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In this study, the disturbance energy budget is analyzed on the derived disturbance
energy norm in hypersonic and high-enthalpy boundary layers with thermal-chemical
nonequilibrium (TCNE) effects. The disturbance growth rate is decomposed to quanti-
tatively evaluate the contribution from various classified terms. Hypersonic flat-plate flows
are investigated with various free-stream Mach numbers, free-stream temperatures, and
wall temperatures. The linear and nonlinear evolutions of disturbances are predicted using
linear stability theory and parabolized stability equations. The results show that in the
first-mode region, the disturbance growth rates are determined by the production term
(destabilizing) and the viscous term (stabilizing), while the former nearly offset the latter.
In the second-mode region, the viscous term decreases to the minimum, resulting in the
dominance of the second mode. The disturbance of the TCNE source term has a stabilizing
effect on the second mode, but at most it reduces the growth rate by 6% in a Mach 10
adiabatic case with the highest free-stream temperature of 900 K. The production term is
mainly responsible for the second-mode growth rate difference between the TCNE flow
and calorically perfect gas flow. TCNE changes the disturbance characteristics mainly
through the mean flow modification. In the oblique-mode breakdown case, the intensive
energy transfer between the selected modes and their harmonic waves is found to occur
where they interact strongly with the mean flow.

DOI: 10.1103/PhysRevFluids.7.033901

I. INTRODUCTION

Accurate prediction and effective control of the hypersonic boundary layer transition from
laminar to turbulence are crucial to the design of thermal protection systems and engine intake
of high-speed vehicles. However, this problem is still unresolved because of the high nonlinearity
and sensitivity in the transition process [1]. The flow transition is even more complicated in
high-enthalpy boundary layers due to the existence of “high-temperature (real-gas) effects” [2].
Specifically, high temperature excites the vibrational and electronic energies within molecules
and causes chemical dissociation and even ionization, all of which make the calorically per-
fect gas (CPG) assumption invalid. Instead, new physical models are required to describe the
thermal-chemical nonequilibrium (TCNE) processes [3,4]. These high-temperature effects in-
evitably influence the boundary layer transition process.

A number of numerical techniques have been developed to study flow instabilities and transition
in high-enthalpy boundary layers, including the linear stability theory (LST) [5], parabolized
stability equations (PSEs) [6,7], secondary instability theory (SIT) [8], direct numerical simulation
(DNS) [9,10], and so on. It was found that the second mode became destabilized at a higher
frequency as the TCNE boundary layer became cooler and thinner. On the other hand, chemistry

*Corresponding author: fs-dem@mail.tsinghua.edu.cn

2469-990X/2022/7(3)/033901(25) 033901-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7540-3395
https://orcid.org/0000-0003-2052-7435
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.033901&domain=pdf&date_stamp=2022-03-08
https://doi.org/10.1103/PhysRevFluids.7.033901


XIANLIANG CHEN, LIANG WANG, AND SONG FU

in the disturbances had a stabilizing or destabilizing effect depending on whether a reaction was
endothermic or exothermic [11]. The use of Damköhler numbers, the ratio of the thermal-chemical
timescales to the flow timescales, of the mean flow and the disturbance helps evaluate the effects
of these two paths [12]. In addition to the second mode, the unstable supersonic mode, which
appears downstream of the second-mode region, received much attention recently. Mortensen [13]
found that the supersonic mode had a larger growth rate than the second mode on cones with large
bluntness. Based on these linear results, the eN method can be applied for the transition prediction.
Miró Miró et al. [14] compared different physical models in detail to see their impact on the
transition onset. In the nonlinear stage of the disturbance evolution, the fundamental resonance of
the second mode was found to be dominant over the subharmonic one. The TCNE effects resulted
in a higher maximum secondary growth rate and a larger corresponding spanwise wave number
[7]. Besides, the chemical reactions were found not to influence the secondary growth directly, but
indirectly affect through the change of the linear instability [15]. It can be seen that a great amount
of work has been carried out to determine the most unstable modes and their growth rates. They
are essential to identifying the dominant transition mechanisms in high-enthalpy boundary layers.
Nevertheless, further research is required on the physical structures and energy transfer mechanisms
in the disturbance evolution. Specifically, there are different terms in the governing equation for
high-enthalpy flows, describing fluid convection, viscous dissipation, pressure diffusion, energy
relaxation, species production/consumption, etc. It remains unclear the contributions of these terms
in flow transition.

Energy budget analyses are effective ways to quantitatively evaluate the contributions from
different terms and to investigate the energy transfer mechanisms in the disturbance growth. To
derive the energy budget equation, disturbance energy requires to be defined in advance. For
incompressible boundary layers, the disturbance energy is commonly taken as its kinetic energy,
leading to the well-known Reynolds-Orr equation [16]. However, the definition is not unique for
compressible, especially hypersonic boundary layers with the density and temperature disturbances
of large amplitudes. Chu [17] derived a form of energy norm for CPG to include the contribution
from all the disturbances of velocities, pressure (acoustic wave), and entropy (heat release). It
was proved that in this form, the pressure-related transfer term in the energy-norm equation was
eliminated so that the energy norm was monotonically nonincreasing in time in the absence of
energy/force sources and other external energy inputs. In addition, this form was proven to lead to a
self-adjoint system [18]. Because of its mathematical and physical foundations, this form of energy
norm was widely adopted in the analyses for CPG of transient growth [19] and energy transfer
mechanisms [20,21]. The resulting energy budget equation enabled a growth-rate decomposition
to evaluate the contribution from each term in the governing equation to the disturbance growth
[21,22].

In this work, the energy budget and transfer analyses are performed on the disturbance evolution,
as predicted by LST and PSE, in hypersonic and high-enthalpy boundary layers with TCNE effects.
The contributions from various terms in the governing equation to the disturbance growth are
evaluated, and the energy transfer mechanisms are analyzed. This article is organized as follows.
Section II provides the physical models as well as the formulations of PSE and energy-budget
analyses. Section III gives the results of a benchmark case of Mach 10 flow over a flat plate. The
cases with different mean flow parameters are studied in Sec. IV, and the nonlinear instability results
are discussed in Sec. V. The work is summarized in Sec. VI.

II. PROBLEM FORMULATIONS

A. Governing equations

Ionization processes are usually negligible at a temperature lower than 9000 K. A good approx-
imation of the five species model of air (N2, O2, NO, N, O) is considered in this work [2]. Extra
conservation equations of species mass and vibrational energy are needed as compared with that
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for CPG flows [3]. The two-temperature model by Park [23] is employed, which consists of a
translational/rotational temperature T and a vibrational temperature Tv . To provide the equations in
the nondimensional form, the following relations of nondimensionalization are employed:

x = x∗

L∗ , t = t∗U ∗
∞

L∗ , u = u∗

U ∗∞
, ρ = ρ∗

ρ∗∞
, T = T ∗

T ∗∞
, Tv = T ∗

v

T ∗∞
,

p = p∗

ρ∗∞U ∗2∞
, Rs = T ∗

∞R∗
s

U ∗2∞
, cp,tr = c∗

p,tr

c∗
p,tr,∞

, hs = h∗
s

c∗
p,tr,∞T ∗∞

, ev = e∗
v

c∗
p,tr,∞T ∗∞

,

μ = μ∗

μ∗∞
, κtr = κ∗

tr

κ∗∞
, κv = κ∗

v

κ∗∞
, Ds = D∗

s

D∗∞
,

ω̇s = L∗

ρ∗∞U ∗∞
ω̇∗

s , Qt−v = L∗

ρ∗∞U ∗∞

Q∗
t−v

c∗
p,tr,∞T ∗∞

,

(1)

where the superscript ∗ denotes dimensional quantities, the subscript ∞ free-stream values, and L
the reference length. The governing equations for TCNE flows are written as follows:

