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We formulate a data-driven, physics-constrained closure method for coarse-scale nu-
merical simulations of turbulent fluid flows. Our approach involves a closure scheme that
is nonlocal both in space and time, i.e., the closure terms are parametrized in terms of
the spatial neighborhood of the resolved quantities but also their history. The data-driven
scheme is complemented with a physical constraint expressing the energy conservation
property of the nonlinear advection terms. We show that the adoption of this physical
constraint not only increases the accuracy of the closure scheme but also improves the
stability properties of the formulated coarse-scale model. We demonstrate the presented
scheme in fluid flows consisting of an incompressible two-dimensional turbulent jet.
Specifically, we first develop one-dimensional coarse-scale models describing the spatial
profile of the jet. We then proceed to the computation of turbulent closures appropriate
for two-dimensional coarse-scale models. Training data are obtained through high-fidelity
direct numerical simulations. We also showcase how the developed scheme captures the
coarse-scale features of the concentration fields associated with inertial tracers, such as
bubbles and particles, carried by the flow but not following the flow. We thoroughly
examine the generalizability properties of the trained closure models for different Reynolds
numbers, as well as radically different jet profiles from the ones used in the training
phase. We also examine the robustness of the derived closures with respect to the grid
size. Overall, the adoption of the constraint results in an average improvement of 26% for
one-dimensional closures and 29% for two-dimensional closures, being notably larger for
flows that were not used for training.
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I. INTRODUCTION

Turbulent fluid flows in nature and engineering are characterized by a wide range of spatial
and temporal scales with nonlinear interactions making their reduced order modeling a challenging
task. Over the last decades, several ideas have emerged that successfully model turbulent fluid flows,
such as large eddy simulations [1,2]. However, these methods still require very high resolution to
satisfactory model the large scale dynamics, as well as features associated with those. This is an
important computational obstacle, especially for applications involving uncertainty quantification,
optimization, and risk analysis, where there is a need for a large number of accurate simulations.

Recent machine-learning advances have sparked a new interest in utilizing deep neural networks
to develop reduced order models for turbulent flows. The machine-learning closures abandon
the path of a closed-form expression for the closure terms into utilizing experimental or costly
high-fidelity computations to train a neural network and predict the nonlinear energy transfers
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between resolved and unresolved scales. One such effort of utilizing deep neural networks for
turbulent flows appeared in Ref. [3], where nonlinear autoencoders were utilized to reconstruct
the near wall field in a turbulent flow. Since then, there has been a plethora of efforts focusing on
machine-learning closures using different data-driven schemes, such as artificial neural networks
in fluid flows [4–7] and multiphase flows [8,9], random forest regressions [10], spatially nonlocal
schemes such as convolutional neural networks [11], stochastic data-driven representations using
generative adversarial networks [12], reinforcement learning [13], and with applications ranging
from engineering turbulence to geophysics and beyond (see Ref. [14] for a recent review).

One of the great advantages of machine-learning closures is their capability to seamlessly model
nonlocality in time. In this paper, a nonlocal but causal modeling of the closure terms implies that
for the prediction of the closure terms at a particular time, only present and past information is used.
Indeed, there is no a priori reason to expect that the closure terms of a complex system will behave
in a Markovian manner, i.e., depend only on the current reduced-order state of the system. On the
contrary, Takens embedding theorem [15] states that if we observe only a limited number of the
state variables of a system, in principle, we can still obtain the attractor of the full system by using
delay embedding of the observed state variables. Therefore, it is essential to incorporate memory
effects when we model closure terms for turbulent fluid flows. This approach has found success in
a number of physical applications involving bubble motion and multiphase flows [16,17], as well as
the reduced-order modeling of chaotic dynamical systems [18–20].

On the other hand, machine-learning schemes allow us to parametrize the closure terms using a
large number of input variables, opening the possibility for nonlocal models in space (see Ref. [11]
for an application to the advection of a passive scalar). Spatially, nonlocal models have been advo-
cated for turbulent closures and there is a plethora of related ideas ranging from scale-dependent
closures [21], non-local Reynolds stress models [22], and fractional-operator closures [23]. Several
ideas related to functional neural networks or operator neural networks have shown great promise
in this direction [24,25] and have recently been of great interest in the context of turbulent closure
models [26–28].

Beyond local closures, deep neural networks have also been used successfully in combination
with the underlying governing equations for reconstructing complex fluid flows and identifying
flow parameters. Specifically, physics-informed neural networks [29] identify the optimal solution
(either the flow itself or parameters associated with it) by minimizing an objective function that
contains Navier-Stokes equations, as well as scattered data in space and time. Inclusion of the
governing equations significantly improves the behavior of the data-driven scheme, while the
representation of the solution in terms of a neural network circumvents the need for a grid or spatial
discritization scheme. The method has shown great promise for reconstructing fluid flows given
spatiotemporal measurements [30], as well as recovering macroscopic quantities such as lift or drag
for vortex-induced vibration problems [31]. Previous efforts along this line include the embedding
of symmetries such as Galilean invariance to the neural net predictions for an anisotropic Reynolds
stress tensor [32,33].

Our aim in this paper is to formulate energy-preserving spatiotemporally nonlocal turbulent
closures which are a priori consistent with the conservation properties of the advection term in
Navier-Stokes equations. Specifically, we utilize machine learning schemes which represent the
effect of the small scales at each spatial location, using as input the large scale features of the flow
in a spatial neighborhood of this location. Past values of the large scale features are also employed
as inputs for the turbulent closures in a causal manner. These data-driven schemes are enforced
to be consistent with physical constraints expressing the energy exchanges between resolved and
unresolved scales. These constraints follow from the energy-conserving properties of the nonlinear
advection operator in Navier-Stokes and have been utilized previously in the context of uncertainty
quantification and stochastic closure models [34–37]. In contrast to previous efforts where the full
system equation is used as a constraint, assuming perfect knowledge of the equation form and /or
parameters (e.g., Ref. [30]), the formulated constraint in this paper expresses a universal property of
the advection terms, i.e., that they do not create nor destroy kinetic energy of the flow. To improve the
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stability properties of the computed closures, we also employ imitation learning [38]. This method
is then tested as a proof of concept in turbulent two-dimensional multiphase fluid flows, where an
underlying incompressible carrier fluid advects inertial particles.

