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Terminal velocities of a deformed Leidenfrost liquid:
Experiments and self-propulsion model
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We derive a model entirely from first principles to explain the Leidenfrost self-
propulsion phenomenon in a quantitative way, where the deformable nature of the liquid
has been taken into account. Experiments show a good agreement with our model, suggest-
ing this model supersedes the limited scaling analysis previously given in the literature.
Our annular ring design enables liquid droplets to reach high terminal velocities, up to
0.42 ± 0.04 m/s, which is potentially beneficial to energy harvesting and flow chemistry
applications.
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I. INTRODUCTION

On a ratcheted surface, a Leidenfrost droplet (solid) will self-propel as first reported by Linke
et al. in 2006 [1]. Since then, the origin for the phenomenon has been debated [2–5], and there has
not yet been a first-principles model description that neither matches nor explains experimental
observations. The viscous mechanism due to a pressure-driven vapor flow appears to be the
dominant phenomenon behind droplet self-propulsion [4,6]. Some quantitative understanding of
the motion has also been obtained by neglecting liquid deformation by replacing the liquids with
rigid Leidenfrost solids (e.g., dry ice) [7]. Although this latter study provides a 3D description of the
flow field, the error between the experimental data and model predictions is still subject to further
interpretation. Ultimately, the development of a liquid droplet model is still lacking, affecting the
progress of potential applications of these Leidenfrost devices such as their use as heat engines to
generate electricity [8,9], or to drive fluid mixing in flow chemistry applications.

In this paper, we propose an analytical model that can be generally used to describe the self-
propulsion phenomenon. Herein, the liquid deformation at the presence of ratchets will be taken into
account. A detailed force analysis in response to the deformation has been characterized in order to
find a quantitative description of the driving force. Our model supersedes the limited scaling analysis
already conducted in the literature [4] by revealing how the ratchet geometry influences the driving
force, showing the individual influence of droplet size, ratchet design, operating temperature, and
liquid deformation on the dynamics of the motion. This enables optimization of the experimental
conditions for any given ratchet design. This annular design (Fig. 1) enables large liquid slugs to
self-propel at higher velocities than simpler linear ratcheted surfaces, producing much larger kinetic
energies. This quantitative model will guide the construction of Leidenfrost devices for use as heat
engines to generate electricity [8,9], or for flow chemistry applications where low-volume liquid
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FIG. 1. (a) At 20 °C, no liquid flow is observed on a ratcheted ring; (b) At 400 °C, a vapor film forms
beneath the liquid that suspends it; interaction of the vapor with the textured surface then creates motion with
a terminal velocity of ∼0.42 ± 0.04 m/s (Supplementary video 1; see Ref. [10]).

droplets containing reactants can be collided at high speeds. Our Supplementary video visualizes
the concept (see Ref. [10]).

II. ANALYTICAL MODEL

To derive a model, we first consider a single groove with a width of λ and height of ε (Fig. 2),
where a Cartesian coordinate system is set up with x parallel to the slope of the ratchet and y
perpendicular to the slope. In this cross-sectional view, point C represents the lowest point of the
liquid within each ratchet, dividing the deformation into two parts. Arc AC follows the slope of the
ratchet, and is responsible for producing the directed vapor flow that drags the droplet. Arc BC hangs
over the vertical step of the ratchet; the evaporated vapor here mainly flows downwards, then into
and out of the plane of the diagram [1,4]. C1 and C2 are used to describe the resulting proportions
of AC and BC, since point C can fall anywhere between A and B.

The pressure-driven vapor flow along the line AC behaves as a Poiseuille flow [1,4,11,12]. It is
assumed to be incompressible with constant density ρv and viscosity μ, and the velocity distribution
of the vapor flow is described by the Navier-Stokes equations at steady state (considering just the
x direction). The shear stress between the vapor and droplet induces droplet motion. This stress is
obtained from the velocity distribution between the lower edge of the droplet and the surface of
the ratchet. We can derive an expression for this velocity distribution ux by solving the continuity
and Navier-Stokes equations using the no-slip boundary condition [13], allowing us to then write
the shear stress as shown in Eq. (1) (see Supplemental Material for all steps of this derivation in

