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Connection between attached eddies, friction factor, and mean-velocity profile
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This work connects the attached eddies to the wall friction by relating the momentum
transfer normal to the lower bound of the energetic range with the wall shear stress.
Evidence is provided to show that this balance is the property of a specific layer, l ≈
3
√

Reτ , which coincides with the smallest attached eddies. As a result, our model predicts
successfully the transition of the friction factor after the Blasius regime to the extreme
Reynolds numbers range, and the resulting friction equation shows the same accuracy as
the well-known logarithmic laws. This transition also affects the mean velocity profile.
From the developed friction equation, a mean velocity profile is derived which is in
accordance with the well-known log laws. Finally, it is conjectured that for high enough
Reynolds numbers, both Prandtl’s 1/7 power law and the velocity profile approximate the
mean velocity simultaneously, however at different distances from the wall.
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I. INTRODUCTION

The Reynolds averaged momentum equation in the streamwise direction for the pipe geometry
reads as

1
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dr
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, (1)

where z and r are streamwise and radial directions, U is the streamwise averaged velocity, and u′
r

and u′
z stand for the velocity fluctuations in respective directions. By integrating radially and scaling

with the bulk velocity (Ub) and the pipe radius (R), one obtains

−u′
ru′

z
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Re
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= f
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(
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)
. (2)

Here, f = 2τw/ρU 2
b represents the Fanning friction factor and the Reynolds number is defined as

Re = 2UbR/ν. The superscript † indicates the aforementioned scaling, τw represents the wall shear
stress, and ν is the kinematic viscosity.

In a series of pioneering works, Gioia and Chakraborty [1–4] explored the link between turbulent
energy spectrum and Reynolds stress (u′

ru′
z). These works are based on a phenomenological model,

in which on a hypothetical wet surface close to the wall, the net vertical momentum transfer balances
the wall shear stress. Over this surface, the streamwise velocity scales with bulk velocity (Ub) and
the normal velocity is induced by eddies striking on it [1]. Considering a dominant eddy (with the
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size s proportional to the distance of the wet surface to the wall) responsible mainly for the normal
velocity fluctuations, the wall shear stress can be approximated as τw ∝ ρusUb. The characteristic
velocity of the dominant eddies, us, is then related to the turbulent energy spectrum as [1,2]

u2
s =

∫ s

0
ET KE (σ )σ−2dσ, (3)

where ET KE (σ ) = cEε2/3σ 5/3Cd (η/σ )Ce(σ/R) is the Kolmogorov spectrum with dissipative range
(Cd ) and energetic range (Ce) corrections, η = ν3/4ε−1/4 is the Kolmogorov length scale, and ε

is the dissipation rate (see (1) for more details). For the smooth wall, Gioia and Chakraborty
[1] proposed that s ∝ η, where η was calculated using the bulk values (ε = U 3

b /R). Omitting the
effects of corrections (Cd ,Ce), one can easily recover the well-known Blasius equation from this
phenomenological model as

f = 1

4π
Re−1/4. (4)

Inserting Eq. (4) into Eq. (2) over the wet surface (r = s ∝ η), and neglecting the effects of the
viscosity and distance from the wall for the high enough Reynolds numbers, one recovers

u′
ru′

z ∝ usUb. (5)

Assuming the validity of (5) on any layer far enough from the wall, the mean velocity profile (MVP)
has also been investigated [2] using Eq. (1).

The model has been successfully extended to predict the friction factor in 2D turbulence [5–7],
turbulent heat transfer [8], frictional losses in the presence of the permeable walls [9], purely viscous
non-Newtonian fluids [10–12], and recently to the viscoelastic fluids [13].

Although it has been successfully extended into other types of turbulence, some questions
regarding the underlying assumptions of this model are still remaining. For example, the relation
between us and ET KE , Eq. (3), is ad hoc [14]. The one-dimensional cospectrum Fur uz , which connects
u′

r and u′
z as

u′
ru′

z = ρ

∫ ∞

0
Fur uz (k)dk, (6)

is the natural choice [14,15]. Then, the −5/3 spectral scaling exponent can be related to the −7/3
cospectral exponent [14]. One of the most important questions regards the wet surface. There is
no experimental evidence about the existence of such a layer, scaling (wall distance) with the
Kolmogorov’s length scale. It is very important to notice that the Kolmogorov length scale in the
final form of the Gioia and Chakraborty phenomenological model is based on the bulk velocity [1],
not the local velocity at wet surface. One may argue, far enough from the wall, the mean velocity
scales with the bulk velocity. However, the wet surface in the phenomenological model of Gioia
and Chakraborty [1] is not far from the wall and does not satisfy this requirement. Also, at such a
distance from the wall, the turbulent production and dissipation are widely separated. The latter has
been used to calculate MVP in Ref. [2].