We first formulate the objective function used in the training phase. This step also includes the
physical constraint and its derivation using Gauss theorem. We subsequently consider a forced two-
dimensional jet flow. We first take into account the invariance of the flow in one direction to derive
one-dimensional machine-learned closures using direct numerical simulation (DNS) information.
As a next step, we apply the method on the computation of two-dimensional turbulent closures that
do not rely on this special symmetry. We compare the obtained coarse-scale model with DNSs and
assess its generalizability properties for different Reynolds numbers, as well as different jet profiles
which have not been used in the training phase. We thoroughly examine the role of the physical
constraint on the stability properties and accuracy of the coarse-scale equations. In addition, we
assess our closure scheme on capturing the evolution of concentration for inertial tracers, such as
bubbles and aerosols.

II. FORMULATION OF ENERGY-PRESERVING CLOSURE SCHEMES

Our aim is to derive Eulerian, data-driven closure schemes for turbulent fluid flows, as well as
for inertial tracers advected by those. These closure schemes will not only rely on DNS training
data but also on the physical constraint that follows from the energy conservation principles that
the nonlinear advection terms satisfy [34,35]. The effectiveness of the closure schemes is assessed
by how well the coarse-scale equations can reproduce the mean flow characteristics for problems
that reach a statistical equilibrium. Higher order closures may be utilized to improve predictions for
higher order statistics such as the flow spectrum. However, in this paper we will focus on closures
that aim to model the mean flow characteristics.

First, we introduce a spatial-averaging operator that will define the coarse scale version of the
quantities of interest and their evolution equations. Specifically, we decompose any field of interest
f as

f = f + f ′, (1)

where f corresponds to the large-scale component of the quantity and f ′ corresponds to the small-
scale component. As a result, we always have f ′ = 0.

A. Averaged Navier-Stokes equations

We consider the Navier-Stokes equations in dimensionless form:

Du
Dt

= −∇p + 1

Re
�u + ν∇−4u + F, (2)

∇ · u = 0, (3)

where u is the velocity field of the fluid, p its pressure, Re is the Reynolds number of the flow,
D
Dt is the material derivative operator, and F denotes an external forcing term. Parameter ν is a
hypoviscosity coefficient aiming to remove energy from large scales and maintain the flow in a
turbulent regime. Using the decomposition Eq. (1) into the fluid flow Eq. (2) and applying the
averaging operator, we obtain

∂t u = −u · ∇u − u′ · ∇u′ − ∇p + 1

Re
�u + ν∇−4u + F, (4)

∇ · u = 0. (5)
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Clearly, the averaged evolution equations do not comprise a closed system anymore due to the
nonlinearity of the advection term. As a result, the term u′ · ∇u′ is not defined by the evolution
equations and needs to be parametrized.

B. Averaged advection equation for inertial tracers

One can follow a similar process for the advection equation governing the motion of small inertial
tracers. In particular, for small inertia particles their Lagrangian velocity, v, is a small perturbation
of the underlying fluid velocity field [39,40]:

v = u + ε

(
3R

2
− 1

)
Du
Dt

+ O(ε2), ε = St

R
� 1, R = 2ρ f

ρ f + 2ρp
, (6)

where ε = St
R � 1 is a parameter representing the importance of inertial effects, St is the particle

or bubble Stokes number, and R = 2� f

� f +2�p
is a density ratio with �p and � f being the density

of the particle or bubble and the flow, respectively. Equation (6) arises from geometric singular
perturbation theory in the limit of small particle inertia [39]. For this asymptotic limit, the presented
manifold is always attracting trajectories exponentially fast [40]. However, errors due to the finite
order truncation of the asymptotic expansion will result in inaccuracies for timescales larger than
O(ε−2).

By introducing ρ as the concentration of tracers at a particular point, we can write the following
transport equation:

∂tρ + ∇ · (vρ) = ν2�
4ρ. (7)

The right-hand-side of the transport equation represents a hyperviscosity term. Introducing the
decomposition of Eq. (1) in the evolution Eqs. (6) and (7), we obtain

v = u + ε

(
3R

2
− 1

)
(∂t u + u · ∇u + u′ · ∇u′), (8)

∂tρ + ∇ · (vρ) + ∇ · (v′ρ ′) = ν2�
4ρ. (9)

Once again, the closure term ∇ · (v′ρ ′) appears, which requires parametrization. Note that the
evolution equations of the carrier fluid [Eqs. (4) and (5)] and the transported inertial particles
[Eqs. (8) and (9)] are both in dimensionless form.

C. Data-driven parametrization of the closure terms

While the full Navier-Stokes equations and the associated advection equations are Markovian and
spatially local, i.e., the evolution of the flow or concentration field in a specific location and time
instant depends only on the current time instant and the current neighborhood, this is not necessarily
the case for the averaged version of these equations. In particular, for the averaged equations we
typically do not have access to the full-state information required to fully describe the evolution of
the system. In this case, the missing information is the small-scale dynamics.

To overcome this limitation, we recall Takens embedding theorem [15], which states that if we
observe only a limited number of the state variables of a system, in principle, we can still obtain
the attractor of the full system by using delay embeddings of the observed state variables. In other
words, under appropriate conditions there is a map between the delays of the observed state variables
and the full state system. Although the theorem itself is several decades old, we can now rely on
recently developed data-driven schemes that can implement such mapping as part of their training
process, enhancing the accuracy of predictions (see, e.g., Refs. [18,20]). To this end, we parametrize
the closure terms with nonlocal in time (but still causal) representations, based on long-short-term
memory (LSTM) recurrent neural networks (RNNs) and temporal convolutional networks (TCNs)
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[41]. The specific RNN implementation was picked based on its tested ability to incorporate long-
term memory effects of hundreds of time delays, while simpler RNN models suffer from vanishing
or exploding gradients [42].

Beyond nonlocality in time, we also choose to employ nonlocality in space, that is, given a
point in space x, we use information from points that lie in a small neighborhood of x. Clearly,
incorporating information from the entirety of the domain is not only computationally infeasible
but also redundant and can lead to stability issues. For this reason, we use convolutions in space to
make sure that we incorporate information only from a region around each point and not from the
entire domain. The parametrization is based on a stacked LSTM architecture [43], which utilizes
LSTM layers with the detail that all input and recurrent transformations are convolutional.

