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Surface morphing for aerodynamic flows at low and stalled angles of attack
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In the current work, we numerically study the effect of traveling-wave surface morphing
actuation. Although this actuation strategy has been studied at higher Reynolds numbers for
an airfoil and a rectangular flat plate, its effects at low Reynolds numbers relevant to micro-
air vehicles have not yet been investigated. We perform high-fidelity two-dimensional
numerical simulations to study the effects of traveling wave surface morphing on the
suction surface of NACA0012 at Re = 1000. The kinematics of actuation are defined
by wave number and wavespeed, both of which are varied over a wide range of values
to include parameters that considerably change the lift dynamics as well as those that
do not. We first study the effect of actuation at an angle of attack of α = 5◦, where the
unactuated flow is steady. The lift dynamics are found to align with the surface morphing
kinematics, and there is a low-pressure minimum shown to be introduced into the flow-field
by morphing that advects at a speed agnostic to the morphing parameters. Lift benefits are
found to be maximal when the morphing kinematics align with this intrinsic flow speed.
We then investigate the role of morphing in the presence of an unsteady, separated baseline
flow (with intrinsic vortex-shedding processes) at α = 15◦. At this higher angle of attack,
we identify three distinct behavioral regimes based on the relationship between morphing
and the underlying shedding frequency. Of these regimes, the most beneficial to mean
lift is the lock-on regime, where the vortex-shedding dynamics align with the morphing
kinematics. Lock-on was similarly found using this actuation strategy at higher Reynolds
numbers, though in that setting the effect was to reduce separation, whereas at these
lower Reynolds numbers the outcome is that vortex shedding persists with—in certain
cases—significant lift benefits. We also identify other regimes where morphing can become
out of phase with the vortex-shedding dynamics, termed here the interactive regime, and
where morphing leaves the unactuated dynamics unaltered, termed here the superposition
regime. At the higher angle of attack, parameters leading to lift benefits/detriments are
explained in terms of the effect of morphing on the leading and trailing-edge vortex.
Where appropriate, connections between the mechanisms at the higher angle of attack
are drawn to the matching/disparity of timescales between morphing and lift-producing
pressure signatures seen in the lower-angle-of-attack setting.

DOI: 10.1103/PhysRevFluids.7.024703

I. INTRODUCTION

Control of low-Reynolds-number flows past aerodynamic bodies could lead to the design of
next-generation micro- and unmanned-aerial vehicles. This control aim is challenging because of the
associated complex, unsteady, and nonlinear flow dynamics. Moreover, for this control imperative
to be successful, fast actuation strategies capable of responding to the unsteady and nonlinear flow

*ernoldt2@illinois.edu

2469-990X/2022/7(2)/024703(30) 024703-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5077-5056
https://orcid.org/0000-0002-9372-7713
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.024703&domain=pdf&date_stamp=2022-02-07
https://doi.org/10.1103/PhysRevFluids.7.024703


ERNOLD THOMPSON AND ANDRES GOZA

dynamics are necessary. Because of the intrinsic complexity of these aerodynamic flows, actuation
strategies are often first developed within the setting of a stationary airfoil, and subsequently
extended to account for more complex bodies and unsteady kinematics. We restrict ourselves to
this stationary-airfoil setting in this article.

Active flow control strategies involving synthetic jet [1–4], combustion [5–7], and plasma [8–10]
actuation have been used to modulate the near-body flow and provide lift and/or drag benefits.
An alternative to these approaches, leveraging advances in materials science, is surface morphing
actuation. This actuation strategy imposes small-amplitude oscillations along the airfoil surface,
and utilizes lightweight devices while simultaneously enabling spatially distributed actuation that
can be driven across a wide range of timescales. Munday and Jacob [11] implemented this actu-
ation approach by embedding a flexible piezoelectric actuator into the airfoil suction surface and
driving deformations of the airfoil surface via electrical actuation. The authors found that dynamic
deformations yielded a reduction in flow separation.

Since this study, various efforts have probed the effect of periodically driven surface morphing
on aerodynamic performance. In some of these studies, the periodic excitations were prescribed
as standing waves. Jones et al. [12] experimentally studied standing-wave morphing at a Reynolds
number of Re = 50 000 for a variety of temporal frequencies and angles of attack. The authors
found increased velocity within the time-averaged boundary layer for certain morphing frequencies,
and an associated increase in mean lift and reduction in mean drag. The aerodynamic benefits
were maximal when the morphing frequency matched the dominant frequency associated with
vortex shedding of the unactuated case. Jones et al. [13] subsequently performed simulations at
the same Reynolds number for an airfoil at an angle of attack of α = 0◦, and select morphing
frequencies based on the fundamental shear layer frequency of the unactuated flow. This collection
of morphing frequencies was found to improve mean lift, and a dynamic mode decomposition
[14,15] demonstrated that at these specific frequencies, shear layer roll-up occurred further upstream
than in the unactuated case, yielding a corresponding increase in momentum transfer within the
boundary layer and a decrease in flow separation. The early shear-layer roll-up was shown to
coincide with vorticity generation on the airfoil surface that was synchronized with the morphing
frequency, leading the authors to argue that the aerodynamic benefits were associated with a lock-on
phenomenon where key flow dynamics were synchronized with the driving actuation.

Other efforts have considered the use of traveling-wave surface morphing [16–19]. Akbarzadeh
and Borazjani [16] numerically studied downstream-traveling morphing waves for an airfoil at
Re = 50 000 and an angle of attack of α = 10◦ for different actuation frequencies and amplitudes.
At a fixed actuation amplitude, the mean lift was found to increase with actuation frequency until a
threshold frequency was reached, at which point there were negligible mean lift improvements. The
authors argued that the lift enhancement mechanism was an increase in momentum transfer within
the boundary layer, similar to what was found for standing-wave actuation in Jones et al. [13].
Increasing the amplitude eventually produced adverse effects, with increased flow separation and
associated reductions in mean lift. In a subsequent study, Akbarzadeh and Borazjani [17] numeri-
cally investigated the effect of downstream traveling waves on flow over a flat plate at an angle of
attack of α = 10◦ for three different actuation frequencies and six distinct spatial wavelengths. The
use of these two parameters allowed for separate means by which to tune the morphing wave speed.
Improvements in mean lift and drag with increasing frequency were demonstrated, but there was a
nonmonotonic dependence of these performance metrics on the wavelength. The authors used these
results to argue that wavespeed on its own did not dictate the ensuing flow dynamics, and that the
frequency and wavelength of morphing had distinct effects on the flow. The effect of traveling waves
was also studied by Ogunka et al. [19] for an airfoil at an angle of attack of 15◦ and Re = 50 000.
Performance improvements were observed over a range of morphing frequencies selected to align
with key flow dynamics of the unactuated flow.

We also highlight that related actuation strategies have been considered in the different config-
uration of turbulent channel flow, where drag reduction was achieved by employing a downstream
traveling wave on the walls of the channel [20–22]. In Nakanishi et al. [20], for example, at
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Re = 5600 based on channel height, the traveling waves decreased the Reynolds shear stress and
therefore the overall drag as compared to the unactuated flow. For some parameters, relaminar-
ization was observed. These cases corresponded to lowest drag. At a higher Reynolds number of
10 000 based on channel half-height, Akbarzadeh and Borazjani [23] also observed drag reduction
for downstream traveling waves as compared to a stationary wavy wall. The authors noted that
downstream travel imparted velocity to the flow near the wall so as to reduce the recirculation seen
in the case of a steady wall.

In this article, we use high-fidelity two-dimensional simulations involving a NACA0012 airfoil
at a low Reynolds number of Re = 1000 to build on the above literature. First, there are (to our
knowledge) no investigations of this spatially distributed surface morphing actuation framework
for low Reynolds numbers relevant to microair vehicle flight. Second, the aforementioned studies
on external flows have predominately been at higher Reynolds numbers, where benefits have
largely been found by reducing flow separation via, e.g., enhanced turbulent mixing. As such, the
effectiveness and driving physical mechanisms of surface morphing in the presence of unsteady
flow separation and associated vortex shedding phenomena—which become more pronounced at
lower Reynolds numbers where the lower flow inertia is more susceptible to an adverse pressure
gradient—are not known. For example, it is unknown whether lock-on mechanisms continue to
produce aerodynamic benefits, and whether these mechanisms manifest themselves differently in
strongly separated, low-Reynolds-number aerodynamic flows. Since the Reynolds number has an
effect on the spatial gradients of the flow, the extent to which flow attributes such as large scale
vortices would be affected by actuation would differ from the high-Reynolds-number studies above.
In the case of turbulent channel flow, for example, the traveling waves had a localized effect on the
flow close to the wall and led to considerable drag reduction for certain parameters [20–23]. On
the other hand, for the low-Reynolds-number case of flow over an airfoil at Re = 5000, Kang et al.
[24] considered a related surface-driven actuation paradigm involving periodic actuation localized
at a specific spatial location on the airfoil. The authors found that for actuation leading to flow field
changes that were localized near the wall (analogous to the high-Reynolds-number setting), there
was a limited influence on performance. Moreover, in the lower Reynolds number setting, lift bene-
fits were found by promoting flow separation, in contrast to the driving mechanisms found at higher
Reynolds numbers. These results suggest that in the spatially distributed surface morphing scenario
considered here, there are different mechanisms driving aerodynamic benefits than those found
at higher Reynolds numbers, particularly for flows involve unsteady vortex shedding processes.
Finally, the prior investigations have considered a small number of surface morphing frequencies
and wavelengths, and a more general parametric dependence of aerodynamic performance on these
parameters has not been clarified. For example, it is unclear whether frequencies with nonharmonic
relationships to the unactuated vortex shedding processes produce aerodynamic benefits, and if so,
by what mechanisms.