(i) Continuity equation:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2a)

(ii) Momentum equation:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ ·
[

μ

ReL
(∇u + ∇uT)

]
− 2

3
∇

(
μ

ReL
∇ · u

)
(2b)

(iii) Translational/rotational energy equation:

ρcp,tr

(
∂T

∂t
+ u · ∇T

)
− Ec∞

(
∂ p

∂t
+ u · ∇p

)
= Ec∞μ

ReL

[
∇u : (∇u + ∇uT) − 2

3
(∇ · u)2

]
+ ∇ ·

( κtr

ReLPr∞
∇T

)
+

∑
m

( μcp,tr,m

ReLSc∞
∇T · ∇Ym

)
− Qt−v −

∑
m

(hmω̇m) (2c)

(iv) Species continuity equation (s ∈ [2, 5]):

ρ

(
∂Ys

∂t
+ u · ∇Ys

)
= ∇ ·

(
μ

ReLSc∞
∇Ys

)
+ ω̇s (2d)

(v) Vibrational energy equation:

ρcvib

(
∂Tv

∂t
+ u · ∇Tv

)
= ∇ ·

(
κv

ReLPr∞
∇Tv

)
−

∑
m

(
μcvib,m

ReLSc∞
∇Tv · ∇Ym

)
+ Qt−v (2e)

(vi) Equation of state:

p = ρT
∑

m

(YmRm). (2f)

Here u = [u, v,w]T is the velocity vector, Rs the gas constant, Ys = ρs/ρ the mass fraction, h
and ev the specific enthalpy and vibrational energy, cp,tr the translational-rotational component
of the specific heat, and cvib = ∂ev/∂Tv the vibrational component. The transport properties, the
mixture viscosity μ, thermal conductivity κtr , κv , and mass diffusion coefficient Ds, are calculated
through the relations by Gupta et al. [24], which were shown to be as accurate as of the solution
of the first-order Chapman-Enskog approximation in the absence of ions [25]. The collision cross
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sections between molecules are evaluated from the curve fits by Capitelli et al. [26]. The source
terms Qt−v and ω̇s are introduced to describe the energy relaxation process [27] and the finite-rate
chemical reactions [28]. The chemical equilibrium constants are obtained from Gibbs energy fitted
by McBride et al. [29]. For full details of the adopted TCNE models, one can refer to Ref. [30]. The
dimensionless parameters in Eq. (2) are defined as follows:

Ma∞ = U ∗
∞

a∗
f ,∞

= U ∗
∞√

γ f ,∞R∗∞T ∗∞
, Ec∞ = U ∗2

∞
c∗

p,tr,∞T ∗∞
= (γ f ,∞ − 1)Ma2

∞,

ReL = Re∞L∗ = ρ∗
∞U ∗

∞L∗

μ∗∞
, Pr∞ = μ∗

∞c∗
p,∞

κ∗∞
, Sc∞ = μ∗

∞
ρ∗∞D∗∞

,

(3)

where a f is the frozen speed of sound, and γ f = cp,tr/cv,tr the frozen specific heat ratio.
The ten basic variables in Eq. (2) are q = [ρ, u, v,w, T,Ys, Tv], with s ∈ [2, 5]. Equation (2) can

be expressed in an operator form as

N (q) = S(q), (4)

where the operator N includes unsteady, convection and diffusion terms, and S represents the
TCNE source term. The combination of ρ and four Ys is chosen instead of five ρs because once Ys

and Tv are fixed as constants, Eq. (2) reduces to the same form as that for CPG flows [N (q) = 0].

B. Mean flow solver

A laminar mean flow field is needed in advance to perform stability analyses. Here the mean flow
is obtained by solving the parabolic boundary layer equation when viscous interactions are negli-
gible. The Mangler-Levy-Lees transformation is introduced to obtain a rectangular computational
domain [31]: ⎧⎪⎨⎪⎩

dξ = ρeUeμer2 j
0 dx

dη = Uer jρ√
ξ

dy
where j =

{
0 for two-dimensional flows

1 for axisymmetric flows
. (5)

Here r is the radius. Due to the presence of TCNE source terms and transverse curvature (for
cones), the boundary layer profile is not self-similar, so a streamwise marching procedure is
employed [32]. Chebyshev collocation point method and the third-order finite-difference scheme are
utilized, respectively, for discretization in the wall-normal and streamwise directions. The implicit
Newtonian iteration is employed for local convergence. The wall boundary conditions adopted are
no-slip, adiabatic or isothermal, and noncatalytic [(∂Ys/∂n)w = 0] for all species.

C. Parabolized stability equations

The linear and nonlinear PSE solvers for TCNE flows were described and verified in the
authors’ previous works [7,33] and are thus briefly described below. The quantity q is decom-
posed into a steady laminar part q̄ and a perturbed part q̃, where q̄ = [ρ̄, Ū , V̄ ,W̄ , T̄ , Ȳs, T̄v] and
q̃ = [̃ρ, ũ, ṽ, w̃, T̃ , ỹs, T̃v]. The governing equation for the disturbance is derived through

N (q̄ + q̃) − N (q̄) = S(q̄ + q̃) − S(q̄), (6)

which can be expanded into a matrix form:

F
∂ q̃
∂t

+ A
∂ q̃
∂x

+ B
∂ q̃
∂y

+ C
∂ q̃
∂z

+ D q̃

= Hxx
∂ 2̃q
∂x2

+ Hyy
∂ 2̃q
∂y2

+ Hzz
∂ 2̃q
∂z2

+ Hxy
∂ 2̃q
∂x∂y

+ Hyz
∂ 2̃q
∂y∂z

+ Hxz
∂ 2̃q
∂x∂z

+ N. (7)
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Here the first 11 terms are the linear terms of q̃. F , A, B, C , D , and H are all 10 × 10 matrices, only
related to the mean flow q̄. N represents the nonlinear term, containing the square and higher-order
terms of q̃. Different from that in incompressible flows where Ninc = −ũ · ∇ũ, N here contains
much more terms and is also related to q̄ as there are products of more than three variables in Eq. (2).
The software MAPLE is utilized to ensure the correctness of these complex matrix expressions. The
following Fourier decomposition is introduced for the disturbance and nonlinear term:

q̃(x, y, z, t ) =
∑
m,n

q̂mn(x, y) exp

[
i

(∫ x

x0

αmn(x̄)dx̄ + nβz − mωt

)]
,

(8)
N(x, y, z, t ) =

∑
m,n

N̂mn(x, y) exp [i(nβz − mωt )],

where β and ω are the specified spanwise wave number and circular frequency, αmn = αr,mn + iαi,mn

the complex streamwise wave number, q̂mn the mode shape function. N̂mn contains all the possible
nonlinear effects on mode (m, n) from other modes. Here the notation (m, n) denotes the mode
with frequency of mω and spanwise wave number and nβ, respectively. As a result, the parabolized
governing equation is written as