As a result, the closure terms are modeled in the following form:

u′ · ∇u′(x, t ) = Du[θ1; ξ [α(x), χ (t )]], ∇ · (v′ρ ′)(x, t ) = Dρ[θ2; ζ [α(x), χ (t )]], (10)

where ξ and ζ are (averaged) flow features to be selected, α(x) denotes a preselected neighbor-
hood of points around x over which the averaged state is considered, i.e., α(x) = {x, x + x1, x +
x2, ..., x + xN }, and χ (t ) denotes the history of the averaged state backward from time t , i.e.,
χ (t ) = {t, t − τ1, ..., t − τ2, ..., t − τN }. The vectors θ1 and θ2 denote the hyperparameters of the
neural networks and their optimization is performed empirically. The spatial neighborhood, α(x), is
selected such that if we further increase it, the training error does not significantly reduce anymore.
Note however, that the number of points in space that have to be considered in α(x) is dependent
on the discretization of the domain, i.e., if we increase the resolution of our model, the number of
neighborhood points in α(x) should increase, respectively, so the input information used as input
in the closure always corresponds to the same spatial neighborhood. In the numerical study that
follows, we study the effect of spatial discretization. We use a similar approach for the temporal
history, χ (t ).

1. Temporal integration

We point out that our numerical goal is inline prediction. This means that the neural nets
described by Eqs. (10) must be coupled with the evolution Eqs. (4)–(9). For a simple forward Euler
scheme for temporal integration, this would imply that by knowing the values of u, ρ at time t , we
can predict the closure terms at time t using Eqs. (10) and use their values to integrate Eqs. (4)–(9)
by one time step δt , so we compute u1, ρ at time t + δt . However, if we want to use a higher-order
integration scheme like a fourth-order explicit Runge-Kutta, we need to evaluate the closure terms at
time t + δt/2 as well. Since we do not have access to the required time history for such a prediction,
we instead integrate in time not by δt but by 2δt and thus get a time-integration error for O[(2δt )4].

D. Physical constraints

An important feature of our data-driven closure schemes is the requirement to satisfy certain
physical principles. Specifically, we utilize the energy flux constraint that the advection term does
not alter the total kinetic energy of the model [35,36]. This constraint, follows from Gauss identity.
Specifically, for any scalar field, ψ, β, and divergence-free field, �, we have from Gauss identity,∫

�

∂ψ

∂x j
β� jdx = −

∫
�

∂β

∂x j
ψ� jdx +

∫
∂�

ψβ� jn jdx, (11)

where n j is the unit vector on the boundary, ∂�. Applying the above for ψ = β = uk and � j = u j ,
we obtain the general three-dimensional constraint:∫

�

u · (u · ∇)udx =
∫

∂�

E u · n dx, E = 1

2
u · u, (12)

where � is the domain in which the fluid flow is defined. The above constraint essentially expresses
the fact that the nonlinear advection terms do not change the total kinetic energy of the system. In
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what follows, we will consider the case of periodic boundary conditions, where the right-hand side
in Eq. (12) vanishes. However, the same ideas are applicable for arbitrary boundary conditions. We
apply the decomposition Eq. (1) and the spatial averaging operator to this equation and obtain∫

�

u · (u · ∇)udx +
∫

�

u · (u′ · ∇)u′dx +
∫

�

u′ · (u · ∇)u′dx

+
∫

�

u′ · (u′ · ∇)udx +
∫

�

u′ · (u′ · ∇)u′dx = 0. (13)

From the last equation, we have the physical constraint that the closure term Du must satisfy∫
�

u · Du[θ1; ξ [α(x), χ (t )]]dx = A[u] � −
∫

�

u · (u · ∇)udx −
∫

�

u′ · (u · ∇)u′dx

−
∫

�

u′ · (u′ · ∇)udx −
∫

�

u′ · (u′ · ∇)u′dx, (14)

where A[u] is a function that depends on the training data and the discretization. Such a constraint
can be added to the training process in a straightforward manner through the objective function.
We emphasize that one could formulate a physical constraint based, e.g., on the Navier-Stokes
equations directly. However, this assumes exact knowledge of the flow specifics. This is not the
case here since the above constraint expresses a universal property, i.e., that advection terms do not
create nor destroy energy.

E. Objective function for training

In terms of the training process itself, we normalize the input and output data as usually suggested
(see, e.g., Ref. [44]). The loss function for this problem is chosen to be the single-step prediction
mean-square error superimposed with the physical constraint. This can be formulated as

L(θ1) =
∫

�×T
||Du[θ1; ξ ] − (u′ · ∇)u′||2dxdt+λ

∫
T

∣∣∣∣∣
∫

�

u · Du[θ1; ξ ]dx − A[u]

∣∣∣∣∣dt, (15)

where λ is a hyperparameter which is chosen so the two terms of the loss function are of the same
order of magnitude. More specifically, λ = λ∗ = 101. It also reported that if λ = λ∗/10 is chosen,
then the results are almost identical to the case where the constraint is not used. Furthermore, if
λ = 10λ∗, then the generated closure is unstable both for unimodal and bimodal jets. On the other
hand, for the advection equation, we have the objective function:

L(θ2) =
∫

�×T
||Dρ[θ2; ζ [α(x), χ (t )]] − ∇ · (v′ρ ′)||2dxdt . (16)

Note that a similar constraint with the one in Eq. (15) can be formulated for the mass conservation
property of the tracers. However, this approach is not pursued here. An important question is which
flow features are important as input for each of the two models. We examine this issue in detail in
the following sections.

F. Imitation learning

While the single-step prediction error is used for training, the aim of this paper aims to use
these models for multistep prediction. Any such predictor introduces errors and these compounding
errors change the input distribution for future prediction steps, breaking the train-test independent
and identically distributed assumption that is common in supervised learning. Under these circum-
stances, the error can be shown to grow exponentially [45]. This effect was observed in the current
setup as well, with the averaged equations becoming unstable. To alleviate this problem, a version
of the imitation learning presented in Ref. [45], the Data as Demonstrator (DaD) method, is used. It
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is also noted that since in the current setup, the evolution equation of the carrier fluid is independent
of the evolution of the transported particles, the process can only be showcased for the carrier fluid
closure. This process is shown in an algorithmic manner in Algorithm 1.

