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Symmetry breaking of a parallel two-phase flow in a finite length channel
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Parallel two-phase flows are omnipresent in technological applications that require
contact between two immiscible fluids for a finite amount of time. Precise control over
the flow and separation of the fluids once they have been in contact are therefore the
key challenges in these applications. Here, using experiments and numerical simulations,
we show that the interface between two immiscible fluids flowing at the same flow rate
in a symmetric channel can become unstable locally near the exit junction, where the
two fluids are separated. This instability leads to the shedding of the droplets of one
phase into the other, preventing a complete separation. We characterize this instability
and show that the period of drop shedding is inversely proportional to the flow rate. We
derive a stability criterion based on the balance between the Laplace pressure across the
liquid-liquid interface and viscous pressure drop along each flow stream. The stability
criterion and our experimental results are used to highlight the extreme sensitivity of this
flow system to the parameters involved such as viscosity difference and exit geometry,
which introduces gravitational effects and characteristics of the exit tubing.

DOI: 10.1103/PhysRevFluids.7.033904

I. INTRODUCTION

Laminar, parallel two-phase fluid flows often refer to immiscible fluids flowing side-by-side in
microchannels and are common in many applications involving chemical reactions [1–5], mass
transfer, and separations [6–9]. While the conditions for stability of parallel flows in infinitely
long channels are well established [10–12], much less is known about the stability of flow in finite
channels that are relevant to applications.

In finite channels, the two immiscible fluids are brought into contact at an inlet junction, flow
side by side over a certain length, and are then separated downstream at an exit junction (Fig. 1).
Earlier studies have reported that the separation is typically imperfect, leading to the undesirable
leakage of one of the streams into the exit of the other. These works have attributed the imperfect
separation to the mismatch between the viscous pressure drop along the streams versus the Laplace
pressure jump across the interface and have proposed different strategies to achieve complete
separation [1,13–17]. Although several mitigation strategies have been proposed to stabilize the
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FIG. 1. The experimental setup and the instability. (a) Schematic showing the flow system: we inject the
two immiscible liquids via the two inlets at equal flow rates Q, and the outlets drain into respective fluid
reservoirs where the exit pressure is p0 (atmospheric pressure). PTFE tubes of length Lt and radius Rt carry
the liquids from the syringes to the inlet and from the exit to their respective reservoirs. (b) 3D schematic of
the channel showing the various geometric parameters. (c) Schematics showing the shapes of the liquid-liquid
interface on the modified surfaces of the channel. The advancing (a) and receding (r) contact angles of oil on
the oil side (schematic on the left) and the water on the water side (schematic on the right) are shown based on
the values given in Table I. (d) When the system is unstable, the interface between the two fluids periodically
sheds droplets near the exit junction where the two fluids are separated. The flow is from left to right, and the
flow rate is Q = 0.1 ml/min in this case. The light gray fluid is perfluorodecalin (oil), and the dark gray fluid
is dyed water-glycerol mixture (water). The geometric parameters of the channel are H = W = 0.75 mm, Lm

= 12.5 mm, Le = 30 mm, and α = 45◦. (e) The snapshots here show the formation of interfacial bumps in the
channels with different lengths: (i) Lm = 12.7 mm, (ii) Lm = 21.4 mm, and (iii) Lm = 50.9 mm. The flow rate
in all cases is Q = 0.1 ml/min. All scale bars represent 2 mm.

system, none of these studies have investigated the instability itself, leaving its localized nature
elusive.

Here, combining experiments, numerical simulations, and global stability analysis, we char-
acterize the instability of parallel two-phase flows in finite channels, showing that the interface
between two immiscible fluids flowing at the same rate in a symmetric channel can become
locally unstable near the exit junction where the fluids are separated. We find that the straight
interface develops a localized “bump,” which grows over time and protrudes into the stream of
the second fluid and eventually result in drop shedding. The drop shedding behavior is found to be
periodic, and the period scales inversely with flow speed. Our numerical simulations qualitatively
reproduce the experimental observations and show that the flow can become globally unstable
under certain conditions. Finally, balancing the viscous pressure drop along each stream with the
Laplace pressure drop across the interface, we obtain a generic stability criterion that agrees well
with our experimental observations. The stability criterion is used to deduce quantitative arguments
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TABLE I. Table summarizing the various fluids used in the experiments and their properties. The first two
fluid pairs have PFD as the oil phase, and the next two have light mineral oil as the oil phase. γ is the interfacial
tension of fluid 1 with its respective fluid 2, and θr is the receding contact angle of the fluid on its side of the
surface modified channel.

