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Sparse sensor-based cylinder flow estimation using artificial neural networks
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Advancements in the estimation of fluid flows from remote sensors have rapidly pro-
gressed through the emerging use of artificial neural networks (ANNs). However, further
development of the robustness of estimation strategies warrants their validation on more
complex benchmark cases. This work presents a family of challenge flow cases for the
advancement of sparse sensor-based flow estimation techniques. The flows under investiga-
tion are the laminar wake development and wake interactions of two cylinders in proximity.
Vortex shedding occurs from both the cylinders, and the flow regime is defined based on
the nature of the interaction of the two wakes. Two flow regimes are studied: one where the
wake interaction yields a low-frequency beating behavior, known as modulated-periodic
(MP), and another where the wake is characterized by highly nonlinear interactions that
result in irregular flow behavior, called flip-flop (FF). The estimation of the velocity flow
fields is performed in a proper orthogonal decomposition (POD)-based low-dimensional
subspace using sparsely placed pressure sensors. The estimation performance is assessed
for modified linear and quadratic stochastic estimators (LSE/QSE-POD), shallow feedfor-
ward neural networks (FFNN), and long short-term memory (LSTM) networks. For the
MP regime, the results show that both ANNs significantly outperform the LSE/QSE-POD
approaches both instantaneously and in an average least-square sense. For the FF regime,
the LSTM-based estimator significantly outperforms the other approaches in both the
time and frequency domains. For both regimes, it is found that the trained LSTM-based
estimators are far more robust to sensor noise and are relatively insensitive to sensor
placements considered in this study. Unlike the single cylinder in cross-flow, the wake
interactions in the two-cylinder flow regimes investigated are characterized by multiscale
spatiotemporal phenomena, offering ample complexity for systematic development of
techniques in sensor-based estimation, scale-extraction, and model prediction.

DOI: 10.1103/PhysRevFluids.7.024707

I. INTRODUCTION

The estimation of fluid flow fields from remote sensors is a tool with important practical utility in
fluid mechanics. It has applications in flow control and sensing in marine, aerospace, and biomedical
sectors [1]. One major challenge in this area is the ability to sufficiently estimate the flow fields
from sensors that are sparsely placed either within or removed from the spatial domain of interest.
Instead of attempting to estimate the entire high-dimensional state space, a more efficient method
is to exploit the large-scale coherent structures that dominate mixing behavior, fluctuations in body
forces, and represent a substantial portion of the fluctuating kinetic energy in the flow. The reduction
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of the flow state to a low-dimensional subspace significantly reduces computational effort [2], and
more importantly enhances reconstruction quality by effectively filtering incoherent, and typically
small-scale dynamics.

Stochastic estimation methods since the pioneering work of Adrian and Moin [3] have now
matured and have become the standard toolkit for the estimation of coherent flow dynamics in free
and wall-bounded flows. A review of these methods can be found in Clark et al. [4]. The inclusion
of a low-dimensional subspace into the stochastic estimation models using the proper orthogonal
decomposition (POD) modes was first introduced by Bonnet et al. [5]. Artificial neural networks
(ANNs) have been previously used to estimate low-dimensional states using the POD [6,7]. Cohen
et al. [6] found that a standard feedforward neural network (FFNN) was able to outperform the
linear and quadratic stochastic estimators (LSE/QSE-POD) with multitime delays for a four-sensor
configuration.

Approaches to improve estimators by incorporating time history via multi-time-delay techniques
as proposed by Durgesh and Naughton [8] and expanded on by Lasagna et al. [7] include more
expressive models that are capable of capturing high degrees of nonlinearity. Lasagna et al. [7]
demonstrated that nonlinear techniques better reconstruct complex spectral flow features compared
with linear approaches, and that the coupling with time-delayed sensor signals improves estimation
performance in some cases.

More recently, the rapid advancements in regression techniques emerging from the machine
learning community has accelerated progress in fluid dynamics, among many other prominent
fields where function approximators are frequently used. The emergence of long short-term memory
(LSTM) networks [9] in the fluid dynamics community is duly noted. The LSTM network is a form
of a recurrent neural network (RNN) with a predictive power that is conditional on the context and
history of input data sequences. RNNs suffer from vanishing (or exploding) gradients for long-term
dependencies [10]. The LSTM circumvents this issue through the use of gates, facilitating its success
in accomplishing complex tasks such as sequential modeling [11], handwriting recognition [12],
anomaly detection [13], and machine translation [14]. They have been recently used to construct
reduced-order models in the context of dynamical systems [15,16] as well as in fluid mechanics
[17–22].

ANNs have been used to predict flow fields based on sparsely placed sensors [23–26]. Deng et al.
[24] used the LSTM-POD to make sensor-based time-resolved velocity field predictions from non-
time-resolved particle image velocimetry measurements of a turbulent inverted flag flow exhibiting
strong flapping periodicity at a Reynolds number of Re = 6200. The results suggested that their
LSTM network was able to predict the reduced-order flow fields with remarkable accuracy. After
training on non-time-resolved data sampled at 5 Hz, they were able to produce a time-resolved
reconstruction at 2000 Hz. The study of Deng et al. [24] showed great promise in the application of
the LSTM-POD architecture for the prediction of flow fields. This has motivated the present work,
where additional underlying issues remain to be addressed, such as (i) the more practical use of
pressure sensors within the domain rather than (virtual) velocity sensors extracted directly from the
PIV flow field, (ii) the remote placement of sensors far from the energetic fluctuations to address
situations with limited access to install sensors, and (iii) exploring and assessing the expressivity of
the LSTM architecture to predict complex dynamics of high-dimensional systems, i.e., training on
more than 50 modes within the POD subspace using a single LSTM model.

Typically, a low-order representation (LOR) of the flow can be obtained by truncating the
POD series to capture a specified amount of energy. While considerable success has been shown
with this energy-based mode selection criterion, the exclusion of less-energetic modes can result
in insufficient reconstruction of dynamically relevant flow features. The incorporation of these
high-order modes can be critical to reconstruct the dynamics of flows exhibiting complex multiscale
phenomena, which form the majority of flows of practical use. However, high-order modes can also
have an element of stochasticity, which can lead to problems such as overfitting. Erichson et al.
[23] suggest a method to reduce the low-order reconstruction error by obtaining an estimation basis
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FIG. 1. Geometrical parameters defining the two-cylinder configuration in the present work.

that is informed by both the snapshot flow and the sensor data. It is claimed that their method may
potentially improve classical POD in terms of obtaining physically interpretable modes.

A. Flow cases

Of interest in the present work is to introduce a challenging data set for the purpose of accelerat-
ing the advancement of sensor-based estimation techniques. As noted by Kutz [27], challenge data
sets are an important factor in ANN development and are lacking in the fluid mechanics community.
The challenge flow case selected in the present work is that of a two-cylinder geometry, which
provides a variety of complex unsteady flow phenomena [28]. A significant amount of literature
[28–39] exists for verification and validation purposes, thus serving as an ideal test case for the
development of sensor-based flow estimation strategies. Herein, a brief overview of this geometry
and the flow development is provided, while additional details can be found in Sumner [38].

Cylindrical structures in a cross-flow are found in a wide range of engineering applications such
as bridges, antennae, risers, heat exchangers, power lines, and chimneys. In many of these applica-
tions, multiple cylindrical structures are placed in proximity, leading to a much more complex flow
compared to the single-cylinder case. This flow is often unsteady, involving the periodic formation
and shedding of vortices from the structure(s), which induces significant fluctuating loading.
Unwanted flow-induced vibrations of the structure may occur due to this shedding phenomenon
or the interactions between vortices shed from multiple bodies in proximity to one another. Thus, it
is critical for engineers and designers to have a detailed understanding of the geometrical and flow
parameters that influence the vortex shedding process.

For a single isolated cylinder, substantial research efforts [40] have enabled a detailed classifi-
cation of the boundary layer, shear layer, and wake development across a wide range of Reynolds
numbers. For two cylinders in proximity, the additional geometrical parameters T/D and L/D (see
Fig. 1) defining the relative position of the cylinders in the flow domain give rise to a greater number
of possible flow regimes for a given Reynolds number. This presents a significant challenge to
classify the flow regime due to a coupling of Reynolds number and geometrical effects.

Sumner [38] describes several approaches to understand the flow behavior. One intuitive ap-
proach is to classify the flow based on the type of interference occurring between the upstream and
downstream cylinders [28]:

(i) wake interference, when the downstream cylinder is immersed in the wake of the upstream
cylinder,
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FIG. 2. Flow patterns for the flow past two circular cylinders, (a) ReD = 40, (b) ReD = 50, (c) ReD =
100, (d) ReD = 160 (reprinted from Ref. [37] with permission from Elsevier). A full description of the various
flow regimes can be found in Lee and Yang [37].

(ii) proximity interference, when the two cylinders are located close to one another but there is
no immersion within the wake of the upstream cylinder,

(iii) no interference, where the flow development over each cylinder is approximately unaffected
from that of a single isolated cylinder.

Further refinement of this approach would enable each regime (e.g., wake interference) to be
specified further based on the nature of the interference effects. This has been achieved through
direct interpretation of experimental and numerical visualizations and measurement data charac-
terizing the vortex shedding frequencies, mean and fluctuating drag, and mean and fluctuating lift
forces.

To provide a greater sense of the challenge in developing a complete understanding of the flow
development for two cylinders in proximity, Lee and Yang [37] have shown that at low Reynolds
numbers (ReD < 160), up to ten distinct flow regimes can be identified through visualization of
their simulation results. To make matters more difficult, the geometrical (T/D and L/D) boundaries
between the flow regimes change significantly with relatively small changes in Reynolds number,
as seen, for example, in the flow regime maps provided in Fig. 2. More recent experimental and
numerical studies as well as comprehensive reviews (e.g., Zhou and Alam [39]) continue to indicate
that the multicylinder problem is a major challenge not only owing to the complexity and number of
flow regimes, but also due to the appearance of bistable, tristable, and even quadristable flow states.
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Coupling the complexity of the two-cylinder flow regimes with the simplicity of the geometry
presents a platform to systematically test, develop and improve estimation algorithms. We demon-
strate the scalability of the flow complexity by applying estimation techniques to two flow cases:
modulated-periodic (MP) and flip-flop (FF). The distinct and complex dynamics that characterize
these regimes are discussed, which form the crux of the estimation challenge.

B. Objectives

In review of the relevant flow estimation, ANNs, and two-cylinder flow development literature,
the objectives of the present study are as follows:

(i) Present a comprehensive description of both two-cylinder flow cases studied, modulated
periodic (MP) and flip-flop (FF), and analyze the wake interactions based on the dominant POD
modes.

(ii) Provide a robust methodology for the incorporation of a POD subspace within an FFNN or
LSTM network for the purposes of sparse pressure sensor-based estimation of velocity fields.