Expanding on what Algorithm 1 presents, the algorithm first computes the reference flow features
μRef and reference closure term values DRef

u from DNSs. Then, the neural network for the carrier
fluid closure-term DRef

u is trained. For the next step, define a fixed number of time steps MT and an
error tolerance δ1. The goal of this stage is, for all time instances that are included in the training
set as the fluid flow is evolved for MT time steps forward in time, the L2-error at the final time step
is smaller than δ1. This condition has to be satisfied for all flows that are included in the training
set. If this condition is satisfied, the closure is assumed to be stable and thus the training process
is rendered complete. If not, for each initial training point, mark as Ms the time step forward in
time at which the condition was first violated. The imitation algorithm requires that an artificial data
point [μ∗|t=t+Ms ,D

∗
u(t + Ms)] is created, which corresponds to the value of the closure term that is

required, so the flow features return to their appropriate reference value μDNS(t + Ms + 1) at the
Ms + 1 time step forward. These data points are not physical solutions of some DNS solver. They
artificially introduce stability to the closure scheme so as to allow the model to return close to the
training data when it deviates. This extra amount of data is introduced to the previous set of training
data and steps 1 and 2 of Algorithm 1 are repeated.

This process is repeated until the closure is stable and displays good predictive accuracy in all
training cases. A more rigorous display of this condition is seen in Algorithm 1. For the present
setup, this was achieved after 20 iterations. The same process is followed for the closure scheme of
the transported particles, Dρ = ∇ · (v′ρ ′). Note that noise, in the form of some artificial colored or
white noise, is not added to the training data. However, the use of the DaD algorithm increases the
training size by generating new training data that have noise as a result of the error in the predictions
of the neural network as it is propagated as the flow evolves.

III. FLUID FLOW SETUP

For the validation and assessment of the formulated closures, we consider a two-dimensional
turbulent jet where bubbles are also advected as passive inertial tracers. Specifically, the velocity
field governing the bubbles is different from that of the underlying fluid flow (due to inertia effects),
but the bubbles do not affect in any way the underlying fluid flow.

Algorithm 1. Training of closure scheme.
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We set up a turbulent jet that fluctuates around a steady-state jet solution, ujet. In its dimensionless
form, this system of equations can be written as

Du
Dt

= −∇p + 1

Re
�u + ν∇−4(u − ujet ) + F, (17)

∇ · u = 0, (18)

where u = (u1, u2) and Re = O(103). The domain is assumed rectangular, doubly periodic, i.e.,
x = (x, y) ∈ S2 = [0, 2π ] × [0, 2π ]. For initial conditions, since we desire anisotropy in our flow,
we use Gaussian jet structures of the general form

u1,jet =
∑

i

Ai exp[−ci(y − βi )
2], u2,jet = 0, (19)

where Ai, ci, βi are parameters. The role of the external forcing term, F, is twofold: (i) it contains
a large-scale component to maintain the jet structure by balancing the dissipation term and (ii) it
has a small-scale and small-amplitude component to perturb the flow and trigger instabilities so
we enter a turbulent regime. To achieve turbulence, we choose a forcing term that acts only on a
specific waveband with 6 � ‖k‖ � 7. Exciting a flow with a forcing localized only in a narrow
wave-number interval is common practice in turbulence literature [46–49].

Therefore, we adopt a form F = − 1
R�ujet + f , with f being

f (x, t ) =
∑

i

Ai(t ) cos(k · x + ωi ), (20)

where 6 � |k| � 7, Ai(t ) are random vectors that follow a Gaussian white noise distribution (each
one independent from the other) and ωi are phases sampled from a uniform distribution over [0, 2π ].
The standard deviation for these amplitudes is set to 0.03. This ensures that the energy and enstrophy
inputs are localized in Fourier space and only a limited range of scales around the forcing is affected
by the details of the forcing statistics. Furthermore, such a forcing ensures that the system reaches a
jetlike statistical steady state after a transient phase. Due to the small-scale forcing being essentially
homogeneous in space, we can deduce that the statistical steady-state profile is only dependent on
y (since our large-scale forcing and initial conditions depend only on y). We solve this flow using a
spectral method and 2562 modes.

For the bubbles, we use the perturbed advection field [Eqs. (6)] and the corresponding advection
Eq. (7). For the simulations presented, we use the inertial parameters, ε = 0.05 and R = 2, which
correspond to small bubbles. A typical snapshot of the described flow can be seen in Fig. 1.
During training, unimodal jets of different Reynolds numbers are used with parameter values A1 =
1, c1 = 2, β1 = π . Furthermore, for testing purposes, bimodal jets are considered with the Reynolds
numbers varying and parameters A1 = 1, β1 = 0.8π, c1 = 3 and A2 = 1, β2 = 1.2π, c2 = 3.

IV. TRAINING OF THE CLOSURES

We study the effectiveness of the proposed closure scheme in two different setups. In the first
setup, we take advantage of the translational invariance of the flow in the x direction. This allows us
to obtain a closed averaged equation for the y profile of the jet. In the second case, we do not rely
on this symmetry and obtain closures directly for the two-dimensional flow. We will compare the
adopted architectures for both the case of utilizing the energy constraint presented above and not.

A. One-dimensional closures for the jet profile

We take advantage of the translational invariance of the flow in the x direction and select the
spatial-averaging operator to be integration along the full x direction and local spatial averaging
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FIG. 1. Snapshot of vorticity (left) and bubble density field (right) for a bimodal turbulent jet for Re =
1000, and bubble parameters ε = 0.05 and R = 2.

along the y direction,

f̄ (y) = 1

2π

∫∫
S2

wl (y
′ − y) f (x, y′)dxdy′, (21)

where wl (y′ − y) = 1
2l [H (y′ − y − l ) − H (y′ − y + l )] is the piecewise constant averaging window

of length 2l; here l = 2π
20 . Applying the averaging operator to the governing equations, we obtain

the equation for the y profile of the jet. Note that based on our averaging operator for this case, we
have ū2 = 0 and ū1 is only a function of y. To this end, we have

∂t u1 = −Du1 + 1

Re
∂2

y u1 + ν∇−4(u1 − u1,jet ) + F 1, (22)

∂tρ + ∂y(v2 ρ ) + Dρ = ν2∂
4
y ρ. (23)

Therefore, the objective function used for training of the flow closure takes the form

L(θ1) =
∫

�×T
||Du1 [θ1; ξ ] − (u′ · ∇)u′||2dxdt+λ

∫
T

∣∣∣∣∣
∫

�

u1 · Du1 [θ1; ξ ]dx − A[u]

∣∣∣∣∣dt, (24)

where A[u] = − ∫
�

u′ · (u′ · ∇)u′dx. On the other hand, the objective function for the density field
closure takes the form

L(θ2) =
∫

�×T
||Dρ[θ2; ζ [α(x), χ (t )]] − ∇ · (v′ρ ′)||2dxdt . (25)

The neighborhood α(y) is selected to have five nodes in total,

α(y) = {y + mδy}, δy = 2π/80, m = −2,−1, ..., 2,

while the temporal horizon in the past is selected as

χ (t ) = {t − mδτ }, δτ = 10−2, m = 1, 2, ..., 12.