Pair Oil phase Aqueous phase ρ [kg/m3] μ [mPa s] γ [mN/m] θr

PFD 1930 5.6±0.2 <5◦

A 50.5% glycerol in water 1126.1 5.7±0.2 43.9±2.9 60.7◦ ± 2◦

B 52% glycerol in water 1130.2 6.1±0.1 43.6±1.7 53.9◦ ± 4◦

Light mineral oil 838 27.5±0.2 45.8◦ ± 4◦

C 74% glycerol in water 1190 27.6±0.3 28.0±4.0 42.5◦ ± 5◦

D 74.2% glycerol in water 1190 28.5±0.2 24.0±4.3 42.5◦ ± 5◦

that highlight the fact that the stability of the flow system is sensitive to the parameters involved,
including the geometry and placement of the exit tubing.

II. EXPERIMENTAL SETUP

We fabricated the microfluidic devices for the experiments using polydimethylsiloxane (PDMS)
and a 3D printed (Formlabs Form 2) mold. All the walls of the channels in the device were made
of PDMS and were later surface modified. Figure 1(a) shows a schematic of the experimental
flow system, and Fig. 1(b) shows a 3D schematic of the typical channel geometry we used in our
experiments. The fluids enter via the two inlet channels on the left, flow parallel to each other in the
main channel of length Lm ∈ [1.5–50] mm, and exit via the two channels of length Le ∈ [5–30] mm
on the right. From the end of the exit channels, polytetrafluoroethylene (PTFE) tubing of inner radius
Rt ∈ [0.19–0.28] mm and length Lt = 18 mm carries the fluids to their respective reservoirs. The tip
of the exit tubes sits just under the liquid interface in the reservoir to achieve atmospheric pressure
p0 at the exit. The relative height between the PDMS channel and the tip of the exit tubes is defined
as hr [see Fig. 1(a)]. The liquid-liquid interface forms along the length of the main channel and ends
at the exit junction where the two liquids are separated. The width of the two inlet and exit channels
as well as the half-width of the main channel are all equal W ∈ [0.75–1.5] mm, and the height of
the channels is H ∈ [0.3–0.75] mm. The angle that the main channel makes with the exit channel is
α ∈ [0◦–90◦]. We selectively modify the wettability of the channel surfaces, using a coflow surface
modification procedure, to help achieve a parallel two-phase flow [18] (see Supplemental Material
Sec. I [19]). We conducted each experiment immediately after surface modification, and the devices
were not reused.

We used four different fluid pairs in the experiments, as summarized in Table I. Fluid pairs A
and B had perfluorodecalin (Fluorochem, PFD) as the oil phase and pairs C and D had light mineral
oil (Sigma-Aldrich) as the oil phase. All fluid pairs had a glycerol-deionized (DI) water mixture as
the aqueous or water phase. The density ρ, viscosity μ, interfacial tension γ , and receding contact
angle θr after surface modification on that specific fluid’s side of the channel are all reported in
Table I. Viscosity of the aqueous phase was measured after making the solution and just before
the experiments in order to make sure that the hygroscopic nature of glycerol had minimal effect
on our results. In all of the experiments, unless otherwise noted, the two fluids were introduced
into the device by the same syringe pump (Harvard Apparatus PHD ULTRA) to keep the flow
rates equal. The flow rates were varied between 0.005 ml/min and 0.4 ml/min, corresponding to
Reynolds numbers in the range of Re = ρ2UH/μ2 = O(0.01–1), where the fluid properties of the
oil phase were used and U is the average flow velocity in the channel. Although the two fluids we
use have different densities, the Bond numbers, representing the relative magnitudes of gravitational
and surface tension effects, are in the range of Bo = �ρgH2/γ = O(0.01–0.1). We observe that
the interface between the two fluids remains symmetric with respect to the top and bottom walls.
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FIG. 2. The spatiotemporal evolution of the unstable interface. (a) A bump, characterized by the length
scale ymax, develops near the exit junction where the two fluids are being separated. The red dot represents the
maximum point on the interface, and the dashed black line in the inset represents the mean interface location
ymean. A space-time diagram shows the progression of the interface profile during a drop shedding event. The
evolution of the magnitude of ymax in time and the horizontal location along the channel where it occurs is
tracked in panels (b) and (c), respectively. Different colors represent different drop shedding events within the
same experiment at a constant flow rate Q = 0.1 ml/min using fluid pair B. The bump approximately follows
an exponential growth in this case as shown in (b).