(iii) Compare estimator performance for LSTM, FFNN, QSE-POD, and LSE-POD approaches.
The main contributions of this work are summarized below. The present study is the first to:
(i) Study the application of POD to two-cylinder flows, which includes an analysis of the modes

and dynamics characterizing the wake development and wake interaction. It is shown that POD can
be used to separate the flow into a reduced set of coherent energetic motions, thus lowering the
dimension of the estimation problem and significantly simplifying the estimation architecture;

(ii) Employ the LSTM-POD architecture to establish correlations between pressure sensors and
(low-order) velocity fields. The expressivity of the architecture is assessed by studying its ability
to reconstruct a large number of modes that govern the complex wake interactions. Robustness
of the LSTM-based estimator to sensor noise and various sensor placement configurations is also
assessed—both of which are important topics and have not been addressed in the fluid dynamics
literature in the context of LSTM-based estimation.

II. METHODOLOGY

Section II A presents the physical geometry and flow simulation setup, followed by an outline
of the proper orthogonal decomposition. Section II B presents the flow estimation methodology,
including details on the types of estimators used in this work as well as efforts to address model
generalizability.

A. Flow setup and analysis

1. Flow simulation

In this study, two cases of the two-cylinder configuration are considered. The Reynolds number
is held constant at ReD = 160. The first case consists of a geometric configuration with T/D = 2
and L/D = 2, and the second case corresponds to T/D = 2 and L/D = 0. According to Lee and
Yang [37], these two cases would exhibit modulated-periodic (MP) and flip-flopping (FF) behavior,
respectively (see Fig. 2).

Two-dimensional flow field data are produced using highly resolved incompressible fluid flow
simulations using the open-source software, OpenFOAM v8 [41]. The time-resolved flow is com-
puted using a cell-centered finite volume method. A second-order total variation diminishing scheme
and a second-order backward implicit time-stepping scheme are used for the convective and tempo-
ral terms, respectively. The pressure-momentum coupling is addressed using the pressure-implicit
with splitting of operators algorithm. The system of equations is solved using a geometric-algebraic
multigrid procedure. A no-slip boundary condition is applied at the cylinder surfaces. The inlet is
assigned a laminar inflow with prescribed velocity. A convective outflow is defined at the outlet. All
boundary conditions can be found in Table I.
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TABLE I. Computational boundary conditions.

Boundary Velocity condition Pressure condition

Inlet Laminar inflow Zero gradient
Outlet Convective Zero gradient
Front/back Empty Empty
Top/bottom Slip Slip
Cylinder surface No-slip Zero gradient

Results presented in this study are obtained from highly resolved simulations with approximately
700 000 hexahedral elements (see inset in Fig. 3). The domain has a total length of 38D in the
direction of the flow and 20D in the spanwise direction (see Fig. 3). Agreement with previous
studies is addressed in Sec. III. Full field snapshots are output at a rate of approximately 20 snapshots
per shedding cycle. A fixed time step �t =10-5 s is used, resulting in an average Courant number
below 0.3.

The time-averaged vorticity fields for the MP and FF regimes are provided along with the pres-
sure sensor locations in Figs. 4(a) and 4(b), respectively. Six (virtual) pressure sensors (Np = 6),
whose values are output at every time step, are sparsely placed along the outer edges of the flow
domain for each case. The streamwise spacing of the sensors are chosen such that they are not
integer multiples of an integral length scale (such as the cylinder diameter D). Their spanwise
positions ensure that they are sufficiently removed from the region of high velocity magnitude,
thus mimicking remoteness. These settings provide additional challenges for the estimators. The
effects of sensor placement along the outer edges of the spatial domain and the number of sensors
on estimation performance are briefly discussed in Sec. III B 3 b for select configurations.

The velocity field, defined as U(x, t ) with its two components U (x, t ) and V (x, t ), represents the
velocity components in the x and y directions in the Cartesian coordinate system defined in Fig. 1,
respectively (note, this can be extended to three-dimensional flow fields and the figure maintains
its generality). After obtaining the spatiotemporal flow snapshots of interest, the time-averaged
(mean) field U (x) is subtracted from each of the snapshots at times tk = k �t via the Reynolds
decomposition to yield the fluctuating velocity fields u(x, tk ) = U(x, tk ) − U (x). The corresponding
fluctuating velocity components are defined as u(x, t ) and v(x, t ).

8D
38D

20D

FIG. 3. Computational domain geometry and dimensions for L/D = 0, T/D = 2 (every fourth point
shown to improve figure clarity). Inset: Closeup of mesh refinement near solid cylinder surface.
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FIG. 4. Time-averaged nondimensional vorticity field of the (a) MP and (b) FF flows with Np = 6
sensors. The nondimensional coordinates (x/D, y/D) of the sensor locations (labeled 1 through 6) indicated
by (+) marks for the MP case are (2.5, 3.5), (6.25, 3.5), (10, 3.5), (0.5, −1.5), (6.25, −1.5), and (10, −1.5).
Similarly, the sensor locations for the FF case are (0.5, 3.5), (5.25, 3.5), (10, 3.5), (0.5, −1.5), (5.25, −1.5),
and (10,−1.5).

2. Proper orthogonal decomposition

The important flow structures are extracted from the high-dimensional flow using the proper
orthogonal decomposition (POD). Also known as the Karhunen-Loève decomposition, the concept
was first introduced to the study of fluid mechanics by Lumley [42]. In this work, we use the method
of snapshots [43] to compute the POD, which is outlined by Tropea et al. [44] and extended to matrix
space.

Given the Reynolds decomposition of the velocity field, we can decompose the fluctuating
ensemble u(x, t ) of N two-dimensional snapshots into a finite sum of (eigen-)basis functions �k (x)
and corresponding time-dependent coefficients a(tk ):

u(x, t ) =
N∑

k=1

�k (x)a(tk ). (1)

Additionally, the energy captured by the first r modes defined as

Er ≡
r∑

k=1

1

2
a(tk )2 (2)

is maximized. That is, the basis functions generated using POD are such that the first r modes
contain more energy than would be generated by any other orthogonal decomposition. Maximization
of a(tk )2 results in the basis �k (x) satisfying the orthonormality condition in L2-Hilbert space, and
the time-dependent coefficients can thus be obtained by orthogonal projection. The corresponding
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coefficients additionally satisfy orthogonality via the scaling relationship defined in Tropea et al.
[44]:

(ai(t ), a j (t )) =
N∑

k=1

ai(tk ) · a j (tk ) = Nλiδi j, (3)

where ai(t ) and a j (t ) are the time-varying coefficients spanning N snapshots that correspond to
�i(x) and � j (x), respectively; {λi} are the POD modal energies, which are equivalently known
as the POD eigenvalues. Lastly, the modes are rank-ordered by their energy content—λ1 >

λ2 > ... > λN . Thus, a truncated set of eigenfunctions forms an energy-optimal basis in which the
corresponding coefficients evolve in time.

The two-dimensional computation of the turbulent kinetic energy (TKE), q2, is given by

q2 = 1
2 (u2 + v2). (4)

The TKE in the flow domain � and its relationship with the POD eigenvalues is:

k =
∫∫

�

q2 d� = 1

2

N∑
n=1

λn. (5)

Fuller treatments of this topic can be found in Lumley [42], Pope [45] and Holmes et al. [46].

B. Estimation

1. Overview of the estimation process

A general POD-based flow estimation procedure is summarized in Fig. 5. For the entirety of
the estimation, we are targeting the fluctuating velocity fields. Stage I of the estimation involves
the extraction of POD modes through the flow field decomposition. Following the acquisition of
flow snapshots, an appropriate training data size is defined based on a convergence criterion for the
modes. Then, a mode selection procedure is employed to obtain the modes that are representative
of the underlying flow dynamics. The POD is then computed over the training ensemble, thus
providing (i) a spatial basis �c(x), labeled as “POD basis,” for the low-dimensional subspace
and (ii) the time-varying signals labeled “POD coefficient training data,” ac(tk ),∀ tk ∈ Ttrain where
Ttrain is the interval spanning the training data and k ∈ [1, Ntrain] such that Ntrain is the number of
training snapshots. The coefficients describe the temporal evolution of the basis vectors for the
training duration. A detailed description of the mode selection process used in this work is given in
Appendix A 1. The obtained basis is momentarily set aside while the temporal coefficients serve as
training data for Stage II of the process—the estimator training stage.

To begin the estimation, we obtain synchronized measurement training data obtained from the
sparsely placed pressure sensors, P(xs, tk ), in the spatial domain, �s. The fluctuating pressure sensor
data, p(xs, tk ) = P(xs, tk ) − P(xs, tk ), are used to train the estimator.

During the training stage, a mapping F is approximated by correlating the instantaneous sensor
states, defined as p(xs, tk ) to the coefficients ac(tk ) representing the state of the POD modes at time
tk , for k ∈ [1, Ntrain]. That is,

F : p(xs, tk ) �→ ac(tk ). (6)

The training process is briefly summarized in Fig. 6. First, the sensor training data and the POD
coefficient training data are scaled using the z-score normalization through their individual mean
and standard deviation. Second, an estimator is employed to approximate a function that represents
the mapping F . In this work, four types of estimators are considered:

(1) LSE-POD,
(2) QSE-POD,
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Spatio-temporal
flow training data

I. Snapshot
POD 

II. Estimation
training

Sensor
training

data

POD coefficient
training data

IV.
Performance

analysis

Unseen sensor
testing data

POD basis

Estimated POD
coefficient test data

III.
Estimation

Projection
onto POD

basis

Estimated test
LORs

Residual errors
Reynolds stresses
Velocity spectra

True test LORs

FIG. 5. Block diagram of a generic POD-based flow estimation process including a performance assess-
ment. Note that the time interval in Stages I and II are spanned by the training samples (i.e., tk ∈ Ttrain)
and the time interval in Stages III and IV are spanned by unseen testing samples (i.e., tm ∈ Ttest, where
Ttest ∩ Ttrain = ∅)

(3) shallow1 feedforward artificial neural networks (FFNN), and
(4) single-layer LSTM networks.
Note that the orange block in Fig. 6 represents the general estimation training steps involved

for an FFNN with two fully connected hidden layers, which is later detailed in Sec. II B 2 b. In the
case of the LSE/QSE-POD, this block can be replaced by a least-square regression approach to
obtain the LSE/QSE coefficients (see Sec. II B 2 a). For the FFNN, the layers are linked through
linear combinations of weights and biases (note that nonlinear activation functions are also used
between the layers, but are not explicitly marked in Fig. 6). The input pressure sensor data are passed
through the hidden layers to provide an estimate of the output POD coefficients. The deviation of
these estimates is then quantified using a mean-square-error (MSE) loss function, L. This loss is
then used to perform gradient descent (via backpropagation) to tune the weights and biases of the

1In this study, the term “shallow” network is used to qualitatively characterize a network with three or fewer
hidden layers.
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POD coefficient
training data

Sensor training
data

Hyperparameter
Tuning

II. Estimation
training

Loss
Calculation

Gradient Descent via
Backpropagation

FFNN

FIG. 6. Block diagram describing Stage II of the estimation process: Estimation training for a sample ANN
with two fully connected hidden layers. Input pressure data at times tk ∈ Ttrain are passed through the network
to estimate the velocity POD coefficients through the mapping F . The network is trained to minimize the loss
function denoted by L. Additional details are found in Sec. II B 2 b.

network. The process is repeated until a stopping criterion is met such that the loss is sufficiently
low and/or the model does not overfit the training data. Optionally, to improve performance, the
hyperparameters of the ANN (number of hidden layers and units, parameters of the gradient descent
optimizer, etc.) can be tuned. The trained network is then an approximation of the desired mapping
F . Additional details are provided in Sec. II B 2 b.