FIG. 2. Sketch of a single ratchet period. The droplet sits a distance of h0 above the ratchet. The droplet
has two deformation angles of β and θ , and a deformation depth of ϕ. The ratchet has a period of λ and depth
of ε. The ratchet period varies from the inner edge (λi) to the outer edge (λo), which is a consequence of the
ring design (see Fig. 1), while the ratchet height (ε) is fixed.
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Ref. [10]):

Ff ,i = −μ
dux

dy
Ai,1

∣∣∣∣
y=ho

= −1

2
Ai,1

(
∂P

∂x
− ρvgx

)
ho − μv

ho
Ai,1. (1)

Here, Ai,1 is the effective contact area of the deformed liquid lying on the slope of a single
ratchet, ∂P/∂x is the pressure gradient that induces the vapor flow along the slope AC, gravitational
acceleration is influenced by the gradient of the ratchet (gx = g sin α), and v is the droplet’s velocity.
Ai,1 itself can be expressed as wi,1C1λ/ cos β where wi,1 is the width of the droplet into and out of
the plane shown in Fig. 2.

The overpressure 
P is generated by the weight force [14]. We can assume the pressure around
point C is close to atmospheric pressure because of the exposure to the atmosphere in the spacious
ratchet corners. Figure 2 shows the directions of the different forces acting on the droplet. Fi,1 and
Fi,2 are the forces exerted perpendicular to the lines AC and BC, respectively, as the vapor is expelled
from the droplet. The weight force acting downward due to gravity is simply mig. We find that the
driving force (i.e., shear stress, Ff ,i) becomes negligible when compared to the much larger weight
force. For example, a droplet of 30 μL weighs ∼300 μN while its net driving force is only ∼17 μN
[2]. This means the deformation is mainly caused by gravity [14] since the shear force caused by the
viscosity has little effect. By applying a force balance analysis, we then derive an expression for the
pressure gradient [15] (also see Supplemental Material for more detailed analysis, Eqs. (S6)–(S10)
in Ref. [10]):

dP

dx
≈ − mig sin θ

sin (θ + β )
(wi,1C1λ

cos β

)( C1λ
cos β

) . (2)

The total horizontal driving force is the sum of the individual driving forces generated within each
ratchet period that the droplet covers (Ff = ∑

Ff ,i cos β). By further considering the deformation
geometry given in Fig. 2 [16], we obtain the following first-principles model for the driving force:

Ff = gho

2

(
M

λ
+ ρvA

sin α sin θ

sin (θ + β )

)
cos β − μA

ho

sin θ cos β

sin (θ + β )
v. (3)

Here, M is the total mass of the droplet and A is the total area of the ratchets covered by the droplet
as viewed from above. This area (A) can either be measured experimentally or approximated for
large droplets by assuming that the ratio of the volume to height V/HL will remain constant [17,18].
This expression shows that the driving force is dependent upon the liquid (vapor) properties (A, M,
θ , β, ρv , ho, and μ), ratchet geometric parameters (λ and α), gravity (g), and the droplet’s velocity
v (which itself is influenced by the aforementioned parameters).

If we assume the side view of the deformed droplet is triangular (so that ABC is triangular; see
Fig. S1(a) in the Supplemental Material) and l1 and l2 represent the lengths of the deformed sides
AC and BC, respectively, according to the law of sines it follows that l1/ sin θ = λ/sin(π−[θ + β]),
meaning sin θ/sin(θ + β ) = l1/λ � 1. Hence, the second term in Eq. (3) has a maximum value of
ρvA sin α, where ρv is 0.42–0.46kg/m3 for surface temperatures of 300–400 ◦C. We then find that
the first term in Eq. (3) is around 4 orders of magnitude larger than the second term, considering
ρL is ∼ 103 kg/m3 at its boiling point, HL ∼ 4–5 mm, and λ ∼ 1 mm. Therefore, Eq. (3) can be
simplified to Eq. (4):

Ff = Mgho cos β

2λ
− μAl1

hoλ
v cos β. (4)