We focus here on surface morphing prescribed as a traveling wave for systematically varied
wavespeeds and wave numbers. We consider two angles of attack: α = 5◦ and 15◦. At this low
Reynolds number, the lower angle of attack yields a steady flow, which allows the effect of
surface morphing in the absence of intrinsic flow frequencies to be clarified. At the larger angle
of attack, the flow is unsteady and the associated canonical vortex shedding process leads to a
von-Karman vortex street in the airfoil’s wake. We quantify the changes in aerodynamic perfor-
mance for the two angles of attack as a function of the morphing wavespeed and wave number,
and we characterize the interplay between the morphing and flow dynamics in the steady and
unsteady separated flow regimes, drawing connections to the higher Reynolds number cases as
appropriate.

We emphasize that a broader class of surface-deformation based actuators has been developed
for active flow control (see, e.g., Kang et al. [24], Wiltse and Glezer [25], Seifert et al. [26], Jeon
and Blackwelder [27], and the review of Cattafesta III and Sheplak [28]). As such, mechanistic
insights into the surface morphing framework considered here could inform actuation protocols in
these other settings. (Indeed, investigations of other surface-driven actuation strategies have reported
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FIG. 1. Schematic of prescribed surface morphing.

aerodynamic performance benefits through lock-on effects [24], suggesting similar mechanisms
prevail across these actuation technologies.) Similarly, passively compliant actuators have shown
potential utility in aerodynamic flow control [29–33], and insights into the desired structural
dynamics obtained via prescribed motion could provide a means to back out material properties
that would induce the desired fluid-structure interplay.

II. PROBLEM SETUP AND NUMERICAL METHODOLOGY

A. Problem setup

The prescribed surface morphing is applied to a NACA-0012 airfoil at a fixed angle of attack,
α, with a Reynolds number of Re = 1000. The surface morphing is applied normal to the airfoil
surface in the form of a traveling wave, and is modeled as a velocity boundary condition applied
at the entire undeformed suction surface of the airfoil. This representation of the surface actuation
is rooted in the observation that surface deformations caused by morphing are small, so that the
nonzero velocity drives the changes in the flow dynamics. The normal velocity profile at the suction
surface, vn, may be expressed as a function of the arc-length of a point on the suction surface from
the leading edge, s, as

vn(s, t ) = Am cos [2πn(s − wt )], (1)

where Am is the amplitude of the prescribed surface velocity, and w and n are, respectively, the
wavespeed and wave number associated with the traveling wave. See Fig. 1 for a schematic of the
prescribed actuation. All quantities are presented in dimensionless form, normalized by the chord
length c. Note that this nondimensionalization means the arclength at the trailing edge, l say, is not
unity because of the nonzero airfoil thickness. As such, the actual number of waves along the airfoil
surface is n̂ = ln/c. We use the scaled wave number n for simplicity to convey all results below,
keeping in mind that it incorporates the nonunity factor l/c.

To be consistent with the small-amplitude nature of surface morphing actuation and focus on the
effect of wave number and wavespeed, the morphing amplitude Am is fixed at 0.03. Appreciable
changes were not found for morphing amplitudes between Am ∈ [0.01, 0.05]. Morphing amplitude
of lower orders of magnitude did not result in observable changes from the unactuated case,
while amplitudes of higher magnitude would invalidate the small deformations inherent to surface
morphing. We note moreover that the morphing velocity amplitude is practically plausible: for
example, Seifert et al. [26] generated a dimensionless velocity amplitude as high as 0.136U∞
using piezoelectric actuators. That study was at significantly higher Reynolds numbers, and is meant
solely as an illustrative example. The wavespeeds and wave numbers considered in this work are
w ∈ [0.1, 1] and n ∈ [1, 6], respectively. These ranges are selected to encompass the characteristic
speed and lengthscale associated with the fundamental vortex shedding processes in the unactuated
case at an angle of attack of α = 15◦. As such, the results below will probe the effect of surface
morphing when the morphing parameters are smaller than, matched with, and larger than the
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intrinsic flow speeds and lengthscales. Note that the wave number and wavespeed induce a morphing
frequency, fm = wn, and an associated morphing period, Tm = 1/ fm.

The discussions in this article will be limited to the long-time implications of actuation. Actuation
is initiated after the baseline (unactuated) flow is fully in its long-time behavior (steady state for
α = 5◦ and limit-cycle vortex shedding for α = 15◦). For consistency of comparison in the larger
angle of attack case, actuation is initiated at the instance during the vortex shedding cycle when the
baseline flow is at its maximum lift value. The sudden onset finite-amplitude actuation introduces a
discontinuity in the dynamics, though the dynamics evolve smoothly from this impulsive change to
the forcing beginning in the next time step (roughly 4×10−4 convective time units). Because of our
focus on the long-time effect of actuation on the aerodynamic system, we do not study the effect of
the end time of actuation in our work.

Also, the sinusoidal form of the actuation velocity considered here implies that the actuation
velocity at the leading edge and trailing edge is not constrained to be zero. Although such a
discontinuity in the spatial gradient of surface velocity is acceptable for actuation strategies such as
blowing and suction where the actuation is through point velocities, for piezoelectric materials the
velocity near the leading edge and trailing edge would need to be modified by, e.g., a ramp function
to facilitate a smooth variation from zero to the velocity given by Eq. (1). The specific variation
in velocity would be governed by the material properties and configuration of the piezoelectric
material, and probing the effect of this parameter is beyond the scope of the current work. It will be
shown in later sections that the flow is most impacted by actuation near the airfoil surface point of
the largest y-coordinate value. Thus, the inaccuracy in modeling the actuation velocity smoothly at
the leading and trailing edge is not expected to result in major differences in the results obtained,
though a full study into the effect of this varying velocity would need to be performed to confirm
this hypothesis.

Analysis of the aerodynamic system will often be done in terms of the coefficients of pressure
and sectional lift and drag, defined here, respectively, as

Cp = p − p∞
1
2ρU 2∞

, Cl = Fy
1
2ρU 2∞c

, Cd = Fx
1
2ρU 2∞c

, (2)

where ρ is the fluid density, U∞ is the freestream flow speed, p is the pressure field variable, p∞ is
a freestream pressure reference value, and Fx and Fy are the dimensional integrated force along the
airfoil surface in the horizontal (streamwise) and vertical directions, respectively.

B. Numerical methodology

The simulations are performed using the immersed boundary projection method as described in
Ref. [34]. The method solves the incompressible Navier-Stokes equations with applied forcing to
satisfy the velocity boundary condition on the surface of the body, written here in dimensionless
form as

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u +

∫
�

f b(ξ)δ(ξ − x)dξ, (3)

∇ · u = 0, (4)
∫

�

u(x)δ(x − ξ)dx = ub(ξ ). (5)

In the above equations, u is the flow velocity vector written in terms of the flow domain coordinate
x ∈ � (� denotes the flow domain). The body force f b is implicitly computed at each coordinate on
the airfoil, ξ ∈ � (� represents the airfoil surface), to ensure the flow velocity matches the surface
velocity ub. This surface velocity is prescribed to have a normal component given by (1) on the
suction surface, and to have zero value in the tangent direction on the suction surface and zero value
in both the tangent and normal directions on the pressure surface. In the governing equations (3)–(5),
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FIG. 2. Features of the baseline (unmorphed) flow for the steady case of α = 5◦. Left: Coefficient of
pressure, Cp, contour with streamlines. Right: Cp distribution on airfoil surface (scaled by −0.2).

all lengthscales are nondimensionalized by the chord length c, velocity scales by the freestream
speed U∞, and timescales by the convective time c/U∞.

The governing equations (3)–(5) are spatially discretized using a discrete streamfunction-
vorticity formulation using the standard second-order finite volume stencils, removing the need to
compute the pressure. The terms involving the Dirac δ function in (3) and (5) are approximated via
a regularized δ function and discretized using a trapezoid-based quadrature scheme. The spatially
discrete equations are discretized in time using the trapezoid method for the viscous term and the
second-order Adams-Bashforth method for the advection term. The flow equations are treated using
a multidomain approach: the finest grid surrounds the body, and grids of increasing coarseness are
used at progressively larger distances from the airfoil. See Ref. [34] for more details. The simulation
parameters and domain independence results are reported in Appendix.

III. SURFACE MORPHING AT AN ANGLE OF ATTACK OF α = 5◦

We present in this article results for angles of attack of α = 5◦ and 15◦. The former angle of
attack, considered in this section, involves a steady unactuated flow that offers a natural starting
point for studying the spatiotemporal flow variations resulting from morphing.

In Sec. IV, we consider the latter angle of attack and probe the interplay between the tempo-
rally and spatially varying morphing kinematics with an unactuated flow that has intrinsic vortex
shedding behavior.

