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Dynamics of a partially wetting droplet under wind and gravity
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Partially wetting drops are ubiquitous in nature and industry and are often subject to a
combined forcing by wind and gravity. In particular, the stability of water drops under the
combination of wind and other external forces is relevant in numerous applications that
include aircraft de-icing, heat exchangers, and fuel cells. In this paper, we investigate the
onset of droplet depinning from a solid substrate when a partially wetting water droplet is
simultaneously exposed to high-Reynolds-number airflow and to gravity. We first develop
simple scaling arguments which explain that the critical flow velocity for depinning, Ucr ,
and the droplet volume, V , scale as Ucr ∼ V −1/6 in the absence of gravitational effects, in
good agreement with the existing experimental data. We then develop a two-dimensional
model for a unidirectional flow over a slender drop under two scenarios: aligned with
(downwind) or opposing the gravitational body force (upwind). Our results show a clear
deviation in Ucr between the upwind and downwind cases as the droplet size is increased.
The differences between these two regimes are further manifested in the distinct droplet
shapes at the critical onset of depinning. Finally, we investigate the role of flow separation
from the leeward side of the drop by systematically increasing the slope of the droplet
surface at the separation point. Our results point to more pronounced effects of the flow
separation in the upwind regime.

DOI: 10.1103/PhysRevFluids.7.033601

I. INTRODUCTION

Water drops on the windshield of a moving vehicle are a familiar sight on any rainy day,
and they are just one example of partially wetting droplets subject to wind and gravity forcing.
Despite their ubiquity, predicting the threshold of droplet depinning under combined surface and
body forces poses a problem of fundamental importance in fluid mechanics. From the practical
standpoint, understanding the droplet stability under wind and gravity is relevant to numerous
industrial processes, such as heat exchanger efficiency [1,2] and aircraft deicing [3,4]. When the
imposed external flow falls in the high-Reynolds-number regime, the coupling of contact line
dynamics and the unsteadiness associated with the inertial flow introduces significant complexity to
the physical picture.

Due to this complexity, only limited studies have focused on the dynamics of partially wetting
droplets that are driven by the high-Reynolds-number (Re) air flow [5–12]. The major challenge of
high-Reynolds-number forcing is the coupled evolution of the droplet and the wind itself, which
can lead to flow separation on the leeward side of the droplet at Re �120 [13]. Ding and Spelt
[6,7] performed numerical simulations of droplet spreading under wind by including droplet inertia
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into their calculations. However, they acknowledged that the effectiveness of their simulations was
limited to Re <250, due to the inherent unsteadiness of the separated flow in the contact line region.
Circumventing the computational challenges in this flow regime, Durbin [5] developed a simplified
lubrication model to study the stability threshold of partially wetting droplets on a horizontal surface
under wind forcing. In this model, he imposed the separation of the external flow at different points
along the droplet surface and assumed a constant pressure inside the separated flow, which we will
also implement in our present study.

By contrast, the dynamics of partially wetting droplets subject to gravity have been extensively
studied, both experimentally and theoretically [14–25]. Macdougall and Ockrent [14] found that the
product of a droplet’s sideview area and the sine of the inclination angle at which the droplet first
slides is independent of the droplet size. Later, Bikerman [15] investigated the changes in the contact
line shape as a droplet evolves under gravity. Furmidge [16] studied the retention of spray droplets
under gravity using a two-dimensional (2D) approach, in good agreement with the experiments.
Building on the findings by Bikerman and Furmidge, Dussan [17,18] developed a lubrication model
for droplet stability on inclined surfaces that empirically incorporate straight lines as segments of
the contact line of the droplet. In a related work, Dimitrakopoulos and Higdon [23] performed
three-dimensional computations to study the displacement threshold of partially wetting droplets on
tilted surfaces due to the action of gravity.

More recently, White and Schmucker [26] investigated droplet stability on a roughened surface
by uniquely combining the effects of inertial wind and gravity forcing. Specifically, they experimen-
tally measured the critical wind speed at which a droplet dislodges from a tilted surface for varying
droplet volumes. In particular, their experimental findings suggest new transitional behaviors in
the threshold of depinning when wind and gravity are applied simultaneously. However, their work
lacks a detailed theoretical model for the droplet shape that brings together the effects of the high-Re
air flow and gravity.