Both the spatial extent of the neighborhood and the memory are chosen as the threshold values above
which any further increase does not result in a significant difference in the training and validation
errors.
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FIG. 2. (a) Architecture of the LSTM neural network for parametrizing the term Dt = ∂y(u′
1u′

2). (b) Archi-
tecture of the LSTM neural network for parametrizing the term Dt = ∂y(v′

2ρ
′). (c) Mean-square training-error

(solid line) and validation error (dashed line) for Du. (d) Mean-square training-error (solid line) and validation
error (dashed line) for Dρ .

1. Neural network architecture

We assess two different architectures for our closure scheme. In the first case, we represent the
flow closure with three convolutional-LSTM layers and the density closure with four convolutional-
LSTM layers (16 time delays). Further increase of the number of layers does not offer any significant
improvement in the training and validation errors. The adopted architectures are presented in
Figs. 2(a) and 2(b). For the second machine learning architecture, we use four-layer temporal
convolutions to model the memory terms of our closure for both the flow and the density fields.
The architecture in this case is depicted in Figs. 3(a) and 3(b). An important difference between the
two architectures that is worth emphasizing is associated with their computational cost. Specifically,
in the LSTM architecture, we have a memory term that is updated at each time step and, to this end,
LSTM needs to only operate on the flow features at each time step. On the other hand, TCN layers
operate on the entire included time history, making them more computationally expensive.
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FIG. 3. (a) Architecture of the TCN neural network for parametrizing the terms ∂y(u′
1u′

2) and ∂y(v′
2ρ

′).
(b) Inner architecture of a residual block. (d) Mean-square training error (solid line) and validation error (dashed
line) for Du. (e) Mean-square training error (solid line) and validation error (dashed line) for Dρ .

2. Feature selection

The selection of the flow features that are used as inputs for the data-driven closures is done
numerically by testing different combinations of basic flow features. We eventually choose the
combination that minimizes the training and the validation error. It is important to emphasize
that if we rely only on the training error, we run the risk of overfitting. We carry out this process
individually for each of the closure terms for the Navier-Stokes equation and the transport equation.

For the closure term Du, we select as possible flow features the quantities u1, ∂t u1, ∂y(u′
1u′

2). All
input flow features are separately normalized to have variance equal to 1. Table I summarizes the
performance for different combinations over 100 periods for the TCN and LSTM architectures with
the physical constraint. It is observed that while {∂t u1, ∂y(u′

1u′
2)} drastically decreases the training

error, the inclusion of the mean flow profile u1 strongly improves the validation error. Since the best
validation error is achieved in this case, all considered flow features are employed.

For the implementation of the presented closure scheme, the input features are not imposed to
be Galilean invariant. Requiring the input features to be Galilean invariant can be justified when
the closure scheme is intended to model drastically different flows (different boundary conditions,
flow geometry, or significantly different Reynolds numbers). Machine learning universal closures
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TABLE I. Feature selection for the one-dimensional closure of Navier-Stokes

ξ feature selection

cTCN cLSTM

Features Dimesions Train-MSE Val-MSE Train-MSE Val-MSE

u1 1 0.094 1.712 0.102 1.501
∂t u1 1 0.037 0.535 0.041 0.501
∂y(u′

1u′
2) 1 0.028 0.144 0.033 0.139

u1, ∂t u1 2 0.042 0.418 0.056 0.511
u1, ∂y(u′

1u′
2) 2 0.023 0.159 0.028 0.157

∂t u1, ∂y(u′
1u′

2) 2 0.021 0.092 0.026 0.085
u1, ∂t u1, ∂y(u′

1u′
2) 3 0.021 0.029 0.025 0.032

for turbulence are beyond the scope of this effort. This is because this task is associated with extreme
obstacles, such as selection of training data which are representative of essentially every possible
dynamical regime and geometry, and the assumption that there is a machine learning architecture
that can generalize well over such a vast range of conditions. Instead, the goal here is to develop
closures that can generalize well over a family of flows with common topology and dynamics. To
this end, the need for the features to be Galilean is not necessary, since the frame of reference for
all produced jet flows is the same and the magnitude of the examined jets is very similar.

For the closure of the transport equation, we carry out the same process in Table II, where
we present the training and validation error over 100 periods. We observe that the single most
important feature is ρ. Based on the mean-square error (both training and validation), we choose the
combination of u, ρ, ∂t u, ∂y(ρ ′v′). In Fig. 2, we present the values of both validation and training
errors with respect to the number of epochs. These are quite similar, hinting toward generalizability
of the predictions. It is worth mentioning that when spatial derivatives are added to the selected
feature sets shown previously, training and validation error didn’t improve. This could be a result of
nonlocal information of the (averaged) fluid flow profile and density profile used as input, allowing
the convolutions to combine these values in a finite-difference sense to derive spatial derivative
information that is needed. However, in the case of trying to test this model to drastically different
flow setups, the Galilean invariant partial spatial derivatives are probably appropriate to replace the
non-Galilean averaged features, i.e., the fluid flow profile and density profile.

TABLE II. Feature selection for closure of bubble transport equation.

ζ feature selection

cTCN cLSTM

Features Dimensions Train-MSE Val-MSE Train-MSE Val-MSE

ρ 1 0.109 0.150 0.123 0.171
v 2 0.603 0.673 0.592 0.625
v, ρ 3 0.081 0.090 0.094 0.101
v, ρ, ∂tv, ∂tρ 6 0.058 0.060 0.061 0.064
v, ρ, ∂tv, ∂y(ρ ′v′

2) 6 0.028 0.039 0.042 0.088
v, ρ, ∂tρ, ∂y(ρ ′v′

2) 5 0.027 0.036 0.035 0.049
v, ρ.∂tv, ∂tρ, ∂y(ρ ′v′

2) 7 0.025 0.031 0.033 0.044
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TABLE III. Feature selection for closure of Navier-Stokes.