A. Characteristics of the unactuated flow

To motivate the results involving actuation, we provide an overview of the flow field for the
baseline/unactuated case (no morphing) at the angle of attack of α = 5◦. Figure 2 shows contours of
the coefficient of pressure, Cp, with superimposed streamlines (left subplot) and the Cp distribution
on the suction and pressure sides of the airfoil (right subplot). The markers on the airfoil represent
the leading edge in turquoise (henceforth, sLE) and the point with the largest y-coordinate value
[assuming the origin (x, y) = (0, 0) is attached to the leading edge, where the x-coordinate is along
the freestream and the y-coordinate is in the vertical direction] in dark green (henceforth, smax).
The streamlines around the airfoil are shown in four different colors. The red streamlines represent
the streamlines close to the airfoil surface between sLE and smax. These streamlines illustrate the
flow turning around the leading edge onto the suction surface, and they are highlighted because the
morphing velocity between sLE and smax will be shown to affect the curvature of these streamlines
(and thus the local pressure field) considerably. The green streamlines indicate the streamlines
downstream of smax, above the shear layer that forms when the flow reaches smax and encounters
the adverse pressure gradient. It will be shown in subsequent sections that morphing near smax

changes the curvature of these streamlines above the shear layer, and that there is an associated
pressure signature. The dynamics of this pressure signature will be shown to be of prime importance

024703-6



SURFACE MORPHING FOR AERODYNAMIC FLOWS …

FIG. 3. Left: Temporal variation of Cl for various wavespeed–wave-number combinations, ( ) baseline
(unactuated) case. Legend represents (w, n) values. Right: Peak frequency from a power spectral density
analysis of temporal Cl variation, vs fm.

in dictating aerodynamic performance. The streamlines in salmon fall between those in green and
the airfoil surface and represent vortical structures that arise close to the airfoil surface. All other
streamlines are shown in black. The specific color delineations were chosen purely for graphical
purposes to illustrate the distinct physical phenomena that will be categorized in the presence of
morphing. In the unactuated case, there is a pressure peak on the suction surface between sLE and
smax. This peak is spatially correlated with the location where the red streamlines curve in the left
figure. Beyond the point of minimum Cp, there is pressure recovery and the streamlines are only
slightly convex. There is also a small region of separated flow near the trailing edge that has a
minimal impact on the local pressure.

B. Surface morphing: Lift dynamics and performance maps

In the presence of surface morphing, the lift dynamics are periodic, as shown for various
wavespeed–wave-number combinations, (w, n), in Fig. 3. Figure 3 also provides the peak frequency
extracted from a power spectral density analysis of the lift signals for a variety of wavespeed–
wave-number combinations. For all morphing parameters considered at this angle of attack, the
lift dynamics evolve at the frequency fm. This fact demonstrates that in the presence of a steady
unactuated flow, the dynamics are entirely driven by and evolve in concert with morphing.

The percentage change (relative to the baseline case) in coefficients of lift, Cl , and drag, Cd ,
is provided for various w and n values in Fig. 4. Lift improvements are only observed for wave
numbers n = 1 and 2. For both of these wave numbers, maximum lift is achieved at w = 0.5, with
the global maximum occurring at a wave number of n = 2.

For higher values of n, the mean lift changes negligibly from the baseline (unactuated) case.
The drag performance map demonstrates that all parameters lead to a drag penalty, though for the
(w, n) combinations leading to lift benefits the drag increases are significantly smaller than the
lift improvements. In what follows, we therefore focus primarily on characterizing the effect that
surface morphing has on the lift dynamics.

C. The effect of surface morphing on a motivating low-wave-number example

We next probe the effect of morphing on the instantaneous flow field and pressure distribution. To
motivate the nature of the analysis, we begin by considering the specific wavespeed–wave-number
combination (0.3,1). This value was chosen because it lies within the parameter range where surface
morphing has an appreciable effect on the mean lift. The physical processes identified for this
parameter set will be shown in subsequent sections to persist for other parameters that are more
beneficial to the mean lift.

The left column of Fig. 5 shows contours of the coefficient of pressure, Cp, with superimposed
streamlines (left subplot) (an exaggerated illustration of the morphing velocity is also shown for
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FIG. 4. Performance maps at α = 5◦ showing the percentage increase in mean lift (left) and mean drag
(right) as compared to the baseline (unactuated) case for different wavespeeds, w, and wave numbers, n.

FIG. 5. α = 5◦, (w, n) = (0.3, 1). Spatiotemporal variation of pressure due to morphing. Left: Coefficient
of pressure, Cp, contour and streamlines. Right: Cp distribution on airfoil surface (scaled by −0.2); dark blue
with morphing on suction side, light blue without morphing on suction side; green with morphing on pressure
side.
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FIG. 6. α = 5◦. Temporal variation of Cl as a function of morphing period for various (w, n) combinations,
( ) is the baseline value, ( ) is the lift variation for the actuated flow. Markers represent instantaneous Cl

corresponding to snapshots in Figs. 5 and 8–12, respectively. (a) (0.3, 1), (b) (0.5, 1), (c) (1, 1), (d) (0.5, 2),
(e) (0.5, 3), and (f) (0.5, 6).

clarity) at four instances during the morphing cycle. The right column provides the associated Cp

distribution along the airfoil. The temporal variation of the coefficient of lift over one morphing
period is shown in Fig. 6(a).

We first discuss the effect of surface morphing near the leading edge (between sLE and smax),
and subsequently describe the implications of this actuation further downstream along the airfoil.
We will also make connections between the instantaneous pressure distribution and lift to explain
why this wavespeed–wave-number combination is suboptimal. At the time instance t/Tm ≈ 0.5, the
morphing velocity between sLE and smax is negative and the stagnation point is below the leading
edge. Commensurate with this, the red streamlines exhibit greater curvature than in the baseline
case (cf., Fig. 2). This behavior is associated with a larger pressure suction peak—relative to the
baseline case—at the leading edge (right figure, third row). At the next time instance, t/Tm ≈ 0.75,
the morphing velocity becomes positive between sLE and smax. This change in velocity produces
less pronounced curvature in the red streamlines, and an associated lessening of the pressure suction
peak. This decrease in pressure suction across s ∈ [sLE, smax] continues when the morphing velocity
becomes more positive in this region of the airfoil at the first time instance, t/Tm ≈ 0.0 (note that
t/Tm ≈ 1 is the same as t/Tm ≈ 0). The trend finally reverses at t/Tm ≈ 0.25, when the morphing
becomes negative again and leads to an increase in the suction peak relative to the baseline case.
These trends demonstrate that the magnitude of pressure between sLE and smax is higher when the
streamline curvature is more pronounced, which in turn occurs for instances in time when there is
negative morphing velocity over that region.

The effect of surface morphing over this region has implications on the pressure distribution
downstream of smax as well. The snapshots in the left column demonstrate that during instances
when the morphing velocity between sLE and smax is positive (t/Tm ≈ 0.75, 0), the “push-up” effect
from the positive velocity in that region, combined with the downward-facing salmon streamlines
downstream of smax (due to the negative morphing velocity there), lead to clockwise salmon
streamlines downstream of smax. Commensurate with this behavior is a greater curvature of the green
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FIG. 7. α = 5◦, t-x diagram of the local pressure minimum for various wavespeed–wave-number combi-
nations. Legend represents (w, n) values.

streamlines above and near smax, and thus a larger pressure suction peak, relative to the baseline
case. This suction peak, which is indicated in the pressure contour plots via a yellow marker, has a
signature in the pressure distribution along the airfoil as well: the airfoil pressure distribution has
a local suction peak near the x-location of the yellow marker. The opposite effect is seen when
the morphing velocity between sLE and smax is negative (t/Tm ≈ 0.25, 0.5): the negative morphing
velocity near the leading edge leads to streamlines that wrap more tightly around the airfoil as they
move from sLE to smax.

The result of these effects is flatter green streamlines and a lack of pressure suction peak in
the flow field or on the airfoil (apart from the peak near the leading edge that is always present,
including in the baseline case, due to the increased flow velocity before the adverse pressure gradient
is encountered).

One of the more conspicuous features of the yellow marker is that it advects at a speed that is
distinct from the morphing wavespeed: the marker begins near the morphing velocity peak when
the peak is near smax, but outpaces the morphing velocity peak as the two move downstream.
This fact suggests that the pressure suction signature initiated near smax by a positive morphing
velocity between sLE and smax then moves downstream at a speed that is agnostic to the morphing
velocity, and in a manner that affects the local suction peaks in the pressure distribution on the
airfoil. This discrepancy between the advection speed and the wavespeed of surface morphing also
suggests a reason why this parameter set is suboptimal for lift performance: because the suction
peak moves faster than the morphing velocity peak, there will be periods of time where the suction
peak has moved downstream of the airfoil before the morphing velocity peak has made its way all
the way downstream and back to the leading edge. This can be further elucidated by comparing
lift at the different instances of the snapshots [cf., Fig. 6(a)]. At time instances t/Tm = 0, 0.25,
when the curvature of the green streamlines grows and advects downstream, there is an increase
in lift, while at t/Tm = 0.5, 0.75, when the suction peak moves downstream of the airfoil, lift is
lower. These time instances have associated absences of local lift peaks. One would thus expect that
faster morphing speeds, commensurate with the advection speed of the pressure suction signature
indicated by the yellow marker, would lead to a pressure suction peak that is present over the entire
period, leading to more lift benefits.

