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We quantify and model the airfoil response to its pitching flap using a comprehensive
experimentally acquired database at chord-based Reynolds number 1.8 × 106. This quan-
tification relies on two proposed metrics that characterize the dynamic lift hysteresis and
allow describing its evolution under different pitching conditions. The analysis reveals a
saturation of the relative lift hysteresis that is independent of the angle of attack. Moreover,
the hysteresis loop is shown to reach phase opposition at the same reduced frequency as
when its tilt slope begins to change direction. The two-pronged characterization of the lift
hysteresis is a promising approach to quantify the unsteady aerodynamic behavior beyond
the reported conditions and of other immersed bodies. The modeling strategy yields one
nonlinear model and a set of linear models. The models’ performance is examined under
a range of flow and pitching conditions. Despite their reduced accuracy compared to the
nonlinear model, the linear models are chosen to be incorporated in the closed-loop control
strategy that we detail in Part II of this series [Phys. Rev. Fluids 7, 024706 (2022)].
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I. INTRODUCTION

Gust mitigation is relevant to a range of engineering applications, such as passenger aircraft, wind
turbines, and micro-air vehicles. Without countermeasures, gust encounters can lead to extreme
loads on the structure and to possible loss of control. Due to its relevance, various actuation concepts
have been investigated to counter gust effects. These include blown jets [1], synthetic jets [2], and
control surfaces [3] among others. In this project, we employ a trailing edge flap for active control
with the objective of regulating lift during a gust encounter. This is implemented using a model-
based closed-loop control strategy. A first step in achieving this objective is the quantification and
the modeling of the lift response to the pitching flap, which we present in this first paper of the series.

The foundations of the classical theory of unsteady aerodynamics can be traced back to Prandtl
[4] and Birnbaum [5] in 1924. Their formulation was expanded by Wagner [6] in 1925 to solve
the indicial problem, representing the aerodynamic response to an arbitrary wing motion as the
convolution of the motion with the aerodynamic response to an impulsive motion. A solution to
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the frequency response problem was presented in 1935 by Theodorsen [7], which was subsequently
generalized by von Kármán and Sears [8] in 1938. Since these seminal works, multiple expansions
and approximations in the time [9] and in frequency [10] space have been introduced. As long
as the flow over an airfoil remains attached, these “classical” models have been shown to deliver
good load predictions [11]. However, for large angle of attack variations, where dynamic stall might
occur, these models become increasingly less accurate [12]. This is mainly caused by the neglected
viscous effects that manifest themselves through local separations and leading-edge vortex [13];
vortex modeling approaches provide a flexible approach to capture many of these effects [14–16].

To address these shortcomings, many studies adopted data-driven modeling approaches. Some
maintained the same Theodorsen’s model structure and identified an empirical Theodorsen func-
tion using either experimental [11] or numerical [17,18] data. Alternative data-driven modeling
approaches abandon Theodorsen’s model structure for a heuristic one. These include the Snel [19],
Goman-Khrabrov [20–22], ONERA [23], and other heuristic [24] models. Despite their broader
applicability range in comparison to the classical methods, many of these data-driven models are not
well generalizable to different airfoil geometries or different operating conditions, unless parameter
variations are specifically accounted for [25]. Moreover, the majority of unsteady aerodynamic
models have been constructed and validated at relatively low Reynolds numbers on the order of
Re = 5 × 104 or lower [26–28], which is representative of the fluid dynamics for micro-air vehicles.
With few exceptions (e.g., [29]), high Reynolds number studies, which are particularly relevant to
passenger aircraft, are largely absent from the literature.

One defining attribute of unsteady aerodynamics is the lift hysteresis, whose characteristics
depend on the pitch settings. Lift hysteresis results from the phase lead of noncirculatory flow
effects and the phase lag due to vorticity convection into the wake. While noncirculatory effects
are negligible at low reduced frequencies, they become progressively larger with increasing pitch
rate until they become dominant at sufficiently high reduced frequency. The reduced frequency is the
nondimensional pitching frequency scaled with the free-stream velocity and the airfoil half-chord.
Panda and Zaman [30] reported the shape similarity of the hysteresis loop at varying oscillation
amplitude for a given frequency. They claimed that only the size of the loop varied proportionally
to the amplitude. The Mach number effects on the lift hysteresis were investigated in Hariharan and
Leishman [31], where an increase in circulatory lag was observed with increasing Mach number.
Recent findings by Williams et al. [32] indicate that dynamic hysteresis in separated flows depends
primarily on the pitch motion, α(t ), pitch rate, α̇(t ), and amount of flow attachment on the airfoil.
The authors report dynamic hysteresis even at relatively small pitch rates, which suggests that the
concentrated dynamic stall vortex observed at high reduced frequency is not a requirement for
dynamic hysteresis. These aforementioned studies and others have shed light on the dynamic lift
hysteresis phenomenon. However, no known attempt has been reported on quantifying it over a
range of conditions, particularly at high Reynolds numbers.

In this study, we aim to address this gap in the literature by performing a comprehensive
experimental study at a chord Reynolds number Rec = 1.8 × 106 on an airfoil with a pitching
flap. The acquired data set is used to quantify and analyze the lift hysteresis over a broad range
of pitching conditions. Two models of the unsteady lift coefficient are constructed, compared, and
assessed for their suitability for gust mitigation within a model-based closed-loop control strategy,
which is presented in Part II of this series [33].