It was observed that this model cannot predict adequately the friction factor for high Reynolds
numbers (Re > 105), inside smooth conduits [16]. On the other hand, moving the wet surface to the
mesolayer (s ∝ Re1/2

τ ) permits the model to reproduce the observed friction factors very accurately
[16] for extreme Reynolds numbers (Re > 106). Based on this, the friction factor for the extreme
Reynolds numbers was obtained as

f = 2τw

ρU 2
b

= CeRe−1/6
τ , (7)

where Reτ = u∗R/ν and u∗ = √
τw/ρ. Figure 1 compares the predictions of Eqs. (4) and (7) with

experimental data from Princeton Superpipe [17–19] and the Hi-Reff facility from the National
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FIG. 1. Friction factor data for Hi-Reff (AIST-NMIJ) [20] and Princeton Superpipe [18] compared to
Blasius’ formula (4) and the extreme Reynolds friction formula (7) (Ce = 2.359 × 10−2 for Hi-Reff data and
Ce = 2.486 × 10−2 for Superpipe data). To complete the figure, the experimental data from the Oregon smooth
pipe experiment [22] for low to moderately high Reynolds numbers is also displayed here. Transition region is
where the error of the predictions by Eqs. (4) or (7) are higher than 1%.

Metrology Institute of Japan (AIST/NMIJ) [20,21]. As evident, the turbulent friction factor ex-
periences two extremes: the Blasius regime and the extreme Reynolds regime. The result of our
previous work shows [16] that the accuracy of Eq. (7) in the latter regime is comparable to the
Blasius equation (4), in its proper regime. Also, a transition region, between the Blasius and extreme
Reynolds regimes (105 < Re < 106) was observed [16]. Based on this work, while the prediction
error in both the Blasius and extreme Reynolds regimes is less than 1% for both experiments, the
error increases up to 8% in the transition region. The transition region is indicated by color in Fig. 1.

Our assumption about the location of the wet surface at extreme Reynolds numbers (s ∝ Re1/2
τ )

represents a well-documented and experimentally observed layer. The Re1/2
τ scaling is associated

with the location of the peak of Reynolds stress [23,24], the outer peak of the streamwise turbulence
intensity [25], and the lower bound of the attached eddy region (logarithmic region) [26,27].

The present work explores the latter idea in more detail and examines the connection between
the discussed phenomenological model [1] and the attached eddy hypothesis (AEH). As can be
seen in Fig. 1, the transition between Eqs. (4) and (7) spans an order of magnitude (105–106). This
transition could be tracked in other turbulent quantities. Yakhot et al. [28] showed that the area-
averaged turbulent kinetic energy changes the scaling around Re = 105. Wei [29] demonstrated that
the turbulent kinetic energy production (or dissipation), from the wall to the peak of Reynolds stress
and from the latter point to the pipe center, reaches an equilibrium after Re = 105. de Giovanetti
et al. [30] identified that after Reτ > 2000 (Re ≈ 105), the main contribution to the skin friction
comes from the self-similar energy-containing motions. The striking point about the mentioned
transitions is that they all start around Re = 105 (the end of the Blasius regime in Fig. 1) and almost
instantaneously a new scaling appears. This is in contrast to the results shown in Fig. 1, where the
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transition happens over an order of magnitude. The main motivation behind the present work is to
resolve this discrepancy.

In what follows, first a reformulation of the phenomenological model [1] is proposed which
is compatible with AEH. Then by connecting the lower bound of the logarithmic region to the wet
surface, a revised version of the extreme Reynolds friction equation is derived, which shows superior
accuracy in the transition region. This new equation, in contrast to Eq. (7), behaves like a continuous
extension of the Blasius equation. Then this new friction equation is used to obtain a MVP for the
post-Blasius regime.