Therefore, inertial and gravitational effects are expected to be small within the channel flow. We
will later discuss the importance and the effect of gravity on the stability of the interface when
considering the exit tubing.

III. CHARACTERIZATION OF THE INSTABILITY

The instability manifests itself as a periodic growth of an interfacial bump near the exit junction
where the two fluids are separated. This bump grows in time and leads to drop shedding as shown in
Fig. 1(d). After a drop is pinched off, the interface relaxes back to its original position in the middle
of the channel and subsequently grows again. Drop pinch-off in microfluidic junctions is caused
by the pressure drop across a growing thread of immiscible liquid and is likely the same cause for
pinch-off in our observation [20]. But the focus of this work will be in deciphering the reason behind
the growth of the interfacial bump that precedes the drop pinch-off phenomenon.

The choice of the fluid pairs for the experiments and the choice of injecting both fluids at the
same flow rate were intentional. The goal was to achieve a perfectly symmetric flow, which turned
out to be unfeasible owing to the difficulty in exactly matching the viscosity of two immiscible
fluids. So we tried to closely match the viscosity of the oil phases in one of its fluid pairs (pairs
A and C in Table I) and intentionally made the second one have a higher viscosity contrast (pairs
B and D in Table I). We observed that for a given fluid pair with a certain viscosity contrast, the
flow became unstable above a critical flow rate and this critical flow rate decreased with increasing
viscosity contrast.

A series of experiments was performed to study the effect of channel geometry on the instability.
We varied the length Lm of the middle channel to test whether the instability is convective or absolute
[21–23] and observed that the instability is always localized at the exit junction [Fig. 1(e)]. The other
geometric features of the channel, including height, width, and exit angle, were also systematically
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FIG. 3. The drop shedding caused by the instability is periodic in time. (a) The red, green, and blue data
points represent the temporal evolution of the height of three different points along the interface near the bump.
The bump grows in time until it touches the wall on the opposite side of the channel. A drop is then shed
and the interface relaxes, leading to a sudden decrease in the interface location. The interface growth is then
repeated periodically in time. (b) The period of the drop shedding decreases as the flow rate increases, showing
a scaling τ ∼ 1/U . Varying the geometric features of the device affects the period. In the legend the reference
geometry corresponds to H = W = 0.75 mm, Lm = 12.5 mm, Le = 30 mm, and α = 45◦. All other cases shown
in the legend are variations of the reference geometry, where one of the geometric features is changed. Fluid
pair A was used for all of the closed data points, and hr was such that the flow was unstable for all of the flow
speeds studied. The open data points correspond to situations where the critical flow speed below which the
flow is stable, indicated by the dashed line of the same color, was within the window of flow speeds studied.
The blue open squares correspond to fluid pair B with hr = 0 mm, the red open triangles correspond to fluid
pair C with hr = 0 mm, and the black open circles correspond to fluid pair D with hr = 0 mm.

varied, and we found that the qualitative behavior of the instability and the evolution of the interface
[Fig. 1(d)] are independent of these parameters. However, the critical flow rate above which the
flow became unstable for a given fluid pair was found to be a function of the height and width of
the channel. Similar instability behavior was observed in a “fully symmetric” configuration where
the fluids entered from four inlets on the side and exited via two outlets perpendicular to the main
channel in the middle (see the Supplemental Material Fig. 2 [19]). This configuration placed the
interfacial stagnation point within the bulk of the fluid instead of at the wall, but seemed to have
little effect on the overall stability of the flow. In other words, apart from slightly shifting the critical
flow rate above which the flow becomes unstable, the geometric features of the channel did not play
a major role in stabilizing or destabilizing the flow system.