II. EXPERIMENTAL SETUP

A. Wind tunnel facility and experimental model

The experiment was conducted in the Modell-Unterschallkanal Braunschweig (MUB) wind
tunnel at the Institute of Fluid Mechanics of the Technische Universität Braunschweig. The MUB
is a low-speed closed-circuit wind tunnel with a 1.3 m × 1.3 m × 5.7 m test section. Flow speeds
of up to 60 m/s can be achieved in the test section. In the current experiment, the incident flow is
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FIG. 1. The DLR-F15 research airfoil inside the MUB wind tunnel. Also shown is the incident flow U∞,
the angular traversing mechanism of the airfoil angle of attack α, and the flap angle δ.

maintained at a constant velocity of U∞ = 50 m/s and a constant temperature of ≈36 ◦C. The
airfoil in the wind tunnel test section is shown in Fig. 1, whereas Fig. 2 illustrates the setup
and presents the relevant geometric variables. The DLR-F15 airfoil has a span of 1.3 m and a
chord length of c = 600 mm, resulting in a chord Reynolds number c ≈ 1.8 × 106. The model
leading edge is gradually drooped near the two sidewalls for a span length of 130 mm to minimize
wind tunnel boundary layer effects along the midsection at high angles of attack. The airfoil is
equipped with a trailing edge flap adapted from the clean airfoil configuration with a chord length
of cF = 0.1 × c = 60 mm. A gap of approximately 1 mm between the main airfoil trailing edge
and the flap leading edge allows free rotation. No sealing is applied across the gap. While the
main body is made of a glass fiber composite (GFC) shell glued to an aluminum frame, the flap
is constructed from carbon fiber composite (CFC) with several stiffening elements to withstand
the actuation torque and unsteady loads. Two ESR Pollmeier MH4251 servo motors with a nominal
torque of 14 N m each and an electric time constant τel = 1.12 ms are used to deflect the flap by up to
δ = ±25◦. Both motors are connected to the flap’s integrated drive elements with safety clutches to
prevent overload. Additional mechanical safety stoppers are built in to help avoid collisions between
the flap and the airfoil main body. The servo controllers are commanded by the main data acquisition
and control system through a NI cRIO-9039 FPGA controller.

One part of the experimental setup, which is relevant in Part II of the series [33], is the gust
generator mechanism that is situated ≈2.5 m upstream of the DLR-F15 research airfoil. Details
on the gust generator setup are not presented in this paper. We note only that for the “parked”
position at zero angle of attack, the gust generator airfoil wake generates small flow disturbances on
the research airfoil. These small disturbances are likely to affect the flow response. However, it is
beneficial to include them in the model-training phase for a more robust model and subsequently a
more robust closed-loop control. Details on the gust generator setup and its effects on the research
airfoil are provided in Part II [33].

FIG. 2. Schematics of the DLR-F15 research airfoil with the pitching flap. The airfoil angle of attack α and
flap angle δ are defined positive in the clockwise direction with incident flow from the left.
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FIG. 3. Pressure sensor distribution over the DLR-F15 airfoil midspan. Blue circles indicate steady pres-
sure taps, whereas red dots represent time-resolved pressure measurement locations.

B. Acquisition and control systems

In this study, we investigate the unsteady lift of the pitching flap under various conditions. This
requires real-time determination of the lift force, which we achieve using a mapping technique
[34,35] based on 16 time-resolved and 84 steady pressure sensors located along the airfoil midspan
(cf. Fig. 3). This mapping is necessary to correct for the relatively coarse pressure distribution
obtained from the time-resolved pressure sensors (red dots in Fig. 3). The mapping relies on
piecewise correction of the unsteady surface pressure to the closest steady curve segment from a
large library of distributions.

The steady pressure taps with 0.3 mm diameter are connected to a DTC Initium system with
calibrated ESP-HD-type pressure scanners with ±0.05 % full-scale accuracy. The Honeywell
SDX05D4 fast pressure sensors acquire the surface pressure through 50 mm to 150 mm long and
0.8 mm diameter tubes. In situ step response tests of the Honeywell sensors have shown negligible
time delay and signal distortion in the frequency range of interest. The transducers feature passive
temperature compensation, and a live offset adjustment ensures matching pressures between the
time-resolved and the steady pressure sensors.

The second type of measured data is the flap angular position, which is acquired by two Sick
DFS60 differential position encoders with a 20′′ resolution installed on the two flap driveshafts so
that the flap position can be acquired directly without the need to account for twist in the safety
clutches.

All acquisition and control processes are centrally managed by a LabVIEW code running on the
FPGA of the cRIO-9039 at a rate of 100 kHz, which ensures that all data and tasks are processed in
real time. The code controls all data acquisition, initial processing, and control tasks autonomously
on the FPGA. The live sampled data are transmitted to a host PC for monitoring and recording.

C. Test cases

The flow response to the pitching flap is quantified through a parametric study of harmonic
oscillation, which is defined as

δ(t∗) = δ0 + δ1 sin(k t∗), (1)

where δ0 = (δmax + δmin)/2 represents the mean pitch angle, δ1 = (δmax − δmin)/2 represents the
pitch amplitude, k = ω c/2 U∞ is the reduced frequency of oscillation, and t∗ = 2t U∞/c is the con-
vective time. The minimum and maximum flap angle are varied between δmin, δmax ∈ [−25◦, 25◦]
in steps of 5◦, yielding a good coverage of the parameter space. Similarly, the reduced frequency
is varied in the range k ∈ [0, 1.131] in intervals of 0.038. This yields a total of 1650 test cases at
each angle of attack. Measurements are acquired at three angles of attack α = 0, 5, 8◦. To reduce
the measurement uncertainty, each test case is sampled over 60 cycles and phase averaged over
the middle 50 periods [36]. In other words, the first and last five periods are neglected to exclude
possible transient effects between test cases.