Stage III is the estimation, where unseen sensor data, denoted by p(xs, tm), are mapped using F
to estimate the POD coefficients, for tm ∈ Ttest where Ttest is the time interval spanned by the unseen
test data and Ttest ∩ Ttrain = ∅, where ∅ is the empty set. To recover the flow fields, the sensor-based
estimation of the flow fields is performed using the obtained basis �c(x) from Stage I by projecting
the estimated test coefficients ãc(tm) onto the basis. This yields the estimated snapshots ũLOR(x, tm).

Stage IV involves the performance analysis of each estimator. A true assessment is only possible
if new, unseen data are available. The estimated LORs [̃uLOR(x, tm)] are compared with the true test
LORs [uLOR(x, tm)]. We assess the performance of the estimators by studying three metrics:

(1) Residual error time-series and the time-averaged values of the estimated (unseen) test
snapshots, uk = (u, v)k , computed via their �2-norms over the flow-dependent spatial domain �,

(2) Estimated time-averaged (Reynolds) shear stress fields,
(3) Estimated power spectral density functions (PSDFs) of the spanwise velocity at two loca-

tions: (1) the location of maximum v-RMS (root-mean-square) and (2) a secondary location where
a different flow behavior is expected, depending on the flow case considered.

The first metric is a standard statistical quantity used to assess the performance of a regressor. The
second metric is physics-based and can provide insight into the estimated physics from a qualitative
perspective. The third metric, a form of frequency content analysis within different locations in
the flow field, is required to characterize the ability of the estimator to retain the important flow
dynamics.

2. Flow estimators

a. Linear/quadratic stochastic estimation. The modified linear and quadratic stochastic esti-
mators (LSE/QSE) are used in the context of POD coefficients as a point of comparison for the
ANN estimators. See Guezennec [47] for a thorough review of the implementation and derivation
of the stochastic estimation methods for coherent flow structures. The LSE-POD implementation
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of Bonnet et al. [5] is used to compute the LSE coefficients from the pressure sensor and POD
coefficient training data. The algorithm outlined in Murray and Ukeiley [48] for the modified
QSE-POD approach is used in this work to compute the QSE coefficients. A brief overview of
stochastic estimation is presented below.

In the context of the present work, stochastic estimation methods, which were first presented by
Adrian and Moin [3], are formulated as a conditional average of the velocity POD coefficients ãc(t )
given the event of sparse pressure measurements p(xs, t ). That is, the conditional average of the
temporal coefficients of some mode i is

ãc
i (t ) = E

{
ac

i (t )|p(xs, t )
}
, (7)

where E{·} is the expectation operator.
As shown by Guezennec [47], this conditional average can be estimated by a power series:

ãc
i (t ) = Ai j p

(
xs j , t

) + Bi jk p
(
xs j , t

)
p
(
xsk , t

) + Ci jkl p
(
xs j , t

)
p
(
xsk , t

)
p
(
xsl , t

) + ..., (8)

where p(xs j , t ) is the fluctuating pressure time-series measured at spatial location xs j ∈ �s, and
Ai j, Bi jk and Ci jkl are the coefficients to be solved.

Truncating Eq. (8) to the first and second terms yields the linear and quadratic stochastic
estimates, respectively. The linear estimate is thus expressed as

ãc
i (t ) = Ai j p

(
xs j , t

)
, (9)

and the quadratic estimate is expressed as

ãc
i (t ) = Ai j p

(
xs j , t

) + Bi jk p
(
xs j , t

)
p
(
xsk , t

)
. (10)

The coefficients Ai j and Bi jk are obtained by minimizing the MSE [ãc
i (t ) − ac

i (t )]
2

with respect
to the coefficients. In particular, the minimization problem is constrained by Eqs. (9) and (10) for
the LSE and QSE problems, respectively. Differentiating the MSE with respect to the coefficients
and equating to zero yields a linear system of equations, which can be solved to find Ai j and Bi jk .

b. Feedforward and long short-term memory neural networks. The feedforward ANN (FFNN)
can be formulated as a nonlinear function approximator that maps input states to output
states. A detailed overview of the feedforward architecture can be found in Goodfellow et al.
[49]. If the input layer of pressure sensor measurements at tk is defined as the vector p =
[p(xs1 , tk ), ..., p(xsNp

, (tk )]T ∈ RNp , and the output layer of network-predicted POD coefficients is
defined as ã = [ãc

1(tk ), ..., ãc
Nmode

(tk )]T ∈ RNmode , then Np and Nmode denote the input and output state
dimensions, respectively.2 The network can have many hidden layers between the input and output
layers, whose (hidden) units are interconnected through linear combinations of weights and biases.
The goal is to obtain appropriate values for these weights and biases to fit a function that maps the
input state to the output state.

A high-level schematic of the FFNN architecture used in this work is provided in Fig. 6.
Mathematically, if di denotes the dimension of the ith layer, the function Gi : Rdi → Rdi+1 then
describes the mapping between the input state of the ith layer, denoted as gi ∈ Rdi , to that of the
(i + 1)th layer, gi+1 ∈ Rdi+1 . In particular, Gi = ξi(	i). Here, 	i : Rdi → Rdi+1 is an affine transfor-
mation of the layer input that takes the form 	i(gi ) = WT

i gi + bi, where the matrix Wi ∈ Rdi×di+1

contains the weights, the vector bi ∈ Rdi+1 contains the biases, and ξi : Rdi+1 → Rdi+1 is a Hadamard
(elementwise) evaluation of a nonlinear activation function. An FFNN with l fully connected layers
is expressed for all k by

ã = Gl ◦ Gl−1 ◦ · · · ◦ G2 ◦ G1, (11)

where ◦ is the composition operator, and G1 = ξ1(	1) = ξ1(WT
1 p + b1).

2The superscript “T ” denotes the matrix transpose.

024707-11



MANOHAR, MORTON, AND ZIADÉ

FIG. 7. LSTM Cell.

Dropout layers were first applied to recurrent neural networks (RNNs) with LSTM cells in the
context of handwriting recognition [50], which showed significant performance improvement over
LSTMs that did not have dropout layers. These layers act as regularizers and are thus incorporated
after each hidden layer in the ANNs used in the present work. The loss function used for the FFNN
at some time instant tk is the half-MSE, not normalized by Nmode, computed via

L = 1

2

Nmode∑
i=1

[
ãc

i (tk ) − ac
i (tk )

]2
. (12)

Note that L2-regularization is also used during training. Using this loss, the weights and biases are
tuned via stochastic gradient descent using the adaptive moment estimation algorithm (Adam) [51].
The gradient is computed using backpropagation.

The LSTM network is a gated RNN whose main benefit is the presence of paths through which
the gradient can flow for long durations without vanishing or exploding [10]. This results in the
LSTM being able to detect temporal dependence, so that the predictions are conditional on the
context and history of the input sequence. Herein, a brief description of the LSTM architecture is
presented. For a more detailed review, see the original work by Hochreiter and Schmidhuber [9].

A diagram of an LSTM cell at time t = tk is shown in Fig. 7. It contains three gates: an input
gate, a forget gate, and an output gate. For a cell containing d hidden units, the cell state, ct ∈ Rd ,
contains the long-term information the network propagates in time. The forget gate, denoted by
ft ∈ Rd , decides which information to keep and which to discard. This is the leftmost gate shown in
the diagram, and is represented mathematically as

ft = σ
(
WT

f xt + UT
f ht−1 + b f

)
, (13)

where σ is the sigmoid unit, which scales the output between 0 and 1, xt ∈ RNp is the input vector,
W f ∈ RNp×d is the input weight, U f ∈ Rd×d is the recurrent weight, b f ∈ Rd is the bias, and ht−1 ∈
Rd is the (previous) hidden state vector.

The incoming cell state, ct−1 ∈ Rd , is updated through the input gate (denoted by it ∈ Rd ). The
input gate activation vector is defined as

it = σ
(
WT

i xt + UT
i ht−1 + bi

)
, (14)

where Wi ∈ RNp×d , Ui ∈ Rd×d and bi ∈ Rd are the corresponding (input) weight, recurrent
weight and bias, respectively. The input activation vector is multiplied with an intermediate cell
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state c̃t ∈ Rd :

c̃t = tanh
(
WT

c xt + UT
c ht−1 + bc

)
, (15)

where Wc ∈ RNp×d , Uc ∈ Rd×d , and bc ∈ Rd are the corresponding (intermediate) weight, recur-
rent weight, and bias, respectively. The new cell state, ct ∈ Rd , is obtained as follows:

ct = ct−1 
 ft + c̃t 
 it , (16)

where 
 denotes the Hadamard product, which is a componentwise multiplication of two vectors.
The output of the cell, ht ∈ Rd , is dependent on the current cell state, ct , and the new input into the
cell. The output gate activation vector is defined as

ot = σ
(
WT

o xt + UT
o ht−1 + bo

)
, (17)

where Wo ∈ RNp×d , Uo ∈ Rd×d , and bo ∈ Rd are the output weight, recurrent weight, and bias,
respectively. It is multiplied by the current cell state, yielding the cell output

ht = ot 
 tanh(ct ). (18)

The fully connected final output layer at time t is defined through the network-predicted estimate,
ã. Using Eqs. (13)–(18), the LSTM cell is delayed (or is looped back in time) by S time steps,
indicating that the hidden state at time t , ht , is conditional on ht−S : t−1. We refer to the variable S
as the sequence length. The same loss function, L, is used to train the LSTM networks. Note that
L2-regularization is also used during training. The weights and biases are computed using the Adam
[51] optimizer, and the gradient is computed via the backpropagation through time algorithm [52].

The number of hidden units in the LSTM cell, d , controls the expressivity of the network to
encode time history. A large size can significantly increase computational time but can also increase
expressive power while risking overfitting of the training samples. While a small value of d might
not have the same expressivity as a large layer size, the risk of overfitting and the computational
effort decreases, as with any ANN architecture. Thus, the layer size must be tuned. The final LSTM
network architecture consists of the input layer of Np units, followed by an LSTM layer of d units, a
dropout layer with a prescribed (dropout) probability, and finally a fully connected regression layer
followed by the output layer each containing Nmode units.