ξ feature selection

cTCN cLSTM

Features Dimensions Train-MSE Val-MSE Train-MSE Val-MSE

u = (u1, u2) 2 0.235 0.521 0.258 0.572
∂t u = (∂t u1, ∂t u2) 2 0.098 0.480 0.112 0.388
Du 2 0.081 0.094 0.092 0.114
u, ∂t u 4 0.069 0.485 0.100 0.522
u,Du 4 0.048 0.082 0.067 0.094
∂t u,Du 4 0.027 0.048 0.034 0.063
u, ∂t u,Du 6 0.020 0.039 0.027 0.055

B. Two-dimensional closures

In this case, our averaging operator was chosen to be local in both dimensions, x and y,

f̄ (x, y) = 1

2π

∫∫
S2

wlx (y′ − y)wly (y′ − y) f (x, y′)dxdy′, (26)

where lx = ly = 2π
12 are the averaging windows in the x and y directions, respectively. As objective

functions, we used Eqs. (15) and (16). The spatial and temporal neighborhoods used in the closures
are chosen as

α(y) = {y + m1δx + m2δy}, δx = 2π/48, δy = 2π/48 and m1, m2 = −2,−1, ..., 2,

χ (t ) = {t − mδτ }, δτ = 1/100, m = 1, 2, ..., 12.

Similarly, with the one-dimensional closures, these numbers are based on the fact that further
increase did not result in a significant difference in the training and validation errors. We employ
the same neural network architectures that we used in the previous section.

1. Feature selection

For the closure term Du (corresponding to the fluid flow), we try as possible flow features the
quantities u, ∂t u,Du. Results are shown for the case where the constraint is adopted (cTCN and
cLSTM) in Table III in terms of training and validation errors. In this case, we observe that the
single most important feature is the history of the Reynolds stresses. Furthermore, we see that the
optimal combination consists of all the examined features.

For the closure of the transport equation, we carry out the same process in Table IV. We observe
that the single most important features seems to be ρ, similar to the one-dimensional case. For the
results that follow, we choose the combination v, ρ, ∂t v, ∂tρ,Dρ , which results in the minimum
validation and testing errors.

V. VALIDATION AND GENERALIZABILITY FOR ONE-DIMENSIONAL CLOSURES

To showcase the generalizability properties of the obtained closures, we train on unimodal jets
and test on bimodal ones. We mention again that the averaged model is one-dimensional and we use
80 points in space to simulate it. We compare the results of the averaged model with the predictions
of the two-dimensional reference solutions that we computed using a spectral method and 2562

modes. Each training case contains data in the time interval T = [200, 600].
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TABLE IV. Feature selection for closure of bubble transport equation.

ζ feature selection

cTCN cLSTM

Features Dimensions Train-MSE Val-MSE Train-MSE Val-MSE

ρ 1 0.199 0.398 0.228 0.451
v = (v1, v2) 2 0.320 0.591 0.318 0.515
v, ρ 3 0.141 0.386 0.162 0.404
v, ρ, ∂tv 5 0.085 0.176 0.087 0.192
v, ρ, ∂tρ,Dρ 5 0.051 0.091 0.061 0.125
v, ∂tρ, ∂tv,Dρ 6 0.030 0.049 0.038 0.068
v, ρ, ∂tρ, ∂tv,Dρ 7 0.016 0.032 0.031 0.047

A. Validation on unimodal jets

As seen in Sec. III, the unperturbed jet profile is chosen as

u1,jet = exp[−2(y − π )2], u2,jet = 0. (27)

We train four different models on unimodal jets of Re ∈ {650, 750, 850}. We use LSTM and TCN
architectures with and without enforcing the physical constraint of Eq. (24). In Fig. 4, we present
the time- and y-averaged mean-square error between the x-averaged profile of the DNS, ū∗ and the
coarse scale model, ū:

||ū∗ − ū||22 = 1

2πT

∫ 2π

0

∫ t0+T

t0

(ū∗(y, t ) − ū(y, t ))2dydt . (28)

We observe that the TCN models clearly outperform the LSTM based closures. Moreover, training
using the objective function that includes the physical constraint [Eq. (24)] for the advective terms
(cTCN and cLSTM) significantly improves the testing results for the two architectures by 23% and
25%, respectively (Table V). This improvement comes at no additional cost in terms of data, but
only using the physical constraint associated with the advection terms, which does not depend on
the knowledge of any physical quantity of the flow or any other system-specific information.

In Fig. 5, we present additional results for the cTCN model (best performer). We showcase
results both for the time-averaged profile for the fluid velocity and for the bubble distribution for

FIG. 4. Normalized error Eq. (28) for one-dimensional closure models using TCN, LSTM, and their
constrained versions, cTCN and cLSTM, for unimodal jets. Training data includes unimodal jets with Re ∈
{650, 750, 850}.

024305-14



MACHINE-LEARNING ENERGY-PRESERVING NONLOCAL …

TABLE V. Error decrease (Reynolds averaged) due to the physical constraint for one-dimensional closure
schemes.

Architecture Jet type Error decrease

TCN-1D Unimodal 23%
LSTM-1D Unimodal 25%
TCN-1D Bimodal 29%
LSTM-1D Bimodal 27%

Re = 1000. Comparisons are made between the time-averaged results that the one-dimensional
closure scheme produces and the time- and x-averaged results of the two-dimensional reference
solution. Specifically, the time-averaged jet profile is computed as

〈u1〉(y) = 1

T

∫ t0+T

t0

u1(y, t )dt, (29)

where ū1 is the x-averaged reference solution and the temporal averaging parameters are chosen as
t0 = 200 and T = 400; note that we omit the first transient part of the simulation.

The results appear to be in very good agreement, showcasing that our closure scheme is able
to predict the statistical steady state of the flow. We can also observe the Rayleigh instability that
the initial jet profile (dashed line) undergoes due to the excitation by the external forcing. We note
that the slight asymmetry that the velocity profile exhibits is due to a minor inhomogeneity of the
forcing term along the y direction. We apply the same operation described above to compute 〈ρ〉
from both the reference solution and the data-based closure scheme [Fig. 5(b)]. Again, we obtain
very good agreement between the machine-learning approach and the reference solution, which has
a nontrivial form, as the bubbles seem to cluster around the core of the jet and be repelled from the
adjacent areas of the jet core.

