 550 × 55 and 600 × 60, and thus for the purposes of validating the theoretical predictions,
we determine that the 600 × 60 grid is sufficiently well refined. We also plot the relative error in

FIG. 19. Error in extrema of c and n at t∗ = 1 with Pe = 1, �p/Ds = 1, Dp/Ds = 10−3, and ε = 10−3. The

initial concentrations are given in Eq. (10). The error is calculated as
|cnumerical−canalytical |

cnumerical
and

|nnumerical−nanalytical |
nnumerical

for
solute and particles, respectively. The decay in error illustrates the convergence as the grid is refined.
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the extrema of c and n, using the solution with the 600 × 60 grid as the baseline. These results are
shown in Fig. 19. The error appears to decrease with increasing resolution, as in Fig. 18.
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Correction: Equation (6) and the displayed equations in Sec. II D contained the wrong sign before
�p

Ds
and have been fixed. In Figure 6, the directions of the blue curves were erroneous and have been

reversed. The color indicators in the rightmost panels of Figs. 7, 12, and 13 and in both panels of
Fig. 10 were presented incorrectly and have been reversed.
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