Now we consider the velocity term in Eq. (4). When the surface temperature is ∼400 ºC, the
droplet’s temperature is ∼100 ºC, and the temperature of the vapor flow is taken to be an average of
the two: 250 ºC. Then, the vapor viscosity μ is ∼ 1.82 × 10−5 Pa s, the vapor thickness ho is ∼100
μm [1,2], and the ratchet period λ is ∼1 mm. Experimentally, the ultimate droplet velocity v is no
more than 0.4 m/s.
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For a 30-μL droplet with corresponding contact area (A) of ∼15.4 mm2, the driving force due
to the mass term in Eq. (19) is 15 μN, whereas the velocity term is only 0.8 μN. Similarly, for
a larger droplet of 580 μL (with A ∼ 135.6 mm2), experimentally the mass term in Eq. (19) is
270 μN, whereas the velocity term is 7.4 μN. Accordingly, if the velocity term in Eq. (4) is
neglected, the same scaled expression of the model analysis for a rigid solid is obtained [4], this
time derived from first principles:

Ff = Mgho cos β

2λ
. (5)

To avoid measuring ho experimentally, we can predict it using a simple mass balance. First, the
mass lost from the droplet over time is equal to the heat-transfer rate across the vapor film (described
by Fourier’s law [2]) divided by the latent heat [Eq. (6)]. Here, the assumption of β ∼ α is applied
[as supported by the deformation analysis below; see Eqs. (13) and (14)]. Second, the mass lost
from the droplet is also equal and opposite to the vapor mass flow rate, which is given by Eq. (7)
below:

dmi,1

dt
= − κ

LL


T

ho
Ai,1, (6)

dmi,1

dt
= −ρvuxwi,1ho. (7)

Here, κ is the thermal conductivity of the vapor, LL is the latent heat of evaporation, 
T is the
temperature difference between the base of the droplet and the ratchet surface, and ux is defined as
the weighted-average flow velocity expressed as

ux = 1

ho

∫ ho

0
uxdy. (8)

Combining Eqs. (6)–(8) will give the thickness of the vapor flow (where we have assumed that
the “vy/ho” term is negligible as discussed above):

h0 = C(T )1/4

(
Aisin2θ

misin2(θ + β ) + ρvAiλ sin α sin θsin(θ + β )

)1/4

λ1/2. (9)

Here, C(T ) describes the temperature-dependent properties of the vapor flow and the gravita-
tional acceleration constant (=12μκ
T/ρvgLL). The same simplifying assumptions made to Eq. (3)
can also be applied to Eq. (9), leading to

ho = C(T )1/4

(
Asin2θ

Msin2(θ + β )

)1/4

λ1/2. (10)

For large droplets with a constant droplet height, the mass can be simply approximated by the
density multiplied by the volume (M = ρLHLA). Substituting Eq. (10) into Eq. (5) gives the driving
force:

Ff = Mg

2
λ−1/2C(T )1/4

(
A

M

)1/4( sin θcos2β

sin (θ + β )

)1/2

. (11)

The corresponding expression for droplet acceleration is simply obtained from Newton’s second
law (i.e., F = Ma):

a = g

2
λ−1/2C(T )1/4

(
A

M

)1/4( sin θcos2β

sin (θ + β )

)1/2

. (12)
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Assuming that the curve AC closely follows the shape of the slope of the ratchet, we have ϕ ∼
C1ε according to similar triangles, from which we arrive at a slightly alternative expression for the
driving force and acceleration shown in Eqs. (13) and (14):

Ff = C1
1/2 Mg

2
C(T )1/4

(
A

M

)1/4( 1

λ2 + ε2

)1/4

, (13)

a = C1
1/2 g

2
C(T )1/4

(
A

M

)1/4( 1

λ2 + ε2

)1/4

. (14)

Now we consider the droplet deformation. Surface tension acts along the curved liquid-vapor
interface and produces a force of ∫ γ dl acting parallel to the interface. Here, γ represents the
surface tension and dl refers to a small segment of the length of the curved liquid-vapor interface.
The horizontal component of the force generated along arc BC will be balanced by the horizontal
component of the surface tension force generated along arc AC. There will also be a net vertical
component to this force, which can be defined with respect to either arc AC or arc BC. For example,
the vertical force component of the surface tension acting along the arc BC can be expressed as
∫ sin θγ dl2, where l2 refers to the length along the liquid-vapor interface between points B and
C. Assuming that the surface tension is constant, this integrates to give a vertical force of γ ϕ

(where ϕ = ∫ sin θdl2 based on simple trigonometry; see Fig. 2). If we assume that the BC arc
is approximately circular, then we can calculate the effective cross-sectional area of the droplet
as 0.5π (C2λ)2 (i.e., approximately half the area of a circle—πr2, where r = C2λ). By dividing
the vertical force component by this area, we can calculate the Laplace pressure induced by the
surface tension. This Laplace pressure will then oppose the droplet’s hydrostatic pressure (ρLgHL)
and dynamic pressure (1/2ρLv2) according to Eq. (15). From this equation, we can predict the
values of C2 and C1 (= 1 − C2) without the need for any empirical observation.