B. Testing generalizability on bimodal jets

Next we test the generalizability of the closure schemes presented in the previous section on
bimodal jets. Once again, we state that we train on unimodal jets (as described previously) while we
test our scheme on bimodal jets with the unperturbed jet-structure of the fluid flow chosen (as seen
in Sec. III) as

u1 = exp[−3(y − 0.8π )2] + exp[−3(y − 1.2π )2], Re ∈ [500, 1000]. (30)

FIG. 5. Time-averaged profile of u1 (left) and ρ̄ (right) for the one-dimensional cTCN closure model (blue
line) and the DNS (black line). The shape of the jet that is imposed by the large-scale forcing is depicted with
dashed line. The simulation corresponds to Re = 1000 while training included Re ∈ {650, 750, 850}.
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FIG. 6. Normalized error Eq. (28) for one-dimensional closure models error for one-dimensional closures
applied on bimodal jets. Training data includes unimodal jets with Re = {650, 750, 850}.

In Fig. 6, we present the normalized mean-square error Eq. (28) between the reference solution
and the one predicted by the closure model. As we can see, employing the physical constraint
during training significantly improves the results. Specifically, we note that the errors of the cTCN
and cLSTM remain at the same levels observed in the unimodal jet case (i.e., we have good
generalizability properties in different flows), while the unconstrained version has significantly
worse performance compared with the unimodal jet case. In addition, we observe much better
behavior of the constrained closures when we move to Reynolds numbers higher than the ones
used for training. In fact, for sufficiently large Reynolds the schemes based on the unconstrained
closures become unstable.

Results regarding the time-averaged jet profile of u1 and ρ are depicted in Fig. 7 for the cTCN
architecture, where we can observe excellent agreement of the predicted profile with DNSs. We
also apply the closure scheme on the transport Eq. (7) to compute the distribution of bubbles. We
present the comparison of the mean distribution of bubbles between the cTCN closure model and
DNS in Fig. 7(b). We note that the error for this case is slightly more pronounced compared with
the one observed for the mean flow velocity in Fig. 7(a). This can be attributed to two factors: (i) the
predictions of the transport model rely on the predictions of the coarse-scale model for the velocity
field (hence error accumulates) and (ii) the closure model for the bubbles relies only on data since
the energy-preserving constraint is not relevant.

FIG. 7. Time-averaged profile of u1 and ρ̄ for the one-dimensional cTCN closure model (blue line) and the
DNS (black line). The simulation corresponds to Re = 1000 and a bimodel background jet, while training data
for the closures correspond to unimodal jets with Re ∈ {650, 750, 850}. The shape of the jet that is imposed by
the large-scale forcing is depicted with dashed line.
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FIG. 8. Normalized mean-square error Eq. (31) of each two-dimensional closure model using TCN,
LSTM, and their constrained versions for unimodal jets. Training includes data for unimodal jets with
Re ∈ {650, 750, 850}.

A summary of the error improvement in the one-dimensional predictions due to the adoption of
the physical constraint is presented in Table V. We present the improvement of the mean-square
error for the mean flow, averaged over different Reynolds numbers. For all cases, this percentage
ranges between 23% and 29% with the improvement being more pronounced for the bimodal setups,
i.e., the setup that was not used for training.

VI. VALIDATION AND GENERALIZABILITY FOR TWO-DIMENSIONAL CLOSURES

Here we aim to showcase the application of our method on two-dimensional coarse-scale
closures. As previously, we consider two cases: (i) we train on unimodal jets for flows with Reynolds
number Re ∈ {650, 750, 850} and test on unimodal jets in the range Re ∈ [500, 1000] and not
included in the training set and (ii) we once again train on unimodal jets (same Reynolds as before)
and test on bimodal jets in the same Reynolds range as in case (i). For the coarse-scale model,
we employ a resolution of 48 × 48, complemented with the ML-closure terms. We compare the
energy spectra at the statistical steady state of the flows between the coarse-scale predictions and
the two-dimensional reference solutions, i.e., for t ∈ [200, 600].

A. Testing on a unimodal jet

In Fig. 8, we present the space-time-averaged mean-square error between the x − y locally
averaged DNS flow field [using Eq. (26)], ū∗, and the coarse scale model, ū:

||ū∗ − ū||22 = 1

(2π )2T

∫ 2π

0

∫ 2π

0

∫ t0+T

t0

(ū∗(x, y, t ) − ū(x, y, t ))2dxdydt . (31)

The results are in full consistency with the one-dimensional closures, i.e., cTCN has the best
performance. We also present a detailed comparison for Re = 800 between the coarse model and
the DNS in terms of the energy spectrum and mean profile the flow (Fig. 9). The energy spectrum
is computed by obtaining the spatial Fourier transform at each time instant and then considering the
variance of each Fourier coefficient over time. We plot the energy spectrum in terms of the absolute
wave-number values. For both the flow field and bubble field, the coarse- model is able to accurately
capture the mean profiles as well as the large scale features of the spectrum.

B. Testing generalizability on bimodal jets

We proceed to test the generalizability of the two-dimensional closure schemes on bimodal jets.
The setup is identical with the one adopted for one-dimensional closures. In Fig. 10, we compare
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FIG. 9. Comparison of energy spectra and mean profiles for the flow velocity field [(a), (c)] and the bubble
velocity field [(b), (d)] for unimodal jets. Blue lines correspond to DNSs on a 256 × 256 grid and the black
circles correspond to the coarse model using two-dimensional closures (cTCN) on a 48 × 48 grid for Re = 800.

the normalized mean-square error between the locally averaged DNS solution and the one obtained
form the coarse model. Consistent with previous results, the cTCN has the best performance. It is
interesting to note that the performance is even better in the Reynolds regime outside the training
data, i.e., for Re > 850.

The energy spectrum of the fluid velocity and the bubble velocity field as well as the corre-
sponding mean profiles are compared with DNSs for Re = 800 in Fig. 11. In this case, we note
that while there is good agreement between the mean profiles, there is some discrepancy between

FIG. 10. Normalized mean-square error Eq. (31) for two-dimensional coarse models applied on bimodal
jet flows. Training used data from unimodal flows with Re = {650, 750, 850}.
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FIG. 11. Comparison of energy spectra and mean profiles for the fluid velocity field [(a), (c)] and the
bubble velocity field [(b), (d)] for the case of a bimodal jet with Re = 800. Blue lines correspond to DNSs on
a 256 × 256 grid and the black circles correspond to a coarse-model with two-dimensional cTCN closures on
a 48 × 48 grid.

the approximate and exact spectra. To understand better the source of this discrepancy, we plot
the energy spectrum of the flow in the kx, ky space (Fig. 12). As can be seen, the coarse model
overestimates the spread of the energy of the fluctuations only in the x direction, which is consistent
with the fact that the mean y profile of the flow is accurately modeled. This is not surprising given
that the developed closures in this paper are designed to capture well the mean flow characteristics
and not necessarily the energy spectrum. A closure approach based on second-order statistical
equations (see, e.g., Ref. [36]) is beyond the scope of this paper and will be considered elsewhere.