Âmn
∂ q̂mn

∂x
= −D̂mnq̂mn − B̂mn

∂ q̂mn

∂y
− Ĉmn

∂2q̂mn

∂y2
+ N̂mn exp

(
−i

∫
αmndx

)
, (9)

which enables a procedure of streamwise marching. The rearranged matrices Âmn, B̂mn, Ĉmn, and
D̂mn are functions of αmn, mω, nβ, and the matrices in Eq. (7). N̂mn is the nonlinear forcing term. A
phase speed is defined as cr,mn = mω/αr,mn. The circular frequency ω is related to the disturbance
frequency f ∗ through

ω

ReL
= F = 2π f ∗

Re∞U ∗∞
, (10)

where F is the global nondimensional frequency. The global spanwise wave number B = β/ReL

is similarly defined. If N̂mn is ignored, the equation for each mode is decoupled from each other
to give the linear PSE analyses. In LST, the nonparallel terms related to the streamwise derivatives
are further neglected, leading to an eigenvalue problem. Note that in PSE the growth rate σ is not
unique and depends on a specific quantity ϕ̂:

σϕ = −αi + iRe

(
1

ϕ̂

∂ϕ̂

∂x

)
. (11)

In this paper, ϕ̂ is selected to be the disturbance energy
√

Ê to be defined in Sec. II D.
The disturbance boundary conditions at the wall are

û = v̂ = ŵ = T̂ = T̂v = ŷs = 0 at y = 0. (12)

However, for steady modes (m = 0), the wall-boundary conditions are the same as those of the
laminar flow. In the far field, a nonreflective far-field boundary is employed [34]. The wall-normal
discretization employs Chebyshev collocation point method, while the streamwise discretization
employs a backward finite-difference scheme.

D. Energy norm and budget equations

With the solutions of Eq. (9) in hand, the energy transfer mechanisms can be further ana-
lyzed for modal disturbances. The energy norm Ẽ needs to include the contribution from every
component of q̃:

2Ẽ = ‖̃q‖E = q̃HM q̃, (13)

033901-5



XIANLIANG CHEN, LIANG WANG, AND SONG FU

where M is a symmetric positive-definite matrix. The energy norm of CPG, derived in Refs. [17,19],
takes the form

q̃CPG = [̃ρ, ũ, ṽ, w̃, T̃ ]T, M CPG = diag

([
RT̄

ρ̄
, ρ̄, ρ̄, ρ̄,

ρ̄c̄v

Ec∞T̄

])
. (14)

As a result, the disturbance energy satisfies the following linearized equation on a uniform basic
flow without external sources:

∂ẼCPG

∂t
≡ 1

2

∂

∂t

(
ρ̄ |̃u|2 + RT̄

ρ̄
ρ̃2 + ρ̄c̄v

Ec∞T̄
T̃ 2

)
= −∇ · ( p̃̃u) + ∇ · (̃u · τ̃) + ∇ ·

(
κ̄

Ec∞T̄
T̃ ∇T̃

)
− τ̃ : ∇ũ − κ̄

Ec∞T̄
∇T̃ · ∇T̃ , (15)

where the coordinates are moving with fluids, and the disturbances of μ and κ are not considered.
Equation (15) can be integrated over some space region �. As a result, the first three terms on the
right-hand side is eliminated using Gauss theorem of divergence, if one of the following properties
are satisfied [12]: (1) the disturbances are periodic in space and (2) the velocity and temperature
disturbances tend to zero at the wall or in the far field. Consequently, the integration of Eq. (15) is
written as

∂

∂t

∫
�

ẼCPG d� = −
∫

�

τ̃ : ∇ũ d� −
∫

�

κ̄

Ec∞T̄
∇T̃ · ∇T̃ d� � 0, (16)

which shows that the energy defined in Eq. (14) for CPG is monotonically nonincreasing in time in
the absence of energy/force sources and other external energy inputs.

The physical meaning of ẼCPG is seen more easily in terms of the disturbance pressure p̃ and
entropy s̃, instead of ρ̃ and T̃ :

ẼCPG = 1

2

[
ρ̄ |̃u|2 + ρ̄ā2

(
p̃

γ p̄

)2

+ γ − 1

γ
p̄

(
s̃

Ec∞R

)2]
, (17)

where a is the speed of sound. The first two terms on the right-hand side are recognized as
the total energy of sound waves (̃s = 0) in acoustics, with the second term resulting from the
pressure work through compression and expansion. The third term represents the energy from heat
exchange. It is known that a disturbance on a uniform basic flow can be decomposed into a vorticity
component (transverse velocities only), an entropy component (isobaric), as well as fast and slow
acoustic components (isentropic). George and Sujith [18] showed that in the form of Eq. (14), the
eigenvectors of these components were orthogonal to each other, making the system self-adjoint.

For TCNE flows, the same procedure as that for CPG is implemented to derive the expression of
the energy norm. The disturbance equations [see Eq. (7)] on a uniform basic flow are combined
together so that the pressure-related terms appear only in the form of ∇ · ( p̃̃u). The combined
equation is written as

1

2

∂

∂t

(
ρ̄ |̃u|2 +

∑
s

T̄ Rs

ρ̄s
ρ̃2

s + ρ̄c̄v,tr

Ec∞T̄
T̃ 2 + ρ̄c̄vib

Ec∞T̄
T̃ 2

v

)

= −∇ · ( p̃̃u) +
(

T̄ Rs

ρ̄s
ρ̃s − ēs

Ec∞T̄
T̃

)˜̇ωs + Q̃t−v

Ec∞T̄

(
T̃v − T̃

) + vis., (18)

where vis. represents the complicated viscous terms. After a spatial integration, the pressure-work
term ∇ · ( p̃̃u) is eliminated, while the second and third terms on the right-hand side are the energy
exchange by the TCNE source terms. The resulting form of the energy norm for TCNE flows is
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written as

2Ẽ = ρ̄ |̃u|2︸ ︷︷ ︸
EU

+ T̄ R

ρ̄
ρ̃2 + ρ̄T̄ Ỹ

H
RY Ỹ + 2T̄

∑
m

(Rm − R1 )̃ρỸm︸ ︷︷ ︸
ED

+ ρ̄c̄v,tr

Ec∞T̄
T̃ 2 + ρ̄c̄vib

Ec∞T̄
T̃ 2

v︸ ︷︷ ︸
ET

= q̃HM q̃,

(19)
where the notations of EU, ED, and ET are introduced for later discussion in Sec. III. Here ρ̃s has
been replaced with ρ̃ and Ỹs, and the expressions of the matrices are

RY = R1

⎡⎢⎢⎢⎣
1111

1111

1111

1111

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
R2

R3

R4

R5

⎤⎥⎥⎥⎦ Ỹ =

⎡⎢⎢⎢⎣
Y2

Y3

Y4

Y5

⎤⎥⎥⎥⎦, (20)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̄ R
ρ̄

(Rm − R1)T̄

ρ̄

ρ̄

ρ̄

ρ̄c̄v,tr

Ec∞T̄
(Rs − R1)T̄ ρ̄T̄ RY,sm

ρ̄c̄vib

Ec∞T̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
s, m ∈ [2, 5]. (21)

Although M is not diagonal, it is positive definite, meeting the requirement of energy-norm
definition.