Due to electromechanical limitations in the flap acceleration rate, not all desired pitch amplitudes
are attained. The measured test cases at α = 0◦ are summarized in Fig. 4. As the figure shows, there
is a clear decrease in the achieved pitch amplitude with increasing frequency. Also observed is the
“saturation front” of the servo motor, where certain δ1-k combinations remain out of reach. Similar
parametric coverage and behavior is achieved for α = 5◦ and 8◦.
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FIG. 4. Visual summary of the test cases for α = 0◦. Similar parametric coverage is achieved for α = 5◦

and 8◦.

III. MODELING OF THE UNSTEADY AIRFOIL LIFT

An important component of our overall active gust mitigation strategy is the flow response model.
Specifically, we seek an accurate and simple model of the lift coefficient response to flap deflections.
Besides better interpretability, simplicity is motivated by the desire to employ low-latency control.
In this section, we present two modeling approaches. The first nonlinear model is developed in the
time domain and is based on a simplified version of the ONERA model. The second set of linear
models is directly identified from a data subset in the frequency domain.

A. Nonlinear model

The ONERA model [23] constitutes the starting point of our first modeling strategy. The model
considers two lift coefficient components

CL = CL,1 + CL,2, (2)

where the evolution of CL,1 and CL,2 is determined by two differential equations,

ĊL,1 + λCL,1 = λCL,L + (λζ + σ )δ̇ + ζ δ̈, (3)

C̈L,2 + aĊL,2 + rCL,2 = −(r	 + e	̇), (4)

where the variable CL,L is a linear extrapolation of the static lift Cs
L, and 	 = CL,L − Cs

L is the
difference between this extrapolation and the actual static curve. The coefficients λ, σ , and ζ

are constants that depend on the airfoil geometry and the Reynolds number. This means that a
separate set of these coefficients is required for different airfoil and flow conditions, which limits
the generalizability of the model. Here a, r, and e are functions of 	, as follows:

r = [r0 + r2(	)2]2, a = a0 + a2(	)2, e = e2(	)2. (5)

The coefficients a0, a2, r0, r2, and e2 are identified from wind tunnel measurements.
The structure of the two differential equations, Eq. (3) and Eq. (4), is not arbitrary. When pitching

below the onset of stall, the unsteady lift can be described by the first-order differential equation,
Eq. (3), having a single real and negative pole. On the other hand, in the presence of stall, description
of the lift evolution also requires the second-order differential equation, Eq. (4), adding two complex
conjugate poles. This explains the two lift components in Eq. (2), where one is governed by the
first-order equation and the other by the second-order equation.
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TABLE I. List of the model coefficients identified from the measurement data.

ξ0 ξ1 ξ2 C0
L a1 d1 d2 d3 d4

−1.967 1.615 0.159 0.200 6.487 1.610 −1.382 −1.422 3.851

The ONERA model yields a good prediction accuracy and is often the method of choice for
modeling unsteady aerodynamic loads [37,38]. However, our closed-loop control strategy favors
simple models. As such, the ONERA model is simplified by assuming negligible dynamic stall and
hence eliminating Eq. (4) entirely. The validity of this assumption is verified a posteriori in the
results, where the relatively small flap is shown to generate no or small dynamic stall at α � 12◦.
The retained ONERA model given by Eq. (3) can be expressed as

ξ0ĊL + CL = Cs
L + ξ1δ̇ + ξ2δ̈, (6)

where the dot represents differentiation with respect to the convective time (˙) = d ( )/dt∗, and ξi

are the model coefficients. We emphasize that only the structure of Eq. (3) is retained and the model
coefficients are identified from the measurement data. The steady lift coefficient Cs

L is modeled
separately as a fourth-order polynomial:

Cs
L(α, δ) = C0

L + a1α + d1δ + d2δ
2 + d3δ

3 + d4δ
4. (7)

The model coefficients for Eq. (6) and Eq. (7) are identified from the data using a least-squares fit.
The coefficients are listed in Table I.

The model’s accuracy is quantified using the root-mean-square error between the model predic-
tions and the measured reference data,

Erms =
√√√√ 1

N

N∑
i=1

(	CL,i )2 , (8)

where N is the total number of samples for one test case, and 	CL,i denotes the difference between
the model and the reference lift coefficient. The averaged root-mean-square error over all test cases
amounts to 0.025 for the static Eq. (7) and 0.011 for the dynamic Eq. (6) model components,
indicating a good prediction accuracy. A detailed assessment of the model prediction capabilities is
provided in Sec. IV C.

B. Linear models

A second modeling strategy generates a set of linear models that are amenable to closed-loop
control. The models’ structure is inspired by Theodorsen’s solution. Following Leishman [39,40],
the unsteady lift on an airfoil with a harmonically pitching flap in incompressible flow is given by

CL(k) = 2πα + c1δ̇ + c2δ̈ + (c3δ + c4δ̇)C(k), (9)

where C(k) is the Theodorsen’s transfer function that accounts for attenuation of the circulatory lift
by the wake vorticity, given by

C(k) = H (2)
1 (k)

H (2)
1 (k) + iH (2)

0 (k)
, (10)

where H (2)
ν are Hankel functions of the second kind. The coefficients ci in Eq. (9) depend only on

the distance between the flap hinge and the midchord, e, as follows:

c1 = cos−1(e) − e
√

1 − e2, (11a)

c2 = 1
3 (2 + e2)

√
1 − e2 − e cos−1(e), (11b)
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TABLE II. Identified coefficients for the linear models given by Eq. (12) at various airfoil angles of attack α.

