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Space-Lagrangian random walk models conceptualize advective transport in terms of
collections of particles undergoing fixed-length steps along flow streamlines. The statistics
and correlation structure of the underlying flow velocity statistics determine the tran-
sit times of particles undergoing advective transport. Broad velocity distributions lead
to broadly distributed step transit times, reproducing commonly observed anomalous
transport features such as superdiffusive plume growth, which are not captured by clas-
sical Fickian theories. Early space-Lagrangian models considered uncorrelated velocities
across steps. These approaches were later extended to account for correlations through
a spatial-Markov process. Here, we compare longitudinal dispersion dynamics in an
uncorrelated continuous-time random walk with fixed-space steps to a Bernoulli relaxation
spatial-Markov model exhibiting exponential decay of spatial velocity correlations along
streamlines. We provide rigorous theoretical derivations, validated against numerical sim-
ulations. We find that, although the scaling forms of asymptotic dispersion agree between
the two models, exact asymptotic equivalence requires employing different correlation
lengths, which depend on the underlying Eulerian velocity statistics. The two models
become equivalent in the limit of very broad velocity distributions, corresponding to a new
quasiballistic regime recently identified in unsaturated porous media, which we rigorously
characterize here.
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I. INTRODUCTION

It is by now well known that transport in heterogeneous porous media often departs from classical
Fickian dynamics [1–3]. Lagrangian random walk methods attempt to predict anomalous transport
features, such as faster or slower plume dispersion and a preponderance of late arrivals at a control
plane, by discretizing transported solute masses into a collection of particles undergoing movement
according to stochastic rules. These rules encode the statistical variability of medium and flow
properties in terms of the distribution of the duration and length of particle jumps [4,5].

In particular, this work is concerned with space-Lagrangian models, which conceptualize trans-
port in terms of a series of fixed-size steps along the downstream (i.e., mean flow velocity)
direction. Space-Lagrangian models can be subdivided into two main classes: continuous-time
random walk (CTRW) models, where the duration of subsequent particle jumps are independent and
identically distributed [1,6,7], and spatial-Markov models, where the statistics of these durations
are conditioned on the previous jump due to velocity correlations [8–10]. The Markov property
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means that particle movement depends only on the current state, and not on previous history. While
temporal dynamics have commonly been found to be non-Markovian, the dynamics in terms of
fixed-spatial displacements can often be modeled as a Markov process [8,11–13]. This happens
because natural media are often characterized by well-defined length scales, such as the grain or
pore size at the pore scale or the extent of a geological feature at the Darcy scale. The long waiting
times responsible for non-Markovian behavior typically result from localized slow movement in
low-velocity (or low-permeability) regions. When considered as a function of time rather than
distance from injection or number of spatial steps, the dynamics of spatial-Markov processes may
be non-Markovian as a result of broadly distributed waiting times [9,14,15], thus allowing for
modeling complex phenomena within a simpler framework. Indeed, anomalous transport resulting
from advective variability has been successfully modeled with recourse to simple space-Markov
processes at both the pore [16] and Darcy [17–19] scales. Although in this work we focus on purely
advective transport models, we note that the effect of both transverse [20] and longitudinal [21–24]
diffusion has also been considered in the context of spatial-Markov models. Diffusion, whether
along or across streamlines, allows particles to more quickly escape low-velocity regions, leading
to Fickian dispersion at sufficiently late times [21]. Spatial-Markov models based on small-scale
numerical parametrization of the transit-time distributions have also been extensively employed to
upscale conservative transport in porous [14,25] and fractured media [26,27], breakthrough curves
in surface flows [28], and subsurface inertial and turbulent flows [29–31], as well as mixing and
reaction [32–35].

In the context of purely advective transport, and in the absence of trapping due to zero-velocity
regions or recirculation zones, the transit times of a space-Lagrangian model, representing the
duration of each step, are directly related to the particle velocities during steps. They can thus be
related to flow properties such as the average tortuosity, longitudinal velocity correlation length,
and Eulerian point velocity statistics [16,36]. Uncorrelated (i.e., CTRW-type) space-Lagrangian
models may be seen as a limiting case of spatial-Markov models, where velocities fully decorrelate
between subsequent steps. It has been shown that both these and correlated spatial-Markov velocity
models lead to either Fickian dispersion or superdiffusive behavior, i.e., superlinear growth of
plume dispersion with time [20,36]. It is important to note that CTRW models which allow for
symmetric backward and forward steps (as happens for regular diffusion), together with broad
distributions of transit times, lead rather to subdiffusion, that is, sublinear temporal growth of
plume dispersion [1,6,7,37,38]. Similarly, broad distributions of trapping times, with solute particles
remaining immobile along the downstream direction, also lead to subdiffusion [39,40].

The purpose of this work is to compare the dispersion properties of correlated and uncorrelated
space-Lagrangian models of advective transport. We focus on two fundamental models, namely, an
uncorrelated continuous-time random walk (CTRW) and a spatial-Markov model with Bernoulli
relaxation of velocities [16,20,36]. In order to render this work reasonably self-contained, as well
as to collect relevant results found throughout the literature, we discuss the setup of these models
and provide detailed derivations for asymptotic dispersion, tying its evolution to general features of
the underlying Eulerian velocity distribution. As expected, our results agree with those previously
reported for transit-time distributions decaying as a power law for the CTRW [41,42] and power-law
behavior of the Eulerian velocity PDF at low velocities in both the CTRW and the Bernoulli model
[17,36]. While the scalings for superdiffusive plume spreading have been shown to be equal in these
two models for a number of cases [20,36], they have not been compared in detail. We also obtain
explicit results for certain non-power-law forms of the Eulerian velocity probability density function
(PDF) at low velocities. In particular, we identify a quasiballistic regime, associated with dispersion
behavior that has been observed in the context of advective transport in unsaturated porous media
[43]. In comparing the correlated and uncorrelated cases, we show that the Bernoulli relaxation
spatial-Markov model exhibits larger dispersion than an uncorrelated CTRW that decorrelates on
the same length scale. This means that, in order to render the two models fully equivalent regarding
asymptotic dispersion, the step length of an uncorrelated CTRW for space-Lagrangian particle
dynamics must be taken larger than the correlation length of the Bernoulli relaxation model, which
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coincides with the correlation length of Lagrangian velocities along streamlines [16,36]. To the best
of our knowledge, this surprising result has not been previously discussed in the literature. The
relationship between correlation lengths depends on the low-velocity behavior of the underlying
Eulerian velocity statistics. Dispersion in both models becomes independent of the correlation
length in the quasiballistic limit that arises for a certain class of very broad velocity statistics.

The paper is structured as follows. The CTRW and Bernoulli relaxation models are introduced
in Sec. II. The corresponding asymptotic dispersion dynamics are derived in Sec. III. Results
are collected and overviewed at the end of this section, and are then validated against numerical
simulations in Sec. IV. Conclusions are presented in Sec. V, and additional technical details on the
derivations are presented in the Appendices.

II. SPACE-LAGRANGIAN TRANSPORT MODELS

In this section, we provide a brief review of space-Lagrangian models of advective transport,
i.e., stochastic models characterized by fixed-length steps along particle trajectories (see also, e.g.,
[5,8,36]). For advective transport, the latter coincide with the flow streamlines. The corresponding
velocity magnitudes Vn during each step n lead to a transit time τn = �/Vn across a step length �.
Thus, the position Sn along streamlines after n steps and the corresponding arrival time Tn obey the
stochastic recursion relations

Sn+1 = Sn + �, Tn+1 = Tn + �

Vn
. (1)

The stochasticity is encoded in the velocities Vn, which are assumed to form a Markov chain. This
means that the probability distribution of Vn+1 may depend on the previous velocity Vn, but not on
earlier velocities. Thus, the stochastic process Vn seen as a function of step number n is characterized
by the family of transition PDFs r(·|v′; �), defined such that r(v|v′) dv is the probability that the next
velocity Vn+1 is between v an v + dv, given the current velocity Vn = v′. The form of r(v|v′; �) for
a given step length � defines the space-Lagrangian model.

The central goal of space-Lagrangian models is to relate transport dynamics to statistical prop-
erties of the underlying medium, typically through the statistical properties of the corresponding
velocity field. A key quantity of interest is the Eulerian velocity PDF pE , which encodes the point
statistics of velocity magnitudes. It is defined so that pE (v) dv is the probability that a randomly
chosen location in the medium is characterized by a velocity magnitude v. In order to formalize
this, let X be a homogeneously distributed random variable taking position values within a medium,
and let vE (·) be the Eulerian velocity field. Denoting average quantities by angled brackets, the
Eulerian velocity PDF is then defined by

pE (v) = 〈δ[v − vE (X )]〉, (2)

where δ(·) is the Dirac delta. This is the PDF of velocities associated with a homogeneous
distribution of particles in the medium. The properties of this velocity PDF, and its relation to
velocity gradients, are discussed in detail in [20].