To demonstrate that the advection speed of this pressure suction peak is indeed agnostic to the
morphing wavespeed, we show in Fig. 7 a t-x diagram of the local pressure minimum for various
morphing parameters. Note that the time axis is in terms of convective time and is not scaled
by the morphing period. The advection velocity is close to 0.5 for all wavespeed–wave-number
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FIG. 8. Analog of Fig. 5; (w, n) = (0.5, 1).

combinations. Recalling the performance maps from Fig. 4, Fig. 7 demonstrates that optimal per-
formance occurs when the surface morphing kinematics are attuned to the intrinsic flow dynamics.
For clarity, we recall that surface morphing at higher Reynolds numbers leverages significantly
higher wavespeeds than considered here to induce benefits via a different mechanism of separation
reduction [16,17,19], and the constant advection speed found here may not hold in that different
setting.

To stimulate future study, we note that a global stability analysis of the unactuated system
(using the steady long-time state as the base state) would likely yield a set of global bluff body
modes like those in Barkley [35]. These modes have a strongly periodic spatial structure that
implies an advection speed (via a dispersion relation with the associated temporal frequency of the
eigenvalue). The constant speed of the pressure minimum could therefore reflect the manifestation
of an eigenvector (likely the least stable eigenvector) that carries the stimuli imposed by actuation.
We leave further testing of this hypothesis to future work.

Finally, we note that morphing leads to changes on the pressure side of the airfoil as well. In
Fig. 5, as the local pressure minimum (indicated by the yellow marker) moves towards the trailing
edge, there is a decrease in pressure on the pressure side near the trailing edge. This effect is most
clearly seen by comparing the flow field at t/Tm ≈ 0.25 and t/Tm ≈ 0.5. The pressure near the
trailing edge on the pressure side is lower at t/Tm ≈ 0.5. This effect of morphing on the trailing
edge will be shown to be correlated to the change in formation of the trailing edge vortex for the
higher angle of attack case of α = 15◦ in Sec. IV.

D. Influence of surface morphing for low n relevant to lift benefits

We now consider how the surface morphing wavespeed, w, and wave number, n, affect the system
dynamics. We begin by fixing the wave number at n = 1 to isolate the effect of wavespeed. Figures 8
and 9 provide analogous information to that of Fig. 5 for the parameter sets (w, n) given by (0.5,1)
and (1,1), respectively. The lift variations corresponding to these two wavespeed–wave-number
combinations are shown in Figs. 6(b) and 6(c), respectively. A comparison of Figs. 5, 8, and 9
shows that many of the same features identified in the previous section persist: the pressure suction
peak on the airfoil near the leading edge is correlated with the morphing velocity in this region.
In addition, when the morphing velocity is positive near the leading edge, there is a pronounced
streamline curvature near smax (illustrated via the green streamlines) and an associated local pressure
minimum. This pressure minimum, along with its signature via a local suction peak on the airfoil
pressure distribution, advects downstream as time evolves. For the wavespeed w = 1, there are two
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FIG. 9. Analog of Fig. 5; (w, n) = (1, 1).

pressure peaks at time instances t/Tm = 0, 0.25. The snapshots in Fig. 9 only highlight the second
peak. However, at t/Tm = 0.5, 0.75, the first peak from earlier instances is highlighted.

The figures also bear out the result from Fig. 7 that the advection of the pressure minimum in
the flow field occurs at a distinct speed from the morphing wavespeed: the yellow marker moves
downstream of the airfoil faster, roughly commensurate with, and slower than, the morphing velocity
peak for w = 0.3, 0.5, and 1, respectively. This suggests a reason for optimal lift benefits when
w = 0.5 at a given (low) value of n: mean lift is maximized when the morphing dynamics are
synchronized with the intrinsic timescales of the aerodynamic system.

The optimal mean lift for w = 0.5 can also be interpreted in terms of the morphing period (since
n is fixed for these three cases). For smaller wavespeeds w, the morphing period is longer than
the amount of time it takes the local pressure suction peak to advect downstream, leading to time
instances where this lift-producing pressure reduction is absent. The reduction in lift below the
baseline value seen in Fig. 6(a) is reflective of instances when the local pressure minimum (and
thereby lift-beneficial suction peak) has advected downstream of the airfoil. By contrast, larger
values of w lead to at least one local suction peak at all time instances. This observation unto itself
would suggest that larger values of w are better for lift production. Yet, the performance benefits are
maximal at the intermediate value of w = 0.5. This fact is due to the decrease in the magnitude of
the pressure suction peak if w grows too large, which is reflected in the lower value of Cl increase
compared with the baseline [cf., Fig. 6(c) and the smaller magnitude of the pressure peaks from
Fig. 9].

Indeed, the airfoil pressure suction peak (shown in the right column of Fig. 5 and the bottom
row of Figs. 8 and 9)—that advects downstream along with the pressure minimum indicated by
the yellow marker in the corresponding Cp contours—is comparable in magnitude for w = 0.3 and
0.5 and smaller for w = 1. These observations suggest that lift benefits are obtained by a balance
between (i) having a sufficiently fast morphing wavespeed that a pressure suction peak is present at
all time instances, and (ii) having a sufficiently slow wavespeed that the pressure suction peak has
the largest magnitude possible. This balance is struck when the timescales of morphing and the bulk
flow dynamics above the shear layer align.

Noting from Fig. 4 that maximum mean lift occurs for wavespeed–wave-number values of
(w, n) = (0.5, 2), we focus now on the effect of wave number and consider wave numbers of
n = 1, 2, 3 for a fixed w = 0.5. The lift dynamics in Fig. 6 demonstrate that the optimal wave
number for mean lift, n = 2, produces a lower lift maximum than for n = 1, but also has a higher
lift minimum. This fact demonstrates that optimal lift for this parameter set is obtained through a
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FIG. 10. Analog of Fig. 5; (w, n) = (0.5, 2).

balance between maintaining sufficiently high (but not optimal) lift maxima while mitigating the
lift-reducing troughs.

To clarify the mechanisms by which this balance is obtained, we provide in Figs. 10 and 11
analogous plots to those of Fig. 8 for the wavespeed–wave-number values of (w, n) = (0.5, 2) and
(0.5,3). The bottom rows of Figs. 8, 10, and 11 demonstrate that at time instances near the maximum
lift, t/Tm ≈ 0.25, the number of local suction peaks of the airfoil pressure distribution increases with
the wave number n. This result is intuitive from the discussion above: as each peak in the morphing
velocity moves from sLE to smax, a new local pressure minimum (indicated by the yellow markers)
is created in the flow field near smax and there is an associated signature in the airfoil pressure
distribution. This local pressure minimum and its corresponding local suction peak in the airfoil
pressure distribution advect downstream at the bulk advection velocity of ∼0.5 (cf., Fig. 7). For
higher wave-number values, this process of generating these local pressure minima occurs multiple
times before a given local pressure minimum advects downstream of the airfoil. This process of
generating several local pressure peaks is beneficial towards avoiding low lift minima. Viewing the
bottom rows of Figs. 8, 10, and 11 at time instances near the minimum lift, t/Tm ≈ 0.75, it is clear

FIG. 11. Analog of Fig. 5; (w, n) = (0.5, 3).
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FIG. 12. Analog of Fig. 5; (w, n) = (0.5, 6).

that lift-deteriorating troughs in the airfoil pressure distribution, which appear between the local
suction peaks, are lessened in magnitude.

The ability to mitigate these lift minima, however, also leads to lower maximum lift. At the
aforementioned time instances near maximum lift, Figs. 8, 10, and 11 show that the local suction
peak in the airfoil pressure distribution is largest for a wave number of n = 1 and smallest for
n = 3. This decrease in magnitude of the local suction peaks of the airfoil pressure distribution can
be intuited by observing that at the fixed wavespeed w = 0.5, increasing the wave number increases
the frequency fm = wn over which a segment of the wave will repeat itself in time. This increase
in frequency creates a smaller time window over which morphing can impact the flow at a given
location before there is a change in actuation direction.

Altogether, these results indicate that increasing the wave number introduces competing effects
of (i) the ability to create multiple local pressure minima along the airfoil surface to mitigate lift
detriments, and (ii) a decrease in the magnitude of these suction peaks, resulting in lower lift
maxima.

E. Higher n values: Insignificant effect of surface morphing

For higher wave-number values (n � 3), surface morphing has a negligible impact on lift or
drag [cf., the performance maps in Fig. 4 and the time traces of the lift dynamics in Figs. 3 and
6(f)]. The decrease in effect of surface morphing can be understood through a timescale argument.
For sufficiently large values of wave number n, the actuation frequency fm = wn will be large for
all of the wavespeeds w considered in this work. Commensurate with this increase in frequency
is a reduction in the amount of time a given flow location is exposed to positive (negative) surface
morphing before the actuation becomes negative (positive). For completeness, we provide in Fig. 12
analogous plots to those of Fig. 8 for the wavespeed–wave-number values of (w, n) ≡ (0.5, 6). The
figure demonstrates that the green streamlines exhibit little curvature (and thus insignificant low-
pressure regions in that area of the flow). There are instead a collection of circular streamlines near
the airfoil surface where morphing occurs, though the small timescale of actuation at a given location
reduces the extent to which surface morphing can impact the flow. This negligible change is visible
in the plots of the airfoil pressure distribution as well. There are high-wave-number fluctuations
about the baseline (unactuated) pressure distribution, but with little net effect on lift. The high-
wave-number fluctuations in the airfoil pressure distribution can be correlated with the attributes of
the streamlines close to the airfoil surface (shown in salmon). In the regions of attached flow, the
clockwise streamlines are associated with reduced pressure. Near the trailing edge where the flow is
reversed, the regions of reduced pressure coincide with anticlockwise streamlines. This is intuitive
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because clockwise streamlines along with flow towards the right would result in higher velocity. For
reversed flow, anticlockwise streamlines would have the same effect.