The overall improvement in the two-dimensional predictions due to the adoption of the physical
constraint is summarized in Table VI, where we show the improvement of the mean-square error for
the mean flow, averaged over different Reynolds numbers. We note that for the TCN architecture, the
improvement is more pronounced, close to 30%, and it is also robust for the case of a bimodal jet.

TABLE VI. Error decrease (Reynolds averaged) due to the physical constraint for two-dimensional closure
schemes.

Architecture Jet type Error decrease

TCN-2D Unimodal 30%
LSTM-2D Unimodal 20%
TCN-2D Bimodal 33%
LSTM-2D Bimodal 31%
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FIG. 12. Energy spectrum of the fluid flow for the bimodal jet for Re = 800. Comparison between the DNS
(left) and the coarse-model based on 2D cTCN closures (right).

A quick comparison with the error-decrease values in Table V shows the L2-error improvement
is slightly better in the 1D (zonally averaged) coarse-scale model than in the 2D coarse-scale
model. This result could be attributed to the fact that a 1D model will be less turbulent compared
to a 2D coarse-scale simulation due to zonally averaging the flow and thus essentially neglecting
perturbations along the x axis, making the simulations more stable.

C. Dependence on the coarse-model grid size

Finally, we showcase a numerical investigation for the relationship between the chosen grid
size for the coarse-scale simulations and the mean-square error of the velocity of the fluid flow.
For all results presented below, training data was chosen as previously (unimodal jets) and results
are presented for bimodal jets. In Fig. 13(a), we vary the size of a Nx × Ny grid with Nx = Ny ∈
{16, 24, 32, 40, 48, 64, 80, 96}. We notice that there is significant improvement in our predictions
as we refine the grid up to a grid size of 64 × 64 where the error saturates.

Since the variation of the mean profile of the flow is only along the y direction, having a coarser
resolution along the less significant x direction should not hinder the predictions. To validate this
property, we maintain a constant discretization in the x direction and vary the grid size only in the

FIG. 13. Root-mean-square error for different grid-sizes using two-dimensional cTCN closures on
bimodal jet.
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y direction. Results are demonstrated in Fig. 13(b), showing clearly that by having a fine resolution
only in the y direction is sufficient to achieve comparable performance with the fine resolution case
in both directions: Nx = Ny = 96.

D. Limitations

While the proposed method adequately predicts flows that are distinct from those of the training
set, it is important to state that the computed closure is not expected to be as effective in every fluid
flow. This is due to the fact that, depending on the specifics of a fluid flow, such as dimensionality,
boundary conditions, domain geometry, excitation terms, and the presence of additional dynamics
such as Coriolis terms, the nonlinear interactions between scales are different. Therefore, aiming to
machine learn universal closures that will work for every case is beyond the scope of this paper.
Instead, our approach is to employ data from flows that have some common features with the
flow we are interested in modeling, and combine this data with a universal constraint, the energy
conservation by the nonlinear terms, to increase the accuracy of the computed closures. The optimal
choice of input features is also expected to vary depending on the specifics of the flow and therefore a
numerical examination of different combinations should be performed to achieve the most effective
closure.

VII. CONCLUSIONS

We have demonstrated the application of the energy conservation property of the advection
terms on machine-learning nonlocal closures for turbulent fluxes. We have adopted two neural
network architectures, based on LSTM and TCN, to further include memory effects in our analysis.
Clearly, the physical constraint is not restricted to these two frameworks and can be employed in
other machine-learning architectures, as well as other fluid systems (e.g., environmental flows). We
demonstrated the computed closures in two-dimensional jets in an unstable regime and showed
that closures obtained from unimodal jets can be used for different jet geometries. The adoption
of the physical constraint significantly and consistently improved the accuracy of the mean-flow
predictions obtained from the corresponding coarse-scale models independently of the adopted
architecture or the flow setup. This improvement was on average 26% for one-dimensional closures
and 29% for two-dimensional closures, being notably larger for flows that were not used for training.
Moreover, the constraint improved the numerical stability of the coarse-scale models, especially in
Reynolds numbers, which were higher than the ones included in the training data sets. While the
adopted examples are relatively simple, yet unstable, fluid flows, the presented energy constraints
do not depend on the complexity of the flow. They are applicable for more complicated setups
including boundary flows and transition phenomena–directions that we plan to pursue in the future.
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APPENDIX: COMPARISON OF A LOCAL CLOSURE-SCHEME APPROACH
WITH NONLOCAL CLOSURE SCHEMES

To showcase the numerical benefits of using spatiotemporally nonlocal closure, it is first stated
that when using a local closure in tandem with the constraint, the L2 prediction error for a unimodal
jet of Re = 800 is 0.49. Furthermore, the computational cost to evolve the system by one time step
is 3 × 10−3 [s], run on a single core of an Intel i9 2.3 GHz processor. In Table VII, prediction
improvement and computational cost increases compared to the local closure scheme are presented
for closures that are only nonlocal in time, only nonlocal in space, and finally spatiotemporally
nonlocal.
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TABLE VII. Error improvement and increase of computational cost with respect to a local closure scheme
for a unimodal jet of Re = 800.

Architecture Error decrease Inline cost increase Training cost increase

Spatially nonlocal closure 11% 285% 665%
Temporally nonlocal one-layer LSTM 30% 120% 365%
Temporally nonlocal three-layer LSTM 35% 250% 410%
Temporally nonlocal two-layer TCN 21% 380% 620%
Temporally nonlocal four-layer TCN 43% 610% 1100%
Spatiotemporally nonlocal one-layer LSTM 51% 700% 1830%
Spatiotemporally nonlocal three-layer LSTM 56% 1100% 3180%
Spatiotemporally nonlocal two-layer TCN 50% 950% 3410%
Spatiotemporally nonlocal four-layer TCN 80% 2820% 6840%
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