α a0 a1 a2 b0 b1 b2

0 deg 1.93485 5.13803 1.41021 1.107 5.793 1.000
5 deg 3.29235 7.65731 1.59824 2.029 8.652 1.000
8 deg 0.53078 1.34597 1.00432 0.369 1.451 1.000

c3 = 2
√

1 − e2 + 2 cos−1(e), (11c)

c4 = (1 − 2e) cos−1(e) + (2 − e)
√

(1 − e2), (11d)

where e is measured in semichords. In our experimental setup with e = 0.8, the contribution of the
terms multiplying c1, c2, and c4 is therefore small relative to the c3 term for the range of frequencies
studied. More specifically, these terms are an order of magnitude smaller than c3k for frequencies
of k ∼ O(1). Consequently, a transfer function with δ as the input and CL − 2πα as the output will
yield the same structure as C(k). Theodorsen’s transfer function has been historically approximated
by rational functions with the same number of poles and zeros to preserve the constant value
asymptotes that C(k) exhibits for both low and high frequencies [17,18]. Therefore, we expect a
proper, rather than strictly proper, transfer function to be able to explain the experimental data for
reduced frequencies k < 1 and small pitching amplitudes. For an empirical model based on data
at higher frequencies, we would not expect the high-frequency asymptote of C(k) to be respected
since it describes an instantaneous change in the circulatory lift in response to changes in δ, which is
nonphysical [41,42]. Moreover, the added mass terms contribution becomes significant at higher fre-
quencies. Therefore, modeling would require considering the flap pitch rate δ̇ or acceleration δ̈ as the
input rather than the pitch angle δ to produce a strictly proper transfer function for the unsteady lift.

In addition to enabling a direct comparison with thin airfoil theory, working in the frequency
domain is motivated by the characteristics of our harmonic forcing, which we convert to the
frequency domain via a Fourier transform. For each of the three models at the three angles of
attack, training is performed on a data subset at a single mean pitch angle δ0 = 0◦, and a range
of pitching amplitudes δ1 < 10◦ and reduced frequencies k < 0.75. This range is well within the
requirements to mitigate the largest vortex gusts generated by the facility. Transfer function models
are fit to the frequency response data for every angle of attack using MATLAB’s tfest command
[43]. Different combinations of the number of poles and zeros are tested, and the least complex
models that accurately fit the data are transfer functions with two poles and two zeros with the
following structure:

G(s) = a2s2 + a1s + a0

b2s2 + b1s + b0
, (12)

where s = k/(2π ) is in reduced frequency units. The identified coefficients in Eq. (12) are listed
in Table II for the three angles of attack. The mean square error between data and models is below
5 × 10−4 for all three models.

The frequency response of the linear models, as well as that from the theory using Eq. (9), are
compared to the experimental data in Fig. 5. The linear models not only accurately fit the data, but
also share the structure of theoretical approximations by having the same number of poles as zeros.
Because of this structure, the models have constant value asymptotes at low and high frequencies
given by a0/b0 and a2/b2, respectively. The low-frequency asymptote corresponds to the dc gain,
representing the increment in the static lift in response to an increment in the flap deflection angle.
The dc gain is found to decrease when increasing the airfoil angle of attack, as shown in Fig. 5(b),
which we ascribe to the reduction in the control authority of the flap with increasing flow separation.
The high-frequency gains represent an instantaneous increment in the unsteady lift when increasing
δ, as predicted by the thin-airfoil theory. Since our models are identified using data for k < 0.75,
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(a) (b)

FIG. 5. Frequency response of the linear models given by Eq. (12) at airfoil angles of attack α ∈
{0◦, 5◦, 8◦}, along with experimental data for δ1 < 10◦ and predictions from thin airfoil theory according
to Eq. (9): (a) phase, (b) magnitude. The symbols denote the three angles of attack for the experimental
distributions.

the produced high-frequency gains might be misleading, and we refrain from interpreting them. An
assessment of the predictive performance of the models is presented in Sec. IV C. Note that it is
possible to combine several linear models at different operating conditions into a parameter-varying
model that is suitable for control and accurate over a larger envelope [25,44].

IV. RESULTS AND DISCUSSION

A. Steady lift

In this section, we examine the steady lift behavior of the research airfoil measured at various
angles of attack and flap deflection angles. The steady airfoil lift coefficient distribution Cs

L is shown
in Fig. 6(a) for an angle of attack α range at a constant flap angle of δ = 0◦. The linear region
closely approximates the potential flow solution and extends with a 2π slope from the lower end of
the measured range at α = −6◦ up to α = 8◦. For higher angles of attack, separation effects begin to
take hold over the airfoil suction side, leading to a decrease in the lift slope dCs

L/dα and a resulting
maximum lift coefficient Cmax

L = 1.55 at α = 20◦.
The steady airfoil lift distributions for varying flap deflection angle δ ∈ [−25◦, 25◦] are presented

in Fig. 6(b) for the three angles of attack. All three distributions exhibit a similar trend. They are
shifted with respect to one another by a constant over the entire range of flap deflection angles.
This similarity is expected, as all three angles of attack reside in the linear range below static stall.
Also shown in the figure are the corresponding static fit models given by Eq. (7), which match the
reference distributions accurately. Using the surface pressure measurements over the flap, we divide
the flow into three states. A quasilinear behavior is observed between δ−

sep = −20◦ and δ+
sep = 5◦,

(a) (b)