If particles are spatially distributed proportionally to the local velocity, i.e., flux weighted, the
associated velocity distribution is the flux-weighted Eulerian PDF,

pF (v) = v

〈VE 〉 pE (v), (3)

where VE is a random variable distributed according to the Eulerian velocity distribution, so that
〈VE 〉 = 〈vE (X )〉 is the average velocity in the medium. As we will see, the flux-weighted Eulerian
PDF plays a central role in space-Lagrangian velocity models.

Typically, we are interested in displacements along the mean flow direction, which we must relate
to the distance traveled along streamlines. After n steps, we approximate the former Xn, in terms
of the latter Sn, through the average tortuosity χ , so that Xn = Sn/χ . The average tortuosity may
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be obtained in terms of flow properties only. Writing VE for a vector random variable distributed
according to the distribution of vectorial Eulerian velocities, with magnitude VE and an orientation
along the mean flow direction given by the unit vector n f , we have [44,45]

χ = 〈VE 〉
〈VE · n f 〉 . (4)

While a stochastic model allowing for variable tortuosity can be designed, the latter is typically not
the main driver of variability regarding longitudinal positions. The assumption that the mean value
may be used simplifies the model and reduces the necessary inputs to the Eulerian velocity PDF and
velocity correlations across subsequent steps [16,20,36]. We consider an instantaneous injection at
the origin X0 = 0 at time T0 = 0. The stochastic recursion relations for particle positions along the
mean flow direction after n steps become

Xn+1 = Xn + �

χ
, Tn+1 = Tn + �

Vn
. (5)

The position X (t ) at time t is then obtained as the position at the end of the last step before t , plus
displacement according to the current velocity up to t . More formally, this can expressed as

X (t ) = XN (t ) + VN (t )

χ
[t − TN (t )], (6)

where N (t ) = supn{n | Tn < t} is the (stochastic) number of transitions completed by time t . We
will now see how these concepts are particularized to obtain an uncorrelated CTRW description and
a Bernoulli spatial-Markov model.

A. Uncorrelated velocities: Continuous-time random walk

We consider first a continuous-time random walk (CTRW) formulation of particle trajectories,
with independent velocities across successive steps. Jumps correspond to displacements of one
velocity decorrelation length �d along streamlines. Note that we use the term “decorrelation length”
rather than the more common “correlation length” in the context of the CTRW in order to distinguish
it from the correlation length of the Bernoulli relaxation model, to be introduced below. The
stochastic recursion relations defining this model are given by Eq. (1) with � = �d , with successive
velocities taken as independent (no correlation) and identically distributed. Velocities then remain
constant over one spatial step, so that particle velocities are fully correlated up to the decorrelation
length �d , and then fully decorrelate. The recursion relations for longitudinal positions are

Xn+1 = Xn + �d

χ
, Tn+1 = Tn + �d

Vn
. (7)

Assuming ergodicity, in the sense that the statistical properties of velocities along each streamline
match the velocity statistics across the spatial domain, along with incompressibility, so that addi-
tional retention effects do not arise, the appropriate distribution of the velocities Vn in order to reflect
the underlying flow statistics is the flux-weighted Eulerian PDF pF of Eq. (3) (see, e.g., [20,36]).
To understand why, note that the amount of distance traveled by a particle in a given time window
is proportional to the velocity v. The probability of a particle having velocity v after crossing �d in
a given time is thus proportional to v, that is, flux weighted. In particular, the average of the time τn

needed to complete the nth transition is then independent of n and given by

〈τ 〉 = 〈τn〉 =
〈
�d

Vn

〉
= �d

∫ ∞

0
dv v−1 pF (v) = �d

〈VE 〉 , (8)

which recovers the correct Eulerian mean velocity associated with the mean transition time. Corre-
spondingly, the transition PDF for the spatial velocity process is

r(v|v′; �d ) = pF (v), (9)
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independent of the velocity v′ in the previous step. These considerations hold for steps n � 1. The
distribution of initial velocities V0 is determined by the initial solute configuration. For simplicity,
we take the initial condition as flux weighted, so that Vn has the same distribution for all n � 0.

The CTRW description may also be recast in terms of the statistics of crossing times τn = �d/Vn

associated with a correlation length, rather than the statistics of velocity. Let ψ be the PDF of
each independent and identically distributed τn, that is, ψ (t ) dt is the probability that a step has
a duration between t and t + dt . In order for the two descriptions to be equivalent, we must have
|ψ (t ) dt | = |pF (v) dv| under the transformation of variables t = �d/v, yielding [36]

ψ (t ) = �d〈τ 〉
t3

pE

(
�d

t

)
. (10)

Note that 〈τ 〉 = ∫ ∞
0 dt tψ (t ) = �d/〈VE 〉, in agreement with Eq. (8), and

〈τ 2〉 = �2
d

〈
V −1

E

〉
〈VE 〉 . (11)

Thus, the second moment is finite if and only if 〈V −1
E 〉 is finite.

B. Correlated velocities: Bernoulli relaxation process

For length scales below the decorrelation length, successive velocities are correlated, and a
model involving correlations is necessary to describe transport at those scales. We will consider
here the simplest such model, where velocities in space form a Markov process characterized by a
constant probability of decorrelation 1/�c per unit distance. In other words, the correlation structure
along streamlines is exponential, with a mean correlation length �c. This Markov process is called
Bernoulli relaxation [16,20,36]. For the discrete recursion relations for longitudinal position in terms
of finite steps �s, we write

Xn+1 = Xn + �s

χ
, Tn+1 = Tn + �s

Vn
, (12)

where now successive velocities are not independent but form a Markov chain.
The transition PDFs characterizing the Markov chain, that is, the probability of velocity Vn+1 = v

given Vn = v′, are given independently of n by

r(v|v′; �s) = e−�s/�cδ(v − v′) + [1 − e−�s/�c ]pF (v), (13)

that is, the velocity remains the same with probability exp(−�s/�c), while otherwise a new velocity
is sampled from the equilibrium PDF, which is given by the flux-weighted Eulerian PDF (3) as
before. This formulation recovers the continuous Bernoulli process in the limit of �s → 0 or,
in practice, for �s � �c. Thus, while for the uncorrelated CTRW the spatial step was equal to
the decorrelation length �d , here the spatial step �s is an arbitrary discretization used to resolve
distances below the correlation length �c.

As for the (uncorrelated) CTRW, we focus on the case of a flux-weighted initial condition. The
transit-time PDF across a correlation length �c is then given in Laplace space by [20,36]

ψ̃B(λ) =
∫ ∞

0
dv

pF (v)

1 + �cλ/v
. (14)

Here and throughout, we denote Laplace transforms with respect to time by a tilde, and the
corresponding Laplace variable by λ. Note that ψB differs from the transit-time PDF ψ of the CTRW
even for �d = �c because there is now a nonzero probability of particle velocities changing before, or
not changing after, traversing a correlation length. Denoting the random time to cross a correlation
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length �c by τB, we find, using dψ̃B(λ)/dλ|λ=0 = −〈τB〉 and integration by parts,

〈τB〉 = �c

〈VE 〉 . (15)

As expected, this result is equivalent to that for a CTRW with �d = �c [see Eq. (8)]. However, the
second moment of the transit times differs from that of Eq. (11) with �d = �c. It is given, when
〈V −1

E 〉 is finite, by

〈
τ 2

B

〉 = 2�2
c

〈
V −1

E

〉
〈VE 〉 , (16)

which is exactly twice the CTRW value for the same Eulerian velocity distribution and �d = �c. As
before, if 〈V −1

E 〉 diverges, so does 〈τ 2
B〉, and transport is anomalous. If 〈V −1

E 〉 is finite, this means that
the Bernoulli relaxation process leads to larger variability in crossing times.

III. DISPERSION

We will now use these formulations to compute late-time longitudinal dispersion. Longitudinal
dispersion σ 2(t ) is defined as the variance of particle positions X (t ) as a function of time t , that is,

σ 2(t ) = 〈X 2(t )〉 − 〈X (t )〉2. (17)

Because the displacement in a given step is always �d/χ for the CTRW and �s/χ for the Bernoulli
relaxation model, when computing late-time dispersion we can approximate X (t ) ≈ XN (t ) [see
Eq. (6)]. For the correlated model, this approximation becomes exact at all times in the limit of
small step �s. However, for the CTRW model, interpolation of particle positions between steps
according to Eq. (6) is necessary in order to capture early-time dispersion. Indeed, for small times
t compared to the mean transit time, few transitions have occurred, so that most particles retain the
initial velocity V0, and X (t ) ≈ V0t . Thus,

σ 2(t ) ≈ σ 2
V0

t2, (18)

where σ 2
V0

= 〈V 2
0 〉 − 〈V0〉2, i.e., dispersion is ballistic at early times and determined by the variance

of the initial velocity distribution. For a flux-weighted initial condition, the initial velocity V0 is
distributed according to the flux-weighted Eulerian PDF. Using the definition of the latter, Eq. (3),
we then have

σ 2
V0

=
( 〈

V 3
E

〉
〈VE 〉3

−
〈
V 2

E

〉2
〈VE 〉4

)
〈VE 〉2. (19)

Depending on the underlying velocity statistics, the late-time behavior of dispersion may be
Fickian [σ 2(t ) ∝ t] or non-Fickian, more specifically superdiffusive [σ 2(t ) growing faster than t]
[36]. The precise behavior depends on the velocity correlation structure. In what follows, we will
employ two different quantitative approaches for the cases without and with correlations between
subsequent steps. The results for the asymptotic scaling behavior are collected in Table I at the end
of this section.