To characterize the growth of the instability, we track the evolution of the interface in time. We
define the bump height, ymax, as the vertical distance between the highest point on the interface and
the mean height of the interface, ymean, in the middle of the channel (Fig. 2). The bump grows in time
until it touches the opposite wall of the channel while the remainder of the interface in the channel
remains nearly fixed in time. The bump growth remains localized near the exit junction with the
peaks shown with red dots in Fig. 2(a) having a nearly fixed x coordinate before getting sheared off
towards the exit channel at later times [Fig. 2(c)]. The temporal evolution of the bump height ymax is
shown in Fig. 2(b) for multiple drop shedding events (different colors) within the same experiment
for a fixed flow rate of Q = 0.1 ml/min. Here, t = 0 s is the time at which the bump starts to grow
for each drop shedding event.

The temporal evolution of bump height follows an exponential growth [Fig. 2(b)], suggesting
a linear instability. However, we note that in most of our experiments the growth of the bump
is affected by the previously shed droplet that is still traveling through the tubing and has not
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yet reached the exit reservoir. The additional pressure perturbation caused by this traveling drop
often interferes with the growth of the bump and typically slows the growth, therefore deviating the
evolution from the exponential growth expected in an ideal setting.

The growth of the instability leads to periodic drop shedding. We characterize this periodicity
by measuring the dominant frequency and the period by taking the Fourier transform of the time
series of several different points along the interface near the bump. This dominant mode represents
the period of the drop shedding, τ , as shown in Fig. 3(a). The measured period scales inversely
with the average flow velocity, i.e., τ ∼ 1/U , where U = Q/A with A as the cross-sectional area
of the channel. Therefore, a faster flow leads to a smaller period. Varying the geometric features
also affects the period as shown in Fig. 3(b); for practical purposes, a flow was considered “stable”
if no drop shedding event took place within 1 h. For the cases where the flow was stable below a
critical flow speed within the window of flow speeds considered here, indicated by open symbols in
Fig. 3(b), the period seems to reach τ ∼ 1/U behavior as the flow speed is increased away from the
critical flow speed.

IV. NUMERICAL RESULTS

A. Simulations

We also conducted a 2D numerical study to better understand the nature of this instability (see the
Supplemental Material Secs. III and IV [19,24]). The numerical system had two fluids with a certain
viscosity contrast injected at the same flow rate through a symmetric channel and had the same exit
pressure, resembling the conditions of the experimental system. The channel geometry and the fluid
properties were also comparable to that from experiments (see the Supplemental Material Sec. III E
[19]).

The base state interface profiles for three different flow rates, for the case μ2/μ1 = 0.92, is
shown in Fig. 4(a). Notice that the interface becomes more deformed near the exit junction with
increasing flow rate. For a fixed viscosity ratio between the two fluids, increasing the flow rate
increases the difference in viscous pressure drop between the two phases. The higher difference in
pressure between the two fluids results in a more deformed interface. The fact that the deformations
get localized near the exit junction is a consequence of the interface trying to satisfy the pressure
jump condition with the prescribed background flow field in a finite width channel. Out of all the
base states shown in Fig. 4(a), only the largest flow rate is unstable. The spatiotemporal evolution
of the interface for this unstable case is plotted in Fig. 4(b), where the local growth of the interface,
the bump, is clearly visible. Figure 4(c) shows contours of the pressure field in the channel along
the length of the interface as the interface becomes unstable. Most of the changes in the pressure
field are localized near the exit junction as the interface grows from its already deformed base state;
the channel exit, which is further downstream, would be at the imposed identical pressure.