The fact that the reduction in time leads to a negligible effect of actuation demonstrates that
there are two separate timescales to which the flow is receptive, and others to which the flow is not
receptive. The first timescale that is relevant for performance is the wavespeed, w. For sufficiently
low wave number n, mean lift is maximized when the morphing wavespeed is aligned with the
intrinsic advection speed above the shear layer. However, there is a second crucial timescale, the
morphing frequency, that is encoded by the combined effect of wavespeed and wave number. To
attain maximal lift benefits, this frequency must be within a range to which the flow is receptive.
Said differently, for sufficiently high morphing frequencies, the actuation has little impact on the
flow field, even when the wavespeed is attuned to the advection speed above the shear layer.

IV. SURFACE MORPHING AT AN ANGLE OF ATTACK OF α = 15◦

In this section, we consider a higher angle of attack, for which the unactuated flow exhibits un-
steady separated-flow dynamics with prominent frequency signatures. We characterize the interplay
between the morphing kinematics and the underlying vortex shedding behavior, leveraging insights
from above about the key relationship between morphing and bulk advective processes in the flow
as well as timescales over which the flow is receptive.

A. Characteristics of the unactuated flow

At α = 15◦, the flow field in the absence of morphing is unsteady, and periodic vortex shedding
is seen. The frequency of shedding (henceforth, fb) is 0.71. The unsteadiness of the aerodynamic
forces stems from the pressure variations on the suction and pressure sides of the airfoil, which
correspond to the formation and advection of the leading- and trailing-edge vortices (LEV and
TEV, respectively). Figure 13 shows on the left contours of the coefficient of pressure, Cp, in the
flow field with superimposed streamlines, and on the right the Cp distribution on the airfoil surface,
at four instances of the shedding cycle. [The lift variation over one shedding cycle and the associated
power spectral density of the lift dynamics are shown in Fig. 14(a).]

Over a lift period, the LEV and TEV successively form, advect, and interact. This process
is highlighted through the flow-field snapshots on the left column. At t/Tb ≈ 0, the LEV from
the previous cycle is close to the trailing edge (and is strongly correlated with the local pressure
minimum indicated by the yellow marker). Before the new LEV forms completely, the trailing edge
vortex rolls up at t/Tb ≈ 0.25. This instance where the new LEV has yet to roll up and the previous
LEV has advected beyond the airfoil (there is no discernible pressure minimum along the airfoil)
is associated with the minimal lift value; cf., Fig. 14(a). The minimum lift value is borne out in
the Cp distribution on the airfoil (right column, Fig. 13) via the evident pressure reduction on the
pressure side. As the TEV advects downstream at t/Tb ≈ 0.5, roll-up of the new LEV occurs and
introduces a local pressure minimum (represented by the yellow marker). Commensurate with this
pressure reduction is an increased curvature in the nearby green streamlines. As the new LEV grows
and advects from t/T ≈ 0.5 to t/T ≈ 0.75, the curvature of the green streamlines becomes more
pronounced and there is greater pressure reduction. Associated with this behavior is maximal lift
[cf., Fig. 14(a)], manifesting in a lift-producing bump on the Cp distribution on the airfoil suction
side (cf., the corresponding snapshot in the right column of Fig. 13). Note also the decrease in
pressure magnitude on the pressure side compared with the minimal lift instance of t/Tb ≈ 0.25.
This process in the unactuated case mirrors many features of the lower angle of attack scenario
in the presence of surface morphing: both cases are driven by the appearance of flow structures
near smax, as well as their subsequent advection and manipulation of nearby streamlines and airfoil
pressure signatures. This connection highlights an intrinsic propensity of this flow system. In what
follows, we will characterize how actuation further modulates these driving aerodynamic processes.
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FIG. 13. α = 15◦, baseline flow. LEV and TEV formation. Left: Coefficient of pressure, Cp, contour and
streamlines. Right: Cp distribution on airfoil surface (scaled by −0.1), suction side in light blue, pressure side
in green.

B. Effect of morphing: General comments and regime characterization

Whereas the actuated flow dynamics at the lower angle of attack evolved commensurately with
the morphing timescales [cf., Fig. 3(b)], Fig. 14 shows three noticeably different classes of lift
dynamics, which can be categorized primarily by the relationship between the frequencies of the
lift curve in the baseline case, fb, and the morphing frequency fm = wn. We show in Fig. 14 the lift
dynamics and associated power spectral density (PSD) for parameters yielding these three separate
regimes.

When fm ≈ fb [Figs. 14(d)–14(g)], the dynamics of the actuated flow can evolve along the
morphing frequency (with small signatures at harmonic integers), with no discernible remnant
of the unactuated frequency peaks. We will demonstrate below that over this regime, the flow is
receptive to actuation and an analogous shedding process ensues as in the unactuated case, but
over a timescale that is governed by the morphing frequency. We therefore refer to this behavior
as the lock-on regime. The potential for lock-on suggests that similar synchronization behavior can
occur at low Reynolds numbers as was observed for high Reynolds numbers [13,16,17], though
we will show that in this lower-Reynolds-number setting, the result is not a reduction in flow
separation. Instead, the vortex shedding processes remain but are modulated by morphing, in some
cases to significant lift benefit. This phenomenon is a common occurrence in low-Reynolds-number
aerodynamic flows; for example, the transient formation of the LEV in wings at low Reynolds
numbers gives rise to temporary lift benefits [36] and is a key mechanism behind insect flight [37].
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FIG. 14. α = 15◦. For each subfigure, left: temporal variation of Cl for the baseline ( ) and actuated
( ) flows (markers correspond to instances at which snapshots are plotted in subsequent figures); right:
power spectrum of lift fluctuations for the baseline ( ) and actuated ( ) flows. (a) Baseline, (b) fm 	≈
fb, (w, n) = (0.1, 2), (c) fm 	≈ fb, (w, n) = (0.3, 1), (d) fm ≈ fb, (w, n) = (0.6, 1), (e) fm ≈ fb, (w, n) =
(0.3, 2), (f) fm ≈ fb, (w, n) = (0.5, 1) (g) fm ≈ fb, (w, n) = (0.7, 1), (h) fm 	≈ fb, (w, n) = (0.7, 6), and (i)
fm 	≈ fb, (w, n) = (0.9, 2).
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FIG. 15. α = 15◦. Temporal behavior of Cl for cases selected from the interactive (a)–(c) and superposition
(d) regimes. These cases occur when fm 	≈ fb (i.e., when lock-on is not observed).

When fm 	≈ fb, there are broadly two categories of behavior that can occur. In the first category,
morphing and the underlying shedding behavior can interact in complex ways to produce a mixture
of timescales. This behavior, termed here the interactive regime, is illustrated in Figs. 14(b) and
14(c) for cases in which fm < fb: the time history of the lift curve conveys multiscale dynamics
that correspond in the PSD to frequency peaks at multiple frequencies, with two of the most
dominant peaks appearing at fm and the multiple of fm closest to fb. In the snapshot images
shown in subsequent sections, this collection of frequency peaks will be shown to coincide with
a time-varying phase relationship between morphing and the underlying shedding process. The
morphing and timescales do not synchronize, and at different times the morphing near smax will
be shown to alternately augment or inhibit the formation of the leading-edge vortex, and thereby
modify the subsequent interaction with the trailing-edge vortex. These cycle-to-cycle variations in
the vortex formation and interaction processes will be shown to lead to multiple timescales in the
lift curve.

In the second category of behaviors when fm 	≈ fb, the morphing timescales are sufficiently fast
compared with the underlying (unactuated) flow dynamics that the bulk vortex shedding processes
and lift dynamics are not significantly affected. We refer to this behavior as the superposition regime
because morphing actuation manifests in the lift dynamics as small-amplitude, high-frequency oscil-
lations superposed onto the (essentially) baseline lift variation. Cases belonging to this superposition
regime are illustrated in Figs. 14(h)–14(i). This inability of the flow to respond to actuation at
significantly disparate timescales from intrinsic flow timescales is the same as what was seen for
α = 5◦. The existence of regimes based on the relation between fm and fb is indicative of nonlinear
interaction between actuation and the limit cycle associated with the unactuated flow. Progress has
been made in the ability to use weakly nonlinear modeling to predict the dynamics of limit cycles
arising from a supercritical Hopf bifurcation that are subject to open loop forcing [38]. Such models
could be used to predict the dynamics identified in this section. We leave this as a future avenue of
investigation.