The governing equation of the disturbance energy in boundary layer flows are obtained through
left-multiplying q̃HMF −1 to Eq. (7). As the terms in the equation are numerous, they are classified
on their physical properties. Matrix A (also B and C) contains the terms related to convection,
pressure work, and viscous transport:

A = ŪF + Ap-s + Avis. (22)

The elements in D are from the pressure-work, production, viscous transportation, and TCNE source
terms, respectively:

D = Dp-s + Dprod + Dvis + D src, Dprod = Dnrm + Dnpara. (23)

Here Dprod is further divided into two parts: the first part Dnrm is related only to the wall-normal
derivatives of basic flow (∂ q̄/∂y); the second part Dnpara comes from the nonparallelism of the
boundary layer flow (∂ q̄/∂x and V̄ ). The elements in H are all from the viscous transportation.

The classified governing equation is written as

DẼ

Dt
= L + N , L = P + � + � + V + S, (24)

where L and N represent the energy transfer through linear and nonlinear mechanisms, respectively.
The specific expressions of these terms are the following:

(i) Material derivative of the disturbance energy:

DẼ

Dt
= ∂Ẽ

∂t
+ Ū

∂Ẽ

∂x
= ∂Ẽ

∂t
+ Ū q̃HM

∂ q̃
∂x

+ 1

2
Ū q̃H ∂M

∂x
q̃ (25a)
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(ii) Work done by the pressure disturbance:

� = −1

2
q̃HMF −1

(
Ap-s ∂ q̃

∂x
+ Bp-s ∂ q̃

∂y
+ Cp-s ∂ q̃

∂z
+ Dp-sq̃

)
+ c.c. = −Re (̃u† · ∇ p̃︸ ︷︷ ︸

DF

+ p̃†∇ · ũ)︸ ︷︷ ︸
DL

(25b)
where † and c.c. denote complex conjugate. DF and DL represent the energy transfer due to pressure
diffusion and dilatation.

(iii) Production term (wall-normal derivatives only):

P = −1

2
q̃HMF −1Dnrmq̃ + c.c. = −Re

PU︷ ︸︸ ︷[
ρ̄ũ†ṽ

∂Ū

∂y
+

PT︷ ︸︸ ︷
ρ̄

Ec∞T̄
ṽ

(
c̄v,trT̃

† ∂T̄

∂y
+ c̄vibT̃ †

v

∂T̄v

∂y

)
+

(
R

ρ̄
ρ̃† + (Rm − R1)Ỹ †

m

)̃
vT̄

∂ρ̄

∂y
+ (

(Rm − R1 )̃ρ† + ρ̄RY,smỸ †
s

)̃
vT̄

∂Ȳm

∂y

]
︸ ︷︷ ︸

PD

(25c)

The production term represents the energy transfer from the mean flow to the disturbance. Note that
the first term of P , PU, comes from the Reynolds stress. Besides, there is energy transfer due to the
gradients of the temperature, density, and species mass fractions of the basic flow (PT and PD).

(iv) Production term due to nonparallelism:

� = −1

2
q̃H

(
MF −1Dnparaq̃ + V̄ M

∂ q̃
∂y

− 1

2
Ū

∂M
∂x

q̃
)

+ c.c. (25d)

(v) Viscous diffusion and dissipation:

V = 1

2
q̃HMF −1

(
−Avis ∂ q̃

∂x
− Bvis ∂ q̃

∂y
− Cvis ∂ q̃

∂z
− Dvisq̃ + Hxx

∂ 2̃q
∂x2

+ Hxy
∂ 2̃q
∂x∂y

+ Hyy
∂ 2̃q
∂y2

+ Hxz
∂ 2̃q
∂x∂z

+ Hyz
∂ 2̃q
∂y∂z

)
+ c.c. = VU + VT + VY. (25e)

The viscous term contains three parts: (1) VU, the terms related to velocity gradients; (2) VT, the
terms related to the gradients of T and Tv; and (3) VY, the terms related to the gradients of Ys. These
three parts represent the diffusion and dissipation of momentum, energy, and mass, respectively.

(vi) Energy transfer due to the disturbance of TCNE source terms:

S = − 1
2 q̃HMF −1D srcq̃ + c.c. (25f)

Here D src contains the derivatives of ω̇s and Qt−v towards ρ, T , Tv , and Ys.
(vii) Energy transfer by nonlinear terms:

N = 1
2 q̃HMF −1N + c.c. (25g)

Note that L represents the energy exchange between the mean flow and the disturbance, while N
primarily represents the energy exchange among different Fourier modes of the disturbance. As it
is related to q̄, N also contains the interactions among the mean flow and more than two modes.

To study the energy transfer of a single mode, q̃ is replaced with Eq. (8) for a single mode to give

Ẽ = 1

2
q̂HM q̂ exp

(
−2

∫
αi dx

)
≡ Ê exp

(
−2

∫
αi dx

)
. (26)

Here the subscripts m and n are omitted for clarity. The other terms in Eq. (24) are transformed
similarly. Special care is posed on the material derivative term, which is rewritten as

DẼ

Dt
= Ū

(
∂Ê

∂x
− 2αiÊ

)
exp

(
−2

∫
αidx

)
= 2σEŪ Ê exp

(
−2

∫
αidx

)
, (27)
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TABLE I. Free-stream parameters for the Mach 10 TCNE flow over a flat plate.

Ma∞ Re∞ (/m) T ∗
∞ (K) p∗

∞ (Pa) U ∗
∞ (m/s) YN2,∞ T ∗

w (K)

10 6.6 × 106 350 3582 3750 0.78 Adiabatic

where σE is the growth rate based on
√

Ê . [see Eq. (11)]. Take σE = σE (x) and integrate Eq. (27)
along the wall-normal direction, which gives

∫ ∞

0

DẼ

Dt
dy = 2σE exp

(
−2

∫
αidx

)∫ ∞

0
Ū Ê dy ≡ σE�. (28)

Therefore, if the wall-normal integration is also made on the right-hand side of Eq. (24), then the
direct contribution from each term is obtained to the growth rate. For example, the contribution from
the linear mechanism L is

σL =
∫ ∞

0
L� dy, L� = L

�
, (29)

(c)

(a) (b)

FIG. 1. Overall view of the LST results for the Mach 10 flat-plate flow: (a) N factor curves of two-
dimensional waves, (b) mean flow profiles where the envelop of N reaches 10, and (c) shape functions of
the second-mode disturbance with f ∗ = 43 kHz.
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(a) (b)

FIG. 2. Energy norm of the second-mode disturbance corresponding to the disturbance in Fig. 1(c):
(a) energy amplitude, (b) ratio in amplitude of each component.

where L� is defined as the contribution density of L to the growth rate. Consequently, the growth
rate of the disturbance energy σE is divided into several parts based on Eq. (25):

σE = σL + σN , σL = σP + σ� + σ� + σV + σS . (30)

The similarly defined growth-rate decomposition was also applied in Refs. [20,22] for the instability
analyses in CPG flows.