B. Global stability analysis

We study the stability of the base state solutions by calculating the linear 2D global modes and
assuming the temporal dependence

�(x, y; t ) = �b(x, y) + εδ�(x, y)e−iωt , (1)

where � represents any independent variable, �b is the base state solution, δ� is the eigenmode
with ε � 1, and ω = ωr + iωi is the eigenvalue. Figure 4(d) shows the growth rate of the instability,
the imaginary part of ω, as a function of flow rate Q. In the presence of a small viscosity difference
between the two fluids, the flow becomes globally unstable beyond a critical flow rate, and this in-
stability prevents perfect separation of the two fluids at the exit junction. Our numerical simulations
and stability analysis qualitatively reproduce the instability observed in the experiments, but cannot
be quantitative since the simulations are 2D and leave out the dynamics of the 3D interface.
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FIG. 4. Results from our numerical study with two fluids of viscosity ratio μ2/μ1 = 0.92. Fluid 1 is
below the interface, and fluid 2 is above the interface. Fluid properties used for this simulation are as
follows: μ1 = 5.6 mPa s, ρ1 = 1124 kg/m3, ρ2 = 1930 kg/m3, and γ = 37.0 mN/m. (a) Base (steady) state
interface profiles for three different flow rates. Only the largest flow rate, Q = 0.3 ml/min, is unstable.
(b) Spatiotemporal evolution of the interface for the unstable case Q = 0.3 ml/min showing the interface
deforming more from its base state over time. The local growth of the interface near the exit junction is similar
to that seen in experiments. (c) Evolution of the pressure field in the channel as the interface deforms and
becomes unstable for the case with Q = 0.3 ml/min. The solid black line is the interface. Note that most of
the changes occur locally near the exit junction. (d) The growth rate ωi of the linear instability as a function of
flow rate. The flow is globally unstable when ωi > 0.

V. MECHANISM OF THE INSTABILITY

The instability observed in the experiments, the numerical simulations, and stability analysis can
be explained using a pressure argument. We expect the liquid-liquid interface to be stable as long
as the contact angle remains between its measured static advancing and receding values [Fig. 1(c)].
The bounds on the contact angle translate to upper and lower bounds on the pressure difference
across the interface via the Laplace pressure jump condition,

−2γ cos θr,1

H
< p1 − p2 <

2γ cos θr,2

H
, (2)

in which θr,1 is the receding contact angle of fluid 1 on its side of the channel and θr,2 is the receding
contact angle of fluid 2 on its side of the channel [Fig. 1(c)]. To reduce confusion, we will always
label the invading fluid to be fluid 1 and therefore have to consider only an upper limit on the Laplace
pressure jump condition.
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FIG. 5. Instability phase diagram for the parallel two-phase flow. The closed data points are from our
experiments with all four fluid pairs, and the open data points are from the literature [17]. The invading fluid
(fluid 1) is always water in our experiments, and it is oil in the data from [17]. The solid line represents the
stability criterion [Eq. (5)]. Here unstable (red squares) corresponds to imperfect separation of the two fluids,
and stable (green circles) corresponds to perfect separation.

The pressure on either side of the interface depends on the viscous pressure drop through each
phase, which has contributions from flow through the PDMS exit channel and the exit tubing, and
the hydrostatic pressure from the relative height hr between the channel and the tip of the exit tube.
The pressure drop from one side of the interface at the exit junction to the reservoir can be written
as

pi − p0 =
(μiQiL

kA

)
e
+

(μiQiL

kA

)
t
+ ρighr,i, (3)

where k is the permeability, i.e., a geometric quantity that enters the description of the hydrodynamic
channel-flow resistance, subscript “e” corresponds to the exit channel, “t” corresponds to tube, and
i = 1, 2 represent fluids 1 and 2, respectively. Taking the difference between the viscous pressure
drops in the two phases for the most general case, we arrive at

p1 − p2 = (μ1Q1 − μ2Q2)
[( L

kA

)
e
+

( L

kA

)
t

]
+ g(ρ1hr,1 − ρ2hr,2). (4)