FIG. 6. (a) Steady lift coefficient distribution over an angle of attack range α at δ0 = 0◦. (b) Steady lift
coefficient distributions for flap deflection angle variations δ at three angles of attack. The dashed lines denote
the corresponding polynomial model given by Eq. (7).
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Instantaneous (red) and static (blue) pressure coefficient Cp distributions at α = 0◦ along the airfoil
midsection over the pressure side (�) and suction side (•). The [−] and [+] symbols in the legend denote
the moment at δ = 0◦ during the flap upstroke (a)–(c) and downstroke (d)–(f), respectively. The results are
presented for three reduced frequencies k = 0.038, 0.075, 0.188 with the same mean pitch angle δ0 = 0◦ and
pitch amplitude δ1 = 25◦.

which delimits the attached flow region over the flap pressure and suction side, respectively. The
asymmetry in the separation range with respect to zero is simply due to the asymmetry of the
airfoil geometry. For δ < −20◦, the flow over the flap pressure side starts to separate, resulting in
a decreasing gradient dCs

L/dδ. Similarly, for δ > 15◦, dCs
L/dδ decreases due to the onset of flow

separation over the flap suction side. No separation of the main element is observed across the
measured angle of attack range α ∈ [0◦, 8◦].

B. Unsteady lift and hysteresis quantification

The unsteady lift response under harmonic pitching of the trailing-edge flap is investigated in this
section. We first examine the surface pressure distributions, which are presented in Fig. 7 for three
reduced frequencies k during the flap upstroke [denoted by [−] in Figs. 7(a)–7(c)] and downstroke
[denoted by [+] in Figs. 7(d)–7(f)] at δ = 0◦. The presented test cases have the same mean pitch
angle δ0 = 0◦ and pitch amplitude δ1 ≈ 25◦. The static pressure distribution, shown in blue, differs
from the instantaneous ones in red at both the upstroke and the downstroke. The instantaneous
pressure fluctuations are larger in magnitude towards the leading edge. On the upstroke, when the
flap pitches from positive to negative angles, the time-lag effect leads to a fuller Cp distribution and
thus higher 	Cp, and subsequently CL, compared to the steady case. The opposite effect is present
on the downstroke, where a reduced 	Cp (and thus CL) compared to the steady case is observed. At
high reduced frequencies, as in Fig. 7(f) with k = 0.188, the time lag even causes cross-over in the
pressure distribution and, thus, an increase in the airfoil pitching moment Cm. These observations
are consistent with previously reported results in the literature.

To better understand the time lag, we examine the cross-correlation coefficient between the flap
deflection angle and the local surface pressure, defined as

ρδ−p(τ ) =
1
T

∫ T
0 [δ(t∗) − δ][Cp(t∗ + τ ) − Cp]dt∗

σ (δ)σ (Cp)
, (13)
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FIG. 8. Cross-correlation coefficient ρδ−p distributions of the flap angle and the surface pressures at α = 0◦

with δ0 = 0◦, δ1 = 25◦ for (a) k = 0.038 and (b) k = 0.188. The green solid line denotes the perfect correlation
(anticorrelation) between the flap motion and the surface pressures.

where τ is the time delay, T is the pitching period, σ is the standard deviation, and · denotes the
time averaging operator. The cross-correlation coefficient ρδ−p distributions are presented in Fig. 8
for two reduced frequencies, k = 0.038 and k = 0.188, respectively. The results are presented as
a function of the phase delay φ = 2π τ

T . PS and SS denote the pressure side and the suction side
of the airfoil, respectively. From the definition of ρδ−p and as can be seen in Fig. 8, ρδ−p is in-
phase with the flap motion (φ = 0◦) at the trailing edge pressure side and is in opposite phase
with the flap (φ = 180◦) on the trailing edge suction side. This perfect correlation (anticorrelation)
gradually shifts away from the flap trailing edge towards the airfoil leading edge. The shift is marked
with a solid green line across both the pressure and suction sides. It illustrates the phase (or time)
lag, which increases with distance upstream as the information requires more time to reach further
distances upstream of the flap. Evidently, the phase lag increases with increasing reduced frequency,
as observed when comparing Figs. 8(a) and 8(b). Quantifying the phase lag at the airfoil leading
edge with φlag yields an increase from φlag ≈ 8◦ at k = 0.038 to φlag ≈ 42◦ at k = 0.188. Note that,
even though the maximum phase lag φlag appears to increase linearly with k for the two illustrated
cases, this is not the case in general. In fact, φlag behaves similarly to the airfoil lift, which is an
integrated quantity of the surface pressure and whose phase response is given in Fig. 5(a) for select
experimental test cases.

A similar trend is observed in the differential pressure coefficient distributions 	Cp, which is the
pressure difference between the airfoil suction side and the pressure side. Distributions of 	Cp are
shown in Fig. 9 for the same two test cases as in Fig. 8 over one period of harmonic flap actuation.