ρLgHL + ρLv2

2
= γ ϕ

0.5π (C2λ)2 . (15)

For example, the droplet velocity is v ∼ 0–0.4 m/s according to our experiments. Thus, for
a ratchet with λ ∼ 1 mm and ε ∼ 0.5 mm (where HL = 5 mm [17,18] and ϕ ∼ C1ε as already
mentioned), it is predicted that C1 ∼ 0.46–0.62. The deformed proportion then increases to C1 ∼
0.59–0.72 when the ratchet ratio increases to λ : ε = 1.5 mm : 0.5 mm.

Equations (13) and (14) suggest that the driving force and acceleration are not only dependent
on droplet radius (height) [2,4], but also on the ratchet geometry, the surface temperature, and the
liquid deformation into the grooves of the ratchets. In practice though, both the driving force and
acceleration are insensitive to the droplet height and temperature, because C(T )1/4 and (A/M )1/4

will remain relatively constant over a large temperature range (100′s ◦C). Therefore, on a ratcheted
surface, the driving force should be a function of the droplet radius R alone, with an exponent of ∼2
[which comes from replacing the first term in Eq. (13) with M = ρLπR2HL, for large droplets with
flattened shape]. Following this, the model predicts that the acceleration will be similar for droplets
with different volumes. Our model is also internally consistent. For instance, if we set the deformed
angles θ and β to 0, then Eq. (11) collapses to the form of Eq. (5), which is the same model derived
for rigid nondeformable models (such as a disk of dry ice) [4].

We can also extend our driving force model [Eq. (13)] to predict the terminal velocity by
considering the friction analysis previously presented [19]. The result shown in Eq. (16) only
considers the friction as a result of the loss of kinetic energy, since the potential-energy barrier
is less significant [19]. Here, b is an empirical coefficient requiring experimental observation that
represents the significance of friction. Assuming that the empirical coefficient b is comparable over
a few aspect ratios (λ/ε) [19], Eq. (16) predicts that a smaller ratchet (i.e., with smaller λ and ε)
with larger aspect ratio (i.e., larger λ/ε) will produce a larger droplet velocity. The ratchet ratio
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TABLE I. Summary of ring geometries used in this study.

Ring Outer Inner Ratchet λ λe
a ε Flat top

design diameter (mm) diameter (mm) shape (mm) (mm) (mm) length (mm)

1 ob 1.05 1.05
i 0.85 0.85

2 103 83 o 1.14 0.87 0.27
0.5

i 0.91 0.86 0.05
3 o 3 3

i 2.41 2.41

4 38 18 o 1.07 0.79 0.28
0.4

i 0.5 0.5

aλe is the effective ratchet period of trapezium-shaped steps (λe = λ − |flat top length|).
bo and i represent the outer and inner edges of the annular ring, respectively.

dominates the effect due to its larger index.

v = C−(1/4)
1

(
gHL

2b

)1/2(C(T )A

M

)1/8(
λ

ε

)1/2( 1

λ2 + ε2

)1/8

. (16)

A simple validation of the driving force model can be performed by using data already published
in the literature [2]. Our model [Eq. (13)] predicts that the driving force should be proportional to
the droplet radius to the power of 2. Supplemental Material, Fig. S2 confirms that the gradient of
the droplet radius vs measured force data is 1.78 ± 0.24, which is within experimental error (see
Ref. [10]). Note that the Supplemental Material document details every step of the model derivation
in detail.

III. EXPERIMENT

Experiments were subsequently performed using deionized water droplets on aluminum ratch-
eted rings. The use of rings instead of linear ratcheted surfaces, as commonly used in the literature,
enables the terminal velocity to be reached in a much smaller footprint. In total, four different ring
designs were used in the experiments, whose geometric parameters are summarized in Table I. The
ratchets were either triangular or trapezoidal (having a “flat top”).