In this paper, we construct a minimal 2D model of droplet depinning in the manner of Durbin
[5], which implements the high-Re wind and the body force. In particular, we consider two distinct
scenarios in which the applied wind force is aligned with or opposing the body force. The change in
the direction of the applied wind relative to the body force has a nontrivial effect on the critical wind
speed for depinning, as the force from the wind is directly coupled to the shape of the droplet. In
addition, we investigate the effects of flow separation on the critical flow velocity by systematically
varying the location of the separation point.

The paper is organized as follows: Section II comprises the scaling laws in the wind-only limit
and validation against the experiments by White and Schmucker [26]. In Sec. III, we develop a
2D lubrication model that implements the effects of flow separation and gravity at the onset of
droplet depinning. The results of the 2D model are presented in Sec. IV. Finally, we conclude with
a summary and discussion of future work in Sec. V.

II. SCALING LAWS

A. Physical picture

Let us consider a partially wetting droplet under uniform air flow and gravity. In the absence of
external forcing, a droplet assumes an axisymmetric shape with a diameter, l0, and an equilibrium
contact angle, θ0, which is set by the wettability of the substrate. Then the application of wind or
gravity deforms the droplet asymmetrically, so that the contact angle, θ (β ), along the contact line
deviates from θ0. The resultant asymmetry in θ (β ) generates a net adhesive force, Fadh:

Fadh = −σ

∮
cos θ (β )n̂ · î ds, (1)

where ds is the differential element along the contact line [see Fig. 1(a)] and σ is the surface tension
coefficient. Note that θ (β ) may range from the minimum value, θr , to the maximum, θa; �θ = θa −
θr is the contact angle hysteresis whose value is determined by the surface roughness and chemical
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FIG. 1. (a) The top-view schematic of droplet’s three-phase contact line. (b) The critical wind velocity,
Ucr , for varying droplet volume, V on a horizontal surface (i.e., α = 0). (Note that the experimental data are
reproduced from Ref. [26].)

inhomogeneity of the given substrate. In particular, the adhesive force is at its maximum, or Fadh ∼
σ l0(cos θr − cos θa), when the advancing and receding contact angles reach θa and θr , respectively
[14]. Only when the external forcing is large enough to overcome the maximum adhesive force does
the droplet dislodge from the surface. Hereafter, we refer to this moment as the onset of depinning.

In this critical configuration, Fadh must be balanced by the combination of gravity, the pressure
drag from the wind, Fw, and the viscous shear drag, Fs, arising from the boundary layer. The relative
magnitudes of Fw and Fs depend on the Reynolds number associated with the external air flow or
Rea = ρaUh0/μa. Here ρa and μa refer to the density and dynamic viscosity of air, respectively,
and h0 denotes the droplet’s initial height. In the regime where Rea > 120, the air flow separates
around the droplet and causes a pressure drop in the wake region, so that Fw ∼ ρal0h0U 2 [13]. For
simplicity, we use the initial height, h0, and width of the drop, l0, to approximate the relevant forces
(e.g., Fw and Fadh), thereby neglecting the deformations of the droplet from its initial geometry. The
dimensionless thickness of the boundary layer, δ/l0, scales as Re−1/2

a ε1/2, where ε ≡ h0/l0. Hence,
the ratio between the pressure and shear forces corresponds to (Reaε)1/2, as Fs ∼ (μaU/δ)l2

0 ∼
μaU l0Re1/2

a ε−1/2 [5,11,27].

B. Comparison with experiments

In the limit of (Reaε)1/2 � 1, we neglect the shear force, Fs, and balance Fadh and Fw in the
absence of gravity, so that

CD

2
ρaU

2
crh0l0 = Cσ l0(cos θr − cos θa), (2)

where CD is the drag coefficient and C is an O(1) geometric factor that accounts for integrating a
contact angle profile, θ (β ), around the contact line. The resultant scaling law for Ucr corresponds
to Ucr ∼ 1/

√
h0 at the onset of depinning, which we hereby validate against the experimental data

by White and Schmucker [26]. White and Schmucker [26] measured the critical wind speed, Ucr, at
which a partially wetting water droplet of volume, V , dislodges from a roughened aluminum surface
inside a miniature wind tunnel, with Rea ∼ O(103). Their experiments reveal that the critical wind
speed decreases with increasing droplet volume, V , until it reaches a plateau at ∼12.5 m/s [see
Fig. 1(b)].