Complex network architectures can be difficult to tune when there are several hyperparameters.
The black-box nature of these estimators makes the process especially difficult when no known
direct correlations exist between the underlying system and network parameters. Fortunately, these
hyperparameters can be tuned in several ways to save computation time and effort. In this work,
some hyperparameters are tuned using Bayesian optimization via Gaussian process regression [53].
The objective function of the tuning algorithm is the �2-norm of the estimated validation snapshots.
This approach was similarly employed by Lui and Wolf [54].

c. Addressing model generalizability. Due to the interpolative nature of neural networks, the
model function, or mapping F spans the probability distribution of the training data [2]. Thus, to
obtain a generalizable architecture, an effort must be made to ensure that the trained model does
not overfit the training data. During training, the network is cross-validated using validation data
that are disjoint from the training samples. Following best practices from Goodfellow et al. [49],
the training set of Ntrain samples is split into two disjoint subsets with a ratio of 80:20, where the
larger of the two subsets is used for training and the other is used for validation. A well-accepted
metric to evaluate the model generalizability is 1 − εtrain/εval, where εtrain and εval are the training
and validation errors, respectively. These errors are computed using the average �2-norm of the
residual error between the true and network-predicted values. Based on our results for both the MP
and FF flows cases, the metrics are less than 1/500. Early stopping [49] is employed by terminating
the training phase when the validation error does not reduce over 50 epochs.

As mentioned earlier, dropout layers are used as a form of regularization after each hidden layer
for FFNNs, and after an LSTM cell for the LSTM estimators. To improve generalizability, white
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Gaussian noise is added to the training (and validation) pressure sensor data during training. It is
well-known that training ANNs using input data that are injected with random noise is equivalent to
regularizing the networks [49,55]. The noise levels added to the training data are tuned based on the
test errors obtained when the trained models are tested with sensors containing various noise levels.
As a result, there is a slight sacrifice in performance with clean (no added noise) test data in favor
of lower test errors in the presence of noisy test data. This discussion is revisited in Sec. III B 3.

III. RESULTS AND DISCUSSION

The wake development and wake interaction in the modulated-periodic (MP) and flip-flop (FF)
flow regimes at ReD = 160 are discussed in Secs. III A 1 and III A 2, respectively. The results
of the POD mode selection method are presented in Appendix A 2. The performance analysis of
the estimators is finally provided for the MP flow regime in Sec. III B 1 and for the FF regime in
Sec. III B 2.

A. Wake development and proper orthogonal decomposition-based reconstruction

1. Flow development in the modulated-periodic regime

A sequence of instantaneous vorticity contours for the MP regime is shown in Fig. 8. Quali-
tatively, the image sequence indicates that unsteady vortical structures are shed periodically from
the top and bottom cylinders. This vortex shedding process is most clearly identifiable downstream
of the top cylinder, with the alternating appearance of concentrations of spanwise vorticity in a
typical von Kármán vortex street that is symmetric with respect to the y/D = 2 axis. However, the
bottom cylinder vortices appear to be weaker and significantly modified in both their trajectory and
shape due to the presence of the top cylinder. In particular, the bottom cylinder vortices form in the
near wake and upon shedding from the body are deflected in the −y direction, resulting in significant
asymmetry relative to the y/D = 0 axis. These patterns and results are consistent with those reported
in flow visualizations [29,31–33] and numerical simulations [35]. Additional qualitative features
observed include the nature of the vortex interactions between vortices shed from both cylinders
in the wake region (x/D > 4). For example, there is evidence of vortex merging at approximately
x/D = 9.5 and y/D = 0.25, see Fig. 8(a). Conversely, cross-annihilation of vorticity can be seen
with the vortex located at x/D = 4.75–5.5 and y/D = 0 as it is surrounded by shear of opposite
sign in Figs. 8(a)–8(c). These observations are of nonlinear processes [29] and give rise to a range
of spatial scales and velocity fluctuations within the domain of interest shown in Fig. 8.

The quantitative characterization of the wake is provided through the Reynolds stress fields and
the spectral analysis of the velocity and pressure fluctuations, as shown in Fig. 9. Since the unsteady
dynamics are the result of an interaction between laminar wakes, the Reynolds stress fields are
directly representative of the velocity fluctuations induced by the formation and advection of these
vortices. The stress fields are strongest in the wake of the top cylinder, where the periodic vorticity
concentrations are evident—consistent with the results in Fig. 8. In fact, the top cylinder wake
Reynolds stresses are similar to that of a stationary cylinder in an open free stream for x/D < 5
(see Dong et al. [36]). Downstream of this location, vortex interactions take place and result in
asymmetric distortion of the Reynolds stress fields [see Figs. 9(a)– 9(c) for about x/D > 5]. The
wake of the bottom cylinder contains substantially weaker velocity fluctuations, resulting in peak
Reynolds stresses which are less than 50% of that found in the top cylinder wake.

The frequency content of the wake is investigated through PSD analysis of the velocity and
pressure field at points (i)–(vi), shown in Figs. 9(a) and 9(b). In particular, points (i)–(iii) are the
locations of maximum RMS values of u, v, and p, respectively, in the wake of both cylinders. Points
(iv)–(vi) roughly correspond to the locations of maximum RMS of these quantities in the wake of
the bottom cylinder.

As shown in Figs. 9(d) and 9(e), a multitude of frequencies are present in the wake, in contrast
with the well-behaved single-cylinder in cross-flow [40]. Analysis of instantaneous sequences
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FIG. 8. Sequence of nondimensionalized vorticity contours for the MP case with nondimensional time
stamps presented in the top-left corner of each snapshot.

allowed for identification of the vortex shedding frequencies of the top ( f ∗
sh,t = 0.19) and bottom

( f ∗
sh,b = 0.22 ) cylinders. These are labeled with vertical dashed lines in Figs. 9(d) and 9(e), and

are nondimensionalized as f ∗
sh,t = fsh,t D/U∞. In particular, we observe that f ∗

sh,b > f ∗
sh,t , which is in

agreement with previous studies [28]. Additional relevant frequencies f ∗
A = 0.0083, f ∗

B = 0.024
and f ∗

beat = 0.032 are also identified in Figs. 9(d) and 9(e). The beat frequency, f ∗
beat, corresponds

to the difference in the shedding frequencies of the top and bottom cylinders, f ∗
beat = f ∗

sh,b - f ∗
sh,t .

This frequency is associated with the change in relative phase alignment of the wake vortices shed
from the top and bottom cylinders.

The frequencies f ∗
A and f ∗

B are most clearly identified at locations (ii), (iii) and (vi). The physical
significance of f ∗

A requires consideration that the vortices are in fact shed discretely from the body,
as described in detail by McClure et al. [56] for a dual-step cylinder in the laminar shedding regime.
It is also straightforward to recognize that the dynamics of the wake are related to the relative
phase alignment of the vortices at formation. Thus, while the beat frequency, f ∗

beat, describes the
rate at which the vortices move in and out of phase, a much lower fundamental frequency f ∗

A
describes the rate at which the vortices move in phase and are also at the same physical state
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FIG. 9. Reynolds stresses (a)–(c) and PSDFs (d)–(e) of u and v velocities and pressures at their location
of maximum RMS. The locations are indicated by (X) markings in (a), (b), respectively. The (x/D, y/D)
coordinates are (i) (3.7,1.4), (ii) (4.2,1.95), (iii) (3.25,1.45), (iv) (1.75,−0.25), (v) (2.2,−0.1), and (vi)
(2.95,−0.85).

in the vortex formation process. This fundamental frequency is approximately determined by the
smallest integer ratio between the vortex shedding frequency of the top and bottom cylinders,
m/n = f ∗

sh,t/ f ∗
sh,b. Then, f ∗

A is obtained as fAD/U∞ ≈ fsh,t D/mU∞ ≈ fsh,bD/nU∞. In the MP case
of the present study, it is found that 23/20 ≈ m/n ≈ f ∗

sh,t/ f ∗
sh,b ≈ 1.15. This suggests that the

fundamental phase dislocation process spans 23 shedding cycles of the top cylinder, or equivalently
20 shedding cycles of the bottom cylinder. To the best knowledge of the authors, the present study
is the first to report and identify the phase dislocation phenomenon in a two-cylinder geometry.
However, frequency f ∗

B can be expressed as the difference between the beat frequency and the
phase dislocation frequency—i.e., f ∗

B = f ∗
beat − f ∗

A . Hence, f ∗
B manifests alongside f ∗

A as a con-
sequence of the nonlinear interaction in the wake with f ∗

beat [see locations (ii), (iii), and (vi) in
Figs. 9(d) and 9(e)].

Proper orthogonal decomposition analysis of the wake is a critical component of the flow
estimation procedure and enables a deeper discussion of the most energetic structures. The first six
POD modes of the MP flow case are presented along with the PSD functions of the corresponding
temporal coefficients (see Fig. 10). It is observed that the first four modes form two mode pairs,
as shown by similar energy and frequency content present in both modes of each pair. The first
two modes are associated with the dominant vortex shedding process imparted by the top cylinder
and the associated coherent structures. Modes 3 and 4 characterize the vortex shedding of the
bottom cylinder. Modes 5 and 6 characterize the low-frequency modulation which is caused by
the interaction of the two wakes.

The temporal evolutions of modes 1, 3, and 6 are presented through their coefficients in Fig. 11,
which describe the shedding and modulation phenomena. Figure 11(a) shows the weakly modulated
shedding of the top cylinder at f ∗

sh,t ; Fig. 11(b) shows the modulated shedding of the bottom
cylinder at f ∗

sh,b, where the modulation is more apparent, and; Fig. 11(c) displays the low-frequency

024707-16



SPARSE SENSOR-BASED CYLINDER FLOW ESTIMATION …

-10

0

10

-10

0

10

-20

0

20

-10

0

10

-10

0

10

-20

0

20

-10

0

10

-10

0

10

-20

0

20

-10

0

10

-10

0

10

-20

0

20

-10

0

10

-5

0

5

-10

0

10

-10

0

10

-4
-2
0
2
4

-10

0

10

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. The first six POD modes of MP flow regime computed using Ntrain = 4000 snapshots (roughly
200 shedding cycles at f ∗

sh,t ). Rows (a)–(f) represent modes 1 through 6, respectively. The first and second
columns show the nondimensionalized u- and v-velocity components of the spatial modes, respectively; the
third column shows the corresponding streamlines of the spatial modes, with the nondimensionalized vorticity
component ωzD/U∞ as the colormap; the fourth column displays the PSDF of the corresponding temporal
coefficients on a log-log axis scale. The modal energies contained within each velocity component is shown
above each flow field in the first and second columns. The total energy contained in each mode (from mode 1
to 6) is: 37.11% k, 35.36% k, 6.65% k, 6.40% k, 3.38% k, and 1.93% k.
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FIG. 11. Temporal coefficients a1, a3, and a6 for MP regime.
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FIG. 12. Sequence of nondimensionalized vorticity contours for the FF case with nondimensional time
stamps presented in the top-left corner of each snapshot.

modulation or the beat frequency f ∗
beat. In the context of flow estimation, the clear separation of

the shedding processes and their modulation into separate POD modes is promising for estimator
development.