The rings were heated to 450, 400, 350, and 300 ºC using a hot plate, and large droplets were
deposited onto the surface via a micropipette with an initial negative velocity (moving from right to
left with respect to Fig. 2). These droplets would then rapidly decelerate, before coming to a stop,
then accelerate to positive velocities (moving from left to right in Fig. 2). This method enabled us to
remove experimenter bias from the acceleration measurements (the droplets will all be accelerating
from an initial velocity of 0 m/s). The droplet motion was investigated using a high-speed camera
that recorded image sequences with a 20-ms time-step size. Droplet velocities (v), top-down contact
areas (A), and acceleration (a) were subsequently available via image analysis. IMAGEJ (Fiji) [20]
and a custom MATLAB program were used to automatically detect the moving droplets by tracking
the center of mass. The initial slopes of the velocity-time graphs were taken as the acceleration (as
shown in Fig. S3), since the initial droplet friction due to kinetic energy losses was negligible [19].

IV. RESULTS AND DISCUSSION

The droplet shape in the top-down view was typically elliptical rather than circular as shown
in Fig. 3(a) (0.5–1.1s after deposit). Here the liquid spread in the direction of self-propulsion in
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FIG. 3. (a) Top-down view of a Leidenfrost droplet (600-μL volume) on ring design 1. In the initial
acceleration period, the droplet spreads with irregular shape because of the considerable driving force of this
ratchet design. Quickly the shape then became regular and formed an ellipse. (b), (c) Microscope images
showing liquid deformation on ratcheted substrates at various times (t0, t1, t2): (b) λo > ε, and (c) λe,o ∼ ε.

accordance with the shear force direction. Specifically, on ring design 1 the high driving force caused
the droplets to become elongated and flattened during the initial acceleration period, developing an
irregular shape as shown in Fig. 3(a) (0–0.2 s). Here, the contact area is considerably enlarged,
further increasing the driving force and acceleration according to Eqs. (16) and (17). The droplet
shape then becomes regular after a short period because the driving force weakens as the droplet
velocity increases [as shown in Fig. 3(a), 0.2–1.1 s].

Under film-boiling conditions on a flat surface, a vapor pocket will become trapped beneath
the droplet, making it unstable [18], whereas the ratcheted texture of the rings enables this vapor
to escape laterally within the grooves, improving the stability of the droplets. The deformation of a
droplet on two different ratcheted substrates is shown in Figs. 3(b) and 3(c). Figure 3(b) corresponds
to a ring with triangular-shaped ratchets, while Fig. 3(c) corresponds to a ring with trapezium-shaped
ratchets (with λe,o ∼ ε). On the triangular ratchets, the ratchet period (λo) is apparently larger than
the ratchet height (ε), and we find that C1 ∼ 0.67 [by manually measuring the angles from Fig. 3(b)].
Alternatively, on the trapezium-shaped ratchets (Fig. 3), we find that C1 ∼ 0.5 where the ratchets
were narrow (deep).

Figures 4(a)–4(d) compare the experimental results with the model for all four ring designs.
Using Eq. (15), if we neglect the dynamic pressure, the deformation lengths C1 for the four rings are
predicted to be 0.50, 0.46, 0.78, and 0.40, respectively. If we include the dynamic pressure, these
then increase to 0.66, 0.63, 0.83, and 0.57, respectively. These predictions are mostly in the range
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FIG. 4. Effect of droplet volume on initial acceleration. Each group of data was repeated at least three
times. (a) Ring design 1 (400 ºC), (b) ring design 2 (400 ºC), (c) ring design 3 (400 ºC), and (d) ring design 4
(450C, 400C, 350,C and 300 ºC). Figure S7 shows the separate models on the large deviation on ring design 4.

of the experimental observations, and the model was subsequently plotted based on both sets of C1

values. Additionally, for comparison, we also plotted the model assuming no deformation of the
droplet at all (comparable to the behavior of a dry-ice disk), where we apply θ = β = 0 in Eq. (11).
It can be seen that the experiment data more closely match the prediction of the model when droplet
deformation is considered.