III. BENCHMARK CASE RESULTS

First, the basic characteristics of the disturbance energy transfer in the TCNE boundary layers are
analyzed from linear instability results. The test case is a hypersonic and high-enthalpy flow over a
flat plate, with the parameters, as listed in Table I, adopted from the classic reference by Malik and
Anderson [5] using equilibrium-gas models and also Hudson et al. [35] using TCNE models.

An overall view of the LST results is provided in Fig. 1. The two-dimensional (β = 0) second
mode has the largest growth rate and is thus responsible for the N factor curves in Fig. 1(a). The
envelope of N reaches 10 at x∗ = 11.5 m, which is evaluated as the transition onset in this case,
and the corresponding disturbance frequency is 43 kHz. The laminar boundary-layer profiles at
x∗ = 11.5 m are plotted in Fig. 1(b). The vibrational temperature Tv is nearly identical to T as an
indication of local thermal equilibrium. Around half of the oxygen is dissociated near the wall.
Figure 1(c) plots the shape functions of the second mode with the frequency f ∗ of 43 kHz at x∗ =
6.1 m where the growth rate is the highest. All the variables are normalized using the pressure
disturbance at the wall. The velocity component v̂ has comparative amplitude with |û|, and their
amplitude peaks are both located near the wall. In comparison, |T̂ | and |Ŷs| have peaks around the
critical layer (where Ū = cr). At y∗ < 8 mm, the phase angles of all the variables are near 0 except
for v̂, whose phase is around 90◦ larger. The phase difference is key to the energy transfer process,
as discussed later.

As defined in Eq. (19), the energy norm of the second-mode disturbance related to Fig. 1(c)
is plotted in Fig. 2. Different from the shape functions, the peak value of Ê around the critical
layer is over 12 times larger than those in the near-wall region. This peak is formed owing to the
large amplitudes of ET and ED there. Figure 2(b) gives the contribution from each component by
percentage. It is seen that over half of Ê comes from the kinetic energy (EU) at 3 mm < y∗ < 16 mm
and y∗ > 29 mm, though the amplitude is relatively low.

The profiles of different terms in Eq. (24) are shown in Fig. 3 for the second-mode disturbance. In
the LST calculation, the flow is assumed to be locally parallel, so � = 0. The component of P [see
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(a) (b)

(d)(c)

FIG. 3. Amplitude of different terms in the energy budget equation for the second mode: (a) production
term P , (b) viscous term V , (c) pressure work term �, and (d) TCNE source term S.

Eq. (25c)] takes the form of Re(C̄ϕ̂†v̂), where C̄ is a mean flow coefficient. Therefore, the sign of P
is directly related to the phase difference between v̂ and ϕ̂. If the phase difference is exactly ±90◦,
then Re(ϕ̂†v̂) = 0. Consequently, P is relatively small at y∗ < 8 mm. Only one peak is located near
the critical layer in PT and PD, as also noted in Ref. [36]. In comparison, PU is mildly distributed
throughout the boundary layer and makes most of the contribution to P at y∗ < 0.02 m. For the
viscous term V , the contribution from the mass diffusion and dissipation (VY) is negligible. V acts as
an energy sink in most regions with the largest contribution from VT. VU mainly contributes near the
wall where the velocity gradients are large. VT also has a large amplitude close to the wall, despite
the adiabatic boundary condition. This local extreme is owing to κtr∂

2T̂ /∂y2. It is observed that �

transfers the energy from the middle region of the boundary layer towards the wall. The pressure
diffusion process (DF) consumes energy in most regions, while the pressure dilatation process (DL)
positively contributes to the energy growth in the near-wall region. This positive contribution comes
from the pressure work through fluid compression, and is associated with the acoustic nature of the
second mode between the wall and the sonic line [37]. Besides, this dilatational pressure work can
have considerable influence on the surface heat flux in the transitional region [38]. The TCNE source
term S acts as an energy sink. This is consistent with the findings by [11,39] that the disturbances
of TCNE source terms (endothermic reactions here) are stabilizing. Nevertheless, S is an order of
magnitude smaller than the other terms in this case, which indicates that the effect of S on the energy
growth is negligible. The same conclusion was drawn in [12] through an analysis on the disturbance
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FIG. 4. Decomposition of the disturbance growth rate for the two-dimensional waves with f ∗ = 43 kHz.

Damköthler number. The present calculation provides more quantitative evidence from the energy’s
perspective.

Next, the contribution of each physical process to the disturbance growth rate is quantified
using Eq. (30), as shown in Fig. 4. The disturbance gains energy from the mean flow through
the production term P to support the growth of the first and second modes. On the other hand,
the disturbance is stabilized by the viscous term V throughout the computational domain. This
stabilization effect is the strongest in the most upstream location and continuously weakens down-
stream until x∗ = 4.8 m. |σV | then begins to increase and remains nearly constant downstream of
the second-mode region. It is widely known that the second-mode instability has an inviscid nature,
where the inviscid production term P reaches its maximum. Furthermore, the results here show that
the stabilizing effect of the viscous term is also minimal in the second-mode region, which reinforces
the dominance of the second-mode instability. The overall contribution from the pressure work is
offset through the integration in the wall-normal direction [see Eq. (18)], so σ� ≈ 0 in most of the
streamwise regions. It has a slightly stabilizing effect on the second mode, where the disturbance
amplitude undergoes rapid amplification. σS is an order of magnitude smaller than the other terms.

Referring to Eq. (29), σP is the wall-normal integration of the contribution density P� . The
contours of P� and the other terms are displayed in Fig. 5. Here the y coordinate is normalized
using the local nominal thickness δ, where Ū (δ) = 0.99, for clarity because the boundary layer
thickness increases with x. As discussed in Fig. 3, the production term concentrates around the
critical layer. This is consistent with the observation by Franko [36]. There is a region with negative
P� at x∗ < 2 m because of negative PT and PD. This means that the energy is transferred back to the
mean flow, whereas σP is still positive (see Fig. 4). On the contrary, V� has a small concentration
of positive values at x∗ < 2 m, owing to the thermal diffusion, as shown in Fig. 5(b). Around the
second-mode region, |V�| decreases sharply near the critical layer, and its local peak in the wall-
normal direction shifts to the near-wall region. The role of �� is to transfer the energy from the
middle of the boundary layer towards the wall in the second-mode region. In the first-mode region,
�� concentrates mainly around the boundary-layer edge. S� primarily consumes the disturbance
energy near the wall. The most affected region by S� is the second-mode region. At last, the contours
of L� , the sum of the above four terms, are plotted in Fig. 5(e). It is observed that �� and V� are
almost offset in the near-wall region, indicating an equilibrium between the diffusion and dissipation
there. As a result, L� distributes only near the critical layer, where the disturbance energy gains the
largest growth.