A. Continuous-time random walk

We now provide derivations of asymptotic dispersion for the CTRW considered here, relying
on the fact that the step size �d is deterministic and time independent. For similar derivations of
the relationship between dispersion and transit-time distribution accounting for distributed step
sizes with finite and positive mean and variance, we refer the reader to [41,42]. For a treatment
of dispersion in terms of the velocity correlation structure, see [36].

024501-6



IMPACT OF VELOCITY CORRELATIONS ON …

TABLE I. Asymptotic dispersion, associated with different Eulerian velocity PDFs, for the CTRW and
Bernoulli relaxation models. The first column describes the scaling behavior of the Eulerian velocity PDF
pE (v) at low velocities v; the second lists the qualitative type of asymptotic dispersion; the third shows the
asymptotic scaling form of dispersion σ 2(t ); and the final two columns list the corresponding equations.

Eulerian PDF at Temporal Eqs. Eqs.
low velocities v Type scaling (CTRW) (Bernoulli)

Finite 〈V −1
E 〉 Fickian ∼t (29) (53)

∼v0 Superdiffusive (quasi-Fickian) ∼t ln t (39), (44) (60), (63)
∼vα , −1 < α < 0 Superdiffusive (power law) t1+|α| (34) (57)
∼v−1 ln−1−α , α > 0 Superdiffusive (quasiballistic) t2 ln−1−α t (48) (67)

As discussed above, in order to compute asymptotic dispersion for the CTRW, it suffices to
assume that particles wait at a turning point for the duration τn of each step, and then transition
instantaneously to Xn+1 = Xn + � at time Tn+1. The position as a function of time for the CTRW
may then be approximated as

X (t ) ≈ XN (t ) = χ−1�d N (t ), (20)

so that, according to Eq. (17),

σ 2(t ) ≈ χ−2�2
dσ

2
N (t ), (21)

where σ 2
N (t ) = 〈N2(t )〉 − 〈N (t )〉2 is the variance of the number of steps N (t ) completed by time

t . This result simply states that, since there is no variability in the spatial steps, the variability
in positions is controlled by the variability in number of steps by a given time. As shown in
Appendix A, the Laplace transforms of the relevant moments can be expressed exactly in terms
of the transit-time PDF as

〈Ñ (λ)〉 = λ−1ψ̃ (λ)

1 − ψ̃ (λ)
, (22a)

〈Ñ2(λ)〉 = ψ̃ (λ)

λ

1 + ψ̃ (λ)

[1 − ψ̃ (λ)]2
. (22b)

In order to obtain the late-time behavior of these moments, we consider the small-λ (large-time)
expansion of ψ̃ (λ). The large-time limit is controlled by low velocities. Consider a Eulerian velocity
PDF such that, for low velocities, pE (v) ∝ vα for some power-law exponent α. According to
Eq. (10), the transit times have a large-time tail ∝t−3−α . The Laplace expansion of the transit times
is therefore

ψ̃ (λ) ≈ 1 − 〈τ 〉λ + (tβλ)β

�(β + 1)
, (23)

where β = min{2, 2 + α} and �(·) is the gamma function. If the variance of the waiting times (or,
equivalently, their second moment) is finite, which happens for α > 0, then β = 2 and t2 =

√
〈τ 2〉.

Otherwise, tβ is a characteristic timescale such that, for large t � 〈τ 〉,

ψ (t ) ≈ sin(|β|π )

π
tβ

β t−1−β. (24)

For a general discussion of the Laplace transform of heavy-tailed PDFs, see, e.g., [46,47]. Integra-
bility of the velocity PDF near v = 0 requires α > −1, so that we have 1 < β < 2. Therefore, as
expected, the mean waiting time is always finite; it is given by 〈τ 〉 = �d/〈VE 〉 as already discussed
[see Eq. (8)]. Note that additional corrections occur in the Laplace expansion when α = 0 and
ψ (t ) ∝ t−3. The exact nature of the corrections depends on the velocity distribution. Additional
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corrections also appear if the behavior of pE (v) is not a pure power law near v = 0. We will consider
explicit examples below.

Inverting the Laplace transform in Eq. (22a) for small λ, according to Eq. (23) for ψ̃ (λ), leads to

〈N (t )〉 ≈ t

〈τ 〉 + tβ

β

�(3 − β )�(β + 1)〈τ 〉2
t2−β − 1. (25)

As expected, 〈X (t )〉 = χ−1�d〈N (t )〉 ≈ 〈VE 〉t to leading order in large time. For the second moment,
inverting Eq. (22b) results in

〈N2(t )〉 ≈ t2

〈τ 〉2
+ 4tβ

β

�(4 − β )�(β + 1)〈τ 〉3
t3−β − 3t

〈τ 〉 . (26)

These results lead, according to Eq. (21), to the late-time dispersion

σ 2(t ) ≈ �2
d

χ2〈τ 〉

(
2tβ

β

β�(4 − β )�(β − 1)〈τ 〉2
t3−β − t

)
. (27)

Note how the leading-order contribution, which would be ∝t2 (i.e., ballistic), cancels out between
the second moment and the square of the mean. This phenomenon is characteristic of dispersion in
space-Lagrangian models.

1. Fickian dispersion

Consider now the case α > 0, for which, as discussed, the transit times have a finite variance. In
that case, β = 2, and Eq. (27) becomes

σ 2(t ) ≈ �2
d

χ2〈τ 〉
( 〈τ 2〉

〈τ 〉2
− 1

)
t . (28)

Using Eqs. (8) and (11), this becomes, in terms of Eulerian velocity moments,

σ 2(t ) ≈ �d〈VE 〉
χ2

(〈
V −1

E

〉〈VE 〉 − 1
)
t . (29)

Dispersion is thus Fickian, i.e., proportional to t as for regular diffusion. Note that this result is
independent of the existence of non-power-law behavior of pE (v) near v = 0, so long as 〈V −1

E 〉, and
therefore 〈τ 2〉, is finite.

2. Superdiffusion

For −1 < α < 0, so that 1 < β = 2 + α < 2, the transit times have an infinite variance. This
means that larger and larger variability in the waiting times is sampled as time increases [1,46].
The physical origin of this large variability is a strong preponderance of arbitrarily small velocities
compared to the mean, corresponding to arbitrarily long times to cross a decorrelation length, over
which velocities persist. For α � 0, the relative importance of such velocities is sufficient to avoid
convergence of the second moment of transit times. In this case, Eq. (27) yields the late-time
behavior

σ 2(t ) ≈ 2�2
d

χ2〈τ 〉3

tβ

β

β�(4 − β )�(β − 1)
t3−β. (30)

We now write the low-velocity behavior of the Eulerian PDF as

pE (v) ≈ cα

〈VE 〉
(

v

〈VE 〉
)α

, (31)
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for some dimensionless coefficient cα > 0. Note that any Eulerian PDF behaving as a power law
near the origin can be expressed in this manner. The exponent α and the leading coefficient cα

determine the value of the characteristic time tβ , which impacts asymptotic dispersion according to
Eq. (30). Indeed, according to Eq. (10), we have the transit-time PDF

ψB(t ) ≈ cα

〈τ 〉
(

t

〈τ 〉
)−(3−|α|)

, (32)

and, using Eq. (24), we obtain

tβ =
[

cαπ

sin(|α|π )

]1/β

〈τ 〉. (33)

Substituting in Eq. (30) for dispersion and using the reflection identity �(z)�(1 − z) = π/ sin(πz)
for arbitrary noninteger z, we obtain, in terms of Eulerian velocity properties,

σ 2(t ) ≈ 2cα�
1−|α|
d 〈VE 〉1+|α|

(2 − |α|)(1 + |α|)|α|χ2
t1+|α|. (34)

This corresponds to superdiffusive behavior, with dispersion growing as a power of time (strictly)
between 1 and 2.

The edge case α = 0 must be treated separately. First, consider the exponential Eulerian PDF

pE (v) = e−v/〈VE 〉

〈VE 〉 , (35)

which, according to Eq. (10), corresponds to the transit-time PDF

ψ (t ) = 〈τ 〉2

t3
e−〈τ 〉/t . (36)

This has Laplace transform

ψ̃ (λ) = 2〈τ 〉λK2(2
√

〈τ 〉λ), (37)

where K2 is the modified Bessel function of the second kind. For small λ � 1/〈τ 〉,

ψ̃ (λ) ≈ 1 − 〈τ 〉λ − (〈τ 〉λ)2

2
ln

(
e2γE −3/2〈τ 〉λ)

, (38)

where γE ≈ 0.577 is the Euler-Mascheroni constant. Using Eqs. (21) and (22) as before, we obtain

σ 2(t ) ≈ �d〈VE 〉
χ2

t ln

( 〈VE 〉t
eγE +3/2�d

)
. (39)

We note that multiplying the argument of the logarithm by a positive dimensionless constant does
not affect the asymptotics at sufficiently late times, but may provide better estimates at earlier
times. When the full analytical Laplace transform of the transit-time PDF is known, a constant
that provides good results at earlier times may sometimes be found analytically, which is the case
here.