It must be noted that when small droplets were deposited on the ring, they tended to settle at
the inner edge as they transitioned from the initial negative velocity to a positive velocity. Then,
as these started to accelerate in the “positive” direction, centrifugal force caused them to move to
the outer edge following the trajectory sketched in Fig. S6(a). Thus, it is possible that the driving
force continuously changed during this short period because of the changing ratchet parameters (as
described above, the ratchets were narrower at the inner edge—so the driving force at the inner
edge is different from the driving force at the outer edge). In contrast, the larger droplets tended to
fill the full annular width of the ring [Fig. S6(b)], so the average ratchet properties did not change
during acceleration. Therefore, we have plotted the model using the average of the ratchet geometric
parameters at the inner and outer peripheries of the ring to account for this behavior. We see that
the larger volumes more closely match the prediction of the model, since these larger droplets were
pinned at the same radius, so did not experience the transition from inner- to outer-edge dimensions
like the smaller droplets.

The largest deviation between experiment data and the model occurred for ring design 1
[Fig. 4(a)], and we believe that the elongation effect observed in Fig. 3(a) might explain this
behavior. That is, the droplets became temporarily stretched out, causing them to flatten and increase
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FIG. 5. Effect of ratchet parameters on initial acceleration predicted by the model. (a) Effect of ratchet
period, where ε = 0.5 mm. (b) Effect of ratchet height, where λ = 1.5 mm. The trapezoidal ratchet model was
plotted with a flat top ratio of λe/λ = 0.145.

their contact area, thus increasing the driving force as well as the surface energy. The surface tension
takes a dominant role in maintaining a stable droplet height since the shear force only acts beneath
the droplet. For example, for a droplet with R ∼ 3 mm, the shear force and surface tension are ∼ 25
and ∼ 354 μN, respectively [2]. Surface tension and gravity are mainly responsible for restoring the
“normal” droplet shape [18], especially small droplets that do not have a constant height.

When the ratchets are designed with comparable period and height (such that λe,o ∼ ε), the
driving force and acceleration will become weaker because the droplet deformation becomes more
symmetrical (i.e., where C1 ≈ 0.5), which reduces the AC vapor flow distance, and therefore the
shear force acting on the droplet is reduced. Additionally, trapezoidal ratchet designs [Fig. 3(c)] will
further reduce the effective driving force acting on the whole droplet. This can be seen by comparing
Fig. 4(a) (triangular ratchets) with Fig. 4(b) (trapezoidal ratchets). On the flat top of a trapezoidal
ratchet, the vapor is assumed to flow “backwards” (against the vapor flow from A to B), since the
large space in the ratchet corner allows much lower flow resistance than the “forward” direction
(from A to B) [2] (see Fig. S8). As already discussed, small droplets change their trajectory as
they accelerate [Fig. S6(a)]. Since ring design 4 transitioned from triangular to trapezoidal ratchets
between the inner and outer edges, respectively (Table I), the model predicted a large deviation
between acceleration at each edge [Figs. 4(d) and S7]. In addition, the result shows insignificant
differences in terms of temperature, as already discussed in the derivation of the model.

For small droplets on ring design 3, a smaller number of ratchets were covered by the droplets
because of the larger ratchet period, resulting in the energy loss (friction) to become dominant [19].
This explains the deviation at volumes �200 μL as observed in Fig. 4(c).

Figure 5(a) plots the acceleration predicted by the model as a function of the ratchet period
for triangular-shaped and trapezoidal-shaped ratchets. As clearly shown, for triangular ratchets, a
smaller ratchet period improves the driving force and acceleration. The experiment result from two
different designs follows the model prediction to a reasonable degree, given that the acceleration
measurement on ring design 1 was influenced by the initial elongated droplet shape [see Fig. 3(a)].
For trapezoidal ratchets, the model predicts a much smaller effect of the ratchet period, which
still agrees with the experimental observations. Figure 5(b) plots the acceleration predictions as a
function of the ratchet height, showing a similar decreasing acceleration for both triangular-shaped
and trapezoidal-shaped ratchets when the ratchet period was kept the same. This is likely because as
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the ratchet height decreases the gradient of the slope also decreases, which then reduces the driving
force.