II. FRICTION AND ATTACHED EDDIES

The phenomenological model of the Gioia and Chakraborty [1] shares similarities with the
attached eddy hypothesis (AEH) by Townsend [31]. This hypothesis considers the existence of
a layer with constant Reynolds stress (u′

ru′
z), where the flow could be considered as a random

superposition of energy-containing self-similar wall-attached eddies and a background flow. The
constant stress layer is assumed to be located where one could ignore the viscous length scale ν/u∗
with respect to the wall distance [32]. These eddies have an identical (shape) velocity field with
a common velocity scale, but a different unspecified length scale. The constant stress layer limits
the size distribution of eddies, which results in a well-known logarithmic mean velocity profile,
logarithmic streamwise and spanwise turbulent intensities, and other distributions in a constant
stress layer [26,32–35]. Another important implication of the mentioned size distribution is the
invariance of the turbulent dissipation along the constant stress layer [34]. We will return to this
point later.

The limits of the logarithmic layer could be defined as the region where both mean axial
velocity and turbulent intensity follows a logarithmic behavior [26]. Such analysis over different
canonical turbulent flows indicates that the upper limit of the logarithmic layer is in the order of
the geometrical characteristic length scale of the system [26] (0.1R to 0.2R for the pipe flow). For
the lower limit l , Marusic and co-workers [26,27] proposed l+ ∝ Re1/2

τ dependence, which is in
agreement with the modification of the AEH proposed by Eynik [36] to account for the viscous
effects near the wall (the superscript + represents the usual wall scaling). A conservative estimate
as l+ = 3

√
Reτ is given by Marusic et al. [26] for the lower bound of the logarithmic region,

which compares reasonably with the location of the outer peak in streamwise turbulent intensity
[25] (y+

op = 3.9
√

Reτ ).
Thus, it is obvious that the logarithmic region (or attached eddies) is located further from the

wall so that it is under the influence of the core flow. Therefore, it is reasonable to assume that the
axial mean velocity (background flow in AEH) in this region scales with the bulk velocity Ub. This
assumption is supported by Wei et al. [37] where it was observed that near the maximum Reynolds
stress location, the region where the pressure and viscous forces balance each other, the bulk velocity
scales as Ub ≈ 0.5Uc. Also considering the invariance of the turbulent dissipation rate in this region
and the fact that the outer limit scales with the large scale motions, one could approximate the
dissipation rate at the lower limit as ε ∝ U 3

b /R. Therefore, the characteristic velocity (ul ) for the
attached eddies at the lower limit of the logarithmic region scales as

ul

Ub
∝

(
l

R

)1/3

= Re−1/6
τ . (8)

The same conclusion can be drawn by using Eq. (3). In this case, because of the location of the
wetsurface, the dissipative and energetic corrections are irrelevant.

If one moves the wet surface in the phenomenological model [1] to the lower bound of the loga-
rithmic layer, the aforementioned issues of the phenomenological model of Gioia and Chakraborty
[1] could be avoided. Using the new location of the wet surface, the Reynolds stress, Eq. (5), could
be replaced by

u′
ru′

z ∝ ulUb. (9)

024602-4



CONNECTION BETWEEN ATTACHED EDDIES, FRICTION …

Also, it must be emphasized here that the new wet surface is much farther from the wall than the
same surface in the original phenomenological model (scaled with Kolmogorov’s length scale).
Therefore, the effect of r/R on the right hand side of Eq. (2) can no longer be neglected (r/R =
Cl Re−1/2

τ ), at least in lower Reynolds numbers. Here, Cl dictates the exact position of the lower
limit, which will be discussed later.

To complete our discussion, one needs to provide an approximation for the viscous term in (2).
It is important to notice that the lower bound of the attached eddy region is inside the third layer of
the four-layer structure proposed by Wei et al. [37]. This structure characterizes different regions of
the turbulent flow by a predominance of two of the three terms (Reynolds force, viscous force, and
pressure force) in Eq. (1). In the third layer, viscous force balances the pressure force. The spatial
limits of this layer scale with Re1/2

τ and the maximum Reynolds stress also happens inside it. Wei
et al. [37] also showed

dU +

dy+ = O
(
Re−1/2

τ

)
, (10)

in the third layer. Considering wet surface inside this layer or very close to it, one can approximate
the viscous term as

1

Re

dU †

dy†
= u2

∗
U 2

b

dU +

dy+ =
(

f

2

)
CuRe−1/2

τ . (11)

Based on our model, the attached eddies striking on the wet surface are the dominant mechanism to
produce the Reynolds stress at this layer. However, the viscous term is governed by the background
flow of these eddies in the AEH.

Finally, introducing Eqs. (9) and (11) into Eq. (2) results in

f = Ck
Re−1/6

τ

1 − Cb Re−1/2
τ

, (12)

where Cb = Cl + Cu and Ck is the proportionally constant. Both constants will be adjusted using
experimental data.