2. Flow development in the flip-flop regime

A sequence of vorticity field snapshots illustrating the flow development is shown in Fig. 12. The
image sequence indicates that the vortex shedding from the top and bottom cylinders is symmetric
about the y/D = 2 and y/D = 0 axes, respectively, for about x/D = 1–3. The shedding topology
resembles the typical von Kármán vortex street in this region, with two pairs of counter-rotating vor-
tices imparted by the two cylinders—as observed by Lee and Yang [37]. The cylinder wakes begin
to interact at roughly x/D > 3. In this region of the flow, the vortices tend to either cluster in pairs
of opposite signs or remain solitary, though no repeating pattern of these configurations is observed.
This is in stark contrast to the observations in the MP regime, where the large-scale dynamics are
characterized by specific low-frequency interactions. These observations are consistent with those
reported by Lee and Yang [37] and Kang [35] in the FF regime. It is observed that the interaction
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FIG. 13. Reynolds stresses (a)–(c) and PSDF (d) of u and v velocities and pressure values at locations where
their RMS is maximum. The locations are indicated by (X) markings in panel (a). The (x/D, y/D) coordinates
are (i) (1.7, 0.4), (ii) (2.15, 2.05), and (iii) (1.55, 1.55).

results in significant distortion to the flow symmetry relative to the y = 1 axis (see x/D > 3). The
nonlinear wake interactions give rise to a large bandwidth of spatial scales and velocity fluctuations.

A quantitative characterization of the wake development is provided through the presentation of
the Reynolds stresses and a PSD analysis, as shown in Fig. 13. Unlike the stresses observed in the
MP case, the FF stresses generally appear symmetric. Both top and bottom cylinder wake Reynolds
stresses are similar to that of a stationary cylinder in an open free stream for about x/D < 4 [36].
The wake interactions downstream of this location generally result in symmetric principal stress
fields [see Figs. 13(a) and 13(b)].

The frequency content is investigated by conducting a PSD analysis at points (i)–(iii), as shown
in Fig. 13(d). These points are locations where the RMS of u, v, and p quantities is maximum
[see Fig. 13(a)]. The primary vortex shedding frequency is labeled f ∗

sh = 0.19. Since there are
many frequencies with similar spectral densities, it is difficult to identify the key frequencies other
than the shedding frequency. The scattering of high spectral densities across the frequency domain
indicates the presence of tightly coupled nonlinear multiscale interactions in the flow, as was also
observed by Kang [35] for a study conducted at a slightly lower Reynolds number at ReD = 100,
and other experimental studies [30,32] conducted at higher Reynolds numbers.

The first six POD modes along with the PSD functions of the corresponding temporal coefficients
are shown in Fig. 14. The time-varying coefficients of modes 1, 3, and 6 are plotted in Fig. 15.
Three mode pairs characterize the majority of the fluctuating kinetic energy (amounting to 61% k)
of the FF flow. In particular, the first two spatial modes are symmetric with respect to the y/D = 1
axis and are characterized by short and long wavelengths in the near- and far-wake, respectively.
The energetic shorter wavelengths (x/D < 3) correspond to the peak frequency at f ∗

sh in the
corresponding coefficient spectrum, and the longer wavelengths (x/D > 3) correspond to the
peak at f ∗ ≈ 0.08. The anti-symmetric spatial patterns in modes 3 and 4 resemble classical von
Kármán vortex shedding modes centered at f ∗

sh. The time signal of a3 suggests that the shedding
at f ∗

sh in modes 3 and 4 is coupled with irregular modulations, likely due to a combination with
frequency-centered phenomena at f ∗ ≈ 0.08 and f ∗ ≈ 0.40 [see Fig. 15(b)]. Modes 5 and 6 show
similar characteristics as modes 1 and 2. Moreover, the mode energies decay slower compared
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FIG. 14. The first six POD modes of FF flow case computed using Ntrain = 15 671 snapshots (roughly 784
shedding cycles at f ∗

sh), similarly represented as for the MP case in Fig. 10. The total energy in each mode
(from mode 1 to 6) is: 12.29% k, 11.15% k, 10.61% k, 10.4% k, 8.8% k, and 7.57% k.

with the MP regime, which suggests that more modes are needed to reconstruct the energetically
dominant flow features.

Qualitative assessments from previous studies [38] of the FF regime have noted a gap flow
between the cylinders, along with an irregular flow bias either towards the top or bottom boundaries
of the domain (hence the name “flip-flop”). The present study is the first to show that the seemingly
“chaotic” wake flow in the FF regime is more simply described in a POD subspace. In particular,
while the second mode pair describes the unbiased gap flow with vortex shedding from the cylinders,
the first and third mode pairs characterize the dynamical coupling of the two wakes that gives rise
to a multitude of spatiotemporal scales.

While the frequency scatter in the FF regime was observed in previous works [35,37], the POD
analysis of the present study more clearly discerns five distinct frequencies. The shedding frequency
is identified to be f ∗

sh = 0.19, and four additional (and somewhat broadband) peaks are observed
in the dominant POD modes: f ∗ ≈ 0.08, 0.11, 0.31, and 0.40. Besides the shedding frequency,
the other frequencies have so far not been reported in the literature. These additional frequencies
correspond to nonlinear secondary wake interactions, which are major contributors to the Reynolds
stresses due to their presence in the most energetic modes. The flow physics that result in these
frequencies requires further investigation.

In contrast to the MP temporal coefficients, the FF coefficient signals belonging to the most en-
ergetic modes do not exhibit behavior that can be easily predicted by standard statistical techniques.
In the context of flow estimation, the irregular patterns arising from the wake interaction can pose
significant challenges for standard estimators such as LSE/QSE-POD. This lack of mode separation
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FIG. 15. Temporal coefficients a1, a3, and a6 for FF regime.

in the frequency domain also makes the flow case an excellent testbed for developing more efficient
scale-extraction methods.

B. Flow estimation performance

Sections III B 1 and III B 2 present an analysis of the estimator performance in the MP and
FF flow regimes, respectively. Four estimators are studied: LSE-POD, QSE-POD, FFNN, and
LSTM networks. Three quantitative metrics are used to assess performance: (i) residual errors, (ii)
Reynolds shear stresses, and (iii) velocity spectra. The number of modes to estimate is chosen based
on the POD mode selection results provided in Appendix A 2. Section III B 3 provides a discussion
on the robustness of the estimators.

1. Estimation performance in the modulated-periodic regime

For the MP case, the training data set contains Ntrain = 4000 snapshots, corresponding to
roughly 200 shedding cycles at f ∗

sh,t . From this set, 3000 snapshots are used for training and the
remaining 1000 are used for cross-validation during the training phase. For the FFNN, the training
and validation snapshots are randomly selected from the 4000 total snapshots. For the LSTM, the
snapshots in the training and validation data sets are ordered in time due to the dependence of
the LSTM network architecture on historical input sequences. For both estimators, the unseen test
data set contains Ntest = 2600 snapshots, or roughly 130 shedding cycles at f ∗

sh,t . Both ANNs are
trained using the Adam [51] optimizer, with all its parameters initialized to 0. The input weights are
initialized using the method of Xavier [57]. L2-regularization is set to 10−4.

FFNN training characteristics. For the MP case, Np = 6 pressure sensors are used to estimate
the first Nmode = 50 modes. A three-layer fully connected network that consists of two hidden layers
is used for training. It was observed that adding more layers did not improve performance. The input
layer is Np = 6 units in length; the first hidden layer of d1 = 80 units is followed by a dropout
layer with probability of 0.05; the second hidden layer of d2 = 160 units is followed by a dropout
layer with 0.1 probability, and the final fully connected regression layer has Nmode = 50 units. The
Rectified Linear unit (ReLu) is used after both hidden layers as the activation function. Several other
combinations of activation functions were tested with similar results. Training is stopped when the
validation error does not reduce after 50 epochs. The initial learning rate of the Adam optimizer is
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FIG. 16. Residual errors of select estimated test snapshots for Np = 6 sensors and Nmode = 50 for the MP
flow case. The mean residual error, εu, is shown in the corresponding legend for each estimator.

0.002, and is dropped by 5% every 50 epochs. The input (sensor) training data are injected with
white Gaussian noise with a signal-to-noise ratio of 15 dB. This is later addressed in Sec. III B 3.

LSTM training characteristics. A single-layer LSTM network with d = 152 hidden LSTM
units is considered, with some parameters manually tuned and others determined through Bayesian
optimization. The recurrent weights are initialized as an orthogonal matrix [58]. A dropout layer
with 0.061 probability is added after the LSTM layer. The sequence length, S, and the gradient
threshold, Gmax, are manually tuned. It is observed that a longer sequence length resulted in better
performance within the span of training samples used in this flow case, which is also accompanied
by longer training times. To balance the tradeoff with increasing training times for improved model
performance, a sequence length of S∗ = SU∞/D = 324 nondimensional time units (corresponding
to roughly 60 shedding cycles at f ∗

sh,t ), is chosen along with a Gmax value of 25. The following
hyperparameters are tuned via Bayesian optimization: (i) initial learning rate of the Adam optimizer,
(ii) dropout probability, and (iii) number of units in the LSTM layer, d . The initial learning rate of
the Adam optimizer is 0.0965, and is dropped by 5% every 50 epochs. The input sensor training
data are injected with white Gaussian noise with a signal-to-noise ratio of 10 dB.

First, the residual errors of the estimated snapshots are used to assess the performance of each
estimator. The residual is computed as the �2-norm (εu) over the flow domain between the estimated
snapshots and the corresponding LOR. The results of the error time series are provided in Fig. 16.

The results indicate that the FFNN and LSTM estimators outperform the LSE/QSE-POD
estimators on average by an order of magnitude. We observe that the QSE-POD outperforms the
LSE-POD, the weakest performing estimator considered, by approximately 50% on average. This
suggests that even a second order estimator is insufficient to capture the flow behavior present in
the MP flow regime. On average, the LSTM performs over two times better than the FFNN. An
initial decrease in the residual error curves for the LSTM is observed. This is because the LSTM is
informed by historical data in the sequence (i.e., memory). Thus, the network error should not be
evaluated during this initial transient phase (spanning approximately six convective timescales).

Assessing the residual errors in the frequency domain can provide insight into the frequencies (or
length scales [7]) where the errors persist. Following the work of Lasagna et al. [7], the ratios of the
PSDFs of the residuals plotted in Fig. 16 are computed to see how well the ANNs perform relative
to the LSE-POD, the weakest performing estimator considered. The ratio is computed according to
Eq. (19):

ηεu−PSDF = S[ε (∗)
u ]

S
[
ε

(LSE−POD)
u

] , (19)
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FIG. 17. Ratios of the PSDFs of the residual errors of QSE-POD, FFNN, and LSTM estimations relative
to those of the LSE-POD. Results are for Np = 6, Nmode = 50 for the MP flow. Values ηεu−PSDF( f ∗) < 1
indicate better performance of the estimator compared to the QSE-POD at f ∗.

where S[ε (∗)
u ] is the PSDF of the residual errors for either the QSE-POD, FFNN, or the LSTM

network; S[ε (LSE−POD)
u ] is the PSDF of the residual errors for the LSE-POD estimator (see Fig. 17).