Here p1 − p2 is bounded by equation (2) where we take the upper bound to be the critical capillary
pressure �pc. For the flow to be unstable, p1 − p2 > �pc where �pc = 2γ (cos θ )/H . Since the
invading fluid is labeled as fluid 1, the θ in �pc is the receding contact angle of fluid 2 on its
side of the channel, namely, θr,2. Applying this condition and rearranging the terms, we arrive at a
dimensionless inequality that must be met for the instability to occur,

1 − μ2Q2

μ1Q1
+ � Bo

Ca H

(
hr,1 − ρ2hr,2

ρ1

)
>

2� cos(θr,2)

Ca
, (5)

where Ca = μ1U1/γ is the capillary number, Bo = ρ1gH2/γ is the Bond number, and � =
[H3( 12Le

H4 + 8Lt

πR4
t
)]−1 is a dimensionless resistance through the flow system. Here, we use the per-

meabilities ke = H2/12 and kt = R2
t /8. Based on this instability criterion, all of our experimental

observations can be mapped onto a phase diagram that is shown in Fig. 5. The theoretical prediction
agrees reasonably well with our observations, and the discrepancies can be attributed to extra
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sources of dissipation in the real system, such as adhered droplets and thin films along the channel
and the tube-to-PDMS connections. In Fig. 5 we also include some of the data from the literature
[17] (open data points), which further confirm the validity of our instability criterion across various
experimental conditions.

A direct consequence of the mechanism of the instability is that even small differences in
viscosity between the two fluids can lead to instability under certain conditions. Considering that the
two fluids are injected at the same flow rate Q and that hr,1 = hr,2 = 0, the criterion for instability
becomes �Ca > 2� cos(θr,2) where �Ca = (μ1 − μ2)U1/γ . Here the critical capillary number
beyond which the flow becomes unstable is only a function of geometrical parameters of the system
and the contact angle. An analogous stability criteria is derived in the Supplemental Material for the
2D case explored in the simulations (see the Supplemental Material Sec. IV C [19]) to show that
the results from the simulations can also be explained by this instability mechanism. Note that the
instability here arises as a result of the finite nature of the flow system amplifying the asymmetry
introduced by the viscosity contrast, whereas viscous stratification alone can be responsible for an
instability in infinite two-phase flows [10]. The modified criterion predicts that even a moderate
viscosity difference of 0.1 mPa s will lead to an unstable flow in our system with fluid pair C
when the flow rate is approximately above 0.1 ml/min (Re ≈0.8) which is in agreement with our
experiments. Additionally, if the two fluids have different densities, the flow could become unstable
when either hr,1 or hr,2 is nonzero and finite even if the fluids have exactly the same viscosity.
Considering the properties of our fluid pair A with μ1 = μ2, Q1 = Q2, and hr,1 = 0, the flow will
be unstable independent of the value of the flow rate as long as hr,2 < −5 mm, i.e., more than 5 mm
below the level of the PDMS device. These scenarios highlight the fact that the stability of this
parallel two-phase flow is extremely sensitive to the various parameters in the flow system.

VI. CONCLUSION

The symmetry breaking of a parallel two-phase flow in a finite channel manifested itself as an
instability that prevented complete separation of the two fluids. Our experiments and numerical sim-
ulations showed that this instability always takes place near the exit junction of the channel where
an interfacial bump forms and results in drop shedding. The drop shedding behavior was found to
be periodic in nature, and the period scales as τ ∼ 1/U . The instability occurs when the mismatch
in viscous pressure drop along the two phases exceeds a critical Laplace pressure jump. Even small
differences in viscosity between the two fluids can lead to an instability if the injected flow rates
are high enough. In the future, a complete theoretical analysis could be done at the exit junction of
the interface to further understand the growth of the instability. Nevertheless, the discussed stability
criterion and the sensitive nature of the instability will serve as important guidelines for controlling
parallel two-phase flows, thereby making it more tractable for applications.
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