In this work, for the analysis of extreme Reynolds numbers flows, the experimental data from
the Hi-Reff facility obtained from the National Metrology Institute of Japan (AIST/NMIJ), [20,21]
as well as data from the Princeton Superpipe [17–19] are considered. Experimental data from the
Oregon smooth pipe experiment [22] is also provided for low to moderately high Reynolds numbers.

McKeon and co-workers [18,19] provided the following friction factor relation:

1√
f

= 1.930 log10 Re
√

f − 0.537, (13)

based on the Princeton Superpipe data. Further analysis of these data shows that for Re > 1.7 × 107,
either the pipe surface can no longer be considered as hydraulically smooth or the extrapolation of
the static pressure correction is incorrect [38]. Therefore, as a reminder, only Reynolds numbers
less than this limit are considered.

Considering the Hi-Reff facility data, Furuichi et al. [20] estimated the following friction
equation for the range 1.2 × 104 � Re � 1.8 × 107:

1√
f

= 2.090 log10 Re
√

f − 1.172. (14)

Again it has been argued that the roughness effects can be relevant for Re > 1.0 × 107.
It must be emphasized here that the differences between the friction factors obtained in these two

experiments (Hi-Reff and Superpipe) reach up to 6% for high Reynolds numbers. The roughness
effects at high Reynolds numbers could be likely the main source of this discrepancy [20]. For such
extreme Reynolds numbers, the characteristic scales of the turbulent flow can be sufficiently small
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FIG. 2. Comparison of the friction factor data for Hi-Reff (AIST-NMIJ) [20] with the proposed formula
(12), and the logarithmic law (14). (top) friction factor, (bottom) deviation of the predicted values from the
experimental data.

so that the assumption of hydraulic smoothness for the pipe is no longer valid. This significant
difference between two data sets is the reason why the fitting process has been done separately for
each experiment below.

Equation (12) is calibrated for the both experimental data sets mentioned above. For the Hi-Reff
data, the constants are Ck = 1.4268 × 10−2 and Cb = 5.96, while for the Superpipe data, they are
Ck = 1.5 × 10−2 and Cb = 4.2. These constants were adjusted for Reynolds numbers from 105 to
107, while the friction data above and below this range were discarded from the fitting procedure as
they may be influenced by roughness [18,19] or be in the Blasius range. These constants (specifically
Ck) differ by approximately 5%, which reflects the differences between the data sets, as mentioned
before.

Figures 2 and 3 show the difference between Eq. (12) and the experimental data. As evident, the
new equation predicts the friction factor with less than a 1% error, starting from Reynolds number
slightly less than 105 (in the Blasius regime) to values as high as Re = 107. In these figures, the
experimental data also have compared with logarithmic laws of Eqs. (14) and (13). Our results show
that the accuracy of the proposed equation is similar to these logarithmic friction laws. Comparing
to the extreme friction equation (7), Eq. (12) extends the domain of applicability of the former at
least one order of magnitude.

We end this section with an important remark concerning the relation between the fitted constants
and the log law. Although our model does not depend on the logarithmic velocity profile, one could
use logarithmic profile to calculate the velocity derivative in Eq. (11) as

dU +

dy+

∣∣∣∣
y+=l+

= 1

κ l+ = 1

κ Cl
Re−1/2

τ , (15)
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FIG. 3. Comparison of the friction factor data for Princeton Superpipe [18] with the proposed formula
(12), and the logarithmic law (13). Top: friction factor, Bottom: deviation of the predicted values from the
experimental data.

where κ is von Karman’s constant. Comparing the later equation with Eq. (11) shows Cu = (κ Cl )−1,
and therefore Cb = Cl + (κ Cl )−1. Considering κ = 0.4 and Cl = 3 (a conservative approximation
for the lower bound of the logarithmic layer [26]), one obtains Cb = 3.84, while Cl = 3.9 and
κ = 0.385 would result in Cb = 4.54. These are in agreement with the values obtained from the
calibration process above (Cb = 5.96 for the Hi-Reff data and Cb = 4.2 for the Superpipe data).

In fact, one could also use the calibrated Cb to calculate the exact location of the wet surface.
Considering κ = 0.385 for the Hi-Reff data [20], the constant can be calculated as Cl = 5.48. For
the Princeton Superpipe data [18] with κ = 0.421, one obtains Cl = 3.52. Both values are very close
to the limits for the lower bound of the logarithmic region as discussed before.