The nonparallelism of the boundary layer flow, as neglected in LST, is investigated below by
using linear PSE. As shown in Fig. 6(a), due to nonparallelism, σ� has a small positive contribution
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(a) (b)

(c) (d)

PΓ VΓ

ΠΓ SΓ

(e)
LΓ

FIG. 5. Contours of the contribution density [see Eq. (29)] to the growth rate in the x-y plane: (a) production
term P� , (b) viscous term V� , (c) pressure work term �� , (d) TCNE source term S� , and (e) sum of the former
four L� .
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FIG. 6. Disturbance evolution from PSE: (a) decomposed growth rate and (b) contribution density contours
of the nonparallelism term �.
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(a) (b)

(c)

FIG. 7. Growth rate contours (−α∗
i , 1/m) with different frequencies and spanwise wave numbers (a) as

well as the growth-rate decomposition at the frequencies corresponding to the most unstable second (b) and
first modes (c).

to the growth rate at x∗ < 4 m, which is consistent with the previous finding that nonparallelism was
slightly destabilizing and had more influence on the first mode [40]. Further downstream, σ� tends
to zero and thus the growth rate from PSE is quite close to that from LST. The spatial distribution of
�� is depicted in Fig. 6(b). The peaks and valleys in the wall-normal direction are all located near
the critical layer. The maximum value of |��| in the first-mode region is even larger than |P�|, but
the local net contribution σ� is small with the consideration of a wall-normal integration. Again, the
analysis of the energy budget provides a way to quantitatively evaluate the effects of nonparallelism
and to find out its spatial distribution.

The above discussions are limited to two-dimensional disturbances. It is known that the most
unstable second mode is two-dimensional, while the most amplified first mode is three-dimensional,
as presented in the growth rate contours in Fig. 7(a) at x∗ = 6.1 m. The frequencies of the most un-
stable first and second modes are 18 kHz and 44 kHz, respectively. The growth-rate decompositions
are calculated at these two frequencies for the most unstable first and second modes, to study the
contributions of different terms for three-dimensional disturbances. For both modes, the stabilizing
effect of V strengthens with the increase of β. In comparison, σP peaks at β∗ of 73 /m in the
first-mode case, causing the most unstable wave three-dimensional.

IV. CASES WITH DIFFERENT MEAN FLOW PARAMETERS

In this section, a parametric study is performed in terms of gas models, wall temperature Tw,
free-stream Mach number Ma∞ and free-stream temperature T∞.

First, the benchmark case is recalculated using the CPG assumption for comparison. The same
air composition and transport models (instead of Sutherland’s law) as those in the TCNE case
are employed for consistency. The comparisons of the mean flow profiles and two-dimensional
disturbance growth rate by LST are plotted in Fig. 8 at x∗ of 6.1 m. Due to the energy relaxation
and chemical reactions, the wall-temperature for the TCNE case is 2140 K lower, so the density in
the boundary layer rises and thus the nominal thickness decreases by 21%, compared to that in the
CPG case. Consequently, the second mode is destabilized at a higher frequency in the TCNE case,
as shown in Fig. 8. The growth rate decomposition is performed to identify the term responsible
for this discrepancy. Figure 9 provides the distribution of σP and σV of the disturbance in the
TCNE and CPG cases at x∗ of 6.1 m. The contribution from σ� and σS is negligible and thus not
shown. As can be seen, the two curves of σV are close to each other within the frequency range,
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(a) (b)

FIG. 8. (a) Mean flow profiles and (b) disturbance growth rate with different frequencies at x∗ of 6.1 m for
the Mach 10 flat-plate flow case in the TCNE and CPG flows.

though the difference tends to be slightly larger with frequency increase. The main difference in the
second-mode growth rate comes from σP . Again, it is concluded that compared with the CPG flow,
TCNE changes the disturbance characteristics mainly through the mean flow modification.

Afterward, Tw in Table I is reduced to 1050 K to study the effects of wall cooling in the TCNE
flow. As compared with that in Fig. 1, the location where the envelope of N reaches 10, moves
upstream to x∗ = 7.9 m at the disturbance frequency of 59 kHz. The laminar profiles at x∗ = 7.9 m
are depicted in Fig. 10(a). The maximum temperature in the boundary layer is less than 2000 K,
which inhibits the excitation of vibrational energy and chemical dissociations. As a result, the
thermal process is in nonequilibrium, and the species fractions remain almost chemically frozen.
Figure 10(b) gives the streamwise distribution of the decomposed growth rates [see Eq. (30)]. Due
to wall cooling, the first mode is suppressed to be stable, while the second mode is destabilized.
The comparison with that in Fig. 4 shows that σP is more affected by wall cooling than σV ,
mainly responsible for the stabilizing and destabilizing effects on modes. σV has similar streamwise
distribution as that in the adiabatic-wall case and also reaches its maximum (minimum in absolute
value) in the second-mode region.

The contribution densities of different terms are depicted in Fig. 11. The production term still
concentrates near the critical layer though the mean flow gradients of temperature are large near the

FIG. 9. Decomposition of the disturbance growth rate in the TCNE and CPG cases at x∗ of 6.1 m.
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(a) (b)

FIG. 10. (a) Mean flow profiles at N envelope of 10 and (b) distribution of the decomposed growth rate for
the Mach 10 flat-plate flow case with cold wall.

wall with the isothermal boundary condition. There appears a positive region within 0.2 < y/δ <

0.6 around the second-mode region, as compared with that in Fig. 5. This contribution comes from
the term PU. The distribution patterns of V� , �� , and S� are all similar to those in the adiabatic-wall
case. Again, �� and V� almost offsets in the near wall region for the second mode. These are some
universal characteristics of energy transfer mechanisms in terms of Tw variation.

Two more cases with Ma∞ of 5 and 15 are investigated. The free-stream parameters T ∗
∞, p∗

∞, and
U ∗

∞ remain the same, and both temperature boundary conditions are adiabatic. Figure 12 provides
the laminar flow profiles at N of 10 (x∗ = 13.8 m and 26.8 m for the two cases), as well as the
decomposed disturbance growth rates at the corresponding frequencies ( f ∗ = 33 kHz and 28 kHz).
At Ma∞ of 5, the temperature in the boundary layer is too low to trigger any chemical reactions.
The vibrational energy is excited, and the difference in T ∗ and T ∗

v at the wall is only 90 K. In
the first-mode region (x∗ < 1 m), both σP and σV have large amplitudes. Further downstream,
|σV | continuously decreases and reaches its minimum in the second-mode region. In contrast, σP
reaches its maximum there to allow a strong growth of disturbance. It is observed that σP has large
values both in the first- and second-mode regions. It is the different amplitude of σV that leads
to the significant difference in the growth rates between the first and second modes. Besides, σ�

has a damping effect in the second-mode region and reduces (−αi) by 15% at most. As shown
in Fig. 12(c), when Ma∞ reaches to 15, both T ∗ and T ∗

v are over 5000 K, and thus the oxygen

(a) (b)

(c) (d)

PΓ VΓ

ΠΓ SΓ

FIG. 11. Contours of the contribution density to the growth rate in the x-y plane with cold wall: (a) produc-
tion term P� , (b) viscous term V� , (c) pressure work term �� , and (d) TCNE source term S� .
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(d)(c)

(a) (b)

FIG. 12. Mean flow profiles at N envelope of 10 (a), (c) and the distribution of the decomposed growth rate
(b, d) for the Mach 5 (a), (b) and Mach 15 (c), (d) flat-plate flow cases.

is almost dissociated within the boundary layer. At such a high Mach number, the second-mode
growth is reduced due to strong compressibility [37], so it takes quite a long distance for the N factor
envelope to reach 10. Although the vibrational energy and the monatomic species are highly excited,
the contribution from σS is still small. It has a stabilizing effect of up to 5% on the second-mode
growth rate.