Next, we consider a more general class of Eulerian PDFs scaling as ∼v0, such that, for low
velocities v � 〈VE 〉 compared to the mean velocity,

pE (v) ≈ c1

〈VE 〉
[

1 −
(

1 + ln

[
c3v

〈VE 〉
])

c2v

〈VE 〉
]

(40)

for dimensionless coefficients c1, c2, c3 > 0. This form arises as an approximation for the Eulerian
PDF of saturated flow in 2d porous media [43], as discussed in more detail in Sec. IV B. According
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to Eq. (10), we then have, for large times t � 〈τ 〉,

ψ (t ) ≈ c1〈τ 〉2

t3

[
e−c2〈τ 〉/t + c2〈τ 〉

t
ln

(
t

c3〈τ 〉
)]

. (41)

As for the exponential Eulerian PDF, 〈V −1
E 〉 diverges, so that 〈τ 2〉 also diverges. The logarithmic

term multiplied by t2 is integrable at infinity, and therefore its Laplace expansion is a regular power
series through second order in small λ. Since we know the zeroth-order term in the expansion
of ψ̃ (λ), which is unity by normalization, and the coefficient of the first-order term, which is
the mean time 〈τ 〉, the next leading term corresponding to the infinite second moment of this
distribution must arise from the exponential term in parentheses. Indeed, the Laplace transform
of c1〈τ 〉2t−3 exp(−c2〈τ 〉/t ) is, similarly to the exponential case treated above, given by

2c1〈τ 〉λK2(2
√

c2〈τ 〉λ)

c2
≈ c1

c2
2

− c1〈τ 〉λ
c2

− c1(〈τ 〉λ)2

2
ln

(
c2e2γE −3/2〈τ 〉λ)

, (42)

where the approximation holds for small λ � 1/〈τ 〉. We thus conclude that

ψ̃ (λ) ≈ 1 − 〈τ 〉λ − c1(〈τ 〉λ)2

2
ln (〈τ 〉λ). (43)

Note that in this case the factor inside the logarithm cannot be accurately determined without
knowledge of the full form of the Eulerian PDF. However, it does not affect late-time dispersion,
but only the onset of the scaling behavior. Using the same techniques as before, we find the
leading-order dispersion behavior

σ 2(t ) ≈ c1�d〈VE 〉
χ2

t ln

( 〈VE 〉t
�d

)
. (44)

In particular, this derivation shows that, for a Eulerian PDF behaving like c1(1 + c2v/〈VE 〉)/〈VE 〉
near the origin, logarithmic corrections to the contributions linear in v and the value of c2 do not
affect asymptotic dispersion. In other words, the t ln t scaling behavior of dispersion for Eulerian
PDFs behaving as ∼v0 near the origin is robust and not limited to the exponential PDF. Note also
that the result for the latter, Eq. (39), is recovered by setting c1 = 1, up to the factor inside the
logarithm as explained above.

When in the same advective transport problem just discussed the flow is unsaturated, the low-
velocity behavior of the Eulerian PDF can instead be approximated by [43]

pE (v) ≈ cαv−1 ln−1−α (vc/v), (45)

for small velocities compared to a characteristic velocity vc. Here, cα > 0 is a dimensionless
coefficient and α > 0 is related to the tailing of the PDF of dead-end (i.e., regions of low liquid
flow velocity) area sizes, pA(A) ∝ A−1−α/2, as discussed in more detail in Sec. IV B. Note that the
logarithmic factor renders the PDF integrable near the origin. In this case, for large times compared
to td = �d/vc, the large-time tailing behavior of the transit time PDF is, according to Eq. (10),

ψ (t ) ≈ cα〈τ 〉t−2 ln−1−α (t/td ), (46)

and the corresponding Laplace transform for small λ � 1/td is

ψ̃ (λ) ≈ 1 − 〈τ 〉λ
[

1 − cα

α
ln−α

(
1

tdλ

)
− cα

1 + αγE

α
ln−1−α

(
1

tdλ

)]
, (47)

as shown in Appendix B. As before, the term proportional to λ corresponds to the (finite) mean
waiting time 〈τ 〉. The next-order logarithmic correction is directly due to the tailing behavior; it is
of lower order than λ2, reflecting the nonexistence of the second moment. Finally, ψ̃ (0) = 1 is the
unit-integral normalization condition characteristic of all PDFs. Note that, as in the previous case,
the exact coefficient inside the logarithm, which does not impact asymptotic dispersion, depends
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on the full Eulerian PDF and cannot be accurately determined without its knowledge. As shown in
Appendix B, we have in this case

σ 2(t ) ≈ cα〈VE 〉2

χ2
t2 ln−1−α

(vdt

�d

)
. (48)

This result describes quasiballistic behavior; dispersion slows down compared to the ballistic t2

scaling only logarithmically. It presents the interesting feature that the asymptotic behavior is
independent of the decorrelation length �d since the coefficient vd/�d = 1/td within the logarithm
does not affect dispersion at sufficiently late times t � td .

B. Bernoulli relaxation

In order to compute asymptotic dispersion under the Bernoulli model, we rely on the computation
of velocity correlations. The techniques employed here follow those of [36]. We first express
particle positions as a function of time as X (t ) = χ−1

∫ t
0 dt ′ VT (t ′), where VT is the time-Lagrangian

velocity, that is, the velocity of Lagrangian particles along streamlines seen as a function of time.
Directly computing the first and second moments, we obtain the Kubo-Green formula for advective
dispersion [48]:

χ2σ 2(t )

�2
c

= I2(t ) − I2
1 (t ), (49)

where

I1(t ) = �−1
c

∫ t

0
dt ′ 〈VT (t ′)〉, (50a)

I2(t ) = �−2
c

∫ t

0
dt ′

∫ t

0
dt ′′ 〈VT (t ′)VT (t ′′)〉. (50b)

This means that velocity variability induces dispersion according to the correlation function of
velocity fluctuations. Comparing to Eq. (21) for the CTRW, we see that dispersion in the Bernoulli
relaxation model is equivalent to a CTRW with numbers of transitions by time t with variance
σ 2

N (t ) = I2(t ) − I2
1 (t ).

As shown in Appendix C, we have

Ĩ1(λ) = λ−1ψ̃B(λ)

1 − ψ̃B(λ)
, (51a)

Ĩ2(λ) ≈ 2

λ

1 − 2〈τB〉λ
[1 − ψ̃B(λ)]2

. (51b)

Note that Eq. (51a) is identical to Eq. (22a) for the average number of CTRW transitions upon
replacing ψ̃ (λ) by ψ̃B(λ). In particular, we always have 〈X (t )〉 = I1(t ) ≈ 〈VE 〉t to leading order at
late times t � 〈τB〉, as expected. Equation (51b) should be compared to Eq. (22b). Note that this
form preserves the dependency in small λ � 1/〈τB〉 up to the necessary order to calculate dispersion
to leading order in large times t � 〈τB〉.

1. Fickian dispersion

The calculation of late-time dispersion now proceeds similarly to the CTRW case. When the
second moment of the transit times exists, we expand ψ̃B(λ) for λ � 1/〈τB〉 as

ψ̃B(λ) ≈ 1 − 〈τB〉λ +
〈
τ 2

B

〉
2

λ2, (52)
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with the first and second moments given by Eqs. (15) and (16). Expanding Eqs. (51) for small λ,
inverting the Laplace transforms, and substituting in Eq. (49), we obtain

σ 2(t ) ≈ 2�c〈VE 〉
χ2

(〈V −1
E 〉〈VE 〉 − 1

)
t . (53)

Thus, late-time dispersion is Fickian as expected. However, comparison to the corresponding
equation for the CTRW [Eq. (29)], shows that the leading coefficients are equal only upon setting

�d = 2�c. (54)

For �d = �c, the Bernoulli relaxation model exhibits twice the asymptotic dispersion of the CTRW.
While one might think that this surprising result follows directly from the fact that the second
moment of the transit times is twice as large for the Bernoulli process when �d = �c, this is not
the case since the equivalence result for dispersion does not follow from simply replacing 〈τ 2〉 by
〈τ 2

B〉 = 2〈τ 2〉 in Eq. (29) while retaining �d = �c. Rather, as done here, the different correlation
structures must be taken into account in more detail.