We found that the terminal velocity of the droplets tended to increase with increasing droplet vol-
ume, reaching a plateau of ∼0.39 m/s. Previous studies found a maximum velocity of ∼0.35/m/s
for a small droplet (40 μL), whereas the values decreased to 0.18–0.25 m/s when the volume
increased to 600 μL [21–23]. However, these literature values may not represent the true terminal
velocity. According to our experiments, a total travel distance of ∼242 mm was necessary for a
50-μL droplet to reach its terminal velocity (∼0.30 m/s), while a displacement of ∼358 mm was
needed for a 385-μL droplet (∼0.38 m/s). This is much longer than the plates used by Arter et al.
[22] and Dodd et al. [23]. Therefore, one of the advantages of the annular ring design used in this
research is droplets over a wider range of volumes are able to be propelled to their terminal velocity,
where the effects of the ratchet design parameters [which heavily influence the terminal velocity
according to Eq. (16)] can then be elucidated.

In this study we have presented a quantitative way to understand the motion of Leidenfrost
droplets on ratcheted surfaces that supersedes the previous scaling analysis, validated by the good
agreement between experiment data and the model. Here we have also considered the effect of
liquid deformation, derived from a modified vapor flow direction, force balance, and geometry
derivation. Our model shows that acceleration is independent of the droplet volume for a broad range
of conditions, suggesting that the driving force is exactly scalable with the droplet mass. The ratchet
parameters (particularly the height and length) are the key parameters to influence the dynamics.
They may also make a difference to the deformation distribution according to our experiment
observations. On these compact rings, large slugs are observed to self-propel at terminal velocities
as high as 0.39 m/s. The experiments indicate little dependence on the operating temperature, in
line with our model’s prediction. This model can be used to refine the design of Leidenfrost energy
harvesting and fluidic microreactor devices.

ACKNOWLEDGMENTS

G.W. is grateful for the financial support from China Scholarship Council (201704910870) and
postgraduate research group in Newcastle University. We also thank the anonymous reviewees, who
corrected a couple of faulty analysis in our initial manuscript and helped us rule out more in-depth
deformation analysis.

[1] H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan,
R. P. Taylor, and A. Stout, Self-propelled Leidenfrost Droplets, Phys. Rev. Lett. 96, 154502 (2006).

[2] G. Lagubeau, M. L. Merrer, C. Clanet, and D. Quéré, Leidenfrost on a ratchet, Nat. Phys. 7, 395 (2011).
[3] A. Würger, Leidenfrost Gas Ratchets Driven by Thermal Creep, Phys. Rev. Lett. 107, 164502 (2011).
[4] G. Dupeux, M. Le Merrer, G. Lagubeau, C. Clanet, S. Hardt, and D. Quéré, Viscous mechanism for

Leidenfrost propulsion on a ratchet, EPL 96, 58001 (2011).
[5] G. Wang, J. R. McDonough, V. Zivkovic, T. Long, and S. Wang, From thermal energy to kinetic energy:

Droplet motion triggered by the Leidenfrost effect, Adv. Mater. Interfaces. 8, 2001249 (2021).
[6] S. Hardt, S. Tiwari, and T. Baier, Thermally driven flows between a Leidenfrost solid and a ratchet surface,

Phys. Rev. E 87, 063015 (2013).
[7] T. Baier, G. Dupeux, S. Herbert, S. Hardt, and D. Quéré, Propulsion mechanisms for Leidenfrost solids

on ratchets, Phys. Rev. E 87, 021001(R) (2013).
[8] G. G. Wells, R. Ledesma-Aguilar, G. Mchale, and K. Sefiane, A sublimation heat engine, Nat. Commun.

6, 6390 (2015).
[9] P. Agrawal, G. G. Wells, R. Ledesma-Aguilar, G. McHale, A. Buchoux, A. Stokes, and K. Sefiane,

Leidenfrost heat engine: Sustained rotation of levitating rotors on turbine-inspired substrates, Appl.
Energy 240, 399 (2019).