The free-stream temperature is changed in the Mach 10 adiabatic-wall case to study the effects
of TCNE. Two more cases with T ∗

∞ of 600 K and 900 K are considered with Re∞ = 6.6 × 106 /m.
These high free-stream temperatures can be obtained for flows behind an oblique head shock or
from a high-enthalpy reservoir [41]. The laminar temperature and species profiles at x∗ of 10 m
are compared in Fig. 13(a). Higher T ∗

∞ leads to severer high-temperature effects. The mass fraction
of the nitrogen atom exceeds 10% near the wall for the case with T ∗

∞ of 900 K. The boundary
layer becomes thinner and cooler (in terms of the nondimensional temperature) with the increase of
T ∗

∞. Consequently, the maximum growth rate of the second mode increases and the corresponding
streamwise location moves downstream, as shown in Fig. 13(b). Here the frequency F = 1.1 × 10−5

is set for all three cases. The streamwise distribution of σS is also plotted for comparison. Due to the
damping effects of S , the second-mode growth rates are reduced by as much as 5% and 6% in the
cases with T ∗

∞ of 600 K and 900 K, respectively. Nevertheless, σS is not yet the dominant component
in the second-mode growth even with T ∗

∞ of 900 K. The contribution densities of S are depicted in
Fig. 14 at two different T ∗

∞. S� contributes mainly near the wall in the second-mode region for both
cases, whose patterns bear a strong resemblance to that in Fig. 5 and are thus insensitive to T ∗

∞.
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FIG. 13. Mean flow profiles at x∗ = 10 m (a) and the distributions of decomposed growth rate (b) for the
Mach 10 flat-plate flow cases with different T ∗

∞.

V. NONLINEAR INSTABILITY RESULTS

The nonlinear process of the disturbance evolution is investigated in this section. An oblique-
mode breakdown case is simulated here as one of the most important transition mechanisms in
hypersonic boundary layers [42,43]. The Mach 10 flat-plate flow case with T ∗

∞ = 600 K is adopted.
The disturbance frequency F of the oblique mode (1, 1) is 1.1 × 10−5, the same as that in Fig. 13,
and the corresponding maximum N factor is around 10. The global spanwise wave number B of
mode (1, 1) is selected to be 6 × 10−6 to cause large growth of the streamwise vortex mode (0, 2)
and other modes. The initial disturbance amplitude of mode (1, 1), A0

(1,1), affects the relative strength
of mode (0, 2), where the mode amplitudes are measured by the root mean square of the streamwise
velocity disturbance ũrms. Here A0

(1,1) is set to 0.05% at the numerical inlet (x∗ = 4 m) to simulate a
natural transition condition. A0

(1,1) will be varied later to see its effects.
The streamwise amplitude development of the selected waves is displayed in Fig. 15(a). The

evolution of mode (1, 1) from linear PSE is also plotted for reference. The amplitude discrepancy
of mode (1, 1) between the linear and nonlinear calculations starts at x∗ of 7.3 m with the amplitude
of 0.07. The amplitude evolution of the two- and three-dimensional waves (2, 0) and (2, 2) is nearly
identical throughout the domain. They are almost in saturation downstream x∗ of 7.5 m. In contrast,
the streamwise-vortex mode (0, 2) grows rapidly and exceeds (1, 1) in amplitude at x∗ of 7.1 m,
becoming dominant. Mode (0, 4) also experiences a dramatic amplification, as comparable to mode
(0, 2) at x∗ = 8 m.

The growth-rate decomposition in Eq. (30) is employed to distinguish the contribution from the
linear and nonlinear mechanisms. The streamwise distribution of σL and σN , along with their sum,

2 5 8 11 14

 x  (m)

0.0

0.5

1.0

1.5

 y/
2nd mode

*

-50 0 50

2 5 8 11 14

 x  (m)

2nd mode

*

-50 0 50(a) (b)
SΓ SΓ

FIG. 14. Contribution density contours of the TCNE source term S� to the growth rate in the x-y plane for
the Mach 10 flat-plate flow cases with T ∗

∞ of (a) 600 K and (b) 900 K.
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(d)(c)

(a) (b)

FIG. 15. Streamwise distributions of the disturbance modes’ amplitudes (a) and decomposed growth rates
[(b) for mode (1, 1), (c) for mode (2, 0), and (d) for mode (0, 2)] in the oblique breakdown case. The legends
in (c) and (d) are the same as that in (b).

−αi, are all plotted in Figs. 15(b)–15(d) for modes (1, 1), (2, 0), and (0, 2), respectively. In the LPSE
calculation, the nonlinear terms are neglected except at the inlet to initiate modes (2, 0) and (0, 2).
For mode (1, 1), σL obtained from NPSE is even larger than that from LPSE downstream x∗ of 6.5 m.
However, N starts to strongly reduce the mode’s growth when the harmonic waves attain relatively
large amplitudes. This indicates that the oblique second mode obtains more energy from the mean
flow and transfers it to the harmonic waves. Further downstream, strong oscillations are observed in
the growth-rate curves. These oscillations were also observed in DNS calculations [44,45], which
are mainly due to the highly inflectional flow profiles and complex nonlinear interactions when the
harmonics are in large amplitudes. A further decomposition on σL shows that the oscillations are
mainly caused by the production term, while the viscous term slightly changes. This shows that
energy transfers rapidly back and forth among mode (1, 1), the mean flow, and other modes. Mode
(2, 0) in the LPSE case first experiences damping upstream x∗ of 5.3 m and then amplification. In
comparison, σL of mode (2, 0) obtained from NPSE is lower than that from LPSE, and maintains at
around −2.5 /m downstream x∗ of 4.5 m. Thus, mode (2, 0) is more stable in terms of the basic flow
due to the distortion by nonlinear interactions. However, mode (2, 0) from NPSE still has a relatively
large growth rate (−αi) owing to the energy transfer mainly from mode (1, 1) upstream of 7 m. The
growth rate curves intensively oscillate downstream x∗ of 7.4 m. The mechanisms are different for
mode (0, 2). σN of mode (0, 2) continuously decreases downstream x∗ of 4.3 m. Instead, the linear
mechanism is mainly responsible for the rapid amplification of mode (0, 2); in other words, mode
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(a)

(b)

(c)
PΓ, LPSE
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FIG. 16. Contribution density contours of the production term in (a) LPSE and (b) NPSE calculations, as
well as (c) the disturbance energy profiles for mode (0, 2).

(0, 2) obtains energy mainly from the mean flow, rather than directly from mode (1, 1). This is
consistent with the findings by Schmid and Henningson [46] for incompressible boundary layers.
Zhang [47] also showed that the large amplitude of mode (0, 2) in hypersonic boundary layers was
the result of the characteristics of its linear operator. Furthermore, σL obtained from NPSE is seen
to be much larger than that from LPSE. This difference primarily comes from the production term,
which means that the energy transfer from the mean flow to mode (0, 2) is strengthened at the
presence of mode (1, 1) through the distortion of mode (0, 2) profile.