Our scaling law suggests that this plateau in Ucr can be explained by examining how the initial
droplet height, h0, varies with V . For small V , droplets assume a spherical cap geometry with an
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FIG. 2. The schematic of a 2D lubrication droplet on an inclined surface with an angle α, subject to uniform
wind that is parallel to the substrate.

equilibrium contact angle, θ0 = 49◦ ± 1◦ [26], such that

h0 =
[

6V sin2 (θ0/2)

π (2 + cos θ0)

]1/3

, (3)

which yields Ucr ∼ V −1/6. Figure 1(b) shows that the scaling relation Ucr = 0.98V −1/6 is in good
agreement with the experiments for V � 200 μl. The value of the prefactor (i.e., 0.98) implies
that the value of the unknown parameters in Eq. (2),

√
C/CD, is approximately equal to 2.7 or

CD ∼ O(0.1) if we assume C ∼ O(1).
For larger V , the droplet forms a puddle whose height is given by hm = 2

√
σ/(ρg) sin (θa/2),

[28] where ρ denotes water droplet density and θa = 63.5◦ ± 3.7◦ [26]. Notably, we conjecture that
hm depends on θa, instead of θ0 = 49◦ ± 1◦, since the contact line most likely advances to form a
puddle as the droplet volume is gradually added from a syringe. Therefore, for large droplets, the
droplet’s height becomes independent of V , which coincides with the plateau in Ucr as shown in
Fig. 1(b). Then, this transitional droplet volume, Vc, can be determined by equating Eq. (3) to hm,
so that

Vc = 4π

3
(2 + cos θ0)

(
σ

ρg

)3/2[ sin3 (θa/2)

sin2 (θ0/2)

]
. (4)

Based on the given experimental parameters, we obtain Vc ≈ 210 μl, which is in good agree-
ment with the experiments with no fitting parameters. In addition, if we replace h0 with hm =
2
√

σ/(ρg) sin (θa/2) in Eq. (2) and
√

C/CD ≈ 2.7, then the value of the critical velocity ap-
proximately equals to 12.9 m/s, which closely matches the experimental plateau in Ucr in the
large-droplet limit. More importantly, the effectiveness of the scaling law demonstrates that it
correctly captures the key physical features of the wind-only regime: pressure drag and adhesive
force.

If we place the droplet on a tilted surface prior to applying a uniform wind, then the force
balance at the onset of depinning becomes Fadh ∼ Fw + ρgV sin α, where α is the angle of surface
inclination, as illustrated in Fig. 2. Interestingly, as demonstrated in Ref. [26], this simple force
balance can no longer successfully rationalize the experimental measurements of Ucr that exhibit
a V -dependent transition for α > 0◦. One clear limitation of the scaling laws is that they do not
account for the deviation of the droplet geometry from its initial axisymmetric state. While the use
of h0 and l0 to approximate Fw may be reasonable for α = 0◦, the neglect of droplet deformations
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becomes problematic in the presence of the body force that further deforms the droplet. Hence,
given the limited success of the scaling laws, we aim to compute the droplet shape at the onset of
depinning to gain further understanding of the droplet dynamics under wind and gravity.

III. 2D MODEL

A. Model simplifications

Building on the scaling law in Sec. II, we develop a simplified 2D lubrication model that
incorporates the barebones physical ingredients, namely the flow separation over the droplet under
wind, gravity, and surface tension effects. Hence, we make a number of simplifying assumptions in
our model, which we summarize here. Note that the goal of the 2D model is no longer to validate
the existing experimental data but to gain general understanding of the effects of wind and gravity
on droplet depinning.

First, we model the system as completely two-dimensional, neglecting variations in the z direc-
tion. The 2D model cannot quantitatively resolve the flow inside the three-dimensional droplet;
however, the current model is able to capture some physical features of the droplet dynamics,
including the droplet shape at the onset of depinning, due to the quasi-2D nature of the external
flow. Second, we assume that the 2D droplet is “thin” (i.e., the aspect ratio, ε � 1), which allows
us to employ lubrication approximations and reduce the governing equations. Third, consistent with
Ref. [5], we take the limit of (Reaε)1/2 � 1 (or Rea ∼ ε−3) and neglect the effects of viscous shear
over the droplet in comparison to the pressure drag.