FIG. 9. Differential pressure coefficient distributions 	Cp for one period of harmonic flap actuation at
α = 0◦ with δ0 = 0◦, δ1 = 25◦ for (a) k = 0.038 and (b) k = 0.188.
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(a) (b)

FIG. 10. The instantaneous lift coefficient CL over one phase-averaged pitching period. (a) The lift hystere-
sis for an increasing pitch amplitude δ1, a constant mean pitch angle δ0 = 0◦, and a constant reduced frequency
k = 0.188. (b) The lift hysteresis of six different test cases: three within the linear region of the steady airfoil
lift (δ0 = −5◦), and three within the separated flap region (δ0 = 15◦) for quasiconstant pitch amplitude and
three reduced frequencies k = 0.075, 0.188, and 0.754.

As with the flap angle–pressure correlation coefficient, the same phase shift of 8◦ and 42◦ at the
leading edge for k = 0.038 and k = 0.188, respectively, is observed.

The time lag effects are reflected in the lift coefficient distributions as dynamic hysteresis. The
instantaneous lift coefficient CL over one phase-averaged pitching period is presented in Fig. 10.
The lift hysteresis is shown in Fig. 10(a) for increasing pitch amplitude δ1, a constant mean pitch
angle δ0 = 0◦, and a constant reduced frequency k = 0.188, whereas Fig. 10(b) compares the lift
hysteresis of six different test cases: three within the linear region of the steady airfoil lift (δ0 =
−5◦), and three within the separated flap region (δ0 = 15◦) for quasiconstant pitch amplitude and
three reduced frequencies k = 0.075, 0.188, and 0.754. Expectedly, the increase in pitch amplitude
δ1 is associated with a growth of the hysteresis loops [cf. Fig. 10(a)]. We note the bend in the loops
between δ = 5◦ and δ = 15◦ on the downstroke, where the flap separates. The comparison of the
lift hysteresis loops at similar pitch angle and pitch amplitude for increasing reduced frequencies
reveals a different aspect of the time lag effect. Lift hysteresis curves at higher pitch frequencies
exhibit a tilt with a reduced mean slope, as shown in Fig. 10(b). Hence, the pitching flap yields
a smaller lift gain 	CL/δ1 with increasing reduced frequency, in agreement with the frequency
response shown in Fig. 5(b). This reduction translates into a decreased authority of the trailing edge
flap for lift control. This effect is also present for the δ0 = 15◦ cases, albeit to a smaller extent as the
separated flap possesses a reduced influence on the flow. It is worth noting the clockwise rotation
direction of the hysteresis loop for the k = 0.754 case pitching about δ0 = 15◦, which is in the
opposite counterclockwise direction to the other presented cases.

Following these observations, we attempt to quantify the lift hysteresis characteristics (mag-
nitude, tilt, rotation direction) and their evolution over the range of conditions. Following
McCroskey’s [45] definition for the pitching moment, we first define the net lift hysteresis over
one pitch cycle as

ζL =
∮

CL dδ. (14)

To isolate the relative hysteresis effects, we normalize ζL by the pitching amplitude 2δ1 and
the corresponding steady lift difference 	Cs

L = Cs
L(δmax) − Cs

L(δmin) to obtain the net relative lift
hysteresis

ζ ∗
L = ζL(

2δ1 	Cs
L

) , (15)

which is presented in Fig. 11 for all test cases at the three angles of attack. ζ ∗
L is thus a metric

that quantifies the relative hysteresis bulk and the loop rotation, where positive value denotes
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(a) (b) (c)

FIG. 11. Relative net hysteresis ζ ∗
L distributions for a range of reduced frequencies k for (a) α = 0◦, (b) α =

5◦, and (c) α = 8◦. Measurement points are color coded by the respective degree of separation �, where green
indicates a fully attached flow on both sides of the flap, and red indicates a fully separated flow over one side
of the flap.

counterclockwise rotation and negative values clockwise rotation. The colors denote the degree
of separation at steady conditions, which we quantify as

� = min

{
max {δmax − δ+

sep, 0} + max {δ−
sep − δmin, 0}

δmax − δmin
, 1

}
, (16)

where δ+
sep and δ−

sep delimit the attached flow region under steady conditions. Equation (16) yields
� = 1 for a fully separated flow over one side of the flap over one pitching period, and � = 0 for a
fully attached flow over both sides. We acknowledge the existence of other metrics to quantify the
degree of separation (e.g., [46]). However, for the current configuration with a relatively small flap
and as confirmed by the results, � is deemed sufficiently accurate. As Fig. 11 shows, ζ ∗

L saturates at
≈0.22 around 0.2 � k � 0.3 for all three angles of attack, and continuously decreases thereafter
until it becomes negative for sufficiently high reduced frequencies. Hence, the net relative lift
hysteresis exhibits an upper limit that is independent of the airfoil angle of attack, at least in the
linear range. Except for a few cases at α = 0◦ affected by the gust generator airfoil wake, larger
relative net hysteresis ζ ∗

L is reached for more attached flow conditions over the flap (lower �). We
reiterate that these wake effects take place despite the gust generator airfoil “parked” at zero degree
incidence angle throughout the current measurements. More details on the gust generator wake are
provided in Part II of this series [33].

With increasing pitching frequency, the relative net hysteresis eventually becomes negative
indicating a reversal in the hysteresis loop direction, as previously presented in Fig. 10(b) and as
reported in some literature (e.g., [31]). This reversal is simply phase opposition, which is attributed
to the noncirculatory terms beginning to dominate the flow response. The reversal takes place
earlier with increasing level of separation, i.e., for larger �. For example, a test case with � = 1 in
Fig. 11(a) reaches phase lead at k ≈ 0.43, whereas a fully attached case with � = 0 does not show
phase opposition within the measured frequency range.