2. Superdiffusion

When the second moment 〈τ 2
B〉 is infinite, we must turn to the tailing behavior of ψB(t ) for large

times, as for the CTRW model. Recognizing the λ-dependent part of the integrand as the Laplace
transform of an exponential density, we invert Eq. (14) to obtain

ψB(t ) = �−1
c

∫ ∞

0
dv vpF (v)e−vt/�c . (55)

In the following, we consider the tailing of the transit-time PDF separately for different low-velocity
behaviors of the Eulerian PDF. First, consider a Eulerian velocity PDF scaling as a power law ∼vα ,
−1 < α < 0, near the origin [Eq. (31)]. For large times, the integral in Eq. (55) is dominated by the
low-velocity contribution of pE (v). Solving the resulting integral, we obtain, for t � 〈τB〉,

ψB(t ) ≈ cα�(3 − |α|)
〈τB〉

(
t

〈τB〉
)−(3−|α|)

. (56)

Comparing to Eq. (32), we conclude that the tailing behavior of the transit time PDF has the same
scaling behavior as for the CTRW, but is larger by a factor of �(3 − |α|) when �c = �d . Proceeding
as for the CTRW, but using Eqs. (49) and (51), we find the asymptotic dispersion

σ 2(t ) ≈ 2cα�(3 − |α|)�1−|α|
c 〈VE 〉1+|α|

(2 − |α|)(1 + |α|)|α|χ2
t1+|α| (57)

[compare Eq. (34)]. We conclude that, while the scaling form with time is equivalent to the CTRW
case, asymptotic equivalence of the two models regarding dispersion requires setting

�d = �(3 − |α|)1/(1−|α|)�c. (58)

The value of �d/�c varies between e1−γE ≈ 1.526 as α → −1 and 2 as α → 0. Correspondingly, for
�d = �c, dispersion in the Bernoulli model is higher by a factor between 1 and 2.

As before, the edge case α = 0 must be treated separately. We consider first the case of an
exponential distribution of Eulerian velocities [Eq. (35)]. Performing the integration in Eq. (14)
yields

ψ̃B(λ) = 1 − 〈τB〉λ − 〈τB〉2e〈τB〉λ�(0, 〈τB〉λ)

≈ 1 − 〈τB〉λ − (〈τB〉λ)2 ln (eγE 〈τB〉λ), (59)

where �(·, ·) is the upper incomplete gamma function, �(a, z) = ∫ ∞
z dx xa−1e−x, and the approxi-

mation holds for small λ � 1/〈τB〉. This result should be compared to Eq. (38). The same procedure
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as above now yields

σ 2(t ) ≈ 2�c〈VE 〉
χ2

t ln

( 〈VE 〉t
e3�c

)
. (60)

Comparison to Eq. (39) shows that equivalence to the CTRW at sufficiently late times requires
setting �d = 2�c, as for the Fickian case.

Next, we consider the Eulerian PDF be given by Eq. (40), which corresponds to a logarithmic
correction to flat power-law behavior near v = 0. In this case, performing the integral in Eq. (55)
for the low-v dependency of pE (v), we obtain for t � 〈τB〉

ψB(t ) ≈ 2c1〈τB〉2

t3

[
e−c2〈τB〉/t + 3c2〈τB〉

t
ln

(
eγE −5/2t

c3〈τB〉
)]

, (61)

to be compared with Eq. (41). Employing the same considerations as in the CTRW case leads to the
Laplace transform

ψ̃B(λ) ≈ 1 − 〈τB〉λ − c1(〈τB〉λ)2 ln (〈τB〉λ), (62)

which should be compared with Eq. (43). Again, the factor inside the logarithm cannot be deter-
mined exactly without knowledge of the full Eulerian PDF, but it does not impact the asymptotic
behavior. Proceeding as before, we obtain

σ 2(t ) ≈ 2c1�c〈VE 〉
χ2

t ln

( 〈VE 〉t
�c

)
. (63)

Comparing to Eq. (44), we find that late-time equivalence is again achieved by setting �d = 2�c.
As before, we conclude that the t ln t dispersion scaling for Eulerian PDFs behaving as ∼v0 near
the origin is robust. The exponential PDF case, Eq. (60), is recovered upon setting c1 = 1, up to the
factor inside the logarithm.

Finally, consider a Eulerian PDF according to Eq. (45), corresponding to logarithmic corrections
to ∼v−1 behavior near the origin. The late-time behavior of the transit-time PDF is again dominated
by the small-v behavior of the Eulerian PDF. Similarly to the CTRW model (see Appendix B), in
order to determine the tailing behavior, the velocity integral in Eq. (55) can be performed up to an
arbitrary cutoff,

ψB(t ) ≈ cα

�c〈VE 〉
∫ vc/a

0
dv v ln−1−α

(vc

v

)
e−vt/�c , (64)

where a > 1 is a dimensionless constant and the cutoff ensures convergence. Performing the
substitution u = �c/(vt ) and rearranging terms, we obtain

ψB(t ) ≈ t−2 ln−1−α
( t

tc

) ∫ ∞

atc/t
du u−3

(
1 + ln u

ln(ut/tc)

)−1−α

e−1/u. (65)

To leading order in large t � tc, the remaining integral is given by
∫ ∞

0 du u−3e−1/u = 1, and we
conclude that

ψB(t ) ≈ cα〈τB〉t−2 ln−1−α (t/tc). (66)

Note that this result is independent of the arbitrary coefficient a as expected, and that it is identical
to the CTRW transit-time PDF when �c = �d [see Eq. (46)]. Proceeding as before, we find

σ 2(t ) ≈ cα〈VE 〉2

χ2
t2 ln−1−α

(vct

�c

)
. (67)

Note again the independence of the prefactor on �c. Correspondingly, in this case, the Bernoulli and
CTRW models are asymptotically equivalent regarding dispersion for any choice of �d and �c [see
Eq. (48)]. Note that, as for the previous case and the CTRW, the exact factor inside the logarithm,
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FIG. 1. Behavior of asymptotic dispersion in the Bernoulli relaxation model vs the CTRW, as a function
of the scaling exponent α such that the Eulerian PDF pE (v) ∼ vα at low velocities. Solid line: ratio of the
CTRW decorrelation length �d to the Bernoulli relaxation model correlation length �c in order for asymptotic
dispersion to be identical. Dashed line: ratio of asymptotic dispersion σ 2

B in the Bernoulli model to dispersion
σ 2

C in the CTRW model when �d = �c.

which is irrelevant at sufficiently late times, cannot be determined without knowledge of the full
Eulerian PDF.

C. Overview of results

We now present an overview of the results derived so far. We first collect our results for
asymptotic dispersion, for different Eulerian PDFs and for both CTRW and Bernoulli relaxation
models, in Table I. In addition, the solid line in Fig. 1 shows the ratio of the CTRW decorrelation
length �d to correlation length �c of the Bernoulli relaxation model for equal asymptotic dispersion,
as a function of the exponent α for a low-velocity Eulerian PDF dependency ∼vα [see Eqs. (54)
and (58)]. Note that this dependency is continuous at α = 0. The dashed line in Fig. 1 shows the
ratio between the asymptotic dispersion of the two models when �d = �c. For the logarithmically
corrected ∼v−1 Eulerian PDF analyzed here, we have seen that dispersion becomes independent
of the correlation and decorrelation lengths [Eqs. (48) and (67)] and is equal in the two models. In
this sense, the latter dependency is also right continuous at α = −1. Recall that the results obtained
here are valid for a flux-weighted initial condition. Although the scaling forms do not depend on the
initial condition, the leading coefficients may [36].

Regarding our results for quasiballistic behavior, Eqs. (48) and (67), we note that similar log-
corrected ballistic scalings were derived in [49], based on a CTRW model with a prescribed velocity
PDF and step-size distribution accounting for velocity correlations. However, the choice of velocity
distribution in that work is associated with an infinite mean transit time 〈τ 〉. This means that it
cannot arise from a well defined pE (v) in the type of model we consider here [see Eqs. (10), (15),
and related discussion].

IV. NUMERICAL SIMULATIONS

We now turn to numerical verification of the results for dispersion presented in Sec. III. Lon-
gitudinal positions and corresponding times are computed according to the recursion relations (7)
for the CTRW and (12) for the spatial-Markov model with Bernoulli relaxation, with velocities in
subsequent steps generated stochastically according to the prescriptions discussed in connection
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with each model. Dispersion is computed from interpolated particle positions according to Eqs. (6)
and (17). We set the decorrelation length of the CTRW and the correlation length of the Bernoulli
model to �d = �c = 1 and tortuosity χ = 1, which is equivalent to normalizing longitudinal
distances by the longitudinal correlation length �c/χ , and correspondingly dispersion by �2

c/χ
2.

For the Bernoulli model, we use a spatial step �s = 10−1. All simulation results are averaged over
105 particle trajectories.