Before describing the detailed dynamics of each regime, it is worth clarifying the distinctions
between the interactive and superposition regimes in more detail. We show in Fig. 15 time histories
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FIG. 16. Performance maps for α = 15◦ showing the percentage change in mean lift (left) and mean drag
(right) from the baseline (unactuated) case for different wavespeeds, w, and wave numbers, n. Circles, crosses,
and triangles represent the lock-on, interactive, and superposition regimes, respectively. The gray dashed line
depicts wn = 0.71 ( fb). For the wavespeeds considered, lock-on is seen for n � 4. Note that the regime for
(w, n) ≡ (0.7, 2) (for which fm ≈ 2 fb) was marked as lock-on because the dominant lift dynamics evolves
at fb, and morphing and lock-on were found to synchronize in the snapshots (not pictured). We refer to this
case as harmonic lock-on. The existence of harmonic lock-on at higher wave numbers was not found for the
parameter values considered in this study, though it is possible that such behavior exists (although the regime
map generally demonstrates that the propensity for lock on narrows as n increases).

of the lift dynamics at various wavespeed–wave-number combinations that fall within either the
interactive [Figs. 15(a)–15(c)] or the superposition [Fig. 15(d)] regime. Note that there is a larger
impact on the lift dynamics compared with the baseline case for lower morphing frequencies,
fm = wn. This impact reduces as fm increases, until it is almost negligible for (w, n) = (1, 6)
[Fig. 15(d)]. This progression demonstrates a smooth transition between the interactive and super-
position regimes as fm increases, where the flow becomes successively less receptive to actuation
at very disparate timescales, fm 
 fb, until the primary flow dynamics are essentially those of
the baseline (unactuated) case. Of the four subfigures, only Fig. 15(d) qualifies as superposition
since it is the only one in which the effect of morphing appears as small-amplitude, high-frequency
variations superposed onto the baseline lift dynamics.

Using these regime definitions, we present in Fig. 16 performance maps that show the percentage
increase in mean Cl and Cd compared to the unactuated flow. The different marker shapes represent
the different regimes. The system exhibits lock-on when the morphing frequency fm = wm is near
the baseline (unactuated) frequency fb if the wave number is not too high (n � 4). The interactive
regime is observed for morphing frequencies smaller than or slightly above the baseline frequency.
For sufficiently high morphing frequencies, the superposition regime is observed, where actuation
has little effect in modulating the unactuated flow dynamics. Note that the receptivity of the system
to morphing via either the lock-on or interactive regimes is stronger for lower wave numbers. For
example, for n � 5 no lock-on is observed, and the interactive regime is observed for the highest
frequencies when n = 1. These facts reflect a secondary effect in addition to that of the morphing
frequency: the actuation lengthscale. When the morphing lengthscales are significantly smaller than
those of the bulk vortex-shedding processes, the system becomes less receptive to actuation, and a
superposition regime driven largely by the unactuated flow dynamics is observed.

The largest mean lift improvements occur within the lock-on regime, whereas significant
lift detriments are observed for the interactive regime, and negligible changes occur within the
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FIG. 17. α = 15◦, t vs x of the local pressure minimum near the airfoil (LEV) for the baseline (unactuated)
case and morphing for various (w, n) combinations. For x-locations without markers, there was no local
minimum detected (coinciding in the subsequent snapshots to instances where the leading-edge vortex that
produces the pressure minimum has not yet formed during the cycle).

superposition regime. Within lock-on, the maximal mean lift improvements are for low values
of wave number (n � 3) where morphing lengthscales are of the same order as the primary
vortical structures formed at the leading and trailing edges. Moreover, the highest performing cases
(w, n) = (0.6, 1), (0.3, 2) are at a fixed morphing frequency of fm = 0.6. Note that lock-on is not
exclusively beneficial to lift; e.g., for n = 4 there is a mean lift reduction. A similar trend is seen for
mean drag as in the lower angle of attack, with drag detriments coinciding for parameters yielding
lift benefits, but with the drag increases being significantly smaller than lift increases. We therefore
continue to focus on the effect of morphing on lift at this higher angle of attack. In subsequent
subsections, we investigate each regime in detail to explore why the interactive regime is detrimental
to lift, why within the lock-on regime certain parameters are either advantageous or disadvantageous
for lift, and why there is a minimal change to aerodynamic performance in the superposition regime.

To frame these detailed investigations, we show in Fig. 17 a t-x diagram of the local pressure
minimum near the airfoil. In the analogous figure at the lower angle of attack of 5◦, the pressure
minimum was induced exclusively by morphing and advected at a local flow speed that was agnostic
to the morphing wavespeed. For this higher angle of attack, the local pressure minimum is a
signature of the leading-edge vortex. Interestingly, for the morphing parameters that lead to lock-on
(indicated by the collection of blue curves), the advection speed is again largely constant despite
modest changes in wavespeed and morphing frequency. This near-constant advection speed suggests
a similar process as for the lower angle of attack: morphing modulates the vortical structures that
form due to the unsteady shear layer [cf., the different frequency peaks for the lift dynamics within
the lock-on regime in Figs. 14(d)–14(g)], but the subsequent advection of those structures after
they are formed is unaffected by the morphing parameters. The near-constant advection speed is
approximately 0.41. This result may appear counterintuitive because of its difference from the 0.6
value one might expect as the optimal morphing frequency fm = 0.6 from the performance map in
Fig. 16. We will clarify the reason for this advection speed using detailed snapshot information in
subsequent subsections.

In the interactive regime, there is no longer a uniform timescale that governs the advection of
the flow structures induced by morphing. For example, when (w, n) = (0.1, 2) there is no clear
advection velocity, and for (w, n) ≡ (1.2, 1) (not shown in the performance map) the advection
velocity is higher than the other cases in the advection velocity plot. This variation suggests that,
unlike at the lower angle of attack, the flow structures induced by morphing can be qualitatively
distinct, yielding different local advection processes. This result is intuitive because at this higher
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angle of attack of 15◦, the pressure minimum is associated with the LEV. Thus, for cases in
which the morphing parameters are not synchronized with vortex shedding, changes in the LEV
attributes could arise from complex phenomena including modification of the LEV formation
process, interactions with a previous/subsequent LEV and/or the TEV, the distance of the LEV from
the airfoil surface and the effect of the velocity boundary condition due to morphing downstream of
smax, etc. These processes produce distinct and nonuniform advection speeds for the local pressure
minimum associated with the LEV in Fig. 17.

In the superposition regime, the local pressure minimum advects in essentially the same manner
as for the baseline case, consistent with observations about this regime made above.

To better address the questions posed above regarding mean lift and the advection of the local
pressure minimum associated with the leading-edge vortex, we utilize detailed snapshot information
of the interactions between morphing and vortex shedding for each of the regimes separately below.

C. Interactive regime

We now consider the interplay between surface morphing and the underlying vortex-shedding
dynamics in the interactive regime. These interactions are most pronounced for small morphing
frequencies fm = wn relative to the baseline (unactuated) frequency fb, so we consider one of these
cases with (w, n) = (0.1, 2) for clarity of presentation. Extensions to other parameters are drawn at
the end of this subsection.

Figure 18 shows snapshots of the coefficient of pressure, Cp, in the flow-field and on the airfoil
surface over one morphing cycle. Note that since fm < fb/3, a single morphing period contains
just over three vortex-shedding cycles in the baseline case. The description below also leverages
information from the lift dynamics; cf., Fig. 14(b). At t/Tm ≈ 0, the morphing velocity near smax

is positive, which increases the flow acceleration and nearby streamline convexity, and creates a
more significant low-pressure zone than in the baseline case. This low-pressure region advects
downstream to t/Tm = 0.18 and a leading-edge vortex forms as indicated by the salmon streamlines.
This LEV formation leads to an increase in lift as in the baseline case. As this LEV continues to
form and advects near the trailing edge, a separate TEV forms and reaches near-maximal strength
by t/Tm = 0.39, leading to a local lift minimum. This set of processes—formation and advection of
a LEV and its interaction with a subsequent TEV—mark an analogous process to that seen in the
unactuated case. At the same time, the presence of morphing over this shedding cycle introduces
key (and lift-detrimental) differences. Most notably, at t/Tm ≈ 0.39 when the TEV is at its near
maximum, the LEV has advected downstream of the airfoil, and the negative morphing velocity
near smax mitigates the low-pressure zone that would otherwise have formed in the baseline case to
offset the lift minimum. (The detrimental effect of negative morphing near smax can also be seen by
the low curvature of the green streamlines.) As such, the minimal lift value is significantly lower for
this set of morphing parameters than in the unactuated case.

Because of the lack of synchronization between morphing and the underlying vortex-shedding
processes, the phase relationship between morphing and vortex shedding changes from one shedding
cycle to the next. For example, the negative morphing velocity near smax at t/Tm ≈ 0.39 mitigates the
formation of the subsequent LEV compared with either t/Tm ≈ 0 or the analogous part of the vortex-
shedding cycle in the baseline case. As such, the smaller LEV appears further downstream than usual
by t/Tm ≈ 0.56, and moreover the negative morphing velocity still present across smax continues to
mitigate the low-pressure zone that forms near the leading edge. Thus, while the presence of the
LEV leads to a lift improvement at that time, the benefit is significantly lessened from the prior
vortex shedding cycle or from the baseline case. As the LEV continues to advect downstream, a TEV
forms. Again, the negative morphing velocity near smax at this instance means that the low-pressure
zone near the leading edge is less effective at mitigating the local lift minimum, and the minimal lift
is significantly lower than in the baseline case.