033602-10

https://doi.org/10.1103/PhysRevLett.96.154502
https://doi.org/10.1038/nphys1925
https://doi.org/10.1103/PhysRevLett.107.164502
https://doi.org/10.1209/0295-5075/96/58001
https://doi.org/10.1002/admi.202001249
https://doi.org/10.1103/PhysRevE.87.063015
https://doi.org/10.1103/PhysRevE.87.021001
https://doi.org/10.1038/ncomms7390
https://doi.org/10.1016/j.apenergy.2019.02.034


TERMINAL VELOCITIES OF A DEFORMED …

[10] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.033602 to ac-
cess movie 1, and for all steps of the model deviation, as well as Fig. S2: model validation using literature
data; Fig. S3: how the droplet acceleration was measured; Fig. S4: calibration of droplet volume; Fig. S5:
an empirical model of the droplet height; Fig. S7: separate model predictions for ring design 4 based on
the droplet’s trajectories in Fig. S6; Fig. S8: an assumption of the vapor flow on a trapezoidal ratchet;
Fig. S9: droplet terminal velocities.

[11] Á. G. Marín, D. Arnaldo del Cerro, G. R. B. E. Römer, B. Pathiraj, A. Huis in ’t Veld, and D. Lohse,
Capillary droplets on Leidenfrost micro-ratchets, Phys. Fluids 24, 122001 (2012).

[12] T. R. Cousins, R. E. Goldstein, J. W. Jaworski, and A. I. Pesci, A ratchet trap for Leidenfrost drops,
J. Fluid Mech. 696, 215 (2012).

[13] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, Chichester, New York,
2007).

[14] C. T. Avedisian and J. Koplik, Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces,
Int. J. Heat Mass Transfer 30, 379 (1987).

[15] By neglecting the driving force, we have the force balance Fi,1cosβ + Fi,2cosθ ≈ mig in vertical and
Fi,1sinβ ≈ Fi,2sinθ in horizontal, which gives Fi,1 ≈ (migsinθ )/sin(θ + β ). The pressure gradient dP/dx
acts between points A and C in Fig. 2. The distance between these points is simply C1λ/cosβ by
Pythagoras theorem. Therefore, we can approximate the pressure difference as dP/dx ≈ −
P/
x =
−Fi,1/(Ai,1
x), as described in Eq. (2).

[16] We consider the amplitude of the deformed droplet (ϕ in Fig. 2), where we have C1λtanβ = C2λtanθ .
Additionally, the proportions of the C1 and C2 deformations sum to 1: C1 + C2 = 1. These relations give
C1 = sinθcosβ )/(sin(θ + β ) to simplify the result in Eq. (3).

[17] B. Anne-Laure, C. Clanet, and D. Quéré, Leidenfrost drops, Phys. Fluids 15, 1632 (2003).
[18] D. Quéré, Leidenfrost dynamics, Annu. Rev. Fluid Mech. 45, 197 (2013).
[19] G. Dupeux, M. Le Merrer, C. Clanet, and D. Quéré, Trapping Leidenfrost Drops with Crenelations, Phys.

Rev. Lett. 107, 114503 (2011).
[20] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis,

Nat. Methods 9, 671 (2012).
[21] J. Ok, E. Lopez-Oña, D. Nikitopoulos, H. Wong, and S. Park, Propulsion of droplets on micro- and sub-

micron ratchet surfaces in the Leidenfrost temperature regime, Microfluid. Nanofluid. 10, 1045 (2011).
[22] J. M. Arter, D. J. Cleaver, K. Takashina, and A. T. Rhead, Self-propelling Leidenfrost droplets on a

variable topography surface, Appl. Phys. Lett. 113, 243704 (2018).
[23] L. E. Dodd, P. Agrawal, M. T. Parnell, N. R. Geraldi, B. B. Xu, G. G. Wells, S. Stuart-Cole, M. I.

Newton, G. McHale, and D. Wood, Low-Friction Self-Centering Droplet Propulsion and Transport Using
a Leidenfrost Herringbone-Ratchet Structure, Phys. Rev. Appl. 11, 034063 (2019).

033602-11

http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.033602
https://doi.org/10.1063/1.4768813
https://doi.org/10.1017/jfm.2012.27
https://doi.org/10.1016/0017-9310(87)90126-8
https://doi.org/10.1063/1.1572161
https://doi.org/10.1146/annurev-fluid-011212-140709
https://doi.org/10.1103/PhysRevLett.107.114503
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1007/s10404-010-0733-x
https://doi.org/10.1063/1.5056249
https://doi.org/10.1103/PhysRevApplied.11.034063