A. Gamma-distributed Eulerian velocities

As an example of power-law dependency of the Eulerian PDF for small velocities, we employ a
gamma PDF. Expressed in terms of the mean velocity and the usual scaling exponent γ > 0, such
that pE (v) ∝ vγ−1 at low velocities, this PDF is given by

pE (v) = γ γ

〈VE 〉�(γ )

(
v

〈VE 〉
)γ−1

e−γ v/〈VE 〉. (68)

The gamma PDF has been previously studied in connection with flow in porous media
[15,20,36,50]. It provides a convenient model exhibiting two common features, namely, a power-
law behavior at low velocities and an exponential tailing at high velocities. We note here that
the assumption of power-law behavior near the origin is appropriate for most cases of interest:
as the PDF is Taylor expanded around the origin, some power v (sometimes a constant, ∼v0),
typically dominates. Physically, this means that, below all relevant characteristic velocity scales,
the low-velocity behavior is usually scale free (power law). Indeed, this type of behavior has been
directly observed both numerically and experimentally [16,43,51–53]. An exception is the presence
of logarithmic corrections which sometimes arise near a qualitative change of behavior; related
examples are treated in Sec. IV B. According to Eq. (31), for a Eulerian PDF scaling as ∼vα near
the origin, we have

α = γ − 1, cα = (1 + α)1+α

�(1 + α)
. (69)

For all α > −1 (corresponding to γ > 0, which is required for normalizability of the PDF), direct
calculation of the relevant moments according to Eq. (19) yields

σ 2
V0

= 2 + α

(1 + α)2
〈VE 〉2 (70)

for the variance of the flux-weighted initial velocity distribution. Furthermore, from the definition
of the average and Eq. (68), we find, for α > 0 (γ > 1),〈

V −1
E

〉 = 1 + α

α
〈VE 〉−1. (71)

Thus, for α > 0 (γ > 1), the second moment of the transit-time PDF is finite [see Eq. (11) for
the CTRW and Eq. (16) for the Bernoulli model], and asymptotic dispersion is Fickian. For α < 0
(γ < 1), the second moment diverges and asymptotic dispersion is superdiffusive. For α = 0 (γ =
1), the gamma PDF reduces to the exponential PDF (35), which corresponds to superdiffusive but
quasi-Fickian asymptotic dispersion.

Note that, according to Eqs. (3) and (68), the flux-weighted Eulerian PDF is again gamma,
characterized by a mean (2 + α)〈VE 〉/(1 + α) and a power-law exponent 1 + α. Thus, in this
case, numerical simulations of the stochastic velocity process of Eqs. (7) and (12), which involve
generating velocities according to the flux-weighted Eulerian PDF, were carried out by directly
generating gamma-distributed values, without need for discretizing the underlying PDF. Figure 2
shows dispersion as a function of time for the cases α = − 1

2 [Fig. 2(a)], α = 0 [Fig. 2(b)], and α = 1
2

[Fig. 2(c)]. These three cases correspond, respectively, to power-law non-Fickian dispersion, the
exponential PDF case leading to quasi-Fickian dispersion, and Fickian dispersion (see Table I for the
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FIG. 2. Normalized dispersion χ 2σ 2(t )/�2
c versus normalized time t/〈τ 〉 for gamma Eulerian velocity

PDFs [Eq. (68)] which scale as pE (v) ∼ vα near the origin, for a Bernoulli model with correlation length �c

and a CTRW model with decorrelation length �d = �c. (a) α = − 1
2 , corresponding to non-Fickian power-law

asymptotic dispersion; (b) α = 0, corresponding to quasi-Fickian asymptotic dispersion with logarithmic
corrections; and (c) α = 1.5, corresponding to Fickian asymptotic dispersion. Numerical simulation results
for dispersion are shown as markers for the CTRW (squares) and Bernoulli (asterisks) models. The theoretical
asymptotic forms of dispersion are shown as dashed lines for the CTRW and as dash-dotted lines for the
Bernoulli model (see Table I for relevant equations). The insets show a zoom-in of part of the asymptotic
region in the main plots. The scaling σ 2(t ) ∝ t characteristic of Fickian dispersion is shown for reference as a
solid line. Theoretical early-time ballistic dispersion [σ 2(t ) ∝ t2, Eqs. (18) and (70)] is shown as dotted lines.

relevant equations). Times are normalized by the mean transit time 〈τ 〉 = �c/〈VE 〉 = �d/〈VE 〉, which
is conveniently achieved by taking 〈VE 〉 = 1 in the numerical simulations, along with �c = �d = 1
as discussed above. In all cases, the theoretical predictions for both the early-time ballistic regime
and the asymptotic behavior of dispersion are in excellent agreement with the simulations.

B. Transition from quasi-Fickian to quasiballistic asymptotic dispersion in unsaturated porous media

Next, we turn to the two types of Eulerian PDF identified in [43], respectively, for saturated and
unsaturated flow through two-dimensional porous media. In the original study, a sharp transition
from quasi-Fickian to quasiballistic dispersion upon desaturation was identified through numerical
simulations based on a CTRW model. This work provides a rigorous derivation of the associated
dispersion scalings, and extends the CTRW results to the case of a correlated Bernoulli model.
We briefly review the relevant aspects of the theory leading to the Eulerian PDFs studied here in
Appendix D.

Under fully saturated conditions, we have the Eulerian PDF

pE (v) =
√

π

3vc

2v

3vc
G20

12

(
2v

3vc

∣∣∣∣−1

2
: −1, 0

)
, (72)

where G is the Meijer G function [54] and vc = qc/am is a characteristic velocity. Direct com-
putation of the mean value using the properties of the Meijer G function yields 〈VE 〉 = 2vc, and
calculation of the relevant higher-order moments leads, according to Eq. (19), to

σ 2
V0

= 972

175
v2

c = 243

175
〈VE 〉2. (73)

For small velocities v � vc, Eq. (41) holds, with [43]

c1 = c2 = 2

3
, c3 = 4

3
exp[�(−1/2) − 2(1 − γE )], (74)

where � is the digamma function, �(x) = d ln �(x)/dx [in particular, �(1) = −γE ].
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FIG. 3. (a) Eulerian velocity PDF vc pE (v) [Eq. (72)] for fully saturated conditions, as discussed in
Appendix D, and (b) corresponding normalized dispersion χ 2σ 2(t )/�2

c versus normalized time t/tc for a
Bernoulli model with correlation length �c and a CTRW model with decorrelation length �d = �c. The
low-velocity behavior of the PDF, shown by the dashed line in (a), is given by Eq. (40) with coefficients
given by Eq. (74). Numerical simulation results for dispersion are shown as markers for the CTRW (squares)
and Bernoulli (asterisks) models. Dispersion is asymptotically quasi-Fickian with logarithmic corrections.
The theoretical asymptotic forms of dispersion are shown as dashed lines for the CTRW and as dash-dotted
lines for the Bernoulli model (see Table I for relevant equations). The scaling σ 2(t ) ∝ t characteristic of
Fickian dispersion is shown for reference as a solid line. Theoretical early-time ballistic dispersion [σ 2(t ) ∝ t2,
Eqs. (18) and (73)].

In this case, no analytical transform is available to generate velocities according to the flux-
weighted Eulerian PDF from uniformly distributed samples. We thus compute the Eulerian PDF
according to Eq. (72) for 300 logarithmically spaced values of velocity from v = 10−15vc to 102vc.
These values are employed as the edges of discretized velocity bins. Bin flux-weighted probabilities
are obtained according to Eq. (3), using the midpoint values of velocity and the Eulerian PDF
and multiplying by the corresponding bin width. Velocity values are then generated based on the
resulting discretized probability distribution. The Eulerian PDF (72) and the associated dispersion
under the CTRW and Bernoulli models are shown in Fig. 3. In this case, we normalize velocities by
the characteristic velocity vc by setting vc = 1, which, for �c = �d = 1, is equivalent to normalizing
times by the characteristic time tc = �c/vc. The simulations are in agreement with the theoretical
predictions for both the early-time ballistic and asymptotic quasi-Fickian regimes.

Under unsaturated conditions, the full PDF must be computed numerically, but its low- and
high-velocity dependencies were obtained in [43]. In particular, the low-velocity dependency,
for v � vc, is given by Eq. (45) with α related to the distribution of dead-end regions (see
Appendix D), and

cα = α f

1 + α
, (75)

where f is the fraction of the domain occupied by dead-end regions. We employ the same velocity
PDF discretization procedure as for the fully saturated case in order to generate flux-weighted
velocity values in the numerical simulations. The Eulerian mean velocity, as well as higher-order
moments relevant for early-time dispersion [Eqs. (18) and (19)], were computed numerically from
the discretized PDF. As a representative example, we take f = 0.12 and α = 0.5, which were
found in [43] for a water saturation of 77%. Note that the qualitative behavior is independent of
saturation, as long as the medium is not fully saturated. The full numerically computed Eulerian PDF
and the corresponding dispersion under the CTRW and Bernoulli models are shown, respectively,
in Figs. 3(a) and 3(b). We again normalize velocities by vc by setting vc = 1 and times by the
characteristic time tc = �c/vc. We find agreement between the expected early-time ballistic and
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asymptotic quasiballistic behavior and the numerical simulations (see Table I for the relevant
equations). Note how the very broad nature of the Eulerian PDF leads in this case to a late onset
of the true asymptotic regime. In [43], due to the finite size of the medium, only the preasymptotic
regime, seen here in the range of times tc � t � 104tc, was observed. This intermediate regime
is found here to be well approximated by power-law growth in time with an exponent ≈1.4.
This behavior is superdiffusive and markedly more anomalous than the saturated case, for which
dispersion scales as t ln t . Notwithstanding, the true asymptotic regime again exhibits significantly
faster dispersion growth, characterized by a quasiballistic scaling ∼t2 ln−1−α t .