Furthermore, we assume the droplet is quasisteady prior to depinning. In the flow regime of
Rea ∼ ε−3, the droplet is expected to oscillate due to flow separation and vortex shedding. However,
we assume that the timescale of droplet oscillations is much smaller than that of droplet evolution
and depinning. This assumption is reasonable when the timescale associated with the increase in air
flow is less than the characteristic capillary timescale (i.e., tcapillary = √

ρV/σ ≈ 0.02–0.15 s), as is
the case in Ref. [26]. Finally, we implement the separation of the external flow into our model with
two notable simplifying approaches. First, we treat the location of the separation point to be a known
input parameter, and we vary it systematically from the apex of the drop to further downstream.
Second, aft of the separation point, we assume that the wake has a zero relative pressure, following
the work of Ref. [5].

B. A two-dimensional lubrication model

As illustrated in Fig. 2, we consider a 2D water droplet of height, h(x), that is at the onset of
depinning on a surface with a tilting angle, α, subject to a uniform wind speed, Ucr. The small
parameter, ε, corresponds to the ratio between the characteristic droplet height (e.g., hmax) and
the droplet length, l . Note that α may range from negative to positive values, so that gravity may
oppose (i.e., α < 0) or be aligned with the imposed air flow (i.e., α > 0). To define the criterion
for depinning, we set θr and θa as the critical receding and advancing contact angles in our model,
respectively. In addition, the external flow separates from the drop surface at a distance, s, from the
receding contact line, and at a height, h(x = s) = hs. Finally, we treat Ucr as an input parameter and
compute the shape and, hence, the size of the droplet that depins at given Ucr. The advantage of
using this “reverse” approach lies in the mathematical simplifications, which will become evident
as we proceed. Furthermore, in the current model framework, the final length of the droplet, l , is not
known a priori and comes out of the model calculation.

Under the quasistatic assumption, the force balance in the x direction over a differential control
volume inside the drop yields

ρg sin α − p′(x) = 0, (5)
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where p(x) is the droplet’s internal pressure and the prime denotes differentiation with respect to x.
The droplet’s internal pressure gradient comprises three physical effects:

p′(x) = P′(x) − σh′′′(x) + ρgh′(x) cos α, (6)

which are the gradient in the external pressure, the capillary pressure under lubrication approxima-
tion, and the hydrostatic pressure, respectively.

Specifically, the presence of the drop locally perturbs the external flow and leads to a nonuniform
pressure, P(x), over the drop, which eventually leads to the separation of the boundary layer. As
δ/l scales as Re−1/2

a ε1/2 with Rea ∼ ε−3, we assume that the boundary layer thickness, δ, is much
thinner than the drop height (i.e., δ/h � 1). Mass conservation of the external flow covering the drop
prior to separation dictates that U (x)(1 − h(x)/H ) = Ucr, where U (x) is the average external wind
velocity over the droplet. Here H is the characteristic length from the substrate where the perturbed
flow transitions to a uniform flow. In this study, we use H = 5 cm for simplicity. Then, based on
the Bernoulli equation, we obtain P′(x) = −ρaUU ′(x), which reduces to P′(x) = −ρaU 2

crh
′(x)/H

in the limit of h/H � 1. We note that the results of our model remain qualitatively unchanged with
different values of H as long as h/H � 1.

We now divide the droplet’s configuration at the onset of depinning into two regions: the receding
side that is attached to the external flow (denoted with “r”) and the advancing side exposed to the
wake (denoted with “a”) in Fig. 2. Equation (5) on the receding side corresponds to

σh′′′
r (x) + (

ρaU
2
cr/H − ρgcos α

)
h′

r (x) + ρg sin α = 0, (7)

where hr denotes the droplet’s height in the receding region. Note that Eq. (7) is only valid for
x = [0, s]. The boundary conditions for Eq. (7) are

hr (x = 0) = 0, h′
r (x = 0) = tan θr, h′

r (x = s) = 0. (8)

Note that the last condition corresponds to the assumption of flow separation at the apex of the
droplet.