III. MEAN VELOCITY PROFILE

This section discusses the effect of the transition between Blasius and extreme Reynolds regimes
on the mean velocity profile. The MVP at extreme Reynolds numbers has been analyzed before,
considering the incomplete similarity in inner variables at the core region of the flow [39]. In this
section, the MVP is studied based on the asymptotic complete similarity in inner scaling.

From dimensional arguments, the MVP can be written as U = f (r; R, ν, τw ). Using inner scaling
one finds

U + = 


(
y

δν

,
y

R

)
= 


(
y+,

y+

Reτ

)
. (16)

In the limit of high Reynolds number (Reτ � 1), one can assume that there is a region where
y+/Reτ ≈ 0, and therefore the velocity is only a function of y+, as U + = 
(y+). The attached
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eddy region discussed in the previous section can be also considered as the limits where the latter
assumption is valid. However, this assumption breaks by approaching the core flow. By integrating
the MVP, the bulk velocity can be obtained as

U +
b = 2α

Re2
τ

∫ Reτ

0
(Reτ − y+)
(y+)dy+, (17)

where U +
b = Ub/u∗ = ( f /2)−1/2. The assumed velocity profile works for a limited range of y+

inside a pipe. In particular, it is not a good approximation for the core flow. In Eq. (17), α stands for
the corrections related to the latter region. It is possible to use Eq. (12) to calculate U +

b ,

U +
b (Reτ ) =

(
Ck

2

)−1/2

Re1/12
τ

(
1 − CbRe−1/2

τ

)1/2
. (18)

Considering that the integral in Eq. (17) represents the convolution and by using Laplace transform,
it is easy to show that


(y+) = 1

2α

d2

d y+2
[U +

b (y+)y+2], (19)

which implies


(y+) = 1

2α

(
Ck

2

)−1/2 d2

d y+2

[
y+25/12

(
1 − Cby+−1/2)1/2]

.

For the Princeton Superpipe data [18], if the constants obtained in the previous section are used,
one has (Ck/2)−1/2 = 11.54. By adjusting with the experimental observations, the correction factor
can be calculated as α = 1.0167, which is very minute. The famous Prandtl power-law profile,
U + = Cp y+1/7, can be obtained using the same method, by replacing the Blasius equation (4) with
Eq. (12) in (17). Following the same steps as above results in (Ck/2)−1/2 = 8.57 and α = 1.026.
In the term of the Prandtl profile, this is equivalent to Cp = 8.35, while the suggested value by
Prandtl is Cp = 8.7. As Prandtl noted, this power-law profile provides a good approximation up to
Re = 105.

Figure 4 compares the experimental MVPs for the Princeton Superpipe data [18] with profile
(19) and Prandtl’s profile, for different Reynolds numbers. The empirically obtained logarithmic
profile by McKeon et al. [18],

U + = 1

0.421
ln(y+) + 5.6, (20)

is also provided in this figure for comparison. This log law is precise for 600 < y+ < 0.12R+ [18].
As evident in Fig. 4, at low Reynolds numbers the Prandtl power law is a better fit rather than

Eq. (19) or Eq. (20). However, by increasing the Reynolds number, the MVP gradually shifts toward
the new profile (19), and at ultimate Reynolds numbers the new profile is a better approximation.
The left hand side of Fig. 4 shows a deviation of the MVPs from the experimental data. This clearly
demonstrates that Prandtl’s profile and Eq. (19) predict the velocity profile very accurately in both
ends of the studied range. These results suggest that the MVP of Eq. (19) is good a approximation for
Re > 106. In these figures, the colored region indicates 600 < y+ < 0.12R+, where the logarithmic
law (20) is found reliable [18]. By increasing Reynolds number, the new profile (19) and Eq. (20)
become indistinguishable in this region.

The same calculations for the Hi-Reff data results in α ≈ 1.0. Figure 5 compares the experimen-
tal MVPs of [21] with Eq. (19). This figure also contains the following empirical logarithmic law
by Furuichi et al. [21]:

U + = 1

0.382
ln(y+) + 4.4, (21)
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FIG. 4. Comparison of the Superpipe velocity profiles with the logarithmic velocity profile of (20),
Prandtl’s power law (U + ∝ y+1/7), and the proposed velocity profile of (19). Left: velocity profiles; right:
deviation from the experimental data. The colored region indicates 600 < y+ < 0.12R+.

which was determined to be accurate for 3Re0.5
τ < y+ < 0.2Reτ . The pink region in this figure in-

dicated the latter range. The same as the Princeton Superpipe data, it is clearly visible that Eq. (19)
has the same accuracy as the logarithmic law for Re � 106. Also it is very interesting to note that
the validity region provided for Eq. (21) coincides with the lower and upper limits of the attached
eddies that our theory is based on.