Values closer to ηεu−PSDF( f ∗) = 1 indicate no significant difference between the LSE-POD and
the other estimators. Values below unity indicate superior reconstruction performance compared to
the LSE-POD. A lower value of ηεu−PSDF is desirable to ensure a lack of periodicity in the error time
series.

It is observed from Fig. 17 that the LSTM estimator performs better than the LSE-POD across
most of the frequency domain, while the QSE-POD and FFNN do not significantly outperform the
LSE-POD. Additionally, the LSTM curve is seen to fall below the FFNN and QSE-POD curves past
f ∗ ≈ f ∗

A , suggesting that the former ANN is better at resolving frequencies f ∗ > f ∗
A . Past f ∗

beat, the
amplitude of the LSTM ηεu−PSDF curve is slightly lower than that of the FFNN. The accumulation of
estimation errors for both the ANNs is most prominent at higher frequencies past the fundamental
shedding frequency f ∗

sh,t and at certain frequencies within the band f ∗
beat < f ∗ < f ∗

sh,t . The increase
in the ratios with higher frequencies in the region f ∗ > 4 f ∗

sh,t indicates that all estimators show
equally poor performance at these frequencies. Finally, none of the estimators is able to resolve the
high frequencies of f ∗ > 1.

The second metric to assess the performance of the estimators is their ability to reconstruct the
Reynolds shear stress field, uv, presented in Fig. 18. The left column presents the estimated shear
stress fields, while the right column shows the absolute residual errors between the corresponding
field on the left, and its target. The first row shows the shear stress for the LOR, accompanied by its
residual error with the original (nondecomposed) stress field. For the remaining rows, the residual
fields on the right correspond to the absolute residual field created between the estimator when
compared with the LOR in Fig. 18(a).

The 50-mode LOR is able to accurately reconstruct the Reynolds shear stresses [see Figs. 18(a)
and 18(b)]. The residual errors for the LSE-POD are seen to have the same order of magnitude as
the LSE-POD estimated shear stress field itself, indicating highly unsatisfactory estimation results
[see Figs. 18(c) and 18(d)]. Notably, a trail of high stress magnitudes separated by approximately
2D in the wake of estimated LSE and QSE-POD stress fields is observed [see Figs. 18(c) and
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FIG. 18. Reynolds shear stresses, uv, of the MP regime for (a) the LOR, (c) LSE-POD, (e) QSE-POD,
(g) FFNN, and (i) LSTM estimates; and their associated absolute residual error fields with row-wise respect to
the original (nondecomposed) shear stress field[for panel (b)], and to the LOR [for panels (d), (f), (h), (j)].

18(e)]. This separation length corresponds to the length scales that were not successfully resolved
by the LSE/QSE-POD. Moreover, this trail is also apparent in the FFNN and LSTM residual fields,
although the error magnitude shown in the contour plots in the right column are two orders of
magnitude lower than their estimates in the left column [see Figs. 18(g), 18(h) and 18(i), 18(j)]. The
Reynolds shear stress field is adequately reconstructed by both the ANNs for the MP regime, with
maximum error in the wake of the top cylinder [see Figs. 18(h) and 18(j)].

The extent to which the estimators are able to reconstruct the individual POD coefficients is
assessed. In particular, the ability of each estimator to retain the 50 modal energies is analyzed.
The retention is given by the ratio ηλi = λest

i /λLOR
i , where λest

i is the eigenvalue of mode i of the

estimated test data computed via
∑Ntest

k=1
1
2 ã2

i (tk ), which is similarly computed for the eigenvalues of
the LOR, denoted λLOR

i . Thus, a ratio closer to unity indicates a more accurate reconstruction of
mode energy. The results are given in Fig. 19. The total energy retention given by the sum of these
ratios for all 50 modes is given in the legend.

Poor reconstructions of the high-order modes may indicate overfitting of the model. In particular,
the rate of decay in energy retention with increasing mode order may indicate the degree of
overfitting. Our results suggest—as expected—that the LSE-POD significantly overfits the training
data with no clear-cut-off mode past which the retention ratio monotonically decreases. We see that
its estimation completely fails past mode 15 with the exception of a few modes that are inadequately
captured (i.e., ηλi < 0.1). We also note that the LSE-POD disproportionately retains the energies of
modes 2 and 4, which are linked to the shedding phenomena as seen previously in Fig. 10. However,
the QSE-POD rapidly decays past mode 10, and generally performs better than the LSE-POD by
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FIG. 19. Retention of MP mode energies captured by the different estimators. Ratio of the total energy
captured by each estimator relative to the LOR is given in the legend. Ratios closer to unity imply higher
retention of energy.

being able to capture in total 15% more energy. Conversely, the LSTM and FFNN significantly
outperform the former two approaches. For the LSTM, we note minor energy deficits in some
high-order mode estimates (see modes 19, 33–35, and 47). The FFNN exhibits a more linear decay
of energy retention with mode number while being able to reconstruct 94% of the energy in the LOR.
The LSTM can reconstruct 97% of the energy in the 50-mode LOR, which is remarkable given that
only six sensors are used for training. Finer tuning of the model hyperparameters is expected to
reduce overfitting. Finally, we note that while such an energy-based method is a coarse performance
metric, it proves to be a quick and an efficient method to analyze the ability of estimators to predict
certain (modal) dynamics.

Finally, the ability of the estimators to predict the important flow dynamics is assessed by
studying the v-PSDFs from the LOR and the estimated ensemble spanning the test data at two
distinct locations. Location (1) is where the RMS of the v-component of the velocity is maximum
[see location (ii) in Fig. 9(a)]. Location (2) is dominated by the secondary shedding process [see
point (iv) in Fig. 9(b)]. The results of the v-PSDFs are provided in Fig. 20.

We observe that the LSE/QSE-POD estimators inaccurately predict the dynamics of the major
flow phenomena at location (1). For instance, they over-estimate the spectrum amplitude at f ∗

beat,
ranking it with the dominant shedding at f ∗

sh,t although the original and LOR spectra suggest that
this location is dominated by the primary vortex shedding. The ANNs are better at predicting the
spectrum compared to the LSE/QSE-POD estimators at this location. We notice some nonphysical
predictions by the FFNN in the range f ∗

A < f ∗ < f ∗
beat, and some over-predicted frequency com-

ponents past this region. However, the LSTM can faithfully predict the spectrum at this location
without significant scatter in the low-frequency region. Qualitatively, the LSTM can predict the
peak amplitudes up to the fourth shedding harmonic, with decreasing accuracy past this point.

At location (2), all estimators over-predict the phase dislocation process at f ∗
A , and generally

perform worse compared to location (1). The LSE/QSE-POD spectra at the second location are
relatively more scattered compared to those of the ANNs, introducing nonphysical dynamics that are
not observed in the original flow (e.g., at f ∗

A < f ∗ < f ∗
sh,b). We observe some over-prediction with

the ANNs in the range f ∗ < f ∗
beat. Moreover, both ANNs struggle to predict the high-frequency

amplitude peaks past f ∗ ≈ 2.5 f ∗
sh,b.
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(b)(a)

FIG. 20. v-PSDFs at (a) location (1) at (4.2,1.95) and (b) location (2) at (1.75,−0.25) for Np = 6 sensors
and Nmode = 50 for the MP flow. Unlabeled dotted lines represent the second, third, fourth, and fifth harmonics
of f ∗

sh,t in panel (a) and f ∗
sh,b in panel (b), respectively.

To quantify how well the estimators reconstruct the amplitudes of the power spectra at these two
locations, we present ηv-PSDF curves, which are ratios of the estimator v-PSDFs to those of the LOR
(see Fig. 21). A value closer to unity indicates closer agreement with the LOR. At both locations, it
is observed that the ratios corresponding to the LSTM are closer to unity for frequencies lower than
the shedding frequencies (i.e., f ∗

sh,t , f ∗
sh,b). At location (1), the curve corresponding to the LSTM

confirms that the estimator can faithfully predict frequencies over the dynamical range of interest.
The ηv−PSDF curves for the LSTM are marginally lower than those corresponding to the FFNN for
regions past f ∗ ≈ 0.4. Based on the curves at location (2), the LSTM performs slightly better than
the FFNN, and both ANNs outperform the LSE/QSE-POD methods. These results agree with the
qualitative observations from Fig. 20. All estimators considered are unable to accurately reconstruct
the amplitude decay occurring at high frequencies past the fourth harmonics of f ∗

sh,t and f ∗
sh,b [see

Figs. 21(a) and 21(b)]. Overall, the LSTM is the better estimator in the frequency domain.

2. Estimation performance in the flip-flop regime

The training data set for the FF flow contains Ntrain = 15671 snapshots, corresponding to roughly
784 shedding cycles. From this set, 12537 snapshots are used for training and the remaining 3134
are used for cross-validation. The unseen test data set contains Ntest = 6171 snapshots or roughly
309 shedding cycles at f ∗

sh. A similar approach to the MP flow is taken to train the ANNs.
FFNN training characteristics. The first Nmode = 65 FF modes are estimated. All the training

characteristics are identical to the MP case except for the number and size of the hidden layers, and
the output layer size. The input layer is Np = 6 units in length; hidden layer of d1 = 50 units is
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(b)(a)

FIG. 21. Ratios of the v-PSDFs of QSE-POD, FFNN, LSTM estimates to that of the LOR in Fig. 20 at
(a) location (1) at (4.2,1.95) and (b) location (2) at (1.75,−0.25) for the MP case. Values closer to unity indicate
better performance.

followed by a dropout layer with probability of 0.01; the second hidden layer of d2 = 160 units
is followed by a dropout layer with 0.05 probability; and the final fully connected regression layer
is Nmode = 65 units in length. The corresponding activation function for both hidden layers is the
hyperbolic tangent. The initial learning rate of the Adam optimizer is 0.008 and is dropped by 20%
every 20 epochs. The input training data are injected with white Gaussian noise with a signal-to-
noise ratio of 15 dB.

LSTM training characteristics. Identical steps to the MP case are taken to tune the LSTM
architecture. The number of LSTM hidden units is d = 180, followed by a dropout layer with
0.075 (dropout) probability, and the sequence length is S∗ = 270 convective timescales (roughly
50 shedding cycles at f ∗

sh). The initial learning rate of the Adam optimizer is 0.0098 and is dropped
by 20% every 20 epochs. The input training data are superimposed with white Gaussian noise with
a signal-to-noise ratio of 15 dB.