Figures 16(a) and 16(b) depict the spatial distribution of P� of mode (0, 2) in the LPSE and
NPSE cases. P� from NPSE increases heavily in the middle and near the edge of the boundary
layer, which is attributed to PU and PT, respectively. The disturbance energy profiles obtained
from NPSE are plotted in Fig. 16(c) at different streamwise locations where nonlinear effects are
significant. Two sharp peaks appear around the edge and in the middle of the boundary layer,
respectively, strengthening the energy exchange between fluids in these two regions. More energy
concentrates around the edge than in the middle as the profiles develop further downstream. The
spatial distribution of mode (0, 2) discussed above might change with the vortex strength variation.
This is checked by comparing the results with another two NPSE cases with A0

(1,1) of 0.5% and
0.005%, respectively, as shown in Fig. 17. The initial amplitude of mode (0, 2) rises by a factor of
100 when A0

(1,1) increases by 10, because its generation is due to nonlinear interaction. Nevertheless,
the following growth of mode (0, 2) downstream is dominated by the linear mechanism in all the
three cases with different A0

(1,1). Besides, the amplitudes of mode (0, 2) in the three cases all surpass
mode (1, 1) further downstream. The contours of P� of mode (0, 2) with different A0

(1,1) are plotted
in Figs. 17(b) and 17(c) in the same style as Fig. 16(b). P� from NPSE primarily distributes in the
middle and near the edge of the boundary layer in both cases, which is shown to be insensitive to
the vortex strength variation.

In the case with A0
(1,1) of 0.05%, the contours of L� and N� from NPSE for three typical modes,

(1, 1), (2, 0), and (4, 4), are depicted in Fig. 18. The critical layer labeled is based on the phase
speed of mode (1, 1). L� concentrates between the critical layer and the boundary-layer edge
when the disturbance is exponentially amplified, as discussed in Sec. III. When the nonlinear term
becomes non-negligible, L� gradually covers the entire boundary layer, including the near-wall
region. This is attributed to the growth of the streamwise vortex modes, which distorted the mean
flow profile. Besides, there are positive zones outside the laminar boundary layer downstream x∗ of
7.5 m, increasing the transitional boundary-layer thickness. It is interesting to note that the contours
of N� bear strong resemblances to those of L� downstream x∗ of 7.3 m throughout the boundary
layer, except for the opposite sign. This indicates that the intensive energy transfer among mode
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FIG. 17. (a) Streamwise distribution of the disturbance modes’ amplitudes for cases with different A0
(1,1),

as well as the contribution density contours of the production term in the NPSE cases of (b) A0
(1,1) = 0.5% and

(c) A0
(1,1) of 0.005%.

(1, 1) and others occurs where mode (1, 1) interacts strongly with the mean flow. This correlation
between L� and N� also exists for other unsteady modes, such as modes (2, 0) and (4, 4) whose
contours of L� and N� are plotted in Figs. 18(c)–18(f). It is concluded that when these unsteady
modes are saturated in amplitudes, their primary role is to transfer the energy from their harmonic
waves (or the mean flow) where they obtain the energy from the mean flow (or their harmonic
waves).

Finally, the effect of the TCNE source term, S , is studied in the disturbance nonlinear evolution
with A0

(1,1) of 0.05%. Figure 19 plots the streamwise distribution of σS for the three selected modes.
In the LPSE case, S is slightly stabilizing for all three modes. For modes (1, 1) and (2, 0), σS
in the NPSE case follows the trace from LPSE downstream until x∗ of 6.7 m, and then begins
to oscillate. σS of mode (2, 0) is several times larger than that in the LPSE case downstream of
saturation. However, the amplitude is still an order of magnitude smaller than the other terms. The
streamwise-vortex mode (0, 2) is least affected by S in both the LPSE and NPSE cases. In the NPSE
case, however, S is slightly destabilizing on mode (0, 2) though the growth rate is in the order of
0.01 /m.

FIG. 18. Contribution density contours of the linear and nonlinear mechanisms, L� and N� , for modes (1,
1) (a), (b), (2, 0) (c), (d), and (4, 4) (e), (f).
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FIG. 19. Streamwise distribution of the TCNE source term σS for modes (1, 1), (2, 0), and (0, 2) in the
LPSE and NPSE cases.

VI. CONCLUSIONS

In this study, the expression of the disturbance energy norm for TCNE flows is derived (see
Sec. II D). According to it, we classify the terms in the governing equation of the disturbance
energy: the production term is related to the energy exchange with the mean flow, the viscous
term the dissipation and diffusion, the pressure work term the dilatation and diffusion, the TCNE
source term the energy relaxation and species production/consumption, and the nonlinear term
the energy exchange among different modes and the mean flow. Using both LST and PSE, the
disturbance energy transfer mechanisms are explored in high-enthalpy boundary layers. In addition,
the disturbance growth rate is decomposed to evaluate the contribution from each classified term
[see Eq. (30)].

In the first-mode region, the growth rates are determined by the production term (destabilizing)
and the viscous term (stabilizing), while the former nearly offset the latter. In the second-mode
region, the viscous term decreases to the minimum, resulting in the dominance of the second mode.
From the results with various spanwise wave numbers of disturbances, the production term causes
the most unstable first-mode wave three-dimensional (see Fig. 7). The disturbance of the TCNE
source term has a stabilizing effect on the second mode. It reduces the growth rate by at most
6% in the case of a Mach 10 adiabatic flat-plate flow with the highest free-stream temperature of
900 K. The pressure work term transfers energy from the middle of the boundary layer towards
the wall. This positive contribution near the wall is strong and mainly comes from the dilatational
pressure work, which is associated with the acoustic nature of the second mode between the wall
and the sonic line. The contribution densities to the growth rate [see Eq. (29)] of both the production
and viscous terms maximize near the critical layer. Moreover, their spatial distributions are similar
among the cases with various T ∗

∞, Ma∞, and T ∗
w , which reflects the universal characteristics of the

energy transfer mechanisms. Compared with the results under the CPG assumption, the second
mode is destabilized at a higher frequency in the TCNE case. The production term is mainly
responsible for this difference in the second-mode growth rate, while the contribution from the
disturbance of the TCNE source term is negligible. Therefore, TCNE changes the disturbance
characteristics mainly through the mean flow modification.

The energy transfer mechanisms in the nonlinear disturbance evolution are studied through
an oblique-mode breakdown case with initially a pair of oblique waves (1, ±1). It is the linear
mechanism, not the nonlinear one, that dominates the rapid amplification of the streamwise vortex
mode (0, 2). In other words, the energy gain of mode (0, 2) comes much more from the mean flow
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than from mode (1, 1). Nevertheless, mode (1, 1) is found to strengthen the energy transfer from
the mean flow to mode (0, 2) by the distortion of mode (0, 2) profile. This increase of the linear
contribution density L� primarily locates near the edge and in the middle of the boundary layer. This
spatial distribution is shown to be insensitive to the vortex strength variation. When the harmonic
waves are in comparable amplitudes with mode (1, 1), L� gradually covers the whole boundary
layer. For the unsteady modes, the contours of N� bear strong resemblances to those of L� with
an opposite sign. This indicates that the intensive energy transfer between these modes and their
harmonic waves occurs where they interact strongly with the mean flow. The streamwise-vortex
mode is least affected by the TCNE source term S . Although the stabilizing effect of S is several
times stronger in the nonlinear regions, it is still an order of magnitude smaller than those of the
production and viscous terms.
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