V. CONCLUSIONS

We have provided a detailed comparison of a correlated and an uncorrelated space-Lagrangian
model regarding dispersion. In particular, we have extended previous results for the equivalence of
asymptotic temporal scaling forms to Eulerian PDFs exhibiting logarithmically corrected scalings at
low velocities. However, we have found that full asymptotic equivalence of the two models does not
hold in general when the CTRW step length is taken equal to the longitudinal velocity correlation
length.

As we have seen, for equal correlation lengths, dispersion in the Bernoulli model is generally
larger than in the CTRW model. This happens because the differences in correlation structure lead
to stronger correlations in the velocity fluctuations in the Bernoulli model. The two models can
be rendered equivalent by choosing a larger (de)correlation length for the CTRW model, but the
relation between these lengths depends on the low-velocity characteristics of the Eulerian PDF,
which control the properties of asymptotic dispersion (see Fig. 1). Nonetheless, the functional
form of the asymptotic temporal scaling in both models is the same in all cases, regardless of
(de)correlation length. In particular, this means that a CTRW model is typically sufficient to capture
asymptotic dispersion, but the correct choice of step length will generally not match the physical
correlation length of Lagrangian velocities.

We have obtained results for dispersion for the qualitatively different Eulerian PDFs found in [43]
for saturated and unsaturated (quasi-)two-dimensional porous media (see Figs. 3 and 4). Our results
provide a rigorous theoretical basis for the sharp transition from quasi-Fickian to quasiballistic
dispersion which was observed in [43] upon desaturation. In particular, our results show that the
quasiballistic behavior associated with the Eulerian PDFs under unsaturated conditions is robust
and insensitive to the presence of nontrivial velocity correlations.
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APPENDIX A: VARIANCE OF THE NUMBER OF CTRW STEPS

In this Appendix, we obtain the Laplace transform of the variance of the number of CTRW
steps, in terms of the transit-time PDF associated with each step. First, note that the probability of
completing exactly n steps by time t is equal to the probability of completing at least n steps, minus
the probability of completing at least n + 1 steps [55],

pn(t ) = P[N (t ) � n] − P[N (t ) � n + 1]. (A1)
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FIG. 4. (a) Eulerian velocity PDF vc pE (v) obtained for unsaturated conditions as discussed in
Appendix D, and (b) corresponding normalized dispersion χ2σ 2(t )/�2

c versus normalized time t/tc for a
Bernoulli model with correlation length �c and a CTRW model with decorrelation length �d = �c. The
low-velocity behavior of the PDF, shown as a dashed line in (a), is given by Eq. (45) with cα according
to Eq. (75) for f = 0.12 and α = 0.5. Numerical simulation results for dispersion are shown as markers
for the CTRW (squares) and Bernoulli (asterisks) models. Dispersion is asymptotically quasiballistic with
logarithmic corrections. The theoretical asymptotic forms of dispersion for the CTRW and Bernoulli models are
identical and shown as a dashed line (see Table I for relevant equations). The scaling σ 2(t ) ∝ t characteristic of
Fickian dispersion is shown for reference as a solid line. Theoretical early-time ballistic dispersion [σ 2(t ) ∝ t2,
Eqs. (18) and (19)] is shown as a dash-dotted line.

The probability of completing at least n steps by time t is, by definition, the probability that the time
of completing the nth step Tn � t . Since

Tn =
n−1∑
i=0

τi (A2)

is the sum of n independently and identically distributed random variables, its PDF is the n-fold
convolution of ψ with itself, which we denote by ψ∗n. Thus,

P[N (t ) � n] =
∫ t

0
dt ′ψ∗n(t ′). (A3)

This leads, Laplace transforming Eq. (A1), to

p̃n(λ) = 1 − ψ̃ (λ)

λ
ψ̃n(λ). (A4)

We first compute the mean number of transitions by time t ,

〈N (t )〉 =
∑
n�0

npn(t ). (A5)

Taking Laplace transforms,

〈Ñ (λ)〉 = 1 − ψ̃ (λ)

λ

∑
n�0

nψ̃n(λ) = 1 − ψ̃ (λ)

λ
ψ̃ (λ)

d

dψ̃ (λ)

∑
n�0

ψ̃n(λ) = 1 − ψ̃ (λ)

λ
ψ̃ (λ)

× d

dψ̃ (λ)

1

1 − ψ̃ (λ)
, (A6)
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which yields Eq. (22a). Similarly, for the second moment, we have

〈Ñ2(λ)〉 = 1 − ψ̃ (λ)

λ

∑
n�0

n2ψ̃n(λ) = 1 − ψ̃ (λ)

λ

×
[
ψ̃ (λ)2 d2

dψ̃ (λ)2

∑
n�0

ψ̃n(λ) + ψ̃ (λ)
d

dψ̃ (λ)

∑
n�0

ψ̃n(λ)

]
, (A7)

yielding Eq. (22b).

APPENDIX B: SOME LAPLACE TRANSFORMS INVOLVING POWERS OF LOGARITHMS

Here, we obtain some results for Laplace transforms involving powers of logarithms. We then
employ these results to compute the first and second moments of the number of steps in the
quasiballistic CTRW model of Sec. III A 2 of the main text; the mean and second moments of
position in the corresponding Bernoulli model of Sec. III B 2 can be computed in a similar manner,
as also discussed in the main text. Consider a transit-time PDF with finite mean 〈τ 〉 and such that,
for t large compared to some characteristic value td , we have the tailing behavior

ψ (t ) ≈ cα〈τ 〉t−2 ln(t/td )−1−α, (B1)

for some dimensionless cα > 0 and α > 0. Since ψ is normalized to unit integral by definition, we
have ψ̃ (0) = 1. Since its mean is finite by hypothesis, we have also dψ̃ (λ)/dλ|λ=0 = −〈τ 〉. We
seek the next leading term in the small-λ behavior of ψ̃ (λ), which we know must be of higher order
than λ2 because second moments associated with this tailing behavior diverge.

The effect of the tailing behavior on the Laplace PDF can be obtained by computing the Laplace
transform of the tail

L̃(λ) = cα〈τ 〉
∫ ∞

atd

dt t−2 ln−1−α (t/td )e−λt , (B2)

with a dimensionless a > 1 to guarantee the integral converges. Note that, for smaller times, the
early-time behavior of ψ (t ) plays a role, but this does not contribute to the tailing behavior. Indeed,
as will be confirmed below, the result is independent of the arbitrary coefficient a. Integrating by
parts once (differentiating the exponential) gives

L̃(λ) = cα〈τ 〉λ
td

∫ ∞

atd

dt (�(−α, ln a) − �[−α, ln(t/td )])e−λt , (B3)

where �(·, ·) is the upper incomplete gamma function, �(a, z) = ∫ ∞
z dx xa−1e−x. Integrating once

more by parts and approximating for small λ � 1/td ,

L̃(λ) ≈ cα〈τ 〉
td

[
�(−α, ln a) − tdλ

α
ln−α a

]
e−atd λ + cα〈τ 〉λ2

α
[J̃α (λ) − αJ̃1+α (λ)], (B4)

where, for any real β,

J̃β (λ) =
∫ ∞

atd

dt ln−β (t/td )e−λt (B5)

is the Laplace transform of a tail Jβ (t ) = ln−β (t/td ), t � atd .
The first term in Eq. (B4) has a regular expansion in non-negative powers of small λ � 1/td .

These expansion terms do not correspond to the correct normalization condition and mean of ψ ,
due to the missing integration up to t = atd . We can simply restore these contributions to obtain

ψ̃ (λ) ≈ 1 − 〈τ 〉λ + cα〈τ 〉λ2

α
[J̃α (λ) − αJ̃1+α (λ)]. (B6)
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It remains to calculate J̃β (λ) to leading order, which will be seen to be of negative order in λ. To
this end, we employ the substitution u = λt in Eq. (B5). Rearranging terms,

J̃β (λ) = λ−1 ln−β

(
1

tdλ

) ∫ ∞

atd λ

du

[
1 + ln u

ln[1/(tdλ)]

]−β

e−u. (B7)

For λ < 1/(atd ), the integral can be split as
∫ ∞

atd λ
= ∫ 1/(td λ)

atd λ
+ ∫ ∞

1/(td λ). The second contribution can
be bounded from above by setting u = a in the integrand, and the result vanishes exponentially in
1/λ. For the first contribution, expanding the term in square brackets for small λ, the integrals of the
expansion terms all converge, and we find to leading order

J̃β (λ) ≈ λ−1 ln−β

(
1

tdλ

)[
1 + αγE ln−1

(
1

tdλ

)]
. (B8)

We note that, since it is independent of a, this result is also the small-λ expansion of the Laplace
transform of any function integrable near the origin and tailing as Jβ (t ) = ln−β (t/td ) for large t [see
Eq. (B5)]. We thus finally arrive at the desired result (47), which is independent of the arbitrary
coefficient a as expected.