The residual errors of the reconstructed snapshots are computed over the unseen test data and are
presented in Fig. 22. On average, the QSE-POD performs 12% better than the LSE-POD, bridging
the performance gap between the two by nearly four times compared with the MP case. Although
the four-layer FFNN is expected to be expressive enough to capture strong nonlinear behavior,
compared with the LSE/QSE-POD there is only a 30–35% improvement in an average �2 sense.
However, the LSTM outperforms the LSE/QSE-POD on average by roughly six times, and the
FFNN by over four times.

FIG. 22. Residual errors for the estimated test snapshots for Np = 6 and Nmode = 65 in the FF flow.
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FIG. 23. Ratios of the PSDFs of the residual errors of QSE-POD, FFNN, and LSTM estimations relative to
those of the LSE-POD. Results are shown for Np = 6, Nmode = 65 for the FF flow. Values ηεu-PSDF( f ∗) < 1
indicate better performance of the estimator than the QSE-POD.

Following the same approach taken in the previous section, the ratios of the PSDFs between
the ANNs to those of the LSE-POD are computed (see Fig. 23). The results show that the LSTM
consistently performs better than the LSE-POD. The FFNN and QSE-POD are seen to perform
no better than the LSE-POD throughout the frequency domain. The ratios steadily increase for all
estimators past 4 f ∗

sh, suggesting that none of them adequately resolves the high frequencies past this
point.

The Reynolds shear stresses and the associated residual fields are presented in Fig. 24. We
observe that the LSTM faithfully reconstructs the shear stresses. The predictions of the other
estimators show errors that are at least an order of magnitude larger compared to the LSTM (see the
right column of Fig. 24). The LSE-POD is the weakest estimator, which fails to predict the shear
stress across most of the flow domain.

The amount of energy retained in the estimated modes is quantified using the methods described
in the previous section with MP case using the mode energy retention ratio ηλi (see Fig. 25).

We observe that the LSE-POD retains only 28% of the energy in the LOR by mainly predicting
the first 16 modes. The predictions completely fail for the higher-order modes. The QSE-POD
captures 12% more energy than the former method. Both LSE/QSE-POD approaches exhibit a
rapid decay in energy retention. The FFNN shows a slightly more linear decay until mode 30 while
being able to capture 51% of the energy in the LOR. Finally, the LSTM is able to retain up to
94% of this energy, with a gentle (linear) decay. Given the complex irregularities in the FF POD
coefficients, our results demonstrate the expressivity of the LSTM architecture.

Continuing the performance assessment into the frequency domain, v-PSDFs of the original,
LOR and estimated test data are computed at location (1) (x/D, y/D) = (2.1, 2.05), position of
maximum v-RMS [see point (ii) in Fig. 13] and location (2) (x/D, y/D) = (5, 1), where the wake
interactions persist. The results are provided in Figs. 26(a) and 26(b), respectively.

At location (1), we see that the LOR can generally resolve the major spectral content found in the
original spectrum, with worsening performance past 3 f ∗

sh. The LSE/QSE-POD estimators struggle
to predict the major peak amplitudes and the general shape of the velocity spectrum. Qualitatively,
we see that they also fail to reconstruct the general behavior of the amplitude decay. The FFNN

024707-28



SPARSE SENSOR-BASED CYLINDER FLOW ESTIMATION …

-0.1

0

0.1

0.00

0.02

0.04

-0.1

0

0.1

0.00

0.02

0.04

-0.1

0

0.1

0.00

0.02

0.04

-0.1

0

0.1

0.00

0.02

0.04

-0.1

0

0.1

0.00

0.02

0.04

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 24. Estimated Reynolds shear stresses uv for Np = 6 and Nmode = 65 for the FF flow. Data are
organized similar to Fig. 18.

correctly identifies the peak at f ∗
sh but over-predicts the lower frequencies in the range f ∗ < f ∗

sh and
fails to reconstruct the decay behavior at the higher frequencies. However, the LSTM successfully
reconstructs both the major peak amplitudes and the general decay behavior.

At location (2), the LOR is once again able to sufficiently reconstruct the original spectrum,
with worsening performance past 3 f ∗

sh. Qualitatively, all estimators appear to resolve the major peak
amplitudes, with the LSE/QSE-POD and the FFNN introducing nonphysical components (e.g., see
FFNN at f ∗ ≈ 10−2). The LSTM is seen to be the best at predicting the spectrum.

We provide a quantitative assessment by following the procedure outlined previously for the MP
flow, and compute the ratios of the estimated v-PSDFs to those of the LOR at locations (1) and (2).
The results are presented in Figs. 27(a) and 27(b), respectively.

At location (1), it is observed that the velocity spectrum of the LSTM estimate starts diverging
slightly past the fundamental shedding frequency ( f ∗

sh), and then steadily decreases. We also verify
the superior performance of the LSTM in the low frequency range f ∗ < f ∗

sh. All the estimators
perform better at reconstructing the spectrum in this range at location (2), with the LSTM showing
the best performance. Similar to location (1), the amplitude predictions at location (2) worsen at
high frequencies.

By design, the ANN architectures enable learning of more complex nonlinear correlations as
opposed to LSE/QSE-POD approaches, which are restricted by a polynomial structure. In principle,
the QSE-POD should be sufficient to learn the necessary correlations given the existence of a
quadratic relation between the pressure and velocity fields in incompressible fluid flows. We
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FIG. 25. Retention of FF mode energies captured by the different estimators. Ratio of the total energy
captured by each estimator relative to the LOR is given in the legend. Ratios closer to unity imply higher
retention.

hypothesize that the reason why the ANN approaches outperform the QSE-POD is due to the nature
of the input pressure information, which is a highly sparse representation of the high-dimensional
pressure field (i.e., sparse sensors).

(a) (b)

FIG. 26. v-PSDFs at locations (1) (x/D, y/D) = (2.1, 2.05) and (2) (x/D, y/D) = (5, 1) for the FF flow.
Labeled in both subfigures is the fundamental shedding frequency, f ∗

sh.
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FIG. 27. Ratio of the v-PSDFs of the estimates of QSE-POD, FFNN, LSTM to the LOR in Fig. 26 at
locations (1) (x/D, y/D) = (2.1, 2.05) and (2) (x/D, y/D) = (5, 1) for the FF flow case.

From our results, it is hypothesized that the ANN architecture overcomes this sparsity limitation
to learn the essential information encoded in the pressure-velocity mapping to predict the low-order
velocity field. In particular, the nonlinear activations, which are absent in the LSE/QSE-POD
approaches, are likely required to overcome this limitation and are thus major contributors to the
superior predictive capabilities of the ANNs. Rigorous studies are required to test this hypothesis.
Hence, we expect the LSE/QSE-POD estimators to perform significantly better when several
sensors spanning a larger portion of the domain are used since the (internal) estimates of the
high-dimensional pressure field are expected to be more accurate.

Moreover, we see through the superior LSTM performance in the FF regime the importance of
memory and time history in the input data. This has also been noted by Durgesh and Naughton [8]
and Lasagna et al. [7] through the use of time-delayed sensor signals.

3. Robustness of the estimators

To demonstrate the practical potential of the estimators, robustness of the models must be
assessed. Two different types of assessments are performed. First, the predictive capability of the
trained estimators in the presence of sensor noise is evaluated in Sec. III B 3 a. This allows for
the study of estimator ability to uncover the deterministic component of the sensor signals, which
is also useful because instrumentation noise and error is inevitable in a practical setting. Other
classes of noise and error sources are those that can be found in a physical experimental setup,
such as instrumentation error and noise, inflow nonuniformity, flow three-dimensionality, mounting
tolerances of the sensors, and so on. These are not easily replicable in the present computational
study. Moreover, vortex flows are sensitive to perturbations [59] as they change the flow response,
and thus the flow state. Thus, attempting to perturb the (laminar) two-cylinder flow cases using
simulations is expected to change the flow regime, yielding an unknown flow response; determining
this response is beyond the scope of this study. Therefore, we assess model robustness through
studying estimator performance in the presence of Gaussian sensor noise.

Second, the performance sensitivity of the different estimators to the placement and number of
sensors is briefly discussed in Sec. III B 3 b. This enables the identification of estimators that are rel-
atively insensitive to the placement and number of sensors used, making them excellent candidates
for systems with limited accessible regions to install sensors. Due to the poor performance of the
LSE/QSE-POD estimators, the following discussion on robustness is restricted to the ANNs.

a. Sensor noise. The trained models are tested on pressure sensor data that are superimposed with
random white Gaussian noise. The signal-to-noise ratio (SNR) is defined on a logarithmic decibel
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(dB) scale. SNRs of 25 dB, 15 dB, 10 dB, and 5 dB are tested, and the corresponding flow field
predictions are analyzed and compared to the case where no noise is added (defined SNR = ∞).

Compared to training without noise, it is found that training on noisy sensor data results in
significantly lower test errors (and thus a more robust model) when the trained model is tested with
noisy sensors. In particular, the amount of noise added during training is tuned based on model
performance in the presence of noisy unseen test sensors with SNRs of 5 and 10 dB. For the
MP case, the LSTM model is trained on noisy sensors with SNR = 10 dB and the FFNN with
SNR = 15 dB. For the FF case, both the LSTM and FFNN models are trained on noisy sensors
with SNR = 15 dB. No significant variation is observed in the validation and test errors when the
above-mentioned SNR values (used for training) are slightly changed.

Four types of errors are used as performance metrics:
(i) time-averaged velocity field residual errors, εu,
(ii) Reynolds shear stress relative errors,

εuv = (ũv − uvLOR)F

uvF
× 100%,3 (20)

(iii) relative PSD error in the energetic fluctuations in the near-wake at (x/D, y/D) =
(4.2, 1.95) for the MP regime and at (2.1,2.05) for FF,

εS (1) = ‖S̃‖2 − ‖SLOR‖2

‖SLOR‖2
× 100%, (21)

where ‖SLOR‖2 is the �2-norm of the PSDF from the LOR (computed as the magnitude using u- and
v-PSDF components), and ‖S̃‖2 is the estimated quantity, and

(iv) relative PSD error in the far-wake, similarly defined at (1.75,−0.25) for MP and at (5,1)
for FF, εS (2) .

The results for the Np = 6 case are shown in Fig. 28.
While overall reconstruction errors are higher in the FF regime compared to the MP case, the

LSTM is very robust against sensor noise. This is contrasted by the FFNN, which exhibits poor
performance: (i) in the MP case, the FFNN performs relatively poorly in the presence of SNR �
15 dB sensor noise, which suggests that it is more prone to overfitting compared with the LSTM,
and (ii) in the FF case, the FFNN consistently performs poorly even in the absence of added sensor
noise (see right column of Fig. 28).

For all SNRs considered, the LSTM can achieve reconstruction errors consistently less than 10%
for the second-order moments (shear stresses) and spectral content for both flow regimes. This
performance is remarkable given that the (noisy) sensors are placed along the outer edges of the
flow domain, where there is limited information about the energetic motions of the flow.

b. Effect of sensor placement. As seen from the wake development Sec. III A, the wake dynamics
greatly depends on the location within the flow domain. Thus, it is expected that the correlation
information that underpins the mapping F is sensitive to the placement of sensors. In the present
work, the effect of sensor placement is investigated by considering seven unique configurations that
are summarized in Table II in Appendix B. We consider Np = 6 (configuration A), 4 (B and C), 3
(D and E), and 2 (F and G) sensors that are placed closer to (B and F) and farther downstream (C and
G) from the cylinders, and near the top (D) and bottom (E) boundaries of the flow domain. These
configurations enable analysis of estimator performance based on the differing extent of physical
information encoded inside the input state. The important hyperparameters used to train the different
configurations for both flow regimes are summarized in Table III in Appendix B.

The average velocity reconstruction errors (εu) for configurations B–G are shown in Fig. 29.
The FFNN is more sensitive to the number of sensors and sensor location compared to the LSTM.

3The subscript “F” denotes the Frobenius norm.
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FIG. 28. Effect of increasing noise levels (SNR = ∞ denotes the case where no noise is added) on
reconstruction errors for the Np = 6 case in MP (left) and FF (right) regimes. Row 1 (a), (b) shows mean
velocity residuals, εu; Row 2 (c), (d) shows the residual in the Reynolds shear stresses computed via Eq. (20);
Row 3 (e), (f) shows the residual in the PSDF in the near-wake and row 4 (g), (h) in the far-wake, computed
via Eq. (21) at discrete locations.

In particular, for the FFNN, the errors increase as the number of sensors used decreases, and for
configurations B, C and F, G, the performance is worse when the sensors are placed in the right-half
of the domain, away from the cylinders. For the LSTM, configurations D and E yield roughly on
average 10% higher residuals compared to configuration F, which has fewer sensors than the former
two cases. This result suggests that the LSTM performance improves when sensors are placed near
both the top and bottom boundaries of the domain (A–C, F, and G) and closer to the cylinders, rather
than the top alone (D), or the bottom alone (E).

Both ANNs struggle to predict the flow with configuration G (Np = 2 sensors in the far-right
of the domain). This is likely because the complex wake interactions may have limited memory
and a damped signature of the near-wake flow by the time the flow reaches the sensors placed far
downstream.

Overall, the LSTM is relatively insensitive to sensor location compared to the FFNN. Even with
noisy Np = 2 sensors in configurations F/G, the LSTM yields acceptable reconstruction errors.
Given its robustness to noise and sensor placements considered in this study, the LSTM estimator
is an excellent choice when noisy sensors are inevitable and/or when there are limited options to
install sensors.
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FIG. 29. Mean velocity reconstruction errors (εu) for various sensor placement configurations in MP (left)
and FF (right) regimes. The sensor configuration is identified in the top-right corner of each figure.

IV. CONCLUSIONS

In this study, sparse pressure sensor-based estimation of unsteady two-dimensional velocity flow
fields is performed using modified linear and quadratic stochastic estimators (LSE/QSE-POD),
shallow feedforward neural networks (FFNN), and long short-term memory (LSTM) networks in the
context of low-dimensional representations based on the proper orthogonal decomposition (POD).
Despite the rising use of powerful machine learning algorithms for flow estimation problems, a
standard set of flows from which estimators can be developed, compared, and assessed is currently
lacking within the fluid dynamics community. It was foreseen that a more organized development
of these algorithms would make them more likely to be used in industrial applications, where their
reliability can be assessed. Therefore, an intended outcome of this study is to support the accelerated
advancement of sensor-based estimation techniques. The flow under investigation is the laminar
(ReD = 160) wake development and wake interactions of two cylinders in proximity.

A detailed description of the flow physics is provided for two flow regimes: modulated-periodic
(MP) and flip-flop (FF). Application of the POD to the MP and FF cases enables a clearer distinction
of the dominant frequencies present in the wake and their associated dynamics. For both regimes,
the first three mode pairs describe the majority of the fluctuating kinetic energy associated with the
vortex shedding from the cylinders. We find that the MP regime, which is known to be characterized
by a low-frequency phase modulation, also exhibits phase dislocation behavior that manifests at an
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even lower frequency in the velocity and pressure spectra. For the FF flow, five distinct frequencies
are identified, which correspond to the vortex shedding behavior and nonlinear secondary wake
interactions.

The performances of the estimators are measured against low-order representations of the flow.
Each estimator is assessed in terms of its ability to resolve the Reynolds shear stresses and pertinent
spectral content in the wake. For the MP regime, the ANNs—particularly the LSTM—significantly
outperform the LSE and QSE-POD approaches both instantaneously and in an average least-square
sense. For the FF case, the LSTM network outperforms all other estimators on average by an
order of magnitude in the time domain. Moreover, the LSTM-based estimator shows remarkable
reconstruction performance in the frequency domain. Robustness of the estimators is demonstrated
by considering pressure sensors with varying noise levels, revealing that the LSTM is far more
robust than the FFNN in both flow regimes. Moreover, various sensor placement configurations
are tested where combinations of two, three and four sensors with embedded noise are placed in
different regions of the flow domain. Our study shows that the LSTM-based estimator is relatively
insensitive to these sensor configurations compared to the FFNN. Based on the comprehensive
characterization of the two flow cases and the detailed performance assessment of a variety of
estimation methods on these data sets, the two-cylinder flows form an excellent suite of test cases
to further develop and improve estimation algorithms.

APPENDIX A: PROPER ORTHOGONAL DECOMPOSITION MODE SELECTION

1. Methodology for mode selection

Typically, the POD series is truncated to a user-defined rank number r to reconstruct a specified
amount of energy, and the estimation algorithm is then trained to estimate this set of modes (e.g.,
Refs. [17,25]). In addition to energy, sufficient reconstruction of the spectral information is essential
to recover the important unsteady dynamics that characterize the flow development. In the context
of POD-based flow estimation, a robust methodology to incorporate the modes is required to (i)
ensure statistical convergence of the modes as well as to (ii) obtain a reliable basis containing the
important flow information. The convergence of mode i is computed as follows:

ελi
Ntrial

=
∣∣∣∣λ

i
Ntrial

− λi
Ntrial−m

λi
Ntrial−m

∣∣∣∣ × 100%. (A1)

The convergence metric ελi
Ntrial

is defined as the relative % difference in eigenvalue of mode i

computed from a data set containing Ntrial snapshots relative to its eigenvalue when computed from
a data set containing Ntrial − m snapshots. Note that m is an arbitrary user-defined interval used
to quantify the relative change of a POD eigenvalue after the addition of m snapshots to the data
set. A value of m = 100 is chosen to obtain a resolved trend of the mode energy convergence while
considering computation time. It is expected for any given mode that this metric generally decreases
with increasing number of snapshots. Therefore, an appropriate size for the training data set can be
accordingly determined. The choice of a physics-informed threshold is still under investigation, and
thus a threshold value of ε = 1% is deemed sufficient to ensure statistical convergence in the POD
energies of the flows studied in this work.

Successive spatial modes and the corresponding temporal coefficients derived from a converged
training data set are then combined using Eq. (1) to form LORs. The spectral characteristics of
the LORs are analyzed and compared to the original (nondecomposed) ensemble. Modes are added
until the major dynamical phenomena are adequately captured. This is done by comparing the power
spectral densities (PSDs) at two locations in the flow domain taken from the LORs and the original
flow ensemble. The selected set of POD modes is then used for the estimation procedure.
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FIG. 30. Statistical convergence of the first 100 POD eigenvalues with increasing data set size for the MP
flow calculated using Eq. (A1). Note that for each Ntrial data set, the minimum and maximum ε values of the
modes in that bin are plotted.

2. Results of selected modes for the modulated-periodic regime

The results of the POD mode selection procedure as outlined in Appendix A 1 are presented. For
brevity, the results are only shown for the MP flow case. We present the results of the statistical
convergence of mode energies to determine the size of the training data set, followed by results of
the mode selection method.

An assessment of the statistical convergence of the first 100 POD modes is performed using
Eq. (A1) over 49 data sets each containing Ntrial = 200, 300, 400, ..., 5000 snapshots. To highlight
the differing extents of convergence with respect to mode number, the convergence behaviors of
modes 1–15, 16–30, 31–45, 46–60, and 61–100 are grouped into separate bins. The results are
plotted in Fig. 30.

The results indicate that low-order modes converge faster than the high-order modes. This is
expected due to the correlation-based approach taken by the snapshot POD algorithm. Modes
1–15 converge to <0.5% by 3000 snapshots, while the higher-order modes generally require more
snapshots to converge. The convergence in the higher-order modes appears to be irregular, without
a monotonic decrease in relative energy difference. Following the 1% threshold criterion and
accounting for high order modes, we estimate Ntrain = 4000 snapshots to be sufficient to ensure
statistical convergence.

The snapshot POD is computed over the training data set of Ntrain = 4000 snapshots. We present
v-PSDFs obtained from the (i) original data and (ii) the LOR constructed from the first 50 modes
(99.8% k), including (iii) the ratio of the latter to the former v-PSDFs in Fig. 31. An amplitude ratio
that is closer to unity indicates better reconstruction of the dynamics at that frequency by the LOR.
Figures 31(a) and 31(b) show results taken from regions dominated by the top and bottom cylinder
wake dynamics, respectively. It is found that the first 50 modes are sufficient to reconstruct the
important peak amplitudes in the power spectra. For the former location, we see that the 50-mode
reconstruction can adequately capture frequency content up to f ∗ ≈ 0.25, after which the spectral
amplitudes significantly differ from those of the original. We observe similar behavior for the latter
location except for few frequencies in the range 0.023 < f ∗ < 0.13. Qualitatively, however, the
LOR can capture the major peaks until f ∗ ≈ 0.7 at both locations. Note that over 200 modes are
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(a) (b)

FIG. 31. v-PSDFs of the MP regime taken at (x/D, y/D) = (a) (4.2, 1.95) and (b) (1.75,−0.25) from the
original ensemble, the 50-mode LOR and the ratio of the latter to the former PSDs. The axis at a ratio of unity
is marked by a bolded solid line.

required to adequately resolve all the frequency components. Since a fixed six-sensor configuration
is used, we refrain from using a large number of modes in this introductory work to account for
computation time. The procedure is repeated for the FF regime and the first Nmode = 65 FF modes
(98.3% k) are used for estimation.

APPENDIX B: SENSOR PLACEMENT

The various sensor placement configurations used are provided in Table II. The mean velocity
reconstruction errors for these configurations are shown in Fig. 29. A summary of all ANN
hyperparameters used during training is provided in Table III.

TABLE II. Sensor placement configurations for both MP
and FF regimes and sensors used based on labeling in Fig. 4.

Configuration Sensors

A 1–6
B 1–4
C 3–6
D 1, 3, 5
E 2, 4, 6
F 1, 2
G 5, 6
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