Finally, in the third vortex-shedding cycle, the morphing velocity becomes positive near smax,
and the associated low-pressure zone and downstream advection of the lift-detrimental TEV at
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FIG. 18. Analog of Fig. 13, (w, n) = (0.1, 2). Snapshots are at the instances indicated by the markers in
Fig. 14(b). Note the additional snapshots utilized here to show how the vortex shedding cycle changes over a
single morphing period.

t/Tm ≈ 0.88 result in a local lift maximum. These three vortex-shedding cycles demonstrate that
in the interactive regime, the same qualitative vortex-shedding process—formation of an LEV and
an associated lift maximum, and advection of that LEV/formation of a TEV and an associated
lift minimum—persist. At the same time, the asynchrony between morphing and the underlying
flow processes means that the specific strength, roll-up location, and advection speed of the LEV
as well as the formation and subsequent interaction of the TEV vary across each shedding cycle.
[In fact, note that the dynamics are not periodic over a morphing period: the lift dynamics from
t/Tm ∈ [0, 1] are noticeably distinct from those over t/Tm ∈ [1, 2] in Fig. 14(b).] Altogether, these
variations create broadband frequency signatures in the lift dynamics that are ultimately detrimental
to lift (cf., the performance map in Fig. 16).

The modulating effect that morphing has on shedding within this interactive regime affects the
advection of the local pressure minimum near the airfoil; cf., Fig. 17. For example, for (w, n) =
(0.1, 2), the advection speed varies as the pressure minimum associated with the LEV traverses
downstream. Moreover, the varying slope of the line toward the trailing edge coincides with TEV
roll-up near t/Tm ≈ 0.39.

Note that while these observations were for the case in which there were several shedding
cycles per morphing period, the underlying features hold for the other cases studied within this
regime: there is the same qualitative shedding dynamics with cycle-to-cycle variations due to
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FIG. 19. Analog of Fig. 13, (w, n) = (0.6, 1).

the desynchronized morphing and shedding interplay. Desynchronization between morphing and
shedding implies that over certain morphing cycles, morphing would impede formation of the LEV.
This weaker LEV would mitigate less effectively the deleterious effects that the TEV has on lift,
which suggests a mechanism through which the interactive regime is detrimental to mean lift.

Commensurate with this change in shedding behavior is a change in the advection properties of
the LEV and associated local pressure minimum near the airfoil. For example, for (w, n) = (1.2, 1)
(in the interactive regime, not shown in the performance map), the advection velocity is higher than
for the other cases from the figure. For this wavespeed–wave-number combination, the morphing
frequency is faster than the baseline shedding frequency, resulting in two LEVs shed per cycle
rather than one. These smaller LEVs form more quickly and advect faster downstream. The faster
advection could be influenced by the interaction of these closer LEVs and their distance from the
airfoil, among other factors.

D. Lock-on regime

When fm ≈ fb (provided the wave number n is not too large), the lock-on regime occurs where
the lift dynamics synchronize with the morphing frequency and there is no remaining signature of
the dynamics at the baseline (unactuated) frequency of fb; cf., Fig. 14. We show in this subsection
that these lift dynamics reflect synchronization of morphing and vortex shedding. To clarify how
morphing and vortex shedding interact in this synchronized state, and when this synchrony is
beneficial for mean lift, we consider snapshots for various morphing parameters within the lock-on
regime.

At α = 15◦, maximum mean lift is achieved at (w, n) ≡ (0.6, 1). Figure 19 shows the vortex-
shedding process over one morphing period for this (w, n) combination. The temporal variation
over one morphing cycle is shown in Fig. 14(d), where the markers correspond to the snapshot
instances in Fig. 19. Qualitatively, the snapshots show the same LEV-TEV shedding cycle as in the
baseline (unactuated) case. However, there are key differences in the presence of morphing that are
beneficial to lift.

At t/Tm ≈ 0, low (lift-producing) pressure near the leading edge (and associated curvature of
the green streamlines near smax) is aided by the positive morphing velocity near smax from prior
time instances. This process marks the early formation stages of the lift-beneficial LEV, and is in
contrast to the baseline case, where these lift-producing effects are only due to flow acceleration
around the rounded leading edge. In addition, as the LEV advects and grows over t/Tm = 0.25–0.5,
the positive morphing velocity at smax and the favorable boundary conditions in the vicinity of the
upward and downward pointing streamlines contribute to this growth, and the LEV ultimately has
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FIG. 20. Analog of Fig. 13, (w, n) = (0.3, 2).

a significantly lower (lift-producing) associated pressure than in the unactuated case. When the
LEV advects close to the trailing edge at t/Tm ≈ 0.75, TEV formation starts to occur. However,
the lift-reducing effects of the TEV are mitigated by partial LEV formation near smax. Between
t/Tm ≈ 0.75 and t/Tm ≈ 0 (i.e., t/Tm ≈ 1), not only the TEV but also the LEV grows in strength,
and the drop in lift is less than that of the baseline flow, where only partial formation of the LEV
would have occurred. Also, the morphing velocity near smax at t/Tm ≈ 0.75 is near maximum, which
means that maximum morphing velocity would occur around the time when the LEV has maximum
strength. Altogether, by aiding the formation of the LEV, morphing at this (w, n) combination aids
lift because of both the associated drop in pressure and the mitigation of lift reduction associated
with the TEV.

To better understand the factors influencing the variation in mean lift within the lock-on regime,
we compare other (w, n) combinations. We first investigate the role of wave number and consider
(w, n) = (0.3, 2), which has the same fm as (w, n) = (0.6, 1). The Cl variation with markers
corresponding to the snapshots in Fig. 20 is shown in Fig. 14(e). The Cl variation as well as the
snapshots look qualitatively similar to those at (w, n) = (0.6, 1). The differences are in the boundary
conditions on the airfoil surface relative to the LEV. Comparing the snapshots at t/Tm ≈ 0 for the
two cases, it can be seen that the upward- and downward-pointing streamlines of the LEV are not
as comprehensively aided by the morphing velocity profile when (w, n) = (0.3, 2) (for example,
at t/Tm = 0.25, 0.5, and 0.75 the upward-pointing streamlines of the LEV interface with negative
morphing velocity). As a result, the LEV is narrower, weaker, and some distance away from the
airfoil. This makes the lift improvement lower than that of n = 1.

We now consider the effect of wavespeed and investigate w = 0.5 and 0.7 at a fixed wave number
of n = 1. The corresponding Cl variations are shown in Figs. 14(f) and 14(g). Note from these lift
curves that for w = 0.5 the maximum (minimum) lift value is significantly higher (lower) than
in the unactuated case. By contrast, for w = 0.7 the lift maximum is only slightly larger than in
the unactuated case, but the resulting mean lift is actually higher than for w = 0.5 (cf., Fig. 16)
because the lift minimum is comparable to that of the unactuated case. This outcome suggests that
the synchrony between morphing and vortex shedding observed in the lock-on regime results in two
competing effects: augmenting maximum lift via favorable formation of the LEV, and mitigating
minimum lift that occurs through formation of the TEV.

To clarify the manifestation of these effects within lock-on, we show in Fig. 21 snapshots at the
instances of maximum and minimum lift for the two wavespeeds. For both cases at the instance of
highest lift (near t/Tm ≈ 0.5), the morphing velocity is not entirely advantageous to LEV formation
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FIG. 21. Analog of Fig. 13, n = 1, and varied wavespeeds, w. (a) (w, n) = (0.5, 1) and (a) (w, n) =
(0.7, 1).

[e.g., for (w, n) = (0.5, 1) the morphing velocity peak lags behind the upward swirling salmon
streamlines associated with the LEV, and for (w, n) = (0.7, 1) it leads]. In analogy with (w, n) =
(0.3, 2), this offset leads to a weaker LEV than for the highest performing case of (w, n) = (0.6, 1).
Another effect of varying fm is the duration over which morphing velocity at smax is positive, and
the impact this duration has on streamline curvature. Since the duration is longer for w = 0.5, the
convex (lift-beneficial) and concave (lift-detrimental) portions of the streamlines have larger spatial
wavelengths. The larger convex portion of the streamlines is evident from the extent of the suction
peak in the airfoil Cp distribution at t/Tm ≈ 0.5, and the larger concave portion is visible from
the separation between consecutive LEVs at t/Tm ≈ 1 (for w = 0.5 the new LEV has yet to be
formed). The extended streamline convexity is associated with increased lift (evident in the higher
magnitude and duration of lift increase above the baseline case for w = 0.5, cf. Fig. 15). However,
for these morphing parameters the benefits are outweighed by the extended streamline concavity that
is compounded by the coincident occurrence with the TEV formation process. The coincidence of
the concave streamlines and the TEV formation are associated with a delayed LEV formation. This
delay can be seen by comparing the snapshots at t/Tm ≈ 1 for the two wavespeeds. At w = 0.7, the
new LEV roll-up is advanced and thus helps mitigate the lift detriments resulting from the TEV. On
the contrary, the new LEV is hardly formed at this instance for w = 0.5. The delayed LEV formation
explains the drop in lift below the baseline value for w = 0.5 and improvement in minimum lift for
w = 0.7.

E. Superposition regime

When the morphing frequency fm is too large to affect the intrinsic vortex shedding process,
the lift dynamics are largely unchanged. Figure 22 shows snapshot images for an example of a
high wave number n resulting in high fm. The morphing velocity at smax during LEV formation
results in slight perturbations (visible as spatial fluctuations on the Cp airfoil distribution images)
to what is otherwise essentially the shedding process from the unactuated case; cf., Fig. 13. The
oscillations about the lift variation of the unactuated flow are due to the integrated effect of the
pressure oscillations on the airfoil surface. As was seen for α = 5◦, the pressure peaks coincide
with clockwise streamlines in regions of attached flow and anticlockwise streamlines in regions of
reversed flow. The flow reversal here occurs in tandem with the upstream pointing streamlines of
the LEV. Because the underlying (unactuated) shedding process is largely unaltered, the advection
properties of the pressure minimum associated with the LEV are essentially unaltered from the
unactuated case (cf., Fig. 17).
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FIG. 22. Analog of Fig. 13, (w, n) = (0.7, 6).