This derivation allows us to obtain two related inverse Laplace transforms which are needed to
compute dispersion. Recall that division by λ in Laplace space corresponds to integration in the
time domain. Writing L−1

λ→t f̃ (λ) = f (t ), we find the inverse Laplace transforms

L−1
λ→tλ

−1J̃β (λ) =
∫ t

atd

du ln−β
( u

td

)
≈ −td ln1−β

( t

td

)
Eβ

[
− ln

( t

td

)]
,

≈ t ln−β

(
1

tdλ

)[
1 + β ln−1

(
1

tdλ

)]
, (B9)

where Eβ (z) = ∫ ∞
1 dx x−α exp(−zx) is an exponential integral. Proceeding similarly, one further

time integration yields

L−1
λ→tλ

−2J̃β (λ) ≈ −t2
d ln−1−β

( t

td

)
Eβ

[
−2 ln

( t

td

)]
≈ t2

2
ln−β

(
1

tdλ

)[
1 + 3β

2
ln−1

(
1

tdλ

)]
. (B10)

Equations (B9) and (B10) are valid for small λ � 1/td and large t � td , and again independent of
a as expected.

We now apply these results to compute the first and second moments of the number of steps in a
CTRW with a transit-time PDF tailing according to Eq. (B1). Substituting Eq. (B6) for the Laplace
transform of the transit time for small λ � 1/td in Eq. (22a), we obtain to leading order

〈Ñ (λ)〉 ≈ (〈τ 〉λ)−1

[
1 + cα

α
[Jα (λ) − αJ1+α (λ)] + c2

α

α2
J2α (λ)

]
, (B11)

where we have used Eq. (B8) to conclude that [J̃α (λ) − αJ̃1+α (λ)]2 ≈ J̃2α to leading order. Using
Eq. (B9), we obtain, for t � td ,

〈N (t )〉 ≈ t

〈τ 〉
[

1 + cα

α
ln−α

( t

td

)
+ c2

α

α2
ln−2α

( t

td

)]
. (B12)

For the second moment, we proceed similarly, according to Eq. (22b), and find

〈Ñ2(λ)〉 ≈ (〈τ 〉λ)−2

[
1 + 2cα

α
[Jα (λ) − αJ1+α (λ)] + 3c2

α

α2
J2α (λ)

]
. (B13)
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Using Eq. (B10) leads to

〈N2(t )〉 ≈ t2

〈τ 〉2

[
1 + 2cα

α
ln−α

( t

td

)
+ cα

α
ln−1−α

( t

td

)
+ 3c2

α

α2
ln−2α

( t

td

)]
. (B14)

Using Eq. (21) together with 〈τ 〉 = �d/〈VE 〉 [Eq. (8)], dispersion is given to leading order in large
time by Eq. (48).

APPENDIX C: SINGLE- AND TWO-POINT MEAN VELOCITY IN THE BERNOULLI
RELAXATION MODEL

Determining asymptotic dispersion in the Bernoulli model requires computing the time integrals
I1(t ) and I2(t ) of the single- and two-point mean velocity, defined according to Eqs. (50). In order to
do so, we make use of some results obtained in [36], focusing on the case of a flux-weighted initial
condition. A similar calculation for the case of a spatially homogeneous initial condition (i.e., with
velocities distributed according to pE ) can be found in [20]. According to [36], and particularizing
for the case of a flux-weighted initial condition, the PDF pT (·; t ) of time-Lagrangian velocities
VT (t ), defined such that pT (v; t ) dv is the probability that VT (t ) is between v and v + dv, has a
Laplace transform with respect to time given by

p̃T (v; λ) = �c pE (v)

〈VE 〉[1 − ψ̃B(λ)](1 + �cλ/v)
. (C1)

We have, by definition,

〈VT (t )〉 =
∫ ∞

0
dv vpT (v; t ). (C2)

Using these results along with Eqs. (50a) and (C1) leads directly to Eq. (51a).
The calculation of the two-point average is more involved because correlation between velocities

at different times must be taken into account. For t > t ′, conditioning on velocity v at time t ′, it is
given by

〈VT (t )VT (t ′)〉 =
∫ ∞

0
dv 〈VT (t − t ′)|v〉vpT (v; t ′), (C3)

where 〈VT (t )|v〉 is the average velocity at time t given velocity v at t = 0. Thus, using Eq. (50b),

Ĩ2(λ) = 2

�2
cλ

∫ ∞

0
dv 〈ṼT (λ)|v〉v p̃T (v; λ). (C4)

Rearranging the result found in [36], we have the Laplace transform

〈ṼT (λ)|v〉 = 1

1 − ψ̃B(λ)

�c

1 + �cλ/v
, (C5)

and we find

Ĩ2(λ) = 2

λ[1 − ψ̃B(λ)]2

∫ ∞

0
dv

pF (v)

(1 + �cλ/v)2
. (C6)

Using Eq. (14) leads to Eq. (51b) to leading in small λ � 1/〈τB〉.

APPENDIX D: VELOCITY PDFS UNDER SATURATED AND UNSATURATED CONDITIONS IN
QUASI-2D POROUS MEDIA

We briefly review the relevant aspects of the theory leading to the Eulerian PDFs studied here. In
the original study, the authors considered a quasi-two-dimensional (2D) porous medium filled with
water and air at different water saturation degrees (i.e., percentage of the pore space occupied by
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water) [56]. The capillary number was sufficiently low to ensure air clusters remained immobile. The
authors developed a theoretical model for the corresponding Eulerian velocity PDFs characterizing
the flow of water, accounting for drag effects along the third dimension (thickness) of quasi-two-
dimensional media. Here, we focus for simplicity on the purely two-dimensional limit (also studied
in the original paper), but we note that the asymptotic scaling forms of dispersion remain unaffected
by the three-dimensional corrections.

In the model of [43], the Eulerian PDF is determined by the flow rate PDF pQ(q) of total flow
rates q across pore throats (i.e., smallest distance between two neighboring grains) throughout the
domain, weighted by the PDF pE (v|q) of velocities v within a pore with given flow rate q:

pE (v) =
∫ ∞

0
dq pQ(q)pE(v|q). (D1)

Given the low variability of pore-throat sizes across the medium, the throat size was approximated
by the average value am. Considering a purely two-dimensional medium, the Eulerian velocity PDF
associated with the velocity profile across a pore throat with local flow rate q is then the PDF of a
Poiseuille flow (see also [20]),

pE (v|q) = amH[3q/(2am) − v]

3q
√

1 − 2amv/(3q)
, (D2)

where H is the Heaviside step function. The flow PDFs pQ were obtained based on a decomposition
of the water phase into a backbone of high velocities and dead ends of low velocities, caused by the
presence of the air phase (see also [57]):

pQ(q) = f pd
Q(q) + (1 − f )pb

Q(q), (D3)

where f is the fraction of the domain occupied by dead-end regions, pd
Q(q) is the PDF of flow rates

within the latter, and pb
Q is the PDF of flow rates in the backbone. The backbone contribution is

described by a gamma distribution (see also [50])

pb
Q(q) = qe−q/qc

q2
c

, (D4)

where qc is a saturation-dependent characteristic flow rate which controls the exponential high-flow
tailing.

Under fully saturated conditions, f = 0, and the full flow rate PDF pQ coincides with pb
Q. In

that case, Eq. (D1) leads to the Eulerian PDF (72). Under unsaturated conditions, the dead-end
contribution to the flow PDF is given by [43]

pd
Q(q) ≈

∫ ∞

0
dA pd

Q(q|
√

A)pA(A), (D5)

where

pd
Q(q|�) = am

�qcq

[
e−q/qc (q + qc) − exp

(
−e�/am q

qc

)(
e�/am q + qc

)]
(D6)

is the flow rate PDF for a dead-end region of given depth �, and the dead-end area PDF pA follows
a Pareto distribution

pA(A) = γ

a2
m

(
A

a2
m

)−1−γ

H
(
A − a2

m

)
. (D7)

The exponent γ decreases with decreasing water saturation, reflecting broader dead-end area vari-
ability. The full flow rate PDF pQ is then obtained by substituting Eqs. (D4) and (D5) in Eq. (D3),
and the corresponding Eulerian velocity PDF is determined by Eq. (D1). While the full PDF must be
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computed numerically, its low- and high-velocity dependencies were obtained in [43]. In particular,
the low-velocity dependency, for v � vc, is given by Eq. (45) with α = 2γ and cα = f α/(1 + α).
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