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Lubrication flow of a gas in a microscale gap between coaxial circular cylinders is
studied on the basis of kinetic theory. The stationary inner cylinder is a Maxwell-type
boundary with a nonuniform accommodation coefficient in the circumferential direction,
and the outer cylinder is a diffuse reflection boundary rotating at a constant speed. The
dimensionless curvature, defined as the gap size divided by the radius of the inner cylinder,
is small, and the Knudsen number based on the gap size is arbitrary. The Boltzmann
equation is studied analytically using the slowly varying approximation, with special
attention being paid to the characteristics of the equation. Two macroscopic lubrication
models of the Reynolds-type equations are derived: one consisting of the solutions for
plane Couette and Poiseuille flows (plane lubrication model), and the other consisting of
cylindrical Couette flow and a curved Poiseuille flow (improved lubrication model). For
an assessment of the models, a direct numerical analysis of the flow is also conducted
for the Bhatnagar-Gross-Krook-Welander kinetic equation using a hybrid finite-difference
method. It is demonstrated that the use of the plane lubrication model leads to a non-
negligible error when the Knudsen number is sufficiently large. This error is caused
by neglect of the fact that the number of molecules arriving from the outer cylinder is
greater than that from the inner one by an amount proportional to the square root of
the dimensionless curvature. It is also demonstrated that the improved lubrication model
provides an excellent approximation to the direct numerical solution over the whole range
of the Knudsen number.

DOI: 10.1103/PhysRevFluids.7.034201

I. INTRODUCTION

Flows of a gas in microscale gaps play important roles in lubrication in microelectromechanical
systems [1–5]. An example is lubrication between a magnetic disk and a head slider in a hard disk
drive. When the gap size is comparable with the mean-free path of the gas, conventional lubrication
theory based on continuum fluid dynamics is inapplicable. Instead, an approach based on kinetic
theory is necessary. The theory of microscale lubrication has been studied extensively on the basis
of kinetic theory [6–12]. In the 1980s, a generalized Reynolds equation applicable to an arbitrary
Knudsen number has been derived [8], where the Knudsen number is defined as the mean-free path
divided by the gap size; a more systematic derivation is given in Ref. [12]. Some recent extensions
can be found, for example, in Refs. [13,14].

Flows in narrow gaps between bodies with curved surfaces occur in lubrication between
journals and bearings in micromachines. In these systems, the ratio of gap size to radius of
curvature is usually small; we shall call this ratio the dimensionless curvature and denote it
by ε. A Reynolds equation taking the curvature effect into account has been derived from the
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Navier-Stokes equation in Ref. [15]. For microscale lubrication, the Boltzmann equation written
in a general orthogonal curvilinear coordinate system was analyzed using the slowly varying
approximation up to the first order of ε in Ref. [12], and the generalized Reynolds equation has
been derived. The error in this equation is supposed to be of O(ε2). However, for a gas at a large
Knudsen number, there is a possibility that the error could be much greater, for the following
reason.

In the slowly varying approximation, the flow is considered on the scale of the gap size, and
so the channel walls can be taken to be nearly parallel planes. The solution is then approximated
locally by a linear combination of Poiseuille and Couette flows of a rarefied gas between parallel
planes. However, it is known in rarefied gas dynamics that when the Knudsen number is large,
Poiseuille and Couette flows in a slightly curved channel are considerably different from those in a
straight channel. For example, at infinite Knudsen number, the flow velocity in plane Couette flow
is independent of the position, whereas it is position-dependent in cylindrical Couette flow. This
dependence in the cylindrical case arises because the number of molecules arriving at a point in the
gas from each cylindrical wall depends on the position of the point; the number of molecules from
the inner cylinder increases in approaching this cylinder because the range of directions of molecular
velocities from this cylinder increases. By an elementary estimate, the number of molecules arriving
from the outer cylinder is greater than that from the inner one by an amount proportional to O(ε1/2).
Because the square root of ε is much larger than ε2, the replacement of the slightly curved flow
by a plane flow may cause a non-negligible error much larger than ε2. Therefore, careful attention
should be paid to the influence of small curvature on a lubrication flow when the Knudsen number is
large.

In this paper, we study the influence of small curvature on the lubrication flow of a gas in a
microscale gap on the basis of kinetic theory. To make the essential points clear, we study the
simplified case of an annulus between coaxial circular cylinders. The inner cylinder, which is at rest,
is a Maxwell-type boundary whose accommodation coefficient is nonuniform in the circumferential
direction. The outer cylinder is a diffuse reflection boundary and rotates at a constant speed. The
nonuniform accommodation coefficient is introduced to induce a pressure variation in place of an
eccentricity of the cylinders. The dimensionless curvature ε, i.e., the gap size divided by the radius
of the inner cylinder, is small, and the Knudsen number based on the gap size is arbitrary. We study
the solution of the Boltzmann equation analytically using the slowly varying approximation [12],
with special attention to the trajectories of the molecules arriving from each cylinder. An improved
lubrication model, which takes the curvature effect into account, is derived. A direct numerical
analysis of the flow is also conducted for the Bhatnagar-Gross-Krook-Welander (BGKW) kinetic
equation [16,17] using a hybrid finite-difference method as a reference for an assessment of the
lubrication model. The main goals of this paper are as follows: (1) to demonstrate that the lubrication
model that consists of plane Poiseuille and Couette flows causes a non-negligible error of O(ε1/2)
when the Knudsen number is sufficiently large and (2) to demonstrate that the improved lubrication
model exhibits excellent agreement with the direct numerical solution uniformly over the whole
range of the Knudsen number.

II. PROBLEM AND BASIC EQUATION

A. Problem

Consider a rarefied gas in the annulus between coaxial circular cylinders at r = r1 and r =
r2(r2 > r1) as shown in Fig. 1(a), where (r, θ, z) is the spatial cylindrical coordinate system. The
inner cylinder at rest is a Maxwell-type boundary whose accommodation coefficient αa is a function
of θ as shown, for example, in Fig. 1(b). The outer cylinder is a diffuse reflection boundary and
rotates at a constant circumferential velocity vw. The temperature of the cylinders is a constant T0.
The dimensionless curvature ε is defined by ε = D/r1 and the Knudsen number Kn is defined by Kn
= �/D, where D = r2 − r1 is the gap size and � is the mean-free path of the gas in the equilibrium

034201-2



EFFECT OF A SMALL CURVATURE OF THE SURFACES …

α  
1

α  
2

α a

θ/πc0

r

T0

T0

vw

r1

r2

θ

2

(a) (b)

X1

X2

2b

2−cat rest

2b

αa

D

gas

1

FIG. 1. Schematic of the system. (a) Schematic of the system and the coordinate system and (b) distribution
of the accommodation coefficient αa. In panel (b), the graph is plotted for the function (53) with α1/α2 =
0.5, b = 0.1, and c = 0.5.

state at rest with the temperature T0 and the average density ρ0 of the gas. Let ε be small, and let the
speed of rotation also be small. To be specific,

D

r1
= ε � 1 and

vw

(2RT0)1/2
= v̂w = εuw, (1)

where R is the specific gas constant, i.e., the Boltzmann constant divided by the mass of a molecule,
and uw is a constant of the order of unity. The Knudsen number Kn = �/D is arbitrary. We
study the time-independent and axially uniform behavior of the gas on the basis of the Boltzmann
equation.

B. Basic equation

In this paper, we use the following dimensionless variables. Let r̂, ζi (i = r, θ, z), and
f̂ (r̂, θ, ζr, ζθ , ζz ) be the dimensionless variables for the radial coordinate r, the molecular velocity
ξi, and the velocity distribution function f defined by

r̂ = r

D
, ζi = ξi

(2RT0)1/2
, f̂ = f

ρ0(2RT0)−3/2
. (2)

The ζi is also denoted by ζ.
The Boltzmann equation in the time-independent state for the axially uniform case is written as

ζr
∂ f̂

∂ r̂
+ ζθ

r̂

∂ f̂

∂θ
+ ζθ

r̂

(
ζθ

∂ f̂

∂ζr
− ζr

∂ f̂

∂ζθ

)
= 1

k
Ĵ ( f̂ , f̂ ), (3)

where k = (
√

π/2)Kn. The Ĵ (·, ·) is the dimensionless collision integral defined by

Ĵ ( f̂ , ĝ) = 1

2

∫∫
[ f̂ (ζ′

∗)ĝ(ζ′) + f̂ (ζ′)ĝ(ζ′
∗) − f̂ (ζ∗)ĝ(ζ) − f̂ (ζ)ĝ(ζ∗)]B̂ d�(e)dζ∗,

ζ′ = ζ + [e · (ζ∗ − ζ)]e, ζ′
∗ = ζ∗ − [e · (ζ∗ − ζ)]e, (4)

where e is a unit vector, d�(e) is the solid-angle element in the direction of e, and dζ∗ =
dζr∗ dζθ∗ dζz∗. The B̂ is a function of |e · (ζ∗ − ζ)|/|ζ∗ − ζ| and |ζ∗ − ζ|, and its functional form
is determined by the molecular model. In Eq. (4), the arguments of the spatial variables r̂ and θ

are common and are omitted for simplicity. The integration in Eq. (4) is carried out over the entire
direction of e and the entire space of ζ.
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The boundary condition on the inner cylinder is the Maxwell-type condition given by

f̂ (ζr ) = [1 − αa(θ )] f̂ (−ζr ) + αa(θ )σ̂aE (r̂ = 1/ε, ζr > 0),

σ̂a = −2
√

π

∫
ζr<0

ζr f̂ dζ (r̂ = 1/ε), (5)

where E = π−3/2 exp(−ζ2), and f̂ (±ζr ) in Eq. (5) is the abbreviation for f̂ (r̂, θ,±ζr, ζθ , ζz ). The
boundary condition on the outer cylinder is given by

f̂ = π−3/2σ̂b exp
(−ζ 2

r − (ζθ − v̂w )2 − ζ 2
z

)
(r̂ = 1/ε + 1, ζr < 0),

σ̂b = 2
√

π

∫
ζr>0

ζr f̂ dζ (r̂ = 1/ε + 1). (6)