V. CONCLUSIONS

In this article, we studied the effects of surface morphing at Re = 1000 on an airfoil at angles
of attack of 5◦ and 15◦. In both cases, it was shown that morphing could be utilized to change
streamline curvature and hence the pressure distribution on the suction surface of the airfoil in a
manner beneficial to mean lift. The pressure signature from the leading edge to the point of the
largest y-coordinate value, smax, was shown to be driven by the morphing kinematics over that
region. Morphing velocity in this region also led to clockwise streamlines, which affected the
curvature of the streamlines near smax. The streamlines were shown to have maximum convexity
when morphing velocity near smax was maximum. Streamline convexity was linked to reduced
pressure and lift benefits. On the contrary, lack of streamline convexity, which resulted from negative
morphing velocity around smax, was linked to increased pressure and lift detriments. At the angle of
attack of 5◦, this phenomenon was shown to be the reason for the temporal variation of lift, while at
15◦ the lift dynamics were a more complex interplay between the periodic morphing signature and
the underlying vortex-shedding dynamics.

At α = 5◦, the advection speed of the (lift-producing) suction peak created at smax was shown
to be largely unaffected by morphing kinematics. First, a study at a fixed wave number n = 1 was
performed, and the maximum lift improvement was shown to occur when the morphing wavespeed
matched this universal advection speed. This phenomenon was explained in terms of the morphing
frequency encoded in terms of the wavespeed w and wave number n as fm = wn: when the
morphing period matched the duration for the lift-beneficial suction peak to travel from smax to
the trailing edge, then this meant that a new lift-producing suction peak could appear at smax just
as the older one was advecting beyond the airfoil. By contrast, for longer morphing periods the
suction peak advected downstream of the airfoil before the suction peak reappeared at smax, and
for faster periods the magnitude of the beneficial pressure suction peak was reduced. Mean lift was
maximized when these competing effects were balanced, when the morphing wavespeed matched
the local advection speed of the pressure signature.

At this lower angle of attack of α = 5◦, maximum mean lift was found at wavespeed w = 0.5 and
wave number n = 2. To probe the benefits of n = 2 over 1 and to study the effect of wave number
at fixed wavespeed, comparisons were made between n = 1, 2, and 3 with the wavespeed fixed
at 0.5. With increasing wave number, the increasing morphing frequency led to a more frequent
formation of suction peaks at smax, albeit of lower magnitude. The effect of multiple peaks was a
reduction in maximum lift (each peak was weaker) and an increase in minimum lift (the persistence
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of a suction peak over all times mitigated the lowest part of the lift cycle). The ideal balance of
these effects was found for n = 2. Finally, for high values of wave number, the short wavelength
and high frequency limited the extent to which morphing impacted the global flow-field and thereby
the pressure distribution. The effect of morphing was limited to small-wavelength, high-frequency
pressure peaks of negligible magnitude close to the airfoil surface.

The observations made at α = 5◦ were used to understand the higher angle of attack setting
of α = 15◦, where the unactuated flow exhibits limit-cycle dynamics involving alternate shedding
between a leading- and a trailing-edge vortex. The flow dynamics in the absence of morphing
showed attributes similar to actuated flow at α = 5◦, with the additional phenomenon of trailing
edge vortex (TEV) formation. The advection of the suction peak associated with the leading edge
vortex (LEV) close to the trailing edge was associated with the formation of the TEV, which reduced
lift considerably. In the unactuated flow, the TEV formation coincided with partial formation
of the LEV near smax, which to an extent mitigated the lift detriments of the TEV due to the
suction peak associated with the LEV. The influence of morphing was shown to be driven by
the relationship between the morphing frequency, fm, and frequency of the baseline (unactuated)
shedding dynamics, fb. When fm ≈ fb (for sufficiently low wave numbers), lock-on occurred, where
the shedding frequency shifted to morphing frequency. Similar to the low angle of attack setting,
within this regime the advection speed of the suction peak (associated with the LEV) was found
to be nearly identical for the different wavespeed–wave-number combinations, with a value near
0.41. Maximum performance coincided with fm that led to the highest morphing velocity at smax

during TEV formation, which was found to coincide with the greatest benefit to LEV formation.
These morphing parameters were also shown to yield velocity boundary conditions that aided LEV
formation throughout its advection from pinch-off to the trailing edge. As was found in the lower
angle of attack setting, this maximally beneficial parameter set was associated with a morphing
frequency that aligned with the advection speed of the pressure suction peak.

By contrast, when fm and fb were distinct from one another or n was sufficiently large, two
categories of behavior were found to be possible. In the first classification were cases in which
fm 
 fb, termed here the superposition regime. In this regime, the flow was largely unresponsive
to the relatively fast morphing timescales, and the lift dynamics were largely unaffected, just as
for α = 5◦. At this higher angle of attack, morphing appeared as a high-frequency perturbation to
the essentially unactuated lift dynamics in a manner that did not affect the mean. In the second
classification were parameters for which lock-on did not occur, but at the same time the morphing
timescales were sufficiently close to the underlying shedding dynamics for the flow to respond.
In this regime, termed here the interactive regime, there were broadband frequency dynamics that
coincided with cycle-to-cycle variations in the interplay between morphing and the vortex-shedding
dynamics. These variations were due to a phase difference between morphing and shedding: during
some shedding cycles the partial LEV formation was aided, while for some others it was opposed. In
the former cycles, there were lift benefits due to stronger LEVs that provided greater suction peaks
and mitigated the deleterious effect of the TEV. By contrast, in the latter cycles, LEV formation
was delayed and the suction peaks were smaller and the lift detriments of the TEV less effectively
mitigated. These disadvantageous cycles led to an overall decrease in mean lift.

The discussion throughout the current article has revolved around identifying the flow features
that are modified in the presence of surface morphing and their connection with instantaneous and
consequently time-averaged lift. However, the higher-pressure magnitude associated with the lift
beneficial flow features also leads to an increase in drag, albeit to a lower extent than the increase in
lift. For the low Reynolds numbers considered here, this actuation strategy is therefore best suited
to problems in which increased lift is a sufficiently high priority to outweigh small drag detriments.
This is true in, for example, biological flight, where flow separation is promoted via creation and
entrapment of an LEV [37]. Indeed, it is not a coincidence that the largest lift benefits were found
by promoting flow separation (and producing a stronger LEV) at the higher angles of attack. This
actuation framework might also be useful in maintaining a target lift profile under unsteady flow
disturbances.
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TABLE I. Grid convergence for α = 15◦ without morphing.

Grid 
x 
t Smallest subdomain Total domain 
s

x Cl %|δCl |

1* 0.00349 0.0004375 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.675 N/A
2 0.005 0.0006 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.676 0.15
3 0.0025 0.0003125 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.674 0.15
4 0.0025 0.0003125 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 1.5 0.678 0.44
5 0.00349 0.0004375 [−0.5,2.5] × [−1.5,1.5] [−47,49] × [−48,48] 2 0.668 1.04
6 0.00349 0.0003 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 1.5 N/A N/A

The current work is restricted to two-dimensional, laminar, stationary flows. Three dimensional
effects associated with a finite-aspect-ratio wing could lead to distinct effects of actuation. In
addition, this problem opens up the parameter space considerably, as one could utilize different
streamwise and spanwise actuation profiles. We leave investigation into this more complex problem
to future study.
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APPENDIX: GRID CONVERGENCE

The suitability of the simulation parameters used in this article is justified through the compar-
isons given in Tables I and II as well as the Cl variations for an angle of attack of 15◦ without
morphing and 5◦ with morphing in Fig. 23. The grid convergence comparison includes the effect
of grid spacing, total domain size (by increasing the grid levels of the multidomain grid), and
spacing of body points relative to grid spacing. The time step for each grid was chosen such that
the Courant-Friedrich-Levy number is approximately 0.2. Grid 1 is the one used for the simulations
in this article. In each table, the last column is the percentage change in mean Cl as compared to
grid 1. The quantity 
s in the third to last column represents the spacing between the body points.
For α = 5◦, domain independence was not tested since domain independence was established at
α = 15◦, where the vortical structures are stronger than at 5◦.

TABLE II. Grid convergence for α = 5◦ with (w, n) ≡ (1, 6), the highest fm considered in this article.

Grid 
x 
t Smallest subdomain Total domain 
s

x Cl %|δCl |

1* 0.00349 0.0004375 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.242 N/A
2 0.005 0.0006 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.245 1.24
3 0.0025 0.0003125 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 2 0.242 0.0
4 0.0025 0.0003125 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 1.5 0.249 2.9
5 0.00349 0.0004375 [−0.5,2.5] × [−1.5,1.5] [−47,49] × [−48,48] 2 N/A N/A
6 0.00349 0.0003 [−0.5,2.5] × [−1.5,1.5] [−23,25] × [−24,24] 1.5 0.244 0.8
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FIG. 23. Grid convergence. Left: α = 15◦, no morphing; right: α = 5◦, morphing with highest fm consid-
ered in the article.
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