On the advancing side, we assume that the pressure in the wake is a constant, so that P′(x) = 0.
Therefore, Eq. (5) in the advancing region yields

σh′′′
a (x) − ρgcos αh′

a(x) + ρg sin α = 0, (9)

where ha denotes the droplet’s height in the advancing region. Note that the droplet on the advancing
side is primarily governed by gravity and capillarity only. In addition, Eq. (9) is only valid for
xa = [0, l − s], where xa = x − s. The boundary conditions for Eq. (9) are given by

ha(xa = l − s) = 0, h′
a(xa = l − s) = − tan θa, ha

′(xa = 0) = 0. (10)

With the current set of ODE’s and boundary conditions, we can derive analytical solutions for
the droplet profile on each side [i.e., hr (x) and ha(xa)] at given Ucr and α with l and s still unknown.
Then, to find l and s, we consider the two matching conditions at the separation point:

hr (s) = ha(0), h′′
r (s) − h′′

a (0) = 1

σ
[P(s) − Pw], (11)

where Pw is the constant pressure in the wake. Specifically, the latter condition accounts for the
pressure drag force exerted on the droplet. Note that we only retain the leading-order term of the
external pressure upstream of the separation point and neglect the external pressure variations over
the drop which scale as O(ε), such that P(s) ≈ P∞.

Finally, we close the problem and compute s and l by solving a system of two coupled nonlinear
equations in Eq. (11). This results in the complete solutions for hr (x) and ha(xa), which are
integrated to yield the droplet area, A,

A =
∫ s

0
hr dx +

∫ l−s

0
ha dxa, (12)
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FIG. 3. The plot of Ucr versus A for α = 0◦, ±20◦, and ±40◦.

for given Ucr and α. Note that taking the droplet size (i.e., area) as the input instead of Ucr

significantly complicates the current procedure as we need further assumptions to find both Ucr

and h(x) that corresponds to the given droplet size.
Next, to explore the effects of flow separation on depinning conditions, we vary the slope of

the droplet profile at which the flow separates. This requires rewriting the boundary conditions in
Eq. (7) and Eq. (9) corresponding to the slope of the separation point as

h′
r (s) = − tan φ, h′

a(0) = − tan φ, (13)

where φ denotes the slope at the separation point. Then, for given Ucr, α, and φ, we can compute
hr (x) and ha(xa), as well as the droplet size, A, by following the same steps as previously described.

IV. MODEL RESULTS

A. Effects of gravity

In this section, we discuss the results from the 2D model introduced in Sec. III. For all cases
presented here, we keep θr = 5◦, θa = 30◦, and H = 5 cm. We first modulate the effects of the body
force parallel to the substrate by varying the values of the inclination angle, α, such that α = 0◦,
±20◦, and ±40◦. Note that we currently set φ = 0 and assume that the flow separates at the apex of
the droplet.

Figure 3 shows the resultant plot of Ucr as a function of A for different values of α. In the limit of
small A, Ucr rapidly decreases with A, independent of the sign and the value of α, as the effects of the
body force are negligible. For larger A, Ucr exhibits two distinct behaviors depending on the value
of α. For α � 0, Ucr monotonically decreases with the droplet area with a slope that is proportional
to the value of α. For instance, at α = 40◦, Ucr reaches zero around A ≈ 2 mm2, which corresponds
to the limit in which the body force alone is sufficient to depin the droplet. By contrast, at α = 0◦,
Ucr appears to gradually plateau to a constant value in the limit of large A. This result at α = 0◦
qualitatively matches the experimental measurements of Ucr by White and Schmucker [26], which
are reproduced in Fig. 1(b).

In the case of α < 0, Ucr is no longer monotonically decreasing but starts to increase with A,
as the body force directly opposes the applied wind and requires a higher wind speed to depin the
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FIG. 4. The phase diagrams for droplet depinning behaviors (upslope depinning, pinning, and downslope
depinning) for varying U and A at (a) α = −20◦ and (b) for α = −40◦.

given droplet. Furthermore, in this configuration, the drop can depin in either direction: upslope in
the direction of the applied wind as shown in Fig. 3 or downslope in the direction opposing the
wind. To find the downslope depinning criteria, we reverse the depinning boundary conditions in
Eq. (10) and Eq. (13) and compute minimum A that satisfies the depinning condition for given Ucr

and α. Figure 4 shows the phase diagrams summarizing three different droplet behaviors (upslope
depinning due to wind, pinning, and downslope depinning due to gravity) at α = −20◦ and α =
−40◦, respectively. As shown in Fig. 4, at low U , small droplets stay pinned as their weight is not
sufficient to cause depinning, while large droplets depin downslope in the direction of gravity. As
U reaches a threshold (i.e., U ≈ 17 m/s for α = −20◦, and U ≈ 25 m/s for α = −40◦) a new
regime of upslople depinning emerges for a midrange size of drops. Notably, the region of upslope
depinning spans a much wider range of droplet sizes for α = −20◦ compared to α = −40◦, as wind
is more likely to overcome gravity for smaller negative α.

Focusing on the case of upslope depinning in Fig. 3, the droplet area at which Ucr starts to
increase [i.e., U ′

cr (A) = 0] is smaller for larger negative values of α. To rationalize this transitional
behavior in Ucr, we revisit a simple 2D force balance on the droplet at the critical onset, namely:

CD

2
ρaU

2
crhs + ρgA sin α = σ (cos θr − cos θa). (14)

Unlike the body force whose overall magnitude is fixed by the droplet size and α, the pressure drag
requires integrating the pressure distribution around the droplet, which inherently depends on the
droplet shape and, in particular, on hs. Hence, we have replaced h0 in Sec. II B with hs, as it is a
more accurate scale for the projected area over which the wind pressure acts. If we assume that
hs = hs(α, A), then we can differentiate Eq. (14) with respect to A and obtain

ρaCDUcr
∂Ucr

∂A
hs = ρg sin α

[
∂hs

∂A

( A

hs

)
− 1

]
− σ (cos θr − cos θa)

∂hs

∂A

1

hs
. (15)

Equation (15) demonstrates that the sign of U ′
cr (A) is directly tied to how hs varies with A.

Hence, we compute hs from the lubrication model and plot it in Fig. 5(a), which shows a
monotonic increase with A in an α-dependent manner. Specifically, hs systematically increases as α

is varied from α > 0 to α < 0. Due to the coupling of hs with Ucr and gravity, hs does not follow a
simple power law of A1/2 for small A; instead, hs ∝ A0.97 for A < 0.1 mm2. As we can reasonably
neglect the effects of gravity in this small-A limit, this steeper rise in hs with A must be attributed to
the combined effects of larger droplet volumes (or areas in the 2D model) and of the applied wind
that tends to deform the droplet asymmetrically. The full behavior of hs with A can be captured
quantitatively in a cubic function that empirically relates ln hs and ln A, with one constant whose
value depends on α. Based on this empirical function of hs, we compute the transitional area Ac at
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FIG. 5. (a) The plot of hs as a function of A for α = 0◦, ±20◦, ±40◦. The droplet profile, h(x), at the onset
of depinning for α = 0◦,±20◦, ±40◦ when (b) A = 0.15 mm2 and (c) A = 1 mm2.

which Ucr starts to increase, by setting U ′
cr (A) = 0 in Eq. (15). The resultant values of Ac correspond

to 1.0 mm2 and 1.3 mm2 for α = −40◦ and α = −20◦, respectively, which are slightly higher than
what is observed in Fig. 3. This deviation likely stems from the neglect of the viscous shear force
due to the lubrication flow inside the droplet in Eq. (14).

While the general increase in hs is expected as the droplet size grows, the dependence of hs on
α has two compounding effects that cannot be easily decoupled. First, at A greater than 0.25 mm2,
the value of Ucr is larger for more negative α. Hence, the rise in hs for α < 0 may be simply due
to the increased wind speed that tends to deform the droplet more. At the same time, the orientation
of the body force may itself influence the droplet shape in such a way that hs increases when the
body force opposes the incoming wind. However, the extent of the direct influence of α on the
droplet shape remains unclear. Overall, the increase in hs for α < 0 must have some mitigating
effects on the value of Ucr required to depin the given droplet.

In addition, Fig. 5(b) and Fig. 5(c) show h(x) across all α at two distinct values of A: A =
0.15 mm2 and A = 1 mm2, respectively. At A = 0.15 mm2, there are hardly discernible differences
in the droplet shapes across all α, which is consistent with the physical picture that the wind force
dominates the body force at this value of A. Then, as A is increased (i.e., A = 1 mm2), the body force
becomes more important, and the critical droplet shapes become strongly dependent on the value
of α. In particular, at A = 1 mm2, the droplet is distinctly more elongated in the x direction with an
increased maximum height, as α is systematically decreased from +40◦ to −40◦. In addition, the
curvature of the windward side of the drop changes from positive for α > 0 to negative for α � 0.
The curvature change stems from the increasing external pressure in the windward side of the drop
for decreasing α, consistent with a larger Ucr in this regime (see Fig. 3). Droplet profiles from the
model are qualitatively compared with the experiments by White and Schmucker [26] for α � 0
cases in the Appendix.

The growing differences in h(x) as α is varied from +40◦ to −40◦ can be further quantified by
measuring s/l , the x location of the droplet apex relative to its total length. As shown in Fig. 6, s/l
increases with A for α � 0. This implies that more fluid is shifted in the windward direction when
the body force is either opposing or is not applied against the wind force. By contrast, s/l gradually
decreases with increasing droplet size for α > 0, suggesting that less fluid is shifted downstream
when both the body force and the wind force act in the x direction. This slightly counterintuitive
result points to the fact that the droplet shape is most strongly influenced by the value of Ucr than
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FIG. 6. The plot of s/l versus A for α = 0◦, ±20◦, ±40◦ when φ = 0◦.

the body force. In other words, larger Ucr leads to systematically larger s/l , and α must impact s/l
via the resultant changes in Ucr.

B. Effects of flow separation

We explore how the flow separation may affect droplet depinning by systematically changing the
slope, φ, of the line tangent to the droplet surface at the separation point [see schematics in Fig. 7(a)
and Fig. 8(a)]. Due to the slender shape of the drop, we choose two additional cases of φ = 15◦,
and φ = 20◦ in the leeward side of the drop, such that φ < θa. We focus on the effects of φ at two
representative values of α, namely α = ±40◦. As shown in Fig. 7(b), the increase in φ results in a
clear decrease in hs at A = 1 mm2, when α is set at −40◦. Note that the separation point is marked

FIG. 7. (a) The schematic of flow separation in the upwind regime for α = −40◦: φ is the slope of the line
tangent to the droplet surface at the separation point. (b) The droplet profile for φ = 0◦, 15◦, and 20◦, while
A = 1 mm2. The star symbol denotes the location of the separation point on the droplet surface. (c) The plot
of Ucr versus A for φ = 0◦, 15◦, and 20◦.
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FIG. 8. (a) The schematic of flow separation in the upwind regime for α = 40◦. (b) The droplet profile for
φ = 0◦, 15◦, and 20◦, while A = 1 mm2. (c) The plot of Ucr versus A for φ = 0◦, 15◦, and 20◦.

with a star symbol on the droplet profiles in Fig. 7(b). Then, as plotted in Fig. 7(c), this reduction in
hs leads to a corresponding increase in Ucr with φ, as the total drag force required to depin the given
droplet (i.e., Fw ∝ ρaU 2

crhs) remains unchanged.
By contrast, the effects of φ on droplet depinning are relatively minimal when α = 40◦. As shown

in Fig. 8(b), the increase in φ only slightly decreases hs at A = 1 mm2, which leads to corresponding
slight deviations in Ucr. Such reduced changes in hs are due to the fact that the droplet shape near
and downstream of the apex is less steep at α = 40◦ compared to α = −40◦, as clearly illustrated
in Fig. 5(c). Furthermore, as shown in Fig. 8(c), φ-dependent changes in Ucr appear to vanish in
the limit of both small and large A at α = 40◦, distinct from the case of α = −40◦. Negligible
differences in Ucr are expected at small A, since Ucr is so large overall that deviations in hs do not
cause notable variations in Ucr. Then, in the limit of large A, the deviations in Ucr once again vanish,
as the body force alone acts to depin the droplet, and the flow separation becomes irrelevant. Overall,
the position of the flow separation plays a more important role in droplet depinning when the body
force is applied in the upwind direction.

V. SUMMARY AND DISCUSSION

In this paper, we theoretically study the depinning threshold of partially wetting droplets under
the combined effects of gravity and high Reynolds airflow. We first construct a scaling argument
rationalizing the experimental findings by White and Schmucker [26], who measured the critical
wind speed, Ucr, required to dislodge a partially wetting water droplet from a roughened aluminum
substrate inside a miniature wind tunnel. Their results showed that for α = 0◦, Ucr plateaus to a
constant value for droplets larger than V > 200 μl that form a “puddle” with a constant height h0.
We successfully rationalize this wind-only behavior by balancing the pressure drag that scales as
U 2

crh0l0 with the adhesive force that scales as l0, so that Ucr ∝ h−1/2
0 . We then correctly predict the

transitional droplet volume at which Ucr plateaus with no fitting parameters by considering how h0

varies with the droplet volume, V .
In addition to the scaling laws, we develop a 2D lubrication model that incorporates the pres-

sure drag associated with flow separation, as well as the effects of gravity and surface tension.
Specifically, at given Ucr and the inclination angle, α, we compute the droplet profile at the onset of
depinning in both upwind and downwind scenarios. In the downwind case (α > 0), Ucr continuously
decreases with increasing droplet size. On the other hand, in the upwind case (α < 0), Ucr first
decreases for small droplets for upslope depinning but starts to increase with the droplet size. Then,
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beyond some critical droplet size that depends on the value of α, large droplets no longer depin
with wind but always depin downslope in the direction of gravity. In addition, the droplet profile
at the onset of depinning shows a highly α-dependent behavior, as the upwind regime yields more
elongated drops with a higher degree of asymmetry. As the effective wind forcing is dependent on
the droplet shape, our results suggest a potential coupling between the gravity and wind forcing
modalities.

The upwind results explain a common observation of rain drops on the windshield of a moving
vehicle where some drops move upslope, while others move downslope. It is noteworthy that
vehicle wind shields are often designed with angles between −30◦ to −50◦ for aerodynamic drag
considerations [29]. Based on our findings, for a given speed of the vehicle, there is a midrange
size of drops that depin upslope. In addition, larger drops will depin downslope under gravity, while
smaller drops remain pinned. Finally, we investigate the flow separation condition by systematically
varying the slope of droplet surface (φ) at the separation point. Our model results show that Ucr

increases as the separation slope increases in both the downwind and upwind regimes; however, the
effects of φ are much more prominent in the upwind case.

While our 2D model is successful in uncovering the combined effects of wind and gravity on
droplet depinning, it ultimately has its limitations as addressed earlier in Sec. III B. These limitations
ensure that our model cannot fully describe all the different regimes of droplet depinning, observed
experimentally by White and Schmucker [26]. Hence, as future research, we will follow the work of
Ref. [30] and develop a three-dimensional lubrication model using a precursor film and disjoining
pressure [30–36]. Finally, a coupled system of the drop internal flow, the boundary layer flow over
the drop, and the outer potential flow needs to be considered for a more rigorous characterization of
the separation point. For instance, the free streamline theory can be incorporated to find the exact
position of flow separation under the high Reynolds number flow [5,37,38]. A more rigorous model
will be needed to find optimal strategies to effectively dry and clean partially wet surfaces.
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APPENDIX: COMPARISON OF DROPLET PROFILES WITH EXPERIMENTS

We presently revisit the existing experimental data by White and Schmucker [26] who applied
gravity and uniform air flow on partially wetting water droplets in a downwind configuration. They
experimentally extracted the critical air velocity, Ucr, at which a given water droplet with volume,
V , depins from a tilted aluminum substrate with θa = 63.5◦ ± 3.7◦ and θr = 8.2◦ ± 1.5◦. In all their
experiments, the component of gravity parallel to the substrate is aligned with the incoming air
flow (e.g., α = 0◦, 10◦, 20◦, and 30◦). Furthermore, the characteristic value of Rea in Ref. [26]
corresponds to O(103) in the regime where the wind forcing dominates gravity.

Figure 9 comprises the side-view profiles of the droplets at the onset of depinning for both
experiments and theory. Notably, the experimental results by White and Schmucker [26] at given
α reveal that the critical droplet profiles collapse into a single profile for all values of Ucr when
scaled by the length of the droplet. The shaded region in the experimental droplet profiles are
indicative of some spread in the droplet shapes across all droplet sizes. Experimentally, there are
slight differences between the side-view profiles in what they call the wind-dominated regime (i.e.,
Ucr > 11 m/s) that are shown in solid lines and the gravity-dominated regime (i.e., Ucr < 11 m/s)
in dashed lines [26].

The theoretically computed droplet profiles in Fig. 9(b) show a similar collapse for the range of
Ucr considered, when also normalized by the total droplet length, l . The results are computed for
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FIG. 9. (a) Droplet shapes in the experiments normalized by the final length, l , for different values of α.
The shaded area indicates the span of droplet profile in the parametric experiments. (b) The droplet shape from
the model results normalized by l for varying Ucr at different α. The colormap indicates the variations in Ucr .

θr = 5◦, θa = 30◦, and φ = 0. Note that this comparison between experiments and theory is merely
qualitative, designed to highlight the self-similar nature of the critical droplet shapes.
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