The periodic boundary condition with respect to θ is given by

f̂ (r̂, 0, ζr, ζθ , ζz ) = f̂ (r̂, 2π, ζr, ζθ , ζz ) (ζθ > 0), (7)

f̂ (r̂, 2π, ζr, ζθ , ζz ) = f̂ (r̂, 0, ζr, ζθ , ζz ) (ζθ < 0). (8)

Finally from the definition of the average gas density ρ0, we have

∫ 2π

0
dθ

∫ 1/ε+1

1/ε

dr̂r̂
∫

f̂ dζ = π

(
2

ε
+ 1

)
. (9)

The macroscopic variables of the gas, i.e., the density ρ, the flow velocity vi (i = r, θ ), the
temperature T , the pressure p, and the stress tensor pi j ( j = r, θ ) are defined by the moments of
the velocity distribution function f . The dimensionless variables ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)1/2, T̂ =
T/T0, p̂ = p/p0 (p0 = Rρ0T0), and p̂i j = pi j/p0 are given by the moments of the dimensionless
distribution function f̂ as

ρ̂ =
∫

f̂ dζ, (10a)

v̂i = 1

ρ̂

∫
ζi f̂ dζ (i = r, θ ), (10b)

T̂ = 2

3ρ̂

∫ [
(ζr − v̂r )2 + (ζθ − v̂θ )2 + ζ 2

z

]
f̂ dζ, (10c)

p̂ = ρ̂T̂ , (10d)

p̂i j = 2
∫

(ζi − v̂i )(ζ j − v̂ j ) f̂ dζ ( j = r, θ ). (10e)

The force (F1, F2) acting on the inner cylinder per unit depth in the z direction is given by

1

p0r1

(
F1

F2

)
= −

∫ 2π

0

(
p̂rr cos θ − p̂θr sin θ

p̂rr sin θ + p̂θr cos θ

)
dθ (r̂ = 1/ε), (11)

where (F1, F2) are the components in the rectangular coordinates (X1, X2) in which X1 points in the
direction θ = 0 [see Fig. 1(a)]. The torque N acting on the inner cylinder per unit depth is given by

N

p0r2
1

= −
∫ 2π

0
p̂θr dθ (r̂ = 1/ε). (12)
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C. Some transformations

For a convenience of the analysis and numerical analysis, we introduce the change of independent
variables from r̂, ζr , and ζθ to y, ζρ , and θζ [18]:

r̂ = 1/ε + y, ζr = ζρ cos θζ , ζθ = ζρ sin θζ , (13)

where 0 < y < 1 and −π < θζ � π . In terms of y, ζρ , and θζ , the boundary value problem (3)–(9)
is rewritten as follows. The Boltzmann equation is

ζρ cos θζ

∂ f̂

∂y
+ εζρ sin θζ

1 + εy

∂ f̂

∂θ
− εζρ sin θζ

1 + εy

∂ f̂

∂θζ

= 1

k
Ĵ ( f̂ , f̂ ). (14)

The boundary conditions (5)–(8) and the subsidiary condition (9) are transformed
into

f̂ = [1 − αa(θ )] f̂ (θ̃ζ ) + αa(θ )σ̂aE (y = 0, cos θζ > 0), (15)

f̂ = π−3/2σ̂b exp
(−ζ 2

ρ + 2εuwζρ sin θζ − ε2u2
w − ζ 2

z

)
(y = 1, cos θζ < 0), (16)

σ̂a = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂ dζρ dθζ dζz (y = 0),

σ̂b = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂ dζρ dθζ dζz (y = 1),

f̂ (r̂, 0, ζr, θζ , ζz ) = f̂ (r̂, 2π, ζr, θζ , ζz ) (θζ > 0), (17)

f̂ (r̂, 2π, ζr, θζ , ζz ) = f̂ (r̂, 0, ζr, θζ , ζz ) (θζ < 0), (18)

∫ 2π

0
dθ

∫ 1

0
dy

(
1

ε
+ y

) ∫∫∫
ζρ f̂ dζρ dθζ dζz = π

(
2

ε
+ 1

)
, (19)

where E = π−3/2 exp(−ζ 2
ρ − ζ 2

z ) in the new variables. Here and in what follows, we use the

convention that f̂ (r̂(y), θ, ζr (ζρ, θζ ), ζθ (ζρ, θζ ), ζz ) is simply written as f̂ (y, θ, ζρ, θζ , ζz ) because
no confusion will arise. In Eq. (15), f̂ (θ̃ζ ) is an abbreviation for f̂ (y, θ, ζρ, θ̃ζ , ζz ) and θ̃ζ =
±π − θζ , depending on whether ±θζ > 0. The ranges of integration with respect to ζρ, θζ ,
and ζz are, respectively, 0 < ζρ < ∞, −π < θζ < π , and −∞ < ζz < ∞ unless otherwise
stated.

The macroscopic variables are

ρ̂ =
∫∫∫

ζρ f̂ dζρ dθζ dζz, (20a)

v̂r = 1

ρ̂

∫∫∫
ζ 2
ρ cos θζ f̂ dζρ dθζ dζz, (20b)

v̂θ = 1

ρ̂

∫∫∫
ζ 2
ρ sin θζ f̂ dζρ dθζ dζz, (20c)

T̂ = 2

3ρ̂

∫∫∫
ζρ

[
(ζρ cos θζ − v̂r )2 + (ζρ sin θζ − v̂θ )2 + ζ 2

z

]
f̂ dζρ dθζ dζz, (20d)

p̂ = ρ̂T̂ , (20e)

p̂rr = 2
∫∫∫

ζρ (ζρ cos θζ − v̂r )2 f̂ dζρ dθζ dζz, (20f)
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FIG. 2. Characteristics, or the trajectories of collisionless molecules, in the θζ -y plane (θζ > 0). (a) Projec-
tion of the characteristics of Eq. (14) onto the θζ -y plane and (b) those of Eq. (14) in which the curvature term
is omitted. The shaded region represents the molecular trajectories arriving from the rotating outer cylinder,
and the unshaded region represents those from the inner cylinder at rest. In panel (a), the velocity distribution
function is discontinuous across their boundary (22) with const = 1. In (a), O(εk) reduces to O(ε1/2) when
εk2 = O(1).

p̂rθ = p̂θr = 2
∫∫∫

ζρ (ζρ cos θζ − v̂r )(ζρ sin θζ − v̂θ ) f̂ dζρ dθζ dζz, (20g)

p̂θθ = 2
∫∫∫

ζρ (ζρ sin θζ − v̂θ )2 f̂ dζρ dθζ dζz. (20h)

III. ANALYSIS

A. Preliminary remarks

We seek a solution of the boundary value problem (14)–(19) for small ε that varies on a scale of
2π in the circumferential direction θ . Note that the second and third terms on the left-hand side of
Eq. (14) are multiplied by ε; hereinafter, we shall call the third term −ε(1 + εy)−1ζρ sin θζ ∂ f̂ /∂θζ ,
which is peculiar to a curvilinear coordinate system, the curvature term for short. Then, one may
consider it feasible to seek a solution using a perturbation by regarding these two terms as higher-
order terms. That is, we seek the solution as a power series expansion in ε:

f̂ = f̂(0) + f̂(1)ε + · · · . (21)

Then, the problem will be reduced to solving a sequence of boundary value problems of the
Boltzmann equation with only one derivative term with ∂ f̂(m)/∂y (m = 0, 1, . . . ); the derivative
terms with ∂ f̂(m)/∂θ and ∂ f̂(m)/∂θζ appear as the inhomogeneous terms. In Ref. [12], the solution
up to f̂(1) is studied for a general orthogonal curvilinear coordinate system, and a Reynolds-type
equation is derived. The truncation error of this equation is supposed to be of O(ε2). However,
we will show that the error could be larger than O(ε2) when the Knudsen number or k is so large
that εk2 ∼ 1. Before explaining this, we shall present some properties of the velocity distribution
function in the θζ -y plane.

Figure 2(a) shows the projection

(1 + εy) sin θζ = const (22)

of the characteristics of Eq. (14) onto, or the trajectories of collisionless molecules in, the θζ -y plane.
(The configuration is symmetric with respect to θζ = 0, and so we shall discuss only θζ > 0.) The
shaded region represents the molecular trajectories arriving from the rotating outer cylinder at y = 1.
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FIG. 3. Trajectories of collisionless molecules in the physical plane. (a) Trajectories corresponding to
Fig. 2(a) and (b) trajectories corresponding to Fig. 2(b). Shaded area represents the range of directions of
the molecular velocities arriving from the outer cylinder. In panel (b), trajectories are given by the curves (23).

The unshaded region represents those from the inner cylinder at rest at y = 0. Between these two
regions, the velocity distribution function is discontinuous, which is a reflection of an insufficient
number of intermolecular collisions. The discontinuity decays on a scale of k (or � in dimensional
space) in the direction tangential to the inner cylinder, which corresponds to the distance y ∼ εk2 (or
r − r1 ∼ �2/r1) from the inner cylinder [3]. Although the distribution functions in the two regions
are completely different, they do not relax each other where the discontinuity is present, to result
in a highly nonequilibrium region. When εk2 � 1, this nonequilibrium region shrinks to form a
kinetic boundary layer referred to as the S layer [3,19,20]. When εk2 = O(1), on the other hand,
this nonequilibrium region covers the whole gas region. We are interested in the latter case.

Keeping this picture in mind, let us discuss the validity of the assumption that the curvature
term can be regarded as a higher-order term. Suppose that εk2 = O(1). In the θζ -y plane, this
assumption means that the characteristics or trajectories can be approximated by straight lines as
shown in Fig. 2(b). The most significant difference from Fig. 2(a) is that the portion of the shaded
region extending into θζ < π/2 is absent. Because the distribution functions in the shaded and
unshaded regions are quite different, this approximation causes an error proportional to the area
of the extended portion. What should be emphasized here is that when εk2 ∼ 1, the width [O(εk)]
of the extended portion is of O(ε1/2), which is much larger than ε. Therefore, even though ε is
small, treating the curvature term as a higher-order term may cause a non-negligible error of O(ε1/2)
when the Knudsen number is so large that εk2 ∼ 1. For example, the macroscopic flow velocity is
evaluated as less in magnitude. Obviously, this is a noncontinuum effect of small curvature resulting
from the finiteness of the mean-free path. Therefore, it is not surprising that a similar effect has
never been discussed in continuum lubrication theory. Incidentally, one can easily see that the
curvature term cannot be regarded as a higher-order term in a neighborhood |θζ − π/2| = O(ε),
because the factor cos θζ in the first term is as small as ε. However, the situation is more serious
because the range of matter in θζ is not |θζ − π/2| = O(ε) but much wider |θζ − π/2| = O(ε1/2),
as can be seen in Fig. 2(a).

It may be instructive to restate the above discussion in the (dimensionless) physical plane.
Figure 3(a) shows the molecular trajectories in Fig. 2(a) in the physical plane, which are of course
straight. The shaded area represents the range of directions of molecular velocities arriving from
the outer cylinder. Note that this range is wider than π because the outer cylinder is seen more
widely than the inner cylinder. By an elementary manipulation, the additional angle is of O(ε1/2).
Obviously, this corresponds to the extended portion in Fig. 2(a). On the other hand, Fig. 3(b) shows
the approximated trajectories in Fig. 2(b) in the physical plane. Because the Boltzmann equation is
approximated, these trajectories are no longer straight, but instead are the logarithmic spirals

cot θζ · θ − ln r̂ = const. (23)

Equation (23) gives r̂ = constant when θζ = π/2, and the range of trajectories arriving from the
outer cylinder is exactly |θζ | > π/2 [see Fig. 2(b)]. The contribution of molecules whose velocities
lie in the direction of O(ε1/2) is incorrectly counted. Consequently, the contribution from the outer
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cylinder, namely, the motion of the wall, is less evaluated. To summarize, if the curvature term is
regarded as a higher-order term, then this ignores the effects caused by the fact that the number of
molecules arriving from the outer cylinder is greater than that from the inner cylinder by an amount
proportional to ε1/2 owing to the curvature of the latter.

In addition to the above discussion, another effect of small curvature should also be mentioned.
Consider a molecular velocity at a given point and its trace-back trajectory as shown in Fig. 3(a). The
molecules arriving at this point are those departing from the portion of the boundary seen from this
point. In other words, the velocity distribution function at this point is directly affected only by this
visible portion of the boundary. By contrast, for the approximated Boltzmann equation represented
in Fig. 3(b), the curved trajectory can arrive also from the invisible portion of the boundary. This
difference is decisive when a large pressure variation is present along the channel and thus σ̂a and σ̂b

in the boundary conditions (15) and (16) differ considerably on the invisible portion of the boundary.
This is the case in the present paper; a finite pressure variation is induced by the rotation of the
cylinder owing to the nonuniform accommodation coefficient, as we will see in Sec. V. The effect
of small curvature here is similar to that of a weak external force on a plane Poiseuille flow of a
highly rarefied gas [21].

From the above discussion, it can be seen that the solution in Ref. [12] may cause a non-negligible
error even for small ε when k is sufficiently large. This will be demonstrated in Sec. V. This causes
difficulties for practical applications to micro engineering. To improve the existing theory, it is
natural to proceed to a higher order analysis. However, it is doubtful whether the error of O(ε1/2)
could be fixed by such an analysis. In this paper, in view of the above discussion, we try to develop
an improved lubrication model for small ε that is valid even when the Knudsen number is large.

B. Plan of analysis

The discussion in Sec. III A suggests that the key to improving the theory may lie in obtaining
a more precise description of the characteristic of Eq. (14). To apply the slowly varying approx-
imation, it is necessary to distinguish the importance between the second and third terms on the
left-hand side of Eq. (14). Namely, the second term is regarded as a higher-order term following
the standard slowly varying approximation, whereas the third term is treated together with the first
term. Specifically, we write

Dε = cos θζ

∂

∂y
− ε sin θζ

1 + εy

∂

∂θζ

. (24)

The Dε means the derivative along Eq. (22) or the curves in Fig. 2(a). This treatment is necessary
because the discontinuity in the velocity distribution function develops in the gas region and thus
the individual derivatives ∂/∂y and ∂/∂θζ are meaningless there; the sum cos θζ ∂/∂y − ε(1 +
εy)−1sin θζ ∂/∂θζ is certainly meaningful. In terms of Dε, the Boltzmann equation is written as

ζρDε f̂ + ε
ζρ sin θζ

1 + εy

∂ f̂

∂θ
= 1

k
Ĵ ( f̂ , f̂ ). (25)

The solution is sought in the form of the power series expansion (21). Here Dε is not expanded in ε

but treated as a whole. Namely, we assume

Dε f̂ = Dε f̂(0) + Dε f̂(1)ε + · · · , Dε f̂(m) ∼ f̂(m) (m = 0, 1, . . . ). (26)

In this way, the characteristic (22) is precisely described. Substituting Eqs. (21) and (26) into
Eqs. (25) and (15)–(19) and arranging terms of the same order in ε, we obtain a sequence of
boundary value problems for the spatially one-dimensional Boltzmann equations as follows. Note
that the assumption (26) may fail in a neighborhood |θζ ± π/2| = O(ε), in which Dε f̂(m) ∼ ε f̂(m) is
expected. We therefore check the validity of the assumption a posteriori from the numerical solution
in Sec. V.
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C. Leading- and first-order solutions

The boundary value problem for the leading-order solution f̂(0) is given by

ζρDε f̂(0) = 1

k
Ĵ ( f̂(0), f̂(0) ), (27)

f̂(0) = [1 − αa(θ )] f̂(0)(θ̃ζ ) + αa(θ )σ̂a(0)E (y = 0, cos θζ > 0), (28)

f̂(0) = σ̂b(0)E (y = 1, cos θζ < 0), (29)

σ̂a(0) = − 2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂(0) dζρ dθζ dζz (y = 0),

σ̂b(0) = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂(0) dζρ dθζ dζz (y = 1),

∫ 2π

0
dθ

∫ 1

0
dy

∫∫∫
ζρ f̂(0) dζρ dθζ dζz = 2π. (30)

The boundary value problem (27)–(29) can be solved independently at each θ , because the term
∂ f̂(0)/∂θ is not involved. The problem at a given θ is of the same form as that of a gas between
coaxial cylinders at rest in which the accommodation coefficient of the inner cylinder is αa(θ ).
Obviously, a solution is an equilibrium state at rest:

f̂(0) = CE , (31)

where C may be an arbitrary function of θ as long as Eq. (30) is satisfied. It will be convenient to
relate C to a macroscopic variable. To do so, on substituting the expansion (21) into Eqs. (20a)–
(20e), we have the following expansion of the macroscopic variables:

ĥ = ĥ(0) + ĥ(1)ε + · · · , (32)

where ĥ stands for ρ̂, v̂r , and so on. At the leading order, we have from Eq. (31) that

ρ̂(0) =
∫∫∫

ζρ f̂(0) dζρ dθζ dζz = C, (33)

v̂r(0) = 1

ρ̂(0)

∫∫∫
ζ 2
ρ cos θζ f̂(0) dζρ dθζ dζz = 0, (34)

v̂θ (0) = 1

ρ̂(0)

∫∫∫
ζ 2
ρ sin θζ f̂(0) dζρ dθζ dζz = 0, (35)

T̂(0) = 2

3ρ̂(0)

∫∫∫
ζρ (ζ 2

ρ + ζ 2
z ) f̂(0) dζρ dθζ dζz = 1, (36)

p̂(0) = ρ̂(0)T̂(0) = C. (37)

Thus, C can be identified with the leading-order pressure p̂(0), and we henceforth use p̂(0) for C.
The boundary value problem for the first-order solution f̂(1) is a linear and inhomogeneous one

given by

ζρDε f̂(1) = 2

k
Ĵ ( f̂(0), f̂(1) ) − ζρ sin θζ

∂ f̂(0)

∂θ
, (38)

f̂(1) = (1 − αa) f̂(1)(θ̃ζ ) + αaσ̂a(1)E (y = 0, cos θζ > 0), (39)

f̂(1) = (σ̂b(1) + 2uwσ̂b(0)ζρ sin θζ )E (y = 1, cos θζ < 0), (40)
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σ̂a(1) = −2
√

π

∫∫∫
cos θζ <0

ζ 2
ρ cos θζ f̂(1) dζρ dθζ dζz (y = 0),

σ̂b(1) = 2
√

π

∫∫∫
cos θζ >0

ζ 2
ρ cos θζ f̂(1) dζρ dθζ dζz (y = 1),

∫ 2π

0
dθ

∫ 1

0
dy

∫∫∫
ζρ f̂(1) dζρ dθζ dζz = 0, (41)

where αa = αa(θ ). Because of the form of the inhomogeneous term and the boundary conditions,
we can consistently seek the solution f̂(1) that is odd with respect to θζ . Then σ̂a(1) and σ̂b(1) vanish,
and the subsidiary condition (41) is automatically satisfied. We further put

f̂(1) = f̂(0)φ. (42)

Substituting Eqs. (31) and (42) into Eqs. (38)–(41), we obtain a simpler problem for φ as

ζρDεφ = p̂(0)

k
L(φ) − ζρ sin θζ

1

p̂(0)

d p̂(0)

dθ
, (43)

φ = (1 − αa)φ(θ̃ζ ) (y = 0, cos θζ > 0), (44)

φ = 2uwζρ sin θζ (y = 1, cos θζ < 0), (45)

where L(·) is the linearized collision operator defined by EL(φ) = 2Ĵ (E , Eφ). Because of the
linearity, the solution is given by

φ(y, θ, ζ) = 1

p̂(0)

d p̂(0)

dθ
�Pε

(
y, ζ;

k

p̂(0)
, αa(θ )

)
+ uw�Cε

(
y, ζ;

k

p̂(0)
, αa(θ )

)
, (46)

where ζ is the abbreviation for (ζρ, θζ , ζz ). The functions �Pε(y, ζ; k̃, α) and �Cε(y, ζ; k̃, α) are
defined by Eqs. (A1)–(A3) and Eqs. (A4)–(A6), respectively, in Appendix A; the k̃ and α are the
parameters that stand for k/p̂(0) and αa(θ ), respectively.

Substituting Eqs. (31) and (42) into Eq. (21), the solution up to f̂ = f̂(0) + f̂(1)ε is written as

f̂ (y, θ, ζ) = p̂(0)E

{
1 + ε

[
1

p̂(0)

d p̂(0)

dθ
�Pε

(
y, ζ;

k

p̂(0)
, αa(θ )

)
+ uw�Cε

(
y, ζ;

k

p̂(0)
, αa(θ )

)]}
,

(47)

in terms of the undetermined function p̂(0)(θ ).

D. Lubrication model

Our final task is to determine the unknown function p̂(0), which is accomplished by using the
mass conservation law. Multiplying the Boltzmann equation (14) by ζρ , integrating with respect to
ζρ, θζ , and ζz and with respect to y from 0 to 1, and applying the boundary condition (15) or (16),
we obtain the mass conservation law dM̂/ dθ = 0. Here ρ0(2RT0)1/2DM̂ is the mass flow rate of
the gas per unit time and per unit depth in z, and M̂ = ∫ 1

0 dy
∫∫∫

ζ 2
ρ sin θζ f̂ dζρ dθζ dζz. Substituting

Eq. (47) into the mass conservation law, we obtain

d

dθ

[
mPε

(
k

p̂(0)
, αa(θ )

)
d p̂(0)

dθ
+ uw p̂(0)mCε

(
k

p̂(0)
, αa(θ )

)]
= 0, (48)

where the functions mPε(k̃, α) and mCε(k̃, α) are defined by Eq. (A10) in Appendix A. As we are
about to see, Eq. (48) plays a role of determining the leading-order pressure p̂(0).
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Suppose that the boundary value problem (A1)–(A3) for �Pε and that (A4)–(A6) for �Cε are
solved for a wide range of the parameters k̃, α, and ε, and that the database of the functions mPε(k̃, α)
and mCε(k̃, α) is known. Then Eq. (48) becomes an ordinary differential equation to determine p̂(0).
Once p̂(0) is known, the velocity distribution function is given by Eq. (47). Substituting Eq. (47)
into Eqs. (20a)–(20h), the macroscopic variables are obtained. For example, the component v̂θ of
the flow velocity and those of the stress tensor up to the first order are given by

v̂θ = ε

[
1

p̂(0)

d p̂(0)

dθ
uPε

(
y;

k

p̂(0)
, αa(θ )

)
+ uwuCε

(
y;

k

p̂(0)
, αa(θ )

)]
, (49)

p̂rr = p̂θθ = p̂ = p̂(0), (50)

p̂θr = ε

[
d p̂(0)

dθ
SPε

(
y;

k

p̂(0)
, αa(θ )

)
+ uw p̂(0)SCε

(
y;

k

p̂(0)
, αa(θ )

)]
, (51)

where the functions uPε(y; k̃, α) and uCε(y; k̃, α) are defined by Eq. (A8), and the functions
SPε(y; k̃, α) and SCε(y; k̃, α) are defined by Eq. (A9). In this way, Eq. (48) plays the role of
determining the pressure distribution p̂(0). Therefore, Eq. (48) is a generalization of the Reynolds
equation in continuum lubrication theory. Note that the gas-film thickness, which is a constant, does
not appear in Eq. (48) because the special case of coaxial annulus is considered here.

In the derivation of Eq. (48) as well as that of Eq. (47), no restriction is imposed on k. In other
words, it is implicitly assumed that k = O(1). To verify that Eq. (48) is valid for the whole range of
k, we put k = 1/εn (n = 1, 2, . . . ) and conduct a similar analysis. As a result, we obtain Eq. (48) in
which mPε(k/p̂(0), αa) and mCε(k/p̂(0), αa) are replaced respectively by mPε∞(αa) and mCε∞(αa) for
an arbitrary n � 1. Here, mPε∞(αa) and mCε∞(αa) are given by Eq. (A10) in which Eqs. (A11) and
(A12), respectively, are substituted. Because the functions mPε(k̃, ·) and mCε(k̃, ·) tend to mPε∞(·)
and mCε∞(·), respectively, as k̃ → ∞, we find that Eq. (48) still holds even in the limit k = ∞ by
making n → ∞.

E. Remarks and supplements

It is appropriate here to go back to the beginning of Sec. III A and compare Eq. (48) with the
existing generalized Reynolds equation [12]. For a coaxial annulus, this is

d

dθ

[
mP

(
k

p̂(0)
, αa(θ )

)
d p̂(0)

dθ
+ uw p̂(0)mC

(
k

p̂(0)
, αa(θ )

)]
= 0, (52)

where the functions mP(k̃, α) and mC(k̃, α) are the mass flow rate coefficients of Poiseuille and
Couette flows of a rarefied gas between plane parallel walls defined by Eq. (B11). The derivation of
and supplements to Eq. (52) are summarized in Appendix B. The parameter ε is involved in Eq. (52)
through uw = v̂w/ε [see Eq. (1)]. Making ε small has two effects: it makes the curvature small and it
makes the dimensionless arc length r1θ/D = ε−1θ along the inner cylinder large. The latter effect is
reflected in Eq. (52), but the former is neglected. To distinguish between the two models, Eq. (52) as
well as the solution in Appendix B will be called the plane lubrication model, while Eq. (48) as well
as the solution in Secs. III B–III D will be called the improved lubrication model. Although Eqs. (48)
and (52) are quite similar in appearance, they are different equations when ε > 0, which can be seen
as follows. The function mCε, defined by Eq. (A10) using the solution �Cε, is the coefficient of the
mass flow rate (through a cross section θ = const) of a cylindrical Couette flow of a rarefied gas
between coaxial cylinders with dimensionless curvature ε. The function mPε, defined by Eq. (A10)
using the solution �Pε, is the mass flow rate coefficient of a flow induced by a pressure gradient
along a curved channel at rest with dimensionless curvature ε; in other words, this flow is a rarefied
gas version of the basic flow of Dean’s problem in fluid dynamics [22]. These functions depend on
the curvature parameter ε through the operator Dε. Consequently, Eq. (48) depends on the curvature
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FIG. 4. Mass flow rate coefficients mPε and mCε as functions of k̃ and α (BGKW model). (a) mPε and (b)
mCε . The surfaces are ε = +0 (−mP), 0.025, and 0.2 from the top in (a), and ε = +0 (mC), 0.025, and 0.2 from
the bottom in (b).

effect, in contrast to Eq. (52). Note that mPε and mCε reduce to mP and mC, respectively, in the limit
ε = +0, and consequently Eq. (48) coincides with Eq. (52) in this limit.

Some examples of the mass flow rate coefficients mPε and mCε are presented in Fig. 4. The
results in this figure are computed for the BGKW kinetic model. Figure 4(a) shows the mass flow
rate coefficient mPε of the curved Poiseuille (Dean) flow as a function of the local Knudsen number
k̃ and α. The function mP in the plane model (ε = +0) is also shown for comparison. It can be seen
that −mPε is a decreasing function of ε. As is well known, −mP of plane Poiseuille flow exhibits
the Knudsen minimum [3] at an intermediate k̃ about 1. When ε = 0.025, −mPε also exhibits the
Knudsen minimum. When ε = 0.2, however, the Knudsen minimum is not observed in the range
0.1 � k̃ � 10 and 0.5 � α � 0.8. From Fig. 4(a), it can be seen that there is a significant difference
from the plane case mP for large k̃. In fact, mP of the plane flow diverges as k̃ → ∞ whereas mPε of
the curved flow remains finite at k̃ = ∞ [see Eq. (A11)]; the velocity distribution function does not
diverge because the characteristic is correct and thus the contribution of the molecules arriving from
the correct range in Fig. 3(a) is counted. Figure 4(b) shows the mass flow rate mCε of cylindrical
Couette flow as well as that mC of plane Couette flow. It can be seen that the mCε is an increasing
function of k̃, a decreasing function of α, and an increasing function of ε. There is a significant
difference from the plane case mC at large k̃. From Fig. 4, it is observed that the difference between
mPε and mP, as well as that between mCε and mC, is noticeable even when ε is 0.025 and k̃ is about 1.
Consequently, a non-negligible difference is expected between the solutions of the two lubrication
models (48) and (52). A simple database of the functions mPε, mCε, mP, and mC is provided in
Appendix C. It may be noted that the analysis in Sec. III is valid for a standard Boltzmann equation.
Although the results in Fig. 4 and in Sec. V are presented for the BGKW model, results for an
arbitrary molecular model are immediately obtained by simply replacing the linearized collision
integral L(·).

In this way, two lubrication models have been derived, namely, the plane model (52) and the
improved model (48). Our interest now is in examining how well these two models approximate the
true solution of the Boltzmann equation. To this end, a direct numerical analysis of the Boltzmann
equation is conducted to provide a reference for an assessment of these models. The remainder of
the paper is devoted to this assessment.

IV. NUMERICAL ANALYSIS

A. Supplements to the problem

For an assessment of the lubrication models in Sec. III, a direct numerical analysis of the
boundary value problem (14)–(19) is conducted. In the present paper, the distribution of the
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accommodation coefficient αa(θ ) of the inner cylinder is given by

αa(θ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2 (0 � θ/π < c − b),
α2 + α1

2
− α2 − α1

2
sin

θ − cπ

2b
(c − b � θ/π < c + b),

α1 (c + b � θ/π � 1),
αa(2π − θ ) (1 < θ/π < 2),

(53)

where α1, α2, b, and c are positive constants such that 0 < α1 � α2 � 1, 0 < b � 1/2, and b �
c � 1 − b. The function (53) is symmetric with respect to θ = π . The distribution (53) is adopted
because it can produce a wide variation of the eccentric force (11). An example is depicted in
Fig. 1(b) for α1 = 0.5, α2 = 1, b = 0.1, and c = 0.5, for which most of the computations are
conducted. We employ the BGKW kinetic model for this computation. That is, the collision integral
is given by

Ĵ ( f̂ , f̂ ) = ρ̂
(

f̂e − f̂
)
,

f̂e = ρ̂

(π T̂ )3/2
exp

(
− (ζρ cos θζ − v̂r )2 + (ζρ sin θζ − v̂θ )2 + ζ 2

z

T̂

)
, (54)

where ρ̂, v̂r, v̂θ , and T̂ are given by Eqs. (20a)–(20d). For the BGKW kinetic model, incidentally,
the mean-free path � is related to the viscosity μ of the gas by [3]

μ =
√

π

2

p0

(2RT0)1/2
�. (55)

The boundary value problem (14)–(19) with Eqs. (53) and (54) is characterized by the following
seven dimensionless parameters

ε = D

r1
, Kn = �

D
, v̂w = vw

(2RT0)1/2
, α1, α2, b, and c. (56)

In this paper, the computations are conducted only for the cases of v̂w = 0.1, α1 = 0.5, α2 = 1, and
b = 0.1. The parameter c is a measure of the coverage of the diffuse reflection area (αa = α2 = 1)
of the surface of the inner cylinder.

B. Numerical method

The method of numerical analysis adopted here is essentially the same as that used in Ref. [23].
Therefore, it is outlined only briefly.

First, the following marginal distribution functions are introduced [24]:

g1 =
∫ ∞

−∞
f̂ dζz, g2 = 2

∫ ∞

−∞
ζ 2

z f̂ dζz. (57)

Then, the boundary value problem (14)–(19) for the five independent variables y, θ, ζρ, θζ , and ζz is
reduced to a simultaneous problem for g1 and g2 for the four independent variables y, θ, ζρ , and θζ .
The infinite range 0 � ζρ < ∞ is replaced by a finite range 0 � ζρ � ζD, where ζD is a constant to
be given in Sec. IV B. The Boltzmann equation and the boundary conditions are solved numerically
in the four-dimensional finite domain 0 � y � 1, 0 � θ � 2π, 0 � ζρ � ζD, and −π � θζ � π

using a finite difference method by iteration. To reduce the numerical error in the computation
of the macroscopic variables (20a)–(20h) and thus the collision term (54), the numerical integration
is conducted on the subtracted quantity f̂ − f̂(0) rather than on f̂ itself, which is especially efficient
when Kn and ε are small.

A feature of the present problem is that the velocity distribution function is discontinuous across
the surfaces

(1 + εy) sin θζ = ±1
(
|θζ | <

π

2
, 0 � θ � 2π

)
(58)
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FIG. 5. Marginal velocity distribution function g1 [Eq. (57)] at the cross section y = 1/2, θ = π/2, and
ζρ = 1 (ε = 0.025 and c = 0.5). (a) Kn = 0.1 and (b) Kn = 10. Solid line for the direct numerical solution;
dotted line for the improved lubrication model (47); dashed line for the plane lubrication model (B4). The
functions represented by the solid and the dotted lines are discontinuous at θζ /π = ±Arcsin(1 + εy)−1/π (=
±0.4499). The vertical arrows indicate θζ /π = ±1/2.

in the three-dimensional space of y, θ , and θζ . The finite difference method cannot be applied across
the discontinuous surface. In this paper, the hybrid scheme of characteristic coordinate and finite
difference methods devised in Ref. [18] is applied to bypass this difficulty.

C. Computational conditions and accuracy tests

The computational conditions are as follows. For the y coordinate, the Ny + 1 mesh points are
arranged nonuniformly in the interval 0 � y � 1, where Ny = 320. The mesh size is minimum
0.00011 at y = 0 and y = 1 and is uniform and maximum 0.005 in the interval 0.16 � y � 0.84.
For θ , Nθ + 1 mesh points are arranged uniformly in the interval 0 � θ � 2π , where Nθ = 320. For
ζρ , Nu + 1 mesh points are arranged uniformly in 0 � ζρ � ζD, where Nu = 40 and ζD = 5. For θζ ,
Nv + 1 mesh points are arranged uniformly in the interval −π � θζ � π , where Nv = 640.

For a test of accuracy of the numerical solution, we conducted recomputations using coarser mesh
systems in addition to the production run P with (Ny, Nθ , Nu, Nv ) = (320, 40, 320, 640), namely,
the coarser system A with (Ny, Nθ , Nu, Nv ) = (160, 30, 160, 320) and the coarsest system B with
(Ny, Nθ , Nu, Nv ) = (80, 22, 80, 160). By examining the differences between the three runs, i.e., B–P
and A–P, the error in the production run P is estimated. From this test, it is estimated that the
numerical error in the dimensionless pressure p̂ over 0 � θ � 2π at y = 0 is less than 0.03%, and
that the numerical error in the flow velocity v̂θ over 0 � y � 1 at the cross section θ = 0 is less
than 0.04%. Further, the numerical errors in the eccentric force (F1, F2) [Eq. (11)] and the torque N
[Eq. (12)] are estimated to be less than 0.11% over the range of 0.1 � Kn � 10, 0.025 � ε � 0.2,
and c = 0.5. Especially at Kn = 1 and c = 0.5, the error in the eccentric force is less than 0.04%
over 0.025 � ε � 0.2.

V. RESULTS

A. Velocity distribution function

We first present a few examples of the velocity distribution function. In Fig. 5 the marginal
distribution function g1 [Eq. (57)] at the cross section y = 1/2, θ = π/2, and ζρ = 1 is presented as
a function of θζ . The solid line represents the solution of the direct numerical analysis of Eqs. (14)–
(19), the dotted line represents the solution (47) of the improved lubrication model, and the dashed
line represents the solution (B4) of the plane lubrication model. When the Knudsen number is small
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FIG. 6. Profile of the dimensionless flow velocity v̂θ (c = 0.5). (a) (ε, Kn)=(0.2, 0.1), (b) (0.2, 10),
(c) (0.025, 0.1), and (d) (0.025, 10). Solid line for the direct numerical solution; dotted line for the improved
lubrication model (49); dashed line for the plane lubrication model (B12).

[Fig. 5(a)], the results of the both lubrication models agree satisfactorily with the direct numerical
solution. When the Knudsen number is large [Fig. 5(b)], however, some disagreement is observed.
We first survey the behavior of the distribution function on the basis of the direct numerical solution
(solid line); we consider only the half interval θζ > 0 for simplicity. The distribution function
consists of two portions: one portion θζ > Arcsin(1 + εy)−1(= 0.4499π ) for the molecules directly
arriving from the outer cylinder, and the other θζ < Arcsin(1 + εy)−1 for those from the inner
cylinder. The distribution function is discontinuous at their boundary θζ = Arcsin(1 + εy)−1, at
which the solid line is vertical. Note that the former portion extends to θζ = Arcsin(1 + εy)−1

beyond θζ = π/2, which corresponds to the extended area in Fig. 2(a). The distribution function
of the plane model (dashed line) abruptly changes around θζ = π/2. Therefore, the behavior of
the plane model is incorrect in the interval Arcsin(1 + εy)−1(= 0.4499π ) < θζ < π/2, which is
noticeable in the figure. By contrast, the result of the improved lubrication model (dotted line)
certainly describes the position of the discontinuity correctly, and the distribution function agrees
with the solid line fairly well. The disagreement is most significant around θζ /π = 1/2. This
disagreement may be attributed to the inconsistency of the assumption (26) in a neighborhood of
θζ = π/2. It is, however, localized, and its magnitude is approximately 0.004, which is of the order
of the truncation error f̂(0)v̂

2
w 	 0.1 × 0.12 = 0.001 of the perturbation. Therefore, the inconsistency

of our assumption around θζ = π/2 does not seem to produce a serious error.
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B. Macroscopic variables

The profiles of the flow velocity v̂θ at the three cross sections θ/π = 0, 0.5, and 1 are presented
in Fig. 6. The values of the accommodation coefficient αa of the inner cylinder at these cross
sections are 1, 0.75, and 0.5, respectively. The meaning of the lines is the same as in Fig. 5. We first
survey the flow behavior on the basis of the direct numerical solution (solid line). When the Knudsen
number is small [Figs. 6(a) and 6(c)], the velocity profile depends only weakly on the position θ

of the cross section. This is easily understood that when the Knudsen number is small, the velocity
slip on the cylinders is small, regardless of the distribution of the accommodation coefficient, and
thus the flow is disturbed only slightly from the axisymmetric flow. When the Knudsen number is
large [Figs. 6(b) and 6(d)], the velocity profile shows a clear dependence on the cross section. The
velocity profile at θ = 0 is smallest at which the accommodation coefficient is maximum. Now let
us compare the results of the two lubrication models. When the Knudsen number is small [Figs. 6(a)
and 6(c)], the results of the both lubrication models agree with the direct numerical solution very
well. When the Knudsen number is large [Figs. 6(b) and 6(d)], a considerable difference is observed
between the plane model (dashed line) and the direct numerical solution (solid line). By contrast,
the improved model (dotted line) agrees with the direct numerical solution very well. Note that the
flow velocity v̂θ of the plane model (dashed line) is smaller than that of the direct numerical solution
in the bulk region, in agreement with the estimate in Sec. III A.

Next, the pressure distribution p̂ along the channel is presented in Fig. 7. Figures 7(a)–7(d) are
for the same cases as those in Figs. 6(a)–6(d), respectively. For the direct numerical solution (solid
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FIG. 8. Magnitude F and the direction ϑF [Eq. (59)] of the eccentric force [Eq. (11)] as functions of Kn and
ε (c = 0.5). (a) Magnitude F and (b) the direction ϑF . Symbols for the direct numerical solution; triangle (
)
for ε = 0.025; circle (©) for ε = 0.05; downtriangle (�) for ε = 0.1; square (�) for ε = 0.2. Solid line for the
improved lubrication model; dashed line for the plane lubrication model. Horizontal lines are the asymptotes
for Kn = ∞; dot-dashed line for the direct numerical solution; solid line for the improved lubrication model.
The lines are for ε = 0.025, 0.05, 0.1, and 0.2 from the top. In panel (b), two asymptotes are indistinguishable
at ε = 0.025 and 0.05.

line), the pressure distributions are plotted along the three lines y = 0, 0.5, and 1; they are almost
indistinguishable in agreement with the analytical solution (31). Figures 7(a) and 7(b) are for cases
of relatively large ε. When the Knudsen number is small [Fig. 7(a)], the pressure variation is small,
which is expected from Fig. 6(a) because the flow is nearly axisymmetric. When the Knudsen
number is large [Fig. 7(b)], a finite pressure variation is induced owing to an acceleration and a
deceleration along the channel shown in Fig. 6(b). Figures 7(c) and 7(d) are for cases of smaller
ε(= 0.025). The pressure variation is larger than that for ε = 0.2. This is because the circumferential
length of the channel 2πr1 = 2πD/ε is inversely proportional to ε, and so the pressure gradient
accumulates over a long length for a small ε. Moreover, when Kn = 10 [Fig. 7(d)], the pressure
distribution splits into a high-pressure region about θ = 0 and a low-pressure region about θ = π .
This pressure difference contributes to the eccentric force to be discussed in Sec. V C. Now let
us compare the results of the two lubrication models with the direct numerical solution. When
the Knudsen number is small [Figs. 7(a) and 7(c)], both models agree very well with the direct
numerical solution. When the Knudsen number is large [Figs. 7(b) and 7(d)], a non-negligible
disagreement is observed in the plane model (dashed line). By contrast, the improved model (dotted
line) shows a good agreement. Incidentally, when the pressure variation is so small that the problem
may be linearized, the pressure variation p̂ − 1 is antisymmetric with respect to θ = π provided
that the accommodation coefficient αa is symmetric with respect to θ = π [23]. This tendency is
observed in Fig. 7(a). The breaking of the antisymmetry seen in Figs. 7(b)–7(d) is therefore due to
the nonlinear effect of the finite pressure variation.

C. Eccentric force and torque

Let the magnitude F and the direction ϑF of the eccentric force (F1, F2) [Eq. (11)] acting on the
inner cylinder be defined by

F1 = F cos ϑF , F2 = F sin ϑF . (59)

They are presented in Figs. 8(a) and 8(b), respectively, as functions of the Knudsen number Kn
and the dimensionless curvature ε. The symbols represent the direct numerical solution, the solid
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FIG. 9. Magnitude F [Eq. (59)] of the eccentric force as a function of c (ε = 0.025). Markers for the direct
numerical solution; circle (•) for Kn = 0.1; triangle (�) for Kn = 1; square (�) for Kn = 10. Solid line for the
improved lubrication model; the lines are for Kn = 0.1, 1, and 10 from the bottom.

line represents the result of the improved lubrication model, and the dashed line represents that
of the plane lubrication model. When the problem can be linearized [23], the magnitude F is an
increasing function of Kn, and the direction is ϑF = π/2 (i.e., F1 = 0) regardless of the parameters
(56). The force due to the pressure difference seen in Fig. 7(d) acts in the θ = π direction and
becomes stronger as ε decreases. Consequently, the magnitude F increases and the direction ϑF

approaches π . For sufficiently small ε, the magnitude F takes its maximum value at an intermediate
Knudsen number. Similar behavior is observed also in the direction ϑF in Fig. 8(b). Now let us
examine the performance of the two lubrication models. When the Knudsen number is small, both
models agree very well with the direct numerical solution. For example, at Kn = 1 and ε = 0.05
(i.e., εKn2 = 0.05), the error in F of the plane lubrication model (dashed line) compared with the
direct numerical solution (symbols) is 0.6% (= 6 × 10−3), which is certainly of the order of ε2(=
2.5 × 10−3). As the Knudsen number increases, however, a non-negligible disagreement appears in
the plane lubrication model. The disagreement is noticeable even when ε = 0.025 and Kn = 2. By
contrast, the result of the improved model (solid line) agrees with the direct numerical solution over
the whole range of the Knudsen number. The agreement at the smallest ε(= 0.025) is excellent even
in the limit of Kn = ∞.

The results up to here are those for a coverage c = 0.5 of the diffuse reflection area. Figure 9
presents the magnitude F of the eccentric force as a function of c. The magnitude F of the force
takes its maximum value at approximately c = 0.5. This can easily be understood as follows.
When c approaches 0 or 1, the distribution of the accommodation coefficient αa approaches a
uniform distribution αa = α1 or αa = α2, respectively. Consequently, the flow approaches an axially
symmetric one, in which the eccentric force vanishes. The improved lubrication model approximates
the direct numerical solution well over the whole range of c.

The torque N [Eq. (12)] acting on the inner cylinder is presented in Fig. 10 as a function of
Kn and ε. The torque is an increasing function of Kn, and increases as ε decreases. The result
of the improved lubrication model (solid line) agrees very well with the direct numerical solution
(symbols). Note that the error of the plane lubrication model (dotted line) is much smaller than that
in the eccentric force in Fig. 8. This is because the torque N is an integral of the shear stress p̂θr

given by the moment (20g): the effect of the extended portion about θζ = π/2 [Fig. 2(a)], which
is the main source of the error, is canceled out by the factor cos θζ in the integrand that vanishes at
θζ = π/2.
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FIG. 10. Torque N [Eq. (12)] acting on the inner cylinder as a function of Kn and ε (c = 0.5). For the
key, see the caption of Fig. 8. The asymptotes for Kn = ∞ of the direct numerical solution and those for the
improved lubrication model are indistinguishable.

Finally, let us examine the dependence of the error of the plane lubrication model on the
dimensionless curvature ε. In Fig. 8(a), it appears that the difference in the magnitude F between the
plane lubrication model and the direct numerical solution increases monotonically as ε decreases.
Let us focus on the relative error. In Fig. 11 the symbols represent the relative errors �F and �N
of the eccentric force and of the torque, respectively, as functions of ε for the Knudsen number
such that εKn2 = const = 2. Here, �F = |Fplane − FDNS|/FDNS is the relative error in F of the
plane lubrication model Fplane compared with the direct numerical solution FDNS; a similar notation
applies to N . The relative error �F first increases with decreasing ε, takes its maximum value at
approximately ε = 0.05, and then decreases. The �F is 0.12 (12%) when ε = 0.025. The relative
error �N is much smaller, as we saw in Fig. 10. Unfortunately, the direct numerical analysis for ε

smaller than 0.025 is difficult. On the other hand, we have found that the improved lubrication model
approximates the direct numerical solution well for small ε. Thus, we may estimate the behavior

10−3 10−2 10−1
10−3

10−2

10−1

ε

Δ F
, Δ

N

ε1/2

FIG. 11. Relative errors �F and �N of the plane lubrication model as functions of ε [Kn = (2/ε)1/2, c =
0.5]. Circle (©) and solid line for �F ; triangle (
) and dotted line for �N . Lines represent the relative errors
in which the direct numerical solution is replaced by the result of the improved lubrication model; see the main
text. Dash-dotted lines represent ε1/2 and 10−3/2ε1/2.
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of the relative error for smaller ε by a modified �F in which FDNS is replaced by the result F of
the improved model. This result is represented by the solid (�F ) and dotted (�N) lines. The lines
coincide with the symbols for sufficiently small ε. This result shows that the speed of the decay is
approximately ε1/2 rather than ε2.

From these results, we may conclude that the plane lubrication model results in a non-negligible
error of O(ε1/2) for large Knudsen numbers. We may also conclude that the improved model
provides a uniformly valid approximation to the solution of the Boltzmann equation over the whole
range of the Knudsen number. The success of the improved model confirms that the large error
in the plane model is due to the mechanism discussed in Sec. III A. In conventional lubrication
theory for a small ε, the basic equation is frequently replaced by the Reynolds equation for the
vanishing curvature. We must be careful to use this substitution when a microscale lubrication at a
large Knudsen number is concerned.

VI. CONCLUSION

In this paper, we studied the lubrication flow of a gas in a microscale gap between coaxial circular
cylinders on the basis of kinetic theory. The stationary inner cylinder was taken to be a Maxwell-
type boundary with a nonuniform accommodation coefficient in the circumferential direction, and
the outer cylinder was taken to be a diffuse reflection boundary rotating at a constant speed. The
dimensionless curvature ε, defined as the gap size divided by the radius of the inner cylinder, was
assumed to be small, and the Knudsen number based on the gap size was arbitrary. The Boltzmann
equation was studied analytically using the slowly varying approximation with special attention
being paid to the characteristics of the equation. Two macroscopic lubrication models were derived:
one consisting of plane Couette and Poiseuille flows (the plane lubrication model), and the other
consisting of the cylindrical Couette flow and a curved Poiseuille flow (the improved lubrication
model). For an assessment of the models, a direct numerical analysis of the flow was also conducted
using the BGKW kinetic equation. The main results are as follows.

(1) The plane lubrication model leads to a non-negligible error of O(ε1/2) when the Knudsen
number is sufficiently large. This error is caused by neglect of the fact that the number of molecules
arriving from the outer cylinder is greater than the number of those arriving from the inner cylinder
by an amount proportional to ε1/2.

(2) The improved lubrication model exhibits an excellent agreement with the direct numerical
solution over the whole range of the Knudsen number.

In this paper, we have considered a simplified flow problem between coaxial circular cylinders.
In practical applications, however, the lubrication effect induced by eccentricity is more important.
To deal with this, an elaborate analysis using curvilinear coordinates, such as bipolar coordinates, is
necessary. This analysis is a considerably cumbersome task for the Boltzmann equation. This task
is left for future study.
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APPENDIX A: FUNCTIONS RELATED TO THE LUBRICATION MODEL

The boundary value problem for �Pε(y, ζ; k̃, α) is

ζρDε�Pε − 1

k̃
L(�Pε ) = −ζρ sin θζ , (A1)

�Pε = (1 − α)�Pε(θ̃ζ ) (y = 0, cos θζ > 0), (A2)

�Pε = 0 (y = 1, cos θζ < 0). (A3)
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Similarly, the boundary value problem for �Cε(y, ζ; k̃, α) is

ζρDε�Cε − 1

k̃
L(�Cε ) = 0, (A4)

�Cε = (1 − α)�Cε(θ̃ζ ) (y = 0, cos θζ > 0), (A5)

�Cε = 2ζρ sin θζ (y = 1, cos θζ < 0). (A6)

The solutions �Pε and �Cε can be sought in the form �Jε = ζρ sin θζ �J(y, ζρ, θζ , ζz ) (J = P and C),
where �J is even with respect to θζ [3]. For the BGKW kinetic model used in Sec. IV, the linearized
collision integral is

L(�) =
∫∫∫

K (ζ, ζ∗)�(ζ∗)ζρ∗E∗ dζρ∗ dθζ∗ dζz∗,

K (ζ, ζ∗) = 1 + 2ζρζρ∗ cos(θζ − θζ∗) + 2ζzζz∗ + 2

3

(
ζ 2
ρ + ζ 2

z − 3

2

)(
ζ 2
ρ∗ + ζ 2

z∗ − 3

2

)
, (A7)

where E∗ = π−3/2 exp(−ζ 2
ρ∗ − ζ 2

z∗). For Eq. (A7), �J is independent of ζz.
The normalized flow velocities uPε and uCε are defined by

uJε(y; k̃, α) =
∫

ζ 2
ρ sin θζ�Jε(y, ζ; k̃, α)Edζ (J = P and C). (A8)

Similarly, the normalized shear stresses SPε and SCε are defined by

SJε(y; k̃, α) = 2
∫

ζ 3
ρ cos θζ sin θζ�Jε(y, ζ; k̃, α)Edζ (J = P and C). (A9)

The mass flow rate coefficients mPε and mCε are defined by

mJε(k̃, α) =
∫ 1

0
uJε(y; k̃, α) dy (J = P and C). (A10)

For k̃ = ∞, the solution �Pε is given by

�Pε/(r̂ sin θζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ln

(
r̂(1 + cos θζ )

1 + ε−1 − [(1 + ε−1)2 − r̂2 sin2 θζ ]1/2

)
[|θζ | > Arcsin (εr̂)−1],

− ln

(
r̂(1 + cos θζ )

ε−1 + (ε−2 − r̂2 sin2 θζ )1/2

)

−(1 − α) ln

(
ε−1 − (ε−2 − r̂2 sin2 θζ )1/2

1 + ε−1 − [(1 + ε−1)2 − r̂2 sin2 θζ ]1/2

)

[|θζ | < Arcsin (εr̂)−1],
(A11)

and the solution �Cε is given by

�Cε =
{

2ε(1 + ε)−1r̂ζρ sin θζ [|θζ | > Arcsin (εr̂)−1],
(1 − α)2ε(1 + ε)−1r̂ζρ sin θζ [|θζ | < Arcsin (εr̂)−1],

(A12)

where r̂ is given by Eq. (13). Note that this solution �Pε does not diverge in contrast to the plane
Poiseuille flow [3].

APPENDIX B: DERIVATION OF THE PLANE LUBRICATION MODEL

The derivation of the plane lubrication model (52) is a special case of that in Ref. [12] and quite
similar to that in Secs. III B–III D, and so it is outlined only briefly.

The basic equations are Eqs. (14)–(19), that is, Eq. (25) is replaced by the original form (14)
without using Dε. The solution f̂ is sought in the form of the power series expansion (21), where
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TABLE I. Coefficients cPmn in Eq. (C1) (BGKW model).

ε m n = 0 1 2 3 4 5 6 7 8

+0 0 −1.35453 0.34433 −0.47874 0.14753 −0.05009 0.01556 −0.00395 0.00080 −0.00011
1 0.18233 −0.00364 0.03031 0.00433 −0.00266 0.00041 0.00021 −0.00013 0.00003
2 0.00237 0.01456 −0.00105 0.00013 0.00036 −0.00013 −0.00001 0.00001 −0.00001
3 0.00017 0.00021 0.00042 −0.00011 −0.00002 0.00002 0.00001 0.00001 0.00001

0.025 0 −1.28177 0.46192 −0.41206 0.17332 −0.04553 0.01421 −0.00497 0.00073 0.00006
1 0.15326 −0.04526 0.01246 −0.00002 −0.00221 0.00095 0.00022 −0.00024 0.00000
2 0.00090 0.01161 −0.00281 −0.00036 0.00034 −0.00008 0.00001 0.00002 −0.00002
3 0.00014 0.00017 0.00034 −0.00016 −0.00003 0.00003 0.00000 0.00000 0.00000

0.5 0 −1.24823 0.50909 −0.39434 0.17389 −0.04870 0.01302 −0.00460 0.00107 0.00006
1 0.14175 −0.05712 0.01147 0.00144 −0.00162 0.00073 0.00000 −0.00022 0.00008
2 0.00048 0.01052 −0.00324 −0.00023 0.00044 −0.00008 −0.00001 0.00001 −0.00001
3 0.00012 0.00015 0.00030 −0.00017 −0.00001 0.00004 −0.00001 0.00000 0.00000

0.1 0 −1.20477 0.56346 −0.38027 0.17029 −0.05227 0.01300 −0.00377 0.00115 −0.00016
1 0.12723 −0.06839 0.01317 0.00311 −0.00178 0.00030 −0.00003 −0.00010 0.00010
2 0.00010 0.00914 −0.00359 0.00006 0.00053 −0.00014 −0.00004 0.00002 0.00000
3 0.00010 0.00013 0.00024 −0.00018 0.00001 0.00004 −0.00001 0.00000 0.00000

0.2 0 −1.14962 0.62013 −0.37335 0.16336 −0.05416 0.01426 −0.00326 0.00084 −0.00027
1 0.10934 −0.07650 0.01790 0.00361 −0.00283 0.00018 0.00022 −0.00005 0.00001
2 −0.00015 0.00744 −0.00374 0.00055 0.00048 −0.00025 −0.00001 0.00004 −0.00001
3 0.00007 0.00012 0.00017 −0.00017 0.00004 0.00003 −0.00002 0.00000 0.00001

the second and third terms on the left-hand side of Eq. (14) are now treated as higher-order terms
because of the factor ε by which they are multiplied.

On substituting the expansion (21) into Eqs. (14)–(19), and formally arranging terms of the same
order in ε, the boundary value problem for the leading-order solution f̂(0) becomes

ζρ cos θζ

∂ f̂(0)

∂y
= 1

k
Ĵ ( f̂(0), f̂(0) ), (B1)

together with Eqs. (28)–(30). The only difference from Sec. III C is that the operator Dε is replaced
by cos θζ ∂/∂y. If Eqs. (B1) and (28)–(30) are rewritten in terms of the original variables ζr, ζθ , and
ζz, then this boundary value problem is of the same form as that of a gas between plane parallel
walls at rest; ζr, ζθ , and ζz correspond to the rectangular components of ζ, and ζr corresponds to the
component normal to the wall. The solution f̂(0) is an equilibrium state at rest (31).

The boundary value problem for the first-order solution f̂(1) is

ζρ cos θζ

∂ f̂(1)

∂y
= 2

k
Ĵ ( f̂(0), f̂(1) ) − ζρ sin θζ

∂ f̂(0)

∂θ
, (B2)

together with Eqs. (39)–(41). The only difference from Sec. III C is that the operator Dε is replaced
by cos θζ ∂/∂y. The curvature term −ζρ sin θζ ∂ f̂(0)/∂θζ , which ought to appear in this equation,
vanishes because the leading-order solution (31) is independent of θζ . The boundary value problem
for φ [Eq. (42)] is

ζρ cos θζ

∂φ

∂y
= p̂(0)

k
L(φ) − ζρ sin θζ

1

p̂(0)

d p̂(0)

dθ
, (B3)
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TABLE II. Coefficients cCmn in Eq. (C1) (BGKW model).

ε m n = 0 1 2 3 4 5 6 7 8

+0 0 0.58171 0.05909 −0.00962 −0.00334 0.00182 −0.00009 −0.00020 0.00007 0.00000
1 −0.07839 −0.05291 0.01063 0.00240 −0.00187 0.00024 0.00018 −0.00009 0.00001
2 −0.00323 −0.00599 −0.00082 0.00094 −0.00001 −0.00015 0.00004 0.00001 −0.00001
3 −0.00009 −0.00019 −0.00018 0.00001 0.00005 −0.00001 −0.00001 0.00000 0.00000

0.025 0 0.60379 0.08480 −0.00297 −0.00455 0.00038 −0.00030 0.00001 0.00017 −0.00002
1 −0.07188 −0.04347 0.01366 0.00232 −0.00229 0.00009 0.00020 −0.00005 0.00002
2 −0.00306 −0.00557 −0.00045 0.00105 −0.00004 −0.00018 0.00003 0.00002 −0.00001
3 −0.00010 −0.00021 −0.00017 0.00003 0.00005 −0.00001 −0.00001 0.00000 0.00000

0.05 0 0.61594 0.09510 −0.00344 −0.00665 0.00007 0.00016 0.00019 0.00009 −0.00009
1 −0.06746 −0.03775 0.01444 0.00150 −0.00260 0.00019 0.00029 −0.00005 −0.00001
2 −0.00290 −0.00519 −0.00020 0.00104 −0.00010 −0.00019 0.00004 0.00002 −0.00001
3 −0.00010 −0.00020 −0.00015 0.00004 0.00005 −0.00002 −0.00001 0.00000 0.00000

0.1 0 0.63178 0.10475 −0.00649 −0.00900 0.00062 0.00084 0.00013 −0.00009 −0.00010
1 −0.06067 −0.02962 0.01459 0.00003 −0.00272 0.00050 0.00036 −0.00011 −0.00004
2 −0.00262 −0.00458 0.00013 0.00096 −0.00021 −0.00017 0.00007 0.00002 −0.00002
3 −0.00010 −0.00019 −0.00012 0.00005 0.00004 −0.00002 −0.00001 0.00001 0.00000

0.2 0 0.64895 0.10864 −0.01253 −0.00997 0.00231 0.00116 −0.00032 −0.00017 0.00005
1 −0.05090 −0.01923 0.01325 −0.00195 −0.00224 0.00096 0.00023 −0.00021 0.00000
2 −0.00220 −0.00369 0.00047 0.00073 −0.00032 −0.00010 0.00010 0.00000 −0.00002
3 −0.00009 −0.00016 −0.00008 0.00006 0.00002 −0.00003 0.00000 0.00001 0.00000

together with Eqs. (44) and (45). Consequently, the solution f̂ = f̂(0) + f̂(1)ε up to the first order is
given by

f̂ (y, θ, ζ) = p̂(0)E

{
1 + ε

[
1

p̂(0)

d p̂(0)

dθ
�P

(
y, ζ;

k

p̂(0)
, αa(θ )

)
+ uw�C

(
y, ζ;

k

p̂(0)
, αa(θ )

)]}
.

(B4)

The functions �P(y, ζ; k̃, α) and �C(y, ζ; k̃, α) are the solutions of the following boundary value
problems: for �P,

ζρ cos θζ

∂�P

∂y
− 1

k̃
L(�P) = −ζρ sin θζ , (B5)

�P = (1 − α)�P(θ̃ζ ) (y = 0, cos θζ > 0), (B6)

�P = 0 (y = 1, cos θζ < 0), (B7)

and for �C,

ζρ cos θζ

∂�C

∂y
− 1

k̃
L(�C) = 0, (B8)

�C = (1 − α)�C(θ̃ζ ) (y = 0, cos θζ > 0), (B9)

�C = 2ζρ sin θζ (y = 1, cos θζ < 0). (B10)

The only difference from Eqs. (A1)–(A3) and Eqs. (A4)–(A6) is that Dε is replaced by cos θζ ∂/∂y.
To distinguish between these solutions, they are denoted by �P and �C without ε. Note that the
boundary value problem (B5)–(B7) is of the same form as that of plane Poiseuille flow between
parallel planes if it is written in terms of the original variables ζr , ζθ , and ζz and (ζr, ζθ , ζz ) are
interpreted as the rectangular components of the molecular velocity. Similarly, the boundary value
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problem (B8)–(B10) is of the same form as that of plane Couette flow between parallel planes.
This is why the present solution is called the plane lubrication model. Substituting the distribution
function (B4) into the mass conservation law, Eq. (52) is obtained.

The normalized flow velocities uP and uC and the normalized shear stresses SP and SC are given,
respectively, by Eqs. (A8) and (A9) in which �Jε is replaced by �J. The mass flow rate coefficients
mP(k̃, α) and mC(k̃, α) are given by

mJ(k̃, α) =
∫ 1

0
uJ(y; k̃, α) dy (J = P and C). (B11)

The mPε and mCε coincide with mP and mC, respectively, when ε = +0.
The macroscopic variables are given by the same formulas as those for the improved lubrication

model in Sec. III D except that uPε, uCε, and so on, are replaced by uP, uC, and so on, respectively.
For example, the flow velocity v̂θ is given by

v̂θ = ε

[
1

p̂(0)

d p̂(0)

dθ
uP

(
y;

k

p̂(0)
, αa(θ )

)
+ uwuC

(
y;

k

p̂(0)
, αa(θ )

)]
. (B12)

APPENDIX C: DATABASE OF THE FUNCTIONS mPε AND mCε

A simple database of the functions mPε(k̃, α) and mCε(k̃, α) in Eq. (A10) is provided here.
This database is based on Chebyshev interpolation for two independent variables k̃ and α; it is a
straightforward extension of that in Ref. [14]. The formula for mJε(k̃, α) (J = P and C) that is valid
in the domain 0.05 � k̃ � 20 and 0.5 � α � 1 is given by

mJε(k̃, α) =
M−1∑
m=0

N−1∑
n=0

cJmnTm(A ln α + 1)Tn(B ln k̃) (J = P and C). (C1)

Here, M = 4, N = 9, A = 2/(ln 2), B = 2/(ln 400), and the constants cPmn and cCmn for the BGKW
model are tabulated in Tables I and II, respectively. The Tn(·)’s are the Chebyshev polynomials
defined by T0(t ) = 1, T1(t ) = t , and Tn(t ) = 2tTn−1(t ) − Tn−2(t ) (n = 2, 3, . . . ). The functions
mP(k̃, α) and mC(k̃, α) in Eq. (B11) are generated simply using the data for ε = +0. A comparison
with the results of direct calculations of Eq. (A10) shows that the error of the formula (C1) is less
than 0.02% uniformly in the domain 0.05 � k̃ � 20 and 0.5 � α � 1.
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