Under an incomplete similarity assumption, Barenblatt [40] argued that the velocity profile can
be approximated as U + = βy+γ , where β and γ are functions of the Reynolds number. In the limit
of very high Reynolds numbers, Eq. (12) reduces to f ∝ Re−1/6

τ . As a result, the velocity profile
of (19) simplifies to U + ∝ y+1/12. This is in total agreement with the proposed power-law profiles
in the literature, as shown in Fig. 6. In this figure, some available approximations of the exponent
[41–43] (γ ) are compared with the two limits discussed above (1/7 for the Blasius regime and 1/12
for the extreme Reynolds numbers). As can be seen, the latter exponent acts as an an asymptotic
limit in the extreme Reynolds numbers.
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FIG. 5. Comparison of the Hi-Reff velocity profiles with the logarithmic velocity profile of (21), Prandtl’s
power law (U + ∝ y+1/7), and the proposed velocity profile of (19). Left: velocity profiles; right: deviation from
the experimental data. The colored region indicates 3

√
R+ < y+ < 0.2R+.

FIG. 6. Comparing different exponents γ of the power-law mean velocity profile U + = βy+γ from Baren-
blatt [41], Kailasnath [42], and Zagarola et al. [43]. The Prandtl’s power-law ( 1

7 ) and extreme Reynolds number
( 1

12 ) exponents are shown as the limits.
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As is evident throughout this work, the developed friction equation (12) and the mean velocity
profile (19) show similar behavior as the logarithmic friction equations and velocity profiles in the
range 105 < Re < 107.

IV. CONCLUSION

In the present work, the phenomenological model of Gioia and Chakraborty [1] is modified
by moving the wet surface from a hypothetical layer (with distance from the wall proportional
to Kolmogorov’s length scale) to the lower bound of the attached eddies region. Although there
are other works [44] exploring the relation between the spectral model of Gioia and Chakraborty
[1] and the AEH [31], the present study provides evidence for the existence of such layer and its
implications in high Reynolds numbers. The lower bound of the attached eddies is far enough from
the wall to fulfill assumptions in the original phenomenological model.

Other studies support our model. It has been observed that the near-wall motions lose their
importance in friction generation by increasing Reynolds numbers, while the large scale motions
have limited importance [30]. On the other hand, the friction is mainly generated by the self-similar
motions in the logarithmic region [30,45].

As shown, the new phenomenological model predicts the friction factor successfully, starting
right after the end of the Blasius regime. This is in accordance with the emergence of this transition,
which happens at the same Reynolds number almost instantaneously [28,29]. Also, the effect of this
transition in the mean velocity profile is demonstrated in this work. It observed that by increasing
Reynolds number, a change in the exponent of the power-law type mean velocity profile will
be experienced. We conjecture that for high enough Reynolds numbers, both power-law profiles,
Eq. (19) and Prandtl’s power-law profile, will simultaneously approximate different regions of
the mean velocity profile. In this case, the Prandtl profile collapses on MVP in lower y+ and
the new power-law formula matches the profile farther from the wall. A similar observation has
been reported before [18], where a power-law region, U + ∝ y+0.142, was observed near the wall,
and followed by a logarithmic region afterward for Re > 2 × 105. Unfortunately, the experiments
cannot properly resolve the flow field very close to the wall at high Reynolds numbers, while the
direct numerical simulation are far from the extreme Reynolds range. Therefore, verification of
this conjecture is not possible now. It is also possible that the so-called low-Reynolds effects in
determining the von Kármán constant results from the switch between two profiles.

Returning to the original model, we believe the existence of the wet surface in the Blasius
regime, with distance from the wall proportional to Kolmogorov’s length scale [1,2], is question-
able. New studies suggest that at lower Reynolds numbers, wall-incoherent motions made up of
Kolmogorov-type fine scales and other wall-detached motions become important [46,47]. Extended
attached eddy models such as the one proposed by Chandran et al. [47] could help to enhance the
phenomenological model and answer questions related to it in the Blasius regime.

Finally, much evidence indicates that the transition occurs near Re = 105. The mechanism of this
transition is unknown, and the understanding of it is crucial for further progress. Also, the roughness
could affect the turbulent flow differently after and before the transition, a matter which need further
research.
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