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Applicability of large eddy simulations to capture turbulence
attenuation in particle-laden channel flows
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We report a critical assessment on the applicability of the large eddy simulation (LES)
technique in predicting turbulence modulation due to the presence of particles with high
Stokes numbers. The simulations have been performed for two Reynolds numbers of 3300
and 5600 based on average gas velocity and channel width. An increase in particle loading
decreases the turbulence intensity, and at a particular volume fraction, the turbulence
collapses due to the catastrophic reduction of turbulence production. It is observed that at
low volume fractions, LES models predict the turbulence modulation with high accuracy
(>80%) but fail to predict the volume fraction [critical particle volume loading (CPVL)] at
which turbulence collapse happens. A detailed analysis shows that an inaccurate prediction
of the turbulent energy production is the source of error in CPVL prediction. This is
contrary to the usual understanding of the limitation of the LES models in predicting
accurate energy dissipation.

DOI: 10.1103/PhysRevFluids.7.024302

I. INTRODUCTION

Particle-laden turbulent flows are ubiquitous in industrial processes such as coal combustion,
fluidized bed reactors, pneumatic transport of solid particles, particulate industrial exhaust, etc., and
natural processes such as sand and dust storms. A detailed understanding of interactions between
gas and particle phase is required to design process equipment with higher and energetically efficient
performance. Different length and time scales associated with the turbulent flows make it difficult
to understand the interaction between the particle and fluid phases. The dynamics of both phases
depend on the flow conditions such as fluid phase Reynolds number, particle inertia, and particle
mass loading. The particle-particle and particle-wall interactions also play a significant role in
determining the dynamics [1].

In last two decades, a number of numerical techniques have been used to address the issues such
as particle clustering at low Stokes number [2,3] and fluid-phase turbulence modulation [1,4–14]. In
a few of the earlier studies, the Reynolds averaged Navier-Stokes (RANS) equation has been used to
model the fluid phase [15–17]. Such an approach can predict the average properties of both phases.
However, fluctuating dynamics are not captured well, which is important in understanding mass
and heat transfer processes in gas-solid turbulent flows. Direct numerical simulation (DNS) has
also been applied to solve the fluid phase equations. The hard-sphere molecular dynamic simulation
strategy has been used to address the particle dynamics in a Lagrangian frame [6,10,14,18–22].
However, the major disadvantage of DNS is that it is computationally very expensive, which
restricts its use to low Reynolds number and for a small system size. Even with the advent of the
high-speed computing system, it is almost impossible to perform DNS for a system size that is of
practical importance. Considering the limitation of RANS in predicting fluctuating dynamics and the
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computationally expensive nature of DNS, the large eddy simulation (LES) plays an important role
in predicting fluctuating dynamics at high Reynolds numbers. In LES, large scale motions which are
responsible for turbulent momentum transfer and mixing are resolved, and different closure models
are used to model the subgrid scale stresses.

The first LES closure model was proposed by Smagorinsky [23], although it was found to suffer
from high dissipation for certain flows such as wall-bounded flows and jet flows. In subsequent
studies, different authors have used different values of the Smagorinsky coefficient (Cs) depending
on the system geometry [4,24–26]. Canuto and Cheng [27] have discussed the assumptions of
the Smagorinsky-Lilly model and reported a decrease in Cs by a factor of 2–3 compared to the
theoretical value. The dynamic Smagorinsky model is found to perform better than the Smagorinsky
model [28] as the eddy diffusivity is calculated dynamically with the evolution of the flow in the
case of the former. Fureby et al. [29] have reported that both the models suffer to accurately predict
the streak spacing in a turbulent channel flow, although the second moment of the fluid velocity
fluctuations is well predicted.

In the case of particle-laden flows, Kuerten and Vreman [30], and Kuerten [31] studied the
turbophoresis phenomenon and concluded that the turbophoresis cannot be captured accurately
without the particle subgrid scale (SGS) model. Marchioli et al. [32,33] found that LES predicts
the particle velocity statistics satisfactorily. However, the particle segregation is not predicted well,
especially near the wall for a wide range of Stokes numbers. They suggested that introducing
the correct level of velocity fluctuations in the particle equation of motion may not be enough
to eliminate that discrepancy; a rendering of flow fields might be needed. Marchioli et al. [32]
and Stolz et al. [34] performed the simulation with the approximate deconvolution model (ADM)
technique for fine and coarser grids. ADM can recover a portion of the filtered velocity, but it cannot
recover the fluctuation modes that are lost in the filtering process [35]. A transport equation for SGS
kinetic energy to recover the loss of energy due to filtering did not improve the particle statistics
[36]. The particles are less affected by the small scale eddies as the Stokes number increases [37].
A comprehensive assessment of the particle subgrid scale models is performed by Cernick [38].
Marchioli [39] has reviewed the effect of subgrid scale fluctuation on the particle phase statistics
and different particle subgrid scale models. From the data available in the literature, it was shown
by Marchioli [39] that subgrid scale fluctuations have minimal effect on the particle statistics if the
particle subgrid Stokes number based on the subgrid scale fluid time scale calculated at the particle
Lagrangian position is greater than 5. It is worth noting that the present study deals with the particles
having subgrid Stokes number almost two orders of magnitude higher than the cutoff limit.

A majority of the numerical studies which use LES have used the one-way coupling technique
without considering the particle-particle collisions [30,31,33,35–37,39–44]. Therefore, these studies
did not address the applicability of LES models on capturing the effect of particle phase on
turbulence modulation. The different approaches used in LES have been reviewed by Kuerten [45].
The turbulence modulation has been studied experimentally by Kulick et al. [7], Kajishima [8],
and Coletti et al. [9], and numerically via DNS by Vreman et al. [10], Li et al. [11], Vreman [6],
and Muramulla et al. [12]. It has been observed that turbulence modulation depends on different
parameters such as Stokes number, particle Reynolds number, mass loading, bulk Reynolds number,
etc. In two-way coupled DNS, Battista et al. [46] extended the exact regularized point particle
(ERPP) method [47] to account for the effect of a wall on the vorticity induced by the inertial
particles. The effect of an additional stress term generated due to interphase coupling affects the
turbulence intensity. The authors have observed a reduction in the Reynolds stress and increased
viscous stress due to an increase in momentum flux toward the wall. Consequently, the drag
increases. The effect of feedback force increases with an increase in mass loading. Nasr and Ahmadi
[48] have reported the effect of interparticle collision on turbulence modulation using the RANS k-ε
model in a 2D vertical channel for Reτ ∼ 644. It was observed that fluid fluctuation decreases when
interparticle collisions are considered. There is an increase in fluid fluctuation with an increase in
volume loading if interparticle collisions are not considered. Wang et al. [49] have compared the
results of the point particle method with the available experimental results. They have reported
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that at low volume loading (φv ≈ 3 × 10−6), there is a good match between the simulation results
with experiments, but at relatively higher volume loading, the simulations overpredicts near-wall
concentration. Peng et al. [50] performed two-way coupled simulations for fully resolved neutrally
buoyant particles using the lattice Boltzmann method (LBM). They considered the effect of particle
rotation and lubrication effects between the particles in their study. They observed that the small
particles have more tendency to form clusters compared to the larger ones. The clusters are found
to be aligned along the streamwise direction. It is reported that the rate of production due to mean
shear is reduced by the particles as velocity gradient is decreased in the buffer region. The regions
of turbulence attenuation and augmentation were first classified based on the ratio of integral length
scale and particle diameter [51]. Then, Tanaka and Eaton [52] found that there exists a region of
attenuation between two augmentation regions depending upon the two dimensionless numbers
based on particle Reynolds number and Stokes number.

Most of the studies which use LES models for the particle-laden flows are aimed to improve the
prediction of particle statistics such as particle velocity, preferential concentration or segregation,
etc., considering one-way coupling where turbulence modification is not considered. Soldati and
Marchioli [53] investigated the sedimentation and resuspension in open channels, closed channels,
and wavy channels at Reτ = 150. They have used one-way coupling without any particle-particle
interactions. The authors have commented about the need for particle subgrid scale models to
accurately predict the particle concentration at low Stokes numbers. A summary of the literature
on particle-laden LES for channel flow is given in Table I. There are only a few works reported
on two-way coupled LES. Yamamoto et al. [1] considered two-way coupling and observed the
turbulence attenuation for particles with small Stokes number. The important conclusion of their
study was that the particle collisions are significant when volume fraction is even as small as order
of 10−4. Vreman et al. [10] and Mallouppas and van Wachem [5] studied the effect of two-way
and four-way coupling in a vertical riser and horizontal channel cases, respectively. The effect of
particles on turbulence modulation was found to be negligible as the considered volume fraction
was very low in the study of Breuer and Alletto [13]. In a recent DNS study, Muramulla et al.
[12] and Kumaran et al. [19] reported that turbulence attenuation increases as the volume fraction
increase up to a certain volume loading, and then there is a drastic collapse in turbulence after which
there is no change in turbulence intensities. In the present article, the volume loading at which the
second moment of fluid velocity fluctuation decreases at least one order of magnitude compared
to the unladen flow and the turbulence production collapses drastically has been referred to as
critical particle volume loading (CPVL). The present paper covers two objectives: first, a detailed
assessment of the performance in predicting the turbulence modulation for a range of volume
fractions at the limit of high Stokes number; the other is to check the capability to predict critical
volume loading at which there is a complete collapse of turbulence. To the best of our knowledge, the
performance of the widely applied LES models, Smagorinsky, and dynamic Smagorinsky models
to predict the turbulence modulation considering four-way coupled wall-bounded simulations for a
wide range of volume fraction in the limit of high Stokes number has not been assessed so far.

The paper outline is as follows: In Sec. II, the methodology for LES and particle-phase equations
is discussed along with simulation parameters. In Sec. III, fluid-phase statistics simulated with two
subgrid scale (SGS) models are presented at two different Reynolds numbers. This is followed by
the conclusions in the last section.

II. GOVERNING EQUATIONS

A. Fluid phase equations

The fluid phase has been considered to be incompressible and described by the filtered continuity
and Navier-Stokes equations,

∂ ũi

∂xi
= 0 (1)
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and

∂ ũi

∂t
+ ∂ ũiũ j

∂x j
= − 1

ρ f

∂ p̃

∂xi
+ ν

∂2ũi

∂x j∂x j
+ ∂ (̃uiũ j − ũiu j )

∂x j
+ f̃i(x, t )

ρ f
, (2)

where ũi is the filtered velocity, p̃ is the filtered pressure, ρ f is the fluid density, and ν is the kinematic
viscosity. f̃ (x, t ) is the feedback force by the suspended particles. Both the drag and lift forces are
considered in the feedback force term and can be expressed as

f̃i(x, t ) = −
∑

I

(
F D

i,I + F L
i,I

)
δ(x − xI ), (3)

where xI is the position of the Ith particle, x is the fluid node, F D
i,I and F L

i,I are the drag and lift forces
on the particle I, and δ(x − xI ) is the Dirac delta function in three dimensions. The third term on the
right hand side of Eq. (2) is the subgrid scale stress and requires closure. We have used Smagorinsky
and dynamic Smagorinsky formulations to model this term. Since the solid volume fraction is much
lower compared to the continuum air volume fraction, we do not include any fluid volume fraction
term (φair

v ≈ 1) in the fluid-phase momentum equation.
The in-house LES code “pLadenLES” is built upon an already validated direct numerical

simulation (DNS) code [12]. The closure term in Smagorinsky and dynamic Smagorinsky models
is calculated in physical space. The detailed simulation procedure for calculation of feedback
force, near-wall corrections in lift and drag, and corrections for the undisturbed velocity at particle
locations are discussed in an earlier work [12,19,20]. The LES code is verified by comparing the
results with Ref. [12] for Reb(ū × 2δ/ν) = 3300, where ū is the bulk velocity and δ is half-channel
width. The experimental data of Eckelmann [54] and DNS data from Muramulla et al. [12] and
Moser et al. [55] are used to validate the Reb = 5600 case for unladen flow.

Smagorinsky and dynamic Smagorinsky model

Here, we briefly discuss the two widely applied Smagorinsky and dynamic Smagorinsky closure
models used in the “pLadenLES” code. In the Smagorinsky model the SGS stress term (̃uiũ j − ũiu j)
is expressed as

−τi j = ũiũ j − ũiu j = 2νt S̃i j, (4)

S̃i j = 1

2

[
∂ ũi

∂x j
+ ∂ ũ j

∂xi

]
, (5)

where νt is eddy viscosity, and S̃i j is the filtered strain rate tensor. The eddy viscosity is written as

νt = (Cs	̃)2 |̃S|, (6)

|̃S| =
√

2S̃i j S̃i j . (7)

In the above equation, |̃S| is the magnitude of the strain rate, Cs is the Smagorinsky coefficient,
and 	̃ = (	̃1	̃2	̃3)1/3 is the cube-root volume of grid size. 	̃1, 	̃2, and 	̃3 are the grid spacing
in the x, y, and z directions, respectively. Cs = 0.125 is used in the simulations. The specified Cs

produces mean and second moments of the fluctuations which are comparable with the results of
DNS for unladen flow. The van Driest damping is implemented to satisfy the wall-normal scaling
of turbulent stress. A factor of [1 − exp(−y+/A+)] is multiplied with Cs, where y+ is wall-normal
distance in viscous units and A+ = 26 [56]. In the case of the dynamic Smagorinsky model [57],
the Smagorinsky coefficient is calculated dynamically with the time evolution of the velocity field
rather than providing a constant value. Germano’s identity is used to calculate the Cs and the tilde
over tilde (˜̃. ) represents the second filtering operation over the filtered quantity. The Leonard stress
(Li j), grid-level stress, and test level stress tensor are related by Germano’s identity to calculate the
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Smagorinsky coefficient as follows:

Li j = ˜̃uiũ j −˜̃uĩũ j, (8)

Mi j = 2	̃2 ˜̃SS̃i j − 2˜̃	2˜̃S˜̃Si j, (9)

Cs = 〈Mi jLi j〉
〈MklMkl〉 . (10)

The box filter with twice the grid size is used as a test filter in the dynamic model to calculate the
Smagorinsky coefficient (Cs). In this approach, two assumptions are made. First, the SGS stress
scales with the filter width; i.e., Cs is a constant with the filter width, and second, Cs varies slowly
in the space to be justifiable outside the integral. The averaging over the homogenous plane, which
is expressed by (〈. . .〉), is required to avoid the negative value of Cs locally [58]. More details of the
SGS models can be found elsewhere [57,58].

B. Particle phase description

The dynamics of discrete particles are described using Newton’s second law of motion. Particle-
particle and particle-wall interactions have been accounted for through the Lagrangian tracking
of the particle center of mass. Particle-particle and particle-wall interactions are considered to be
elastic and smooth. The particle motion is described by Eq. (11),

mp
dvi,I

dt
= F D

i,I + F L
i,I +

∑
I �=J

Fi,IJ + Fi,Iw + mpg, (11)

where vi,I is the velocity of the Ith particle, Fi,IJ is the interaction force between the Ith and
Jth particle, Fi,Iw is the interaction force between the Ith particle and wall, g is the gravitational
acceleration, F D

i,I is the drag force, and F L
i,I is the lift force exerted on the particle. The drag force is

calculated using the inertia corrected drag law (Schiller-Naumann correlation [59]) as given here,

F D
i,I = 3πμdp[̃ui,I (x, t ) − vi,I ]

(
1 + 0.15Re0.687

p

)
. (12)

The collisions between the particle-particle and particle-wall have been modeled using hard-sphere
elastic collisions. To calculate the drag, a point particle approximation has been used. However, in
the near-wall region, the grid size in the wall-normal direction can be smaller than the particle size.
Thus, the force on the grid is calculated from the fraction of particle surface present in the cell. Drag
and lift have been calculated using the fluid interpolated velocity at the particle location. Detailed
methods for interpolation of fluid velocity field and the correction due to self-perturbation induced
by the particle have been reported in our earlier work [12].

C. Simulation methodology

The simulations have been performed in a vertical channel with dimensions 8πδ × 2δ × (4/3)πδ

in streamwise (x), wall-normal (y), and spanwise (z) directions, respectively (Fig. 1), where δ is the
half-channel width. The pseudospectral method is used for solving filtered Navier-Stokes equations.
No-slip boundary conditions are applied on the walls. The Smagorinsky and dynamic Smagorinsky
models are used for subgrid scale (SGS) closure. Simulations are performed at two bulk Reynolds
numbers (Reb = ρ f × ū × 2δ/μ f ) 3300 and 5600 based on the channel width (2δ) and average
fluid velocity (u). The Reynolds number based on the unladen frictional velocity and half-channel
width, Reτ , corresponds to 115 and 180, respectively. In our simulations, flow is resolved with 64 ×
65 × 32 and 128 × 65 × 64 grid points for bulk Reynolds numbers of 3300 and 5600, respectively.
For Reynolds number of 5600, the grid resolution is decided as per the study of Wang and Squires
[36]. The number of grids for lower Reynolds number (Reb = 3300) is decreased in order to have
almost the same 	x+ and 	z+ as for Reb = 5600. In the present study, 	x+ = 45, 	z+ = 15 and
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FIG. 1. Schematic of the vertical channel.

	x+ = 35, 	z+ = 12 are used for Reynolds number of 3300 and 5600, respectively. The number
of grids used for the computations is the same for both the LES models. The first grid point in
the wall-normal direction is such that y+ is less than 1. The (+) symbol indicates that the quantity
is normalized with viscous scales. The time step used in the simulations is (0.0083h/u), where
h = (2δ) is channel width and u is fluid bulk velocity. The pressure gradient is adjusted to maintain
a constant bulk flow rate. We have validated the LES results for unladen flows and provided the
results in the Appendix. The results on two-phase velocity statistics for both the Reynolds number
of 3300 and 5600 are compared with DNS results [12].

The material density of the particle (ρp) is 2000 kg/m3 and the diameter (dp) is 39 μm. As the
density ratio of the particle to fluid is higher, the buoyancy and Basset history effects are neglected
in the particle’s equation of motion. The Stokes number (St = τp/τ f ) is 105.47 and 179.74 for
Reynolds number of 3300 and 5600, respectively. Here, the viscous relaxation time of the particle
is τp = ρpd2

p/18μ f and the fluid time scale is τ f = 2δ/u. Few of the earlier studies [1,30,31,33]
considered the fluid time scale based on the viscous units. The main focus of those investigations
was to perform LES to predict the particle dynamics and concentration profiles in particle-laden
flows. Those studies were performed using the one-way coupled technique for low volume fractions.
Therefore, variation of the friction velocity and a consequent change in computed fluid time scale
were not captured. On the other hand, Kulick et al. [7], Vreman et al. [10], and Gualtieri et al.
[60] used the Kolmogorov time scale to obtain the Stokes number. Their studies were motivated
toward the prediction of preferential clustering of the particles. To address the large scale fluctuating
dynamics in particle laden flows, Vreman [14], Kumaran et al. [19], Squires and Eaton [3], and
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FIG. 2. Fluid phase velocity statistics. (a) Streamwise mean velocity normalized by unladen frictional
velocity. (b) Streamwise fluid fluctuations. (c) Wall-normal fluctuations. (d) Cross-stream stress normalized by
bulk velocity. S: Smagorinsky model. DS: Dynamic Smagorinsky model. DNS: Direct numerical simulation.
Bulk-averaged Reynolds number (Reb) is 3300.

Muramulla et al. [12] have used the integral scale to obtain the particle Stokes number. In the
present study, the simulations are performed at high volume fractions using the two-way coupled
technique. A significant change in the frictional velocity with an increase in particle loading is
observed [as shown in Fig. 2(a)]. This leads to a variation in the fluid time scale computed using
friction velocity if particle volume fraction is increased. Therefore, the fluid time scale in the viscous
unit is a simulation output. It is worth mentioning that the bulk averaged fluid velocity is the same
for all the particle volume fractions. The present article deals with the modulation of turbulent
intensities and modification of turbulence production, which are related to large scale fluctuations.
Therefore, we have chosen an integral fluid time scale (δ/ū), which is the same for all the particle
loading and can be calculated using input variables. The Stokes numbers based on the viscous scale
(for unladen cases) are 1718.1 and 4231.8, which correspond to the Stokes numbers 105.47 and
179.74, calculated using the integral fluid time scale.

III. RESULTS

First, we discuss turbulence modulation and collapse with the increase in particle volume
fraction. The predictions by LES models are compared with the DNS results. Then we explore
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the origin of the differences in results predicted by LES compared to DNS through the analysis
of fluid-particle relative velocity distributions, momentum, and energy balances of fluid phase at
different particle loading. In all the figures, plots in red lines are shown for Smagorinsky, blue
colored lines are for dynamic Smagorinsky, and the black lines are for DNS and filtered DNS. The
notations S in the legends are used for Smagorinsky, DS for dynamic Smagorinsky, DNS for direct
numerical simulation, and FDNS for filtered DNS throughout the article.

A. Fluid phase velocity statistics

Fluid phase statistics obtained from LES of the particle-laden flows are compared with DNS for
Reynolds number of 3300 as shown in Fig. 2. In Fig. 2(a), streamwise mean velocity normalized by
unladen frictional velocity is plotted as a function of wall-normal distance for a wide range of solid
volume fractions. For both the LES models, the mean velocity starts to deviate from the DNS profile
as the volume fraction (φ) increases beyond 2 × 10−4. Both the models show a decrease in velocity
at the viscous sublayer and buffer layer, but at the channel center, the velocity is higher than that
predicted by DNS. This happens up to a volume fraction of 6 × 10−4 in LES for both the models.
The departure from the DNS results becomes more prominent at a volume fraction of 6 × 10−4,
which is related to the overprediction of turbulence modulation by LES models at that volume
fraction. Figures 2(b)–2(d) show the second moments of the fluid velocity fluctuations normalized
by the average fluid velocity. The streamwise fluid fluctuations are overpredicted compared to DNS
at low volume fractions. The fluid fluctuations decrease as the volume fraction is increased. For
streamwise mean square fluctuations, there is only 22% decrease in the peak value as the volume
fraction is increased from 0 to 6 × 10−4 for DNS. However, there is a prediction of 50% and 30%
decrease in the peak value for streamwise fluid fluctuations as the volume fraction is increased from
0 to 5 × 10−4 for the Smagorinsky and dynamic Smagorinsky model, respectively. Then, a further
increase in volume fraction from 5 × 10−4 to 6 × 10−4 results in an almost 1.5 order of magnitude
decrease for both the LES models. A similar observation on the decrease in the streamwise fluid
fluctuations was reported by Muramulla et al. [12] at a higher volume fraction (10−3) using DNS
study.

A drastic decrease is also observed in the second moment of wall-normal fluctuation. There is a
45% decrease in the peak value of u′2

y/u2 as volume fraction is increased from 0 to 6 × 10−4 in the
DNS predictions. However, there is 70% and 60% decrease in the wall-normal fluid fluctuations as
the volume fraction is increased from 0 to 5 × 10−4 for the Smagorinsky and dynamic Smagorinsky
model, respectively. A further increase in volume fraction from 5 × 10−4 to 6 × 10−4 results in
almost two orders of magnitude decrease for both the LES models. There is 60% and 40% decrease
in the Reynolds stress as the volume fraction is increased from 0 to 5 × 10−4 for the Smagorinsky
and dynamic Smagorinsky model, respectively. However, only a 30% decrease in Reynolds stress is
predicted by DNS for an equivalent increase in the particle volume loading as shown in Fig. 2(d).
If the volume fraction is increased from 5 × 10−4 to 6 × 10−4, there is prediction of almost 1.5
orders of magnitude decrease in Reynolds stress by both the LES models. For the same St and
Reb, the decrease of approximately 1.5 orders of magnitude in the Reynolds stress was reported in
Ref. [12] from the DNS study if φ is increased to 1 × 10−3. A similar exercise is performed at a
moderate Reynolds number (Reb = 5600). The results show a similar feature of a drastic decrease in
turbulence intensity beyond a certain volume fraction and overprediction of turbulence attenuation
by LES models compared to DNS. The figures to show the variation of different components of
fluctuations are not shown here, but a channel averaged description is provided below.

The above discussion demonstrates that both the LES models successfully predict turbulence
attenuation with increased particle volume fraction. However, at a relatively higher volume fraction,
the extent of turbulence attenuation is overpredicted by the LES models compared to DNS. Since
the modulation of turbulence fluctuations is not the same at all the wall-normal locations, a wall-
normal averaged value for different volume fractions can be a good indicator to quantify the extent
of turbulence modulation. Such a method may also help to identify the volume fraction at which
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FIG. 3. Average of second moments of fluid velocity fluctuations plotted for a range over average volume
fractions (φav). (a) Streamwise, (b) wall-normal, (c) cross-stream, and (d) spanwise direction. The dashed lines
with open symbols are for Reb = 3300, and solid lines with filled symbols are for Reb = 5600. S: Smagorinsky
model. DS: Dynamic Smagorinsky model. DNS: Direct numerical simulation.

turbulence collapses drastically. Hereafter, this article will refer to this volume fraction as the critical
particle volume loading (CPVL).

B. Modulation of turbulent intensity

In this section, we focus on exploring the capability of LES models more precisely. We compute
the average turbulent fluctuations across the channel as a function of particle volume loading and
pinpoint the CPVL at which turbulence collapses. In Fig. 3, it is shown that initially, with an increase
in solid volume fraction, all the components of turbulent velocity fluctuation decrease monotonically
to 60% (or higher) of unladen fluid velocity fluctuations. Then, there is a drastic decrease in
turbulence fluctuation at a particular volume loading, which is at least one order of magnitude lower
than the unladen flow. The extent of decay may be higher depending on the component of fluid
fluctuation being considered and the fluid phase Reynolds number. The specific volume loading
at which such a discontinuous decrease is observed has been referred as critical particle volume
loading (CPVL). It is worth mentioning that the CPVL depends on the Stokes number and fluid
phase Reynolds number [12]. The present methodology of computing average fluctuations across
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the channel helps us identify the differences in turbulence intensity predicted by LES compared to
DNS for a wide range of volume fractions and helps to determine the extent of underprediction in
CPVL. The averaged fluid fluctuations are calculated using Eq. (13) and are plotted in Fig. 3. The
fluctuations are normalized by the square of bulk velocity,

〈�〉s = 1

δ

∫ δ

0
dy〈�〉. (13)

It is observed that all the second moments of fluctuations decrease with an increase in volume
loading, and then there is a sudden collapse of fluctuations at CPVL. Figure 3 shows that for
Reb = 3300, the CPVL as predicted by DNS is 10−3 (CPVLDNS). The Smagorinsky and dynamic
Smagorinsky models predict turbulence collapse at φ = 0.0006 (CPVLLES), which is much lower
than that predicted by DNS. For both the LES models, the streamwise fluctuations are overpredicted
compared to DNS before the turbulence collapse (φ = 6 × 10−4) [Fig. 3(a)]. However, the wall-
normal fluctuations, spanwise fluctuations, and the Reynolds stress match well with the DNS results
for low volume fractions, and start deviating near critical loading predicted by both the LES models
[see Figs. 3(b)–3(d)]. For a particle loading less than 6 × 10−4, the maximum deviation for the
model prediction is found to be 20% of the DNS results.

In Fig. 3, it is shown that for bulk Reynolds number of 5600, the critical loading predicted by the
DNS, Smagorinsky, and dynamic Smagorinsky models are 2.8 × 10−3, 1.7 × 10−3, and 2.2 × 10−3,
respectively. Therefore, it is evident that the dynamic Smagorinsky model performs better to predict
the critical volume loading at a moderate Reynolds number. The underprediction of the CPVL by
the Smagorinsky model may originate due to the higher subgrid scale dissipation compared to the
dynamic Smagorinsky model, which is discussed a little later.

Figures 4(a)–4(d) show a marginal overprediction of all the fluctuating velocities at low volume
fraction, which decreases with an increase in volume loading till the CPVLLES is reached. A
maximum deviation of 20% in the model prediction is observed in the second moments of velocity
fluctuations by the dynamic Smagorinsky model as shown in Fig. 4. Figure 5 shows the ratio of
the LES predictions compared to DNS at Reynolds number of 5600. It is observed from Fig. 5
that the second moments of fluid velocity fluctuations in streamwise, spanwise, and Reynolds stress
component predicted by LES models deviate by a maximum of 20% at a volume loading of 10−3

from the DNS prediction. However, in the wall-normal direction, it is about 30%. The deviation
in LES predictions increases as the CPVLLES is approached, which may be due to an increase in
subgrid scale modeling error at higher volume fractions, which will be further discussed in Sec. III E.
It is worth noting that the LES simulations predict the second moments with reasonable accuracy
up to a higher volume loading when the Reynolds number is increased. It is observed from the
prediction of the second moments of turbulent velocity fluctuations that both the Smagorinsky and
dynamic Smagorinsky models perform equivalently, and underpredict the critical volume loading
compared to DNS at low Reynolds number (Reb = 3300). However, at moderate Reynolds number
(Reb = 5600), prediction by dynamic Smagorinsky is better than the Smagorinsky model (Fig. 5).
To understand whether subgrid scale dissipation plays any role, we have computed the time average
Cs values for the dynamic Smagorinsky model for different volume loading and compared with the
Cs value for the Smagorinsky model, including the van Driest damping function. We observe that
at lower Reynolds number, the values compare well till the critical volume loading (CPVLLES),
but at Reynolds number (Reb = 5600), the average Cs decreases for the dynamic model when
it approaches the volume fraction of 1.5 × 10−3, which is lower than the Cs value used in the
Smagorinsky model. Consequently, the dynamic model shows collapse at marginally higher volume
loading compared to the Smagorinsky model (Fig. 6).

Another important observation in the above results is the underprediction of the CPVL by LES
models compared to DNS, albeit there is no difference in the mean particle concentration profile as
predicted by LES compared to DNS (figures are not shown here). We have performed the following
investigations to understand the reason for the deviation of second moments predicted by LES
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FIG. 4. The ratio of the second moments of the velocity fluctuations with respect to DNS as a function
of average volume fractions (φav) for Reb = 3300. (a) Streamwise, (b) wall-normal, (c) cross-stream, and
(d) spanwise direction. S: Smagorinsky model. DS: Dynamic Smagorinsky model.

models at higher volume fraction, and their failure to predict the critical volume loading. First,
we check whether there is any significant deviation in the LES prediction for fluid-particle relative
velocity distribution and a consequent difference in the calculated interphase momentum transfer.
Next, we have computed all the terms of the mean momentum equation, and energy equations of
mean flow and fluctuating fields. In all the cases, results are compared with the DNS. To quantify
the effect of filtering, in an earlier study Marchioli et al. [33] have performed an a priori study
by filtering the DNS fluid field and calculating the particle phase statistics. Those statistics were
compared with the prediction of DNS. Such a study quantifies the error induced by the filtering. It is
to be noted that the authors performed the simulations using one-way coupling. However, the present
investigation is performed using two-way coupling between the fluid and particle phases. Therefore,
we need to modify the testing scheme to establish the effect of filtering. The filtered fluid field is
calculated from the DNS study, and using that filtered field, we calculate the relative velocity of fluid
and particle phase, and compute their distribution function. In this DNS study, the filtered data are
used only to calculate the relative velocity; we do not use the filtered field in the particle equation of
motion and subsequent calculation of feedback force to the fluid phase. Following this method, we
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FIG. 5. The ratio of second moments of the velocity fluctuations with respect to DNS as a function
of average volume fractions (φav) for Reb = 5600. (a) Streamwise, (b) wall-normal, (c) cross-stream, and
(d) spanwise direction. S: Smagorinsky model. DS: Dynamic Smagorinsky model.

avoid data corruption of DNS by the effect of filtering during time marching. To quantify the filtering
error in predicting the relative velocity, filtered DNS is performed for both the Reynolds number.
The cutoff filter with twice the grid size is implemented in homogenous directions to calculate the
filtered velocity.

C. Relative velocity statistics

In this section, we discuss the probability density function of the streamwise component of
the relative velocity. We also report the average relative velocity between the particle and fluid
phases. The normalized distribution functions are computed at two zones inside the channel; one
is at the channel center (y/δ = 0.9–1.1) and the other one is near the wall (y/δ = 1.85–1.95).
Figures 7(a)–7(d) show the results for two solid volume fractions of φ = 5 × 10−4 and φ =
6 × 10−4 at Reb = 3300. The first one is lower than the CPVL shown by the LES models (CPVLLES,
φ = 6 × 10−4). It is observed in Figs. 7(a) and 7(c) that the shape of the distribution functions
computed from the LES models are very similar to that predicted by DNS at both the locations at
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FIG. 6. The Smagorinsky coefficient averaged across the channel width for different volume fractions (φav)
for (a) Reb = 3300, (b) Reb = 5600. S: Smagorinsky model. DS: Dynamic Smagorinsky model.

a volume fraction lower than the CPVLLES. There is only a minor difference in the variance of the
fluctuations at the center of the channel. At higher volume loading (φ = 6 × 10−4), the pattern of
the model predicted distribution function varies significantly as shown in Figs. 7(b) and 7(d). This
is because, at the volume fraction of 6 × 10−4, both the LES models show a turbulence collapse,
but DNS does not. Gaussian plots corresponding to the DNS results depict that distributions are
Gaussian up to more than two decades in all the figures. The relative velocity distribution functions
at moderate Reynolds number (Reb = 5600) are presented in Fig. 8. It is observed that the patterns of
the model predicted distribution functions are similar to the DNS, even though there is a significant
difference in the mean and the variance of the relative velocity distribution. The difference in
distribution for filtered DNS (FDNS) compared to DNS is observed only in the near-wall region
at low Reynolds number (Reb = 3300) as shown in Figs. 7(c) and 7(d). However, at Reb = 5600,
the differences exist at both the channel center and near-wall locations as shown in Fig. 8. Besides
the distribution function, calculation of the first moment of the distribution function, i.e., the mean
relative velocity, provides information about the accuracy of the LES models to predict average drag
force exerted on the fluid phase.

Mean relative velocities (slip velocity) as a function of particle volume fraction are shown
in Figs. 9(a) and 9(b) for Reynolds numbers of 3300 and 5600, respectively. It is shown that
the particle leads the air near the wall region but lags at the center of the channel. Relative
velocity near the wall increases slowly with the increase in volume fraction up to 5 × 10−4 for
Reb = 3300 [Fig. 9(a)]. After that, there is almost 50% increase in relative velocity as predicted by
the models. However, DNS data show a monotonic increase at that point. In the case of a moderate
Reynolds number (Reb = 5600), both the models and DNS do not show any significant variation
of relative velocity. However, the Smagorinsky model predicts a sharp increase of relative velocity
(at CPVLLES predicted by the same model) at the “near-wall” region. At this volume fraction, the
dynamic Smagorinsky model shows a gradual increase in relative velocity. A percentage difference
of relative velocity predicted by the models in comparison to the DNS is shown in Figs. 9(c) and
9(d). A difference as low as 3% is shown at a volume fraction of 10−4. It increases monotonically
with volume fraction up to the critical volume fraction (predicted by LES). After that, there is
a sharp change when the turbulence collapses. A similar variation is also observed in the drag
term in momentum balance for mean flow, which is discussed in the next section. The simulations
performed using filtered DNS show that the filtering effect contributes a maximum of 6% and 15%
differences in the average relative velocity when compared to DNS for Reynolds number of 3300
and 5600, respectively. The filtering effect is larger in the near-wall region than the channel center,
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FIG. 7. Relative velocity distribution for Reb = 3300. Panels (a) and (b) are plotted for the channel center
location where y/δ = 0.9–1.1. Panels (c) and (d) are plotted for near-wall region where y/δ = 1.85–1.95. S:
Smagorinsky model. DS: Dynamic Smagorinsky model. DNS: Direct numerical simulation. FDNS: Filtered
DNS.

and does not change significantly with the particle volume loading except very near the critical
volume loading. Such an observation is an indication that the modeling error may contribute more
than the filtering error toward the deviation of relative velocity from the DNS measurement. In this
context, it is worth mentioning that in an earlier study by Boivin et al. [4], it was reported that
modeling error has less effect for the particle-laden flows compared to the unladen flows in the limit
of high mass loading. It is to be noted that the authors performed the simulations for homogeneous
isotropic turbulence at a particle volume fraction of O(10−4). Therefore, the effect of anisotropy and
the role of subgrid scales did not introduce any error in their simulations when there is a suppression
of the overall turbulence production. On the other hand, Dritselis and Vlachos [61] have commented
that, for the particle-laden channel flow, modeling error has a higher impact in the limit of high
Stokes number. To understand the source of the deviation in LES prediction compared to DNS, we
have computed the different terms of the momentum and energy balance equations, and compared
with the DNS results in the following sections.
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FIG. 8. Relative velocity distribution for Reb = 5600. Panels (a) and (b) are plotted for the channel center
location where y/δ = 0.9–1.1. Panels (c) and (d) are plotted for near-wall region where y/δ = 1.85–1.95. S:
Smagorinsky model. DS: Dynamic Smagorinsky model. DNS: Direct numerical simulation. FDNS: Filtered
DNS.

D. Fluid phase momentum balance

The streamwise and wall-normal components of filtered momentum equations are presented as

− 1

ρ f

∂P̃

∂x
− ∂ (ũ′

xũ′
y)

∂y
+ (ν + νt )

∂2(Ũx )

∂y∂y
− ρp f φc

ρ f τp
(̃ux − ṽx ) = 0 (14)

and

− 1

ρ f

∂P̃

∂y
− ∂ (ũ′

yũ′
y)

∂y
− ρp f φc

ρ f τp
(̃uy − ṽy) = 0. (15)

Here, p̃ = P̃; p̃ is the instantaneous filtered pressure and P̃ is the mean filtered pressure. Similarly, ũ
is the instantaneous filtered velocity, Ũx is the mean filtered velocity, and ũ′ is the filtered fluctuating

velocity. ρ f ũ′
iũ

′
j is filtered Reynold stress (τR

i j ), φc is the volume fraction in respective grid, f is the
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FIG. 9. Mean relative velocity as a function of average volume fraction at (a) Reb = 3300, (b) Reb = 5600.
Deviation of mean of relative velocity with respect to DNS at (c) Reb = 3300, (d) Reb = 5600. Near-wall
region is shown with solid lines and channel center zone is shown with dashed line. S: Smagorinsky model
(red lines). DS: Dynamic Smagorinsky model (blue lines). DNS: Direct numerical simulation (black lines with
circles). FDNS: Filtered direct numerical simulation (black lines with square symbols).

drag coefficient, τp is the particle relaxation time, and the last terms in Eqs. (14), and (15) are the
feedback forces in streamwise and wall-normal directions, respectively.

The terms which appear in the momentum balance equation (14) are plotted in Fig. 10 along
with the wall-normal distance. All the terms are scaled with ū2/2δ. Figure 10 presents the effect of
volume fraction at bulk Reynolds number of 3300 on different terms appearing in the momentum
balance equation. It is shown in Fig. 10(a) that at a low volume fraction of 3 × 10−4 all the
terms match well with the DNS predicted values. Divergence of viscous stress and Reynolds stress
are found to be comparable in magnitude. With increasing particle volume loading, a significant
variation in the divergence of Reynolds stress is observed, and it essentially collapses at a volume
fraction of 6 × 10−4, which is a critical volume fraction predicted by LES. The model predicted
values of divergence of stress terms start to deviate significantly from the DNS predicted values
as we approach the CPVLLES. At critical volume loading, the pressure gradient is balanced with
the divergence of viscous stress and the drag force exerted by the particles. In this context, we
also report the accuracy of models to predict the divergence of viscous stress at different volume
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FIG. 10. The terms in fluid momentum equation (14) scaled by u2/h plotted for Reb = 3300 at (a) φ =
0.0003, (b) φ = 0.0005, and (c) φ = 0.0006. Symbols are as follows: DNS: Black dotted (−1/ρ f )d p̄/dx, black

dashed ν(d2ūx/dy2), black solid d (−u′
xu′

y )/dy, black dash-dotted ρp f φc

ρ f τp
(ux − vx ). Smagorinsky: Red dotted

(−1/ρ f )d p̃/dx, red dashed (ν + νt )d2ũx/dy2, red solid d (−ũ′
xũ′

y )/dy, red dot-dashed ρp f φc

ρ f τp
(̃ux − ṽx ). Dynamic

Smagorinsky: Blue dotted (−1/ρ f )d p̃/dx, blue dashed (ν + νt )d2ũx/dy2, blue solid d (−ũ′
xũ′

y )/dy, blue dot-

dashed ρp f φc

ρ f τp
(̃ux − ṽx ).

fractions, which is shown in Fig. 10. At low Reynolds number, there is a deviation of less than
20% up to φ = 5 × 10−4. Beyond that volume fraction deviation increases as models predict
drastic turbulence collapse, and there is a sharp change in curvature of the mean flow of the fluid
phase.

Similar results are also obtained at moderate Reynolds number (Reb = 5600). All the compo-
nents of momentum balance equations are shown in Fig. 11 for different volume fractions. At
volume fractions of 1.0 × 10−3 and 1.5 × 10−3, both the LES models show an underprediction
of divergence of Reynolds stress and overprediction of the particle feedback force compared to
DNS data. In the case of the dynamic Smagorinsky model, the divergence of Reynolds stress
is higher than predicted by the Smagorinsky model, and consequently, it shows a higher critical
volume loading, Fig. 11(c). In earlier work, Vreman [6] has decomposed the particle feedback force
into a uniform bulk averaged component, a nonuniform local mean component, and a fluctuating
component. The nonuniform local mean component is a function of wall-normal distance. The
author has performed the simulations at a particle volume loading φ ≈ 10−4 in the presence of
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FIG. 11. The terms in fluid momentum equation (14) scaled by u2/h plotted for Reb = 5600 at (a) φ =
0.0010, (b) φ = 0.0015, (c) φ = 0.0020, and (d) φ = 0.0025. Symbols are same as in Fig. 10.

a rough and smooth wall. He observed no significant change in the fluid mean velocity profile, but
there is a significant change in nonuniform drag force in the presence of wall roughness, which
leads to a variation in Reynolds stress. In the present work, we have performed simulations for a
range of volume fractions (φ = 10−4 to 3 × 10−3) for two different Reynolds numbers using LES
and DNS methods. It is observed in Fig. 9 that, in the prediction of relative velocities, there is a
difference of 10%–15% at Reb = 3300 and 20%–25% at Reb = 5600 by LES compared to DNS
for low volume fractions. The difference is also reflected in the feedback force term in Fig. 10. It
may appear that the inaccuracy of LES in predicting the divergence of the Reynolds stress term and
consequent underprediction of turbulence collapse is related to the overprediction of the particle
induced drag force as reported by Vreman [6]. In our study, we have estimated space averaged
values of all the terms that appear in the momentum balance equation and plotted these in Fig. 12. A
critical look reveals that, for an increase in the particle volume fraction from 10−4 to 5 × 10−4, the
change in the drag force prediction by LES (Smagorinsky model) is ≈30% higher compared to DNS.
However, the cumulative change in the pressure drop and curvature of the mean velocity profile as
predicted by LES is more than one order of magnitude compared to the DNS, which leads to a
significant decrease in the divergence of the Reynolds stress term as predicted by LES. The filtered
DNS exactly predicts the space averaged viscous term, 〈D〉s, similar to the DNS for all the volume
fractions (see Fig. 13). At a moderate Reynolds number (Reb = 5600), the dynamic Smagorinsky
model predicts a slower decay rate with an increase in volume fraction due to dynamically computed
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FIG. 12. Averaged momentum balance terms from Eq. (14) across channel width, y/δ = 0.05–1, plotted
for range of average volume fractions for Reynolds number of 3300. (a) Pressure gradient, (b) particle feedback
term, (c) divergence of Reynolds stress, and (d) viscous diffusion term. S: Smagorinsky model. DS: Dynamic
Smagorinsky model. DNS: Direct numerical simulation.

lower Cs value as compared to the Smagorinsky model. Therefore, the failