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Cablelike bodies play a key role in many interdisciplinary systems but are hard to sim-
ulate. Asymptotic theories, called slender-body theories, are effective but apply in specific
regimes and can be hard to extend beyond leading order. In this paper we develop an exact
slender-body-like theory for the surface traction of cablelike bodies in viscous flow. This
theory expresses the traction as a series of solutions to a well-behaved one-dimensional
Fredholm integral equation of the second kind. This process can be simply generalized to
other systems.
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I. INTRODUCTION

Wiry objects are important to many systems: Spermatozoa and bacteria actuate slender ap-
pendages called flagella to swim [1,2]; eukaryotic cells change and maintain their shape with
microtubules and actin filaments [3]; clays are colloids of electrically charged ribbons [4]; and
fiber-reinforced plastics are light weight metamaterials that can be used for machine parts [5].
Systems with cablelike bodies often display complex and emergent behaviors but have internal
structures that are hard to probe experimentally [6]. As a result theoretical and numerical models
are needed to complement the experiments and improve understanding.

Unfortunately, the direct numerical simulation of tubelike bodies is often computationally
heavy [7]. This is because the thickness of each body may be much smaller than its length and
so a high resolution is required. Asymptotic theories, called slender-body theories (SBTs), have
been developed to overcome this. These models exploit the separation in length scales to create
an approximation for the behavior [8]. This process often reduces the model to a system of
one-dimensional equations, thereby also increasing the computational efficiency.

Slender-body theory has been used in many fields with one of the most successful examples
coming from slow-viscous flows. SBT for viscous flows has accurately modeled microscopic swim-
mers [1,2], flexible filaments [9], and settling rods [10]. In its most popular form, it expresses the
force per unit length on an isolated filament through a one-dimensional integral equation [11–14].
Although the kernel of this operator is singular, this singularity asymptotically cancels with a “local”
term. Even so, this model can be difficult to implement numerically and is known to suffer from high
eigenvalue instabilities [10,14,15].

The approximate nature of SBTs typically restricts their use to specific regimes. Most as-
sume that the thickness of the body is much less than all other length scales in the problem
[10,16–18], although some restrict certain lengths to be similar to or smaller than the thick-
ness [16,19,20]. Only one example exists without such a condition to our knowledge [7]. However,
it restricts the geometry to that of a rod perpendicular to a wall. Furthermore, most SBTs are hard to
extend beyond leading order [12,21]. Yet effective models without such limitations are needed.
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FIG. 1. (a) A tightly wound helix has a locally tubular structure. r(s) (black) is the centerline; ερ(s) (red) is
the thickness; � (blue) is the helix pitch; Rh (orange) is the helix radius. The plot uses ε = 0.05, � = 1.1ε, and
Rh = 1.5ε. (b) The effective spheroid used to replicate the surface around S(s, θ ). a(s, θ ) (blue) is the distance
from the center to the pole along the symmetry axis, εc(s) (red) is the equatorial radius, and a(s, θ )se(s) (green)
is the distance from the center to r(s) along the tangent (magenta). These parameters are chosen such that the
surface point and tangent plane match at S(s, θ ).

Realistic systems are dynamic and complex with wiry bodies changing shape, interacting with
walls, and each other. This has been identified as a key issue in interdisciplinary research within
reviews [9,20,22] and a Nat. Phys. Comment [23].

In this paper we develop tubular-body theory (TBT) for viscous flow. TBT is a SBT-like theory
which exactly determines the traction on the surface of cablelike bodies. The theory is found by
adding and subtracting the solution to an effective sphereoid to the singular-layer boundary integral
representation and then expanding the system using a binomial series. Rearranging these equations,
the traction is expressed as a series of solutions to a one-dimensional Fredholm integral equation of
the second kind with a compact and self-adjoint kernel. This enables TBT to retain many of the
computational advantages of SBT without the limitations. These equations are found to capture the
behavior of spheroids and tori well outside classical SBT limits and simulate the motion of a tightly
wound helix.

II. TUBULAR-BODY THEORY

Consider the behavior of tubular bodies in incompressible viscous flow [Fig. 1(a)]. The surface
of these bodies can be written as

S(s, θ ) = r(s) + ερ(s)êρ (s, θ ), (1)

where r(s) is the centerline of the body parametrized by the arclength s ∈ [−1, 1], ερ(s) ∈ [0, 1] is
the thickness of the body at s, and êρ (s, θ ) is the local radial vector perpendicular to the centerline
tangent ∂sr(s) = t̂(s). Without any loss of generality we choose êρ (s, θ ) to be parametrized such that
∂sêρ (s, θ ) = −κ (s) cos[θ − ∫ s

0 τ (s)ds]t̂(s) [13], where κ (s) and τ (s) are the curvature and torsion
of the centerline, respectively. This parametrization does not allow for jumps in ρ(s) or blunt ends,
similar to such as in many SBTs.

Assuming that the body does not change its volume, the flow around the body u(x) can be
described through the single-layer boundary integral representation for incompressible Stokes flow.
For an isolated body this representation is given by

8πμu(x) =
∫ 1

−1
ds′

∫ π

−π

dθ ′
(

I
|R′| + R′R′

|R′|3
)

· f(s′, θ ′), (2)
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where R′ = x − S(s′, θ ′) is a vector from the surface to the point of interest in the fluid, I is the
identity matrix, μ is the viscosity of the fluid, and f(s, θ ) is the fluid traction on the body multiplied
by the integration surface element. This equation determines the flow both inside and outside the
body. In the limit x → S(s, θ ), Eq. (2) becomes

8πμU(s, θ ) =
∫ 1

−1
ds′

∫ π

−π

dθ ′
(

I
|R| + RR

|R|3
)

· f(s′, θ ′), (3)

where U(s, θ ) is the surface velocity of the body and R = S(s, θ ) − S(s′, θ ′). The above equation is
a well-studied integral equation for f(s′, θ ′) [24].

The integrand of the above equation blows up when (s′, θ ′) = (s, θ ). This divergence can be
removed by adding and subtracting another geometry with a known solution that cancels with the
kernel at the said point. This process is reminiscent to that used by Batchelor in the development
of his SBT [25]. We chose to add and subtract the flow around a translating spheroid with the
symmetry axis aligned with the body tangent t̂(s) at s. This spheroid has three unset geometric
parameters: the distance from the center to the pole along the symmetry axis a, the equatorial radius
εc, and the distance from the center to ase [Fig. 1(b)]. These parameters should be chosen to match
the tubular-body surface and tangent plane at (s′, θ ′) = (s, θ ) to provide the best regularization of
the integral kernel. This gives the effective spheroid the parametrization,

Se(s′, θ ′, s, θ ) = re(s′, s, θ ) + ερe(s′, s)êρ (s, θ ′) + r(s), (4)

where re(s′, s, θ ) = a(s, θ )[s′ − se(s)]t̂(s), ρe(s′, s) = c(s)
√

1 − s′2, 2c(s)2 = ρ2(s) +
ρ(s)

√
ρ2(s) + 4[∂sρ(s)]2, a(s, θ ) = 1 − t̂(s) · ∂sêρ (s, θ ), and se(s) = ρ(s)∂sρ(s)/c2. This geometry

corresponds to a prolate spheroid if α = εc/a < 1 and an oblate spheroid if α = εc/a > 1.
It satisfies Se(se, θ ) = S(s, θ ), ∂se Se(se, θ ) = ∂sS(s, θ ), and ∂θSe(se, θ ) = ∂θS(s, θ ), thereby
replicating the position and tangent plane to the surface at (s, θ ). Furthermore, it relaxes the
typical SBT assumption on the curvature (εκ � 1) and assumes that the cross section satisfies
ρ(s)∂sρ(s) → constant as ∂sρ(s) → ∞. The latter condition allows TBT to model rapidly changing
cross sections provided ∂sρ(s) �= ∞ away from ends and different types of ends that satisfy the
criteria. The traction, multiplied by the surface element from the translational motion of a spheroid
in a viscous fluid is constant for the above parametrization [26,27], and the total force from the
motion is known. Hence, the boundary integral equation, Eq. (3), after adding and subtracting the
effective geometry, can be written as

8πμU(s, θ ) =
∫ 1

−1
ds′

∫ π

−π

dθ ′[G · f(s′, θ ′) − Ge · f(s, θ )] + M′
A(s, θ ) · f(s, θ ), (5)

where Re = Se[se(s), θ, s, θ ] − Se(s′, θ ′, s, θ ), β(s, θ ) = α2(s, θ ) − 1,

G(e)(s
′, θ ′, s, θ ) = I

|R̃(e)|
+ R(e)R(e)

|R̃(e)|3
, (6)

M′
A(s, θ ) = ζ ′

‖(s, θ )t̂(s)t̂(s) + ζ ′
⊥(s, θ )[I − t̂(s)t̂(s)], (7)

aβ3/2

4π
ζ ′
‖(s, θ ) = [(β − 1) arccos(α−1) +

√
β], (8)

aβ3/2

2π
ζ ′
⊥(s, θ ) = [(3β + 1) arccos(α−1) −

√
β], (9)

and the subscript (e) means the notation applies for both the tubular body (no subscript) and
the spheroid (subscript e) terms. In the above representation the singular point of the original
kernel, located at (s′, θ ′) = (s, θ ), cancels with the singular point of the spheroid kernel, located at
(s′, θ ′) = (se, θ ).
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The cancellation of the singular point in Eq. (5) allows the integrands to be expanded. This
expansion should move all the θ ′ dependences to the numerators of the integrands so that the angular
dependence can be separated from the leading-order term [13]. This can be performed with the
binomial series,

(1 + x)α =
∞∑

k=0

(
α

k

)
xk, (10)

where the generalized binomial coefficient is(
α

k

)
= 1

k!

k+1∏
n=0

(α − n). (11)

This series converges absolutely for |x| < 1 and α ∈ C as the absolute value of each term is smaller
than the previous one. The binomial series can be applied to the denominators of our integrands by
defining |R(e)|2 = |R̃(e)|2(1 + δR(e) ) where

|R̃(e)|2 = R2
0(e) + ε2ρ(e)(s(e) )

2 + ε2ρ(e)(s
′)2, (12)

|R̃(e)|2δR(e) = −2ε2ρ(e)(s(e) )ρ(e)(s
′)êρ (s(e), θ ) · êρ (s′, θ ′) + 2ερ(e)(s(e) )R0(e) · êρ (s(e), θ )

− 2ερ(e)(s
′)R0(e) · êρ (s′, θ ′). (13)

Equation (12) is the sum of the squared lengths of each vector within R(e) and does not depend on
θ ′ whereas Eq. (13) is the cross-vector terms occurring within |R(e)|2 and so has dependence on
(s, s′, θ, θ ′). The triangle inequality tells us that |R(e)|2 � |R̃(e)|2 and so |δR(e)| � 1. Furthermore,
|δR(e)| = 1 iff (s′, θ ′) = (s, θ ), but this point was removed by the above regularization. Hence, we
can produce a binomial series in δR(e) to express the boundary integral as

8πμU(s, θ ) =
∞∑

k=0

∫ 1

−1
ds′

∫ π

−π

dθ ′δRkG(k) · f(s′, θ ′) −
∞∑

k=0

∫ 1

−1
ds′

∫ π

−π

dθ ′δRk
eG(k)

e · f(s, θ )

+ M′
A(s, θ ) · f(s, θ ), (14)

where R0(e) = r(e)(s(e) ) − r(s′), and

G(k)
(e) (s

′, θ ′, s, θ ) =
(− 1

2
k

)
I

|R̃(e)|
+

(− 3
2

k

)
R(e)R(e)

|R̃(e)|3
. (15)

This binomial series converges absolutely provided δR(e) < 1. This is true everywhere except at
the singular point (s′, θ ′) = (s, θ ). At this point, however, the individual terms from the body and
spheroid cancel. Hence, this expanded representation is exact.

The k = 0 terms in the above series are larger than any other term in the summation. This is
because when |δR(e)| < 1, each subsequent term in the series is smaller than the last and when
|δR(e)| = 1, each k of the body cancels with its spheroid counterpart. Hence, we could assume
that the k �= 0 and the angular-dependent terms within k = 0 are “relatively small” and group them
together. This turns the equation into

8πμU(s, θ ) =
∫ 1

−1
ds′

∫ π

−π

dθ ′[K · f(s′, θ ′) − Ke · f(s, θ )] + ε�L[f](s, θ ) + M′
A(s, θ ) · f(s, θ ),

(16)

where

K(e) = I

|R̃(e)|
+ R0(e)R0(e)

|R̃(e)|3
, (17)

ε �L[f](s, θ ) =
∫ 1

−1
ds′

∫ π

−π

dθ ′(G − K) · f(s′, θ ′) −
∫ 1

−1
ds′

∫ π

−π

dθ ′(Ge − Ke) · f(s, θ ), (18)
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and ε is the small parameter representing the size of the angular and k �= 0 terms. In the above,
ε �L[f] is a surface integral operator that contains all the k �= 0 and angular terms that are assumed
small. It is equivalent to the boundary integral of the tubular body without the corresponding k = 0
term minus the boundary integral of the spheroid without the k = 0 term because of the convergence
of the binomial series. The latter interpretation is the easier way to evaluate this term when f is
known. It is not clear, a priori, that ε �L[f] is small, but we note that its integrand cancels as
(s′, θ ′) → (s, θ ) and is small when (s′, θ ′) far from (s, θ ) (δR � 1). This representation suggests
expanding f(s, θ ) as

f(s, θ ) =
∞∑

n=0

(−1)nεnfn(s, θ ), (19)

and collecting like powers of ε. Hence, fn(s, θ ) satisfies

8πμU(s, θ ) =
∫ 1

−1
ds′K(s′, s) · 〈f0(s′, θ ′)〉θ ′ + MA(s, θ ) · f0(s, θ ), (20)

�L[fn−1](s, θ ) =
∫ 1

−1
ds′K(s′, s) · 〈fn(s′, θ ′)〉θ ′ + MA(s, θ ) · fn(s, θ ). (21)

Equations (19)–(21) form the tubular-body theory equations. In them we have evaluated the k = 0
spheroid integrals [28] and defined 〈(·)〉θ ′ = ∫ π

−π
(·)dθ ′,

MA(s, θ ) = {ζ‖(s, θ )t̂(s)t̂(s) + ζ⊥(s, θ )[I − t̂(s)t̂(s)]}, (22)

ζ‖(s, θ ) = ζ ′
‖ − 1 − β

a(−β )3/2
L − g(1, s, θ ) + g(−1, s, θ ), (23)

ζ⊥(s, θ ) = ζ ′
⊥ − 1

a
√−β

L, (24)

L(s, θ ) = ln

(
a(se − β ) + √−β|R̃e|(−1)

a(se + β ) + √−β|R̃e|(1)

)
, (25)

g(s′, s, θ ) = 2(se − s′)
β|R̃e|(s′, s, θ )

(
s′seα

2 − (1 − s2
e )β

2β − s2
e (1 − β )

)
. (26)

Importantly, this series representation is exact and converges provided |fn−1| > |fn|. The proof of
this is beyond the scope of this paper, but we note that this condition was satisfied in all our tests as
ε �L[f](s, θ ) was found to be small.

The TBT integral operator, present in Eqs. (20) and (21), is similar to a SBT operator but involves
both s and θ . However, averaging over this θ component it can be rewritten as

〈
M−1

A · q(s, θ )
〉
θ

= 〈
M−1

A

〉
θ
·
∫ 1

−1
ds′K · 〈f(s′, θ ′)〉θ ′ + 〈f(s, θ ′)〉θ ′ , (27)

f(s, θ ) = M−1
A · q(s, θ ) − M−1

A · 〈
M−1

A

〉−1

θ
· 〈

M−1
A · q(s, θ )

〉
θ
+ M−1

A · 〈
M−1

A

〉−1

θ
· 〈f(s, θ ′)〉θ ′ (28)

where q(s, θ ) represents the known functions on the left-hand sides of Eqs. (20) and (21) . The
above expression shows that solutions to the TBT operator are equivalent to a Fredholm integral
equation of the second kind and a sequence of matrix operations. Furthermore, the kernel of this
integral operator is compact and self-adjoint. These kinds of Fredholm equations are well posed
and diagonalizable [29]. As such, there are several ways to solve these problems numerically, and
analytical solutions can be expressed as in an infinite series of integrals (see the Supplemental
Material (SM) [29,30]). The structure of these kernels is also close to the modified SBT of Tornberg
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(a)

(b)

FIG. 2. The relative error between TBT and the exact solution for torque from the (a) broadwise rotation
of a prolate spheroid and the (b) axisymmetric rotation or torus. The relative error is defined as the difference
between the prediction and the exact coefficient divided by the exact coefficient. Different lines correspond to
the TBT prediction with different levels of truncation; blue is the leading term (N = 0), red is the first two
terms (N = 1), yellow is the first three (N = 2), purple is the first four (N = 3), and green is the first five
(N = 4). The pink dashed line is the SBT approximation.

and Shelley [10] and the SBT of Andersson et al. [15] both of which have positive definite
eigenvalues.

III. VALIDATION

We solved the TBT integral equations, Eqs. (20) and (21) with a collocation method [29] and
truncated the series in Eq. (19) at n = N . Briefly the collocation method divides s ∈ [−1, 1] into
segments and assumes f is constant over each segment. Equation (27) is then turned into a system
of linear equations by enforcing that they hold at the center of each segment (full details provided
in the SM [31] and Refs. [8,29,32]). We note that this simple collocation implementation is possible
because the integral kernel in Eq. (27) is compact unlike in Keller and Rubinow’s SBT [11].

The accuracy of the TBT equations, Eqs (19)–(21), was tested against the solutions for the drag
on a spheroid [33] and a torus [34–36] for a wide range of εs. The terms with the largest relative
error are shown in Fig. 2 (other terms available in the SM [37] and Refs. [33–36,38–41]). The
translation coefficients for the spheroid were found to capture the behavior exactly over the entire
range considered. This is because we used the solution for a translating spheroid as the effective
geometry. The relative error between the known solutions and that predicted by the TBT decreases
as the number of terms kept in Eq. (19) increases (Fig. 2). At leading order (N = 0) the largest
error is around 20% and occurs when the spheroid is almost spherical, ε ∼ 1 and the torus is closed
ε = 1/π . Both of these cases lie well outside the typical SBT limits. When ε ∼ 1 the body is not
slender whereas when ε = 1/π the curvature of the torus equals the thickness. This relative error
decreases to less than 1% after including the first five terms (N = 4) in Eq. (19) for the entire
region tested. The convergence of the TBT, over a range much larger then available to classical
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FIG. 3. The translational velocity of a force-free helix from rotation around its axis (x axis). (a) velocity
along its axis (Ux), (b) velocity perpendicular to axis (Uz). All plots are shown for ε = 0.05.

SBT, suggests that the TBT could prove effective when determining the viscous hydrodynamics of
cablelike bodies in complex situations.

The power of the TBT can be further demonstrated using a tightly wound helix [Fig. 1(a)].
Helices are iconic in slow-viscous flow and occur in many mechanical and biological situations.
Although common, relatively little is known about how the dynamics of these helices change as
they become tightly wound, even though some micro-organisms form these tightly wound helical
shapes [42]. One possible explanation of this is because such shapes lie well outside the SBT limits
and so full numerical simulations would be needed. The TBT, however, is exact and so can be used
in these limits.

We investigated the velocity of a force-free helix which is rotated around its central axis (Fig. 3),
varying the helix pitch, �, and radius Rh (Fig. 1). The parametrization used and resistance matrix
of the said helix is available in the SM [43]. In this example we restricted ourselves to inextensible
helices with ε = 0.05. The geometric constraint that the helix does not touch itself means �, Rh > ε.
For these bodies, Eq. (19) had converged by N = 6. Over the range tested, the velocity of the
helix along its axis increases as � and Rh increases [Fig. 3(a)]. This is probably due to the
coupling between translation and rotation increasing as the helix becomes less coiled. The velocity
perpendicular to the helix axis, however, displays nontrivial oscillatory behavior [Fig. 3(b)]. Hence,
although these bodies are very tightly wound, the system still experiences nontrivial effects from its
helical shape.

034101-7



LYNDON KOENS

IV. DISCUSSION AND CONCLUSION

Fiberlike objects occur in many interesting and important situations but can be tricky to model
theoretically. Direct numerical simulations typically require high levels of resolution, whereas the
asymptotic slender-body theories are restricted to leading-order solutions in specific regimes. The
extension of these SBTs beyond these approximation limits has, therefore, been identified as a key
problem for several interdisciplinary research fields [1–5,9,10,20,22,23].

This paper develops tubular-body theory; a SBT-like theory that can determine the traction on
cablelike bodies exactly. TBT expresses the surface traction on the body as the sum of solutions
to a one-dimensional integral equation [Eqs. (19)–(21)]. This integral equation is similar to that
developed in the SBT except with a compact and self-adjoint integral operator. These types of
integral equations are called Fredholm integral equations of the second kind and have been studied
extensively. Furthermore Fredholm integral equations of the second with compact and self-adjoint
operators are well posed and diagonalizable. As such there exists several methods to solve them
both numerically and theoretically [29].

We used a collocation method to numerically solve these equations. The compact nature of the
integral operator means this representation does not suffer from issues with the kernel blowing up.
We then compared the predictions of the TBT to the exact solutions for drag on a spheroid and
a torus. In both cases we found that with only the first five terms in the series, the TBT was able
to determine the resistance coefficients to within 1% error. This was tested for spheroids ranging
from the very slender/prolate (ε = 0.01) to very oblate (ε = 10) and tori ranging from slender
(ε = 0.01) to closed (ε = 1/π ). We then used the TBT to look at the velocity of a rotating force-free
tightly wound helix, observing that even in these tightly wound shapes the helix showed nontrivial
dependence on the geometry.

In addition to being exact, the TBT has several useful properties, and its derivation can be gen-
eralized to more complicated geometries. The ability of the TBT to resolve the traction on the body
means the force and torque on the body in any flow can be determined from the Lorentz reciprocal
relationship and the results for rigid body motion [8]. This process is useful for determining the
swimming of microscopic organisms and asymptotically interacting bodies through the method
of reflections [8,26]. Furthermore, the equations can be extended to filamentous bodies near (but
not touching) walls or other objects by including the appropriate corrections to the single-layer
boundary integral representation [24]. This is because these terms do not introduce any new singular
points in the Green’s function when evaluated on the surface of the body and so the binomial series
treatment holds. An improved effective geometry Eq. (4) may, however, improve the convergence
of the final series representation.

Finally we note that, although we have focused on fibers in viscous flow, the derivation can
be easily repeated for several other systems. The derivation itself relies on three elements: a
boundary integral representation for the system, the known solution for spheroidal geometries, and
the binomial series. Thankfully many systems of interest, such as diffusion, satisfy these conditions
with the behavior of ellipsoids often being a solved geometry.
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