We reiterate that large negative ζ ∗
L values denote large net relative hysteresis with clockwise

rotation. Hence, with larger reduced frequencies, smaller ζ ∗
L values are reached, which in absolute

terms reach similar magnitude to the positive maxima. Based on the observed trends, a possible
smaller net relative hysteresis at higher k (beyond the measured range) is likely.

The third hysteresis loop characteristic is tilting, which we quantify by the relative lift hysteresis
tilt parameter

λ∗
L = (dCL/dδ)

	Cs
L/(2δ1)

, (17)

where dCL/dδ is identified from the slope of a simple linear fit through the hysteresis loop. The
relative tilt λ∗

L distributions for a range of reduced frequencies k for the three angles of attack are
presented in Fig. 12. Similarly to Fig. 11, the measurement points are color coded by the respective
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(a) (b) (c)

FIG. 12. Relative tilt λ∗
L distributions for the current range of reduced frequencies k for (a) α = 0◦, (b) α =

5◦, and (c) α = 8◦. Measurement points are color coded by the respective degree of separation �, where green
indicates a fully attached flow on both sides of the flap, and red indicates a fully separated flow over one side
of the flap.

degree of separation �, where green indicates a fully attached flow on both sides of the flap, and
red indicates a fully separated flow over one side of the flap. Except for a few cases at α = 0◦,
the evolution of λ∗

L is similar among the three angles of attack. The few exceptions at α = 0◦ are
caused by interference from the gust generator airfoil wake. This is confirmed by comparing the
current results to those of a previous measurement campaign [34] without the mechanism. As the
figure shows, the relative tilt is also dependent on the state of separation. Mostly attached test cases
(� close to zero) exhibit a larger relative tilt than the separated cases (� close to one) that continues
to decrease over the entire measurement range. On the other hand, the λ∗

L distributions of the mostly
separated cases initially decrease with higher k before they subsequently increase at a slower rate.
It is not possible to predict how the tilt further evolves beyond the current measurement range. A
possible return to initial tilt values can not be excluded. Interestingly, the onset of the slope reversal
coincides with the phase opposition frequency identified from the ζ ∗

L distributions in Fig. 11. In
other words, the loop reversal frequency is also the tilt inflection point.

C. Unsteady lift models

The lift coefficient models presented in Sec. III are now assessed and compared. This assessment
is aimed to evaluate the models’ robustness at different operating conditions, to shed light on the lift
dynamics, and to evaluate the models’ suitability for the control strategy detailed in Part II of this
series [33]. For brevity and clarity, we present only results for α = 0◦. Similar conclusions can be
drawn at the other two angles of attack.

The measured and modeled unsteady lift is presented in Fig. 13 for four test cases. We note that
the linear model is the one derived at α = 0◦ and linearized around δ = 0◦. Two test cases with the
same mean pitch angle δ0 = 0◦ and pitch amplitude δ1 ≈ 25◦ are compared at two different reduced
frequencies, as shown in Figs. 13(a) and 13(b). Similarly, Figs. 13(c) and 13(d) compares two test
cases, but with the same reduced frequency k = 0.754 and pitching amplitude δ1 ≈ 10◦ at mean
pitch angles δ0 = 0◦ and 15◦. The four test cases are specifically selected to highlight the models’
accuracy as well as their limitations. The general lift distribution is well reproduced by both models,
as shown in Fig. 13(a). The overall hysteresis loop including the sharp turning at δ = 25◦ for this
low pitch frequency case is well reproduced by the nonlinear model. Unsurprisingly, the linear
model is not capable of reproducing the nonlinear dynamics at δ > δ+

sep ≈ 5◦. This is also reflected
in Fig. 13(b), where the lift distributions at k = 0.188 for the measured data and the two model
predictions are shown. Both models account for the increased net hysteresis loop size with higher
frequencies and thus the increased phase delay of the flow. However, the linear model deviates from
the reference data, as nonlinear effects associated with the flap separation start to take effect.

This trend extends to higher reduced frequencies. Lift distributions of the two test cases already
shown in Fig. 10(b) with k = 0.754 are presented in Figs. 13(c) and 13(d). The performance of
models at higher pitching frequencies without flap separation is shown in Fig. 13(c). The hysteresis
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(a) (b)

(c) (d)

FIG. 13. The measured (—) and the modeled (−− and · · · ) unsteady lift for four test cases. Two test cases
have the same mean pitch angle δ0 = 0◦ and pitch amplitude δ1 ≈ 25◦ at two different reduced frequencies
(a) k = 0.075 and (b) k = 0.188. Two test cases have the same reduced frequency k = 0.754 and pitching
amplitude δ1 ≈ 10◦ at mean pitch angle (c) δ0 = 0◦ and (d) δ0 = 15◦.

loop is well reproduced by both the nonlinear and the linear models, which also correctly predict
the tilt. In Fig. 13(d) the models are applied to a fully separated test case. As can be seen, the
nonlinear model deviates from the reference lift on the upstroke when the flap is separated and
yields a smaller ζ ∗

L compared to the reference measurements. Nonetheless, the model accurately
predicts the hysteresis loop reversal to a clockwise direction. The performance loss is an expected
limitation of the model, since all components simulating the dynamic stall have been simplified. On
the other hand, the linear model fails to predict both the steady as well as unsteady lift components.
This is again expected since the model is linearized at δ = 0◦ in the linear lift range and is deployed
at δ = 15◦, where both static and dynamic stall is present. For the range of frequencies studied, the
linear model also fails to predict phase opposition, and hence hysteresis loop direction reversal.

A more general assessment of the models is achieved by examining the relative net hysteresis
ζ ∗

L . The net relative hysteresis distributions from measured data is compared to those predicted by
the two models in Fig. 14. The results for attached test cases with � = 0 are shown in Fig. 14(a).
Here the predicted ζ ∗

L by the nonlinear model matches the reference distribution accurately, whereas
the linear model slightly underpredicts for k > 0.2. Conversely, for test cases with a separated flap
(� = 1) shown in Fig. 14(b), both the linear and nonlinear models fail to accurately predict the
lift hysteresis. The nonlinear model still outperforms the linear model, which heavily overpredicts
ζ ∗

L across the frequency range. The inability to capture dynamic stall is expected since both model
structure is specifically simplified to ignore it.

In this project, we aim for gust mitigation at a single angle of attack α = 0◦ and at (mainly) a
reference flap angle δ = 0◦. As detailed in Part II of this series, the flap requirements to counter the
largest generated gusts in the facility are within the range of pitching conditions used to train the
linear models, i.e., δ−

sep = −20◦ � δ � δ+
sep = 5◦ and k < 0.72, which demonstrated good predictive

capabilities within this range. In addition, linear models are well suited for a multitude of powerful
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(a) (b)

FIG. 14. Relative net hysteresis ζ ∗
L distributions for a range of reduced frequencies k at α = 0◦ for (a) fully

attached and (b) fully separated test cases over the flap. The symbol • denotes measured data, whereas (−−)
and (· · · ) mark the nonlinear and linear models, respectively.

yet simple linear control techniques with low latency. Therefore, despite their poorer performance
over the entire range compared to the nonlinear model, we choose the linear models for the gust
mitigation strategy detailed in Part II.

V. CONCLUSIONS

In this study, we perform a comprehensive experimental study on an airfoil with a pitching flap
at a chord Reynolds number Rec = 1.8 × 106. The measurements distinguish themselves from the
current state of the art in the Reynolds number used and the broad experimental pitching conditions
tested. The data are employed to characterize the lift hysteresis evolution and to identify a suitable
model for a closed-loop control strategy.

We characterize the lift hysteresis by introducing and analyzing two metrics: the net relative
lift hysteresis ζ ∗

L , and the relative lift hysteresis tilt λ∗
L. Evaluation of the ζ ∗

L distributions reveal
a maximum at ≈0.22 around 0.2 � k � 0.3 for all three angles of attack. Larger relative net
hysteresis ζ ∗

L is reached for more attached flow conditions over the flap, reflecting higher authority
to control the flow. With increasing pitching frequency, the relative net hysteresis decreases and
eventually becomes negative, corresponding to a reversal in the hysteresis loop direction. This phase
lead is attributed to the noncirculatory terms beginning to dominate the flow response. The phase
opposition takes place earlier with increasing level of separation.

The second metric we introduce to quantify the hysteresis is the relative lift hysteresis tilt λ∗
L.

Similar to ζ ∗
L , the λ∗

L distributions at the three angles of attack show similar trends. The relative
tilt is also dependent on the state of separation. The attached cases exhibit a larger relative tilt than
the separated ones with a steady decrease with increasing reduced frequency within the measured
range. For separated conditions over the flap, the λ∗

L distributions initially decrease with higher k
before they increase although at a slower rate. The onset of this slope reversal coincides with the
phase opposition frequency identified from the ζ ∗

L distributions.
Based on the preceding conclusions, we schematically summarize the evolution of the hysteresis

loop in Fig. 15. The schematic shows the relative net hysteresis initial increase followed by
the continuous decrease with increasing pitching frequency. Also illustrated is the relation between
the hysteresis loop tilt and its rotation direction, where phase opposition delimits the reversal of the
slope trend. Comparable behavior can be assumed for other pitching flaps and even airfoils when
they are operating below the large dynamic stall range. The two-pronged characterization of the lift
hysteresis constitute a promising approach to quantify the unsteady aerodynamic behavior beyond
the reported conditions and of other immersed bodies.

One main objective of this study is to perform model-based closed-loop control to mitigate gust
effects, which requires an accurate and—preferably simple—model of the lift coefficient response
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FIG. 15. Evolution of the hysteresis loop for the current range of reduced frequency k. The schematic
illustrates the relative net hysteresis initial increase followed by the subsequent continuous decrease with
increasing pitching frequency. Also illustrated is the relation between the hysteresis loop tilt and rotation
direction, where phase opposition delimits the reversal of the slope trend.

to flap motion. Two different modeling approaches are followed. The first builds on the ONERA
model [23] with a discarded dynamic stall component. Despite this simplification, the model is
shown to accurately model the lift coefficient over broad pitching conditions. Discrepancies are
observed only at high mean pitch angles for cases with large dynamic stall. Despite its accuracy, the
nonlinear model is not ideal for a closed-loop control strategy.

The second modeling approach constructs three linear models with two poles and two zeros
in the frequency domain using a data subset at a single mean pitch angle δ0 = 0◦, and a range of
pitching amplitudes δ1 < 10◦, and reduced frequencies k < 0.72. This parameter range is within the
requirements to counter the generated gusts. Within this range, the models exhibit good performance
similar to that of the nonlinear model. Considering its additional amenability to closed-loop control,
the linear models are selected for the gust-mitigation strategy. We conjecture that linear models
could be useful for a range of similar applications, bypassing the complexity associated with
nonlinear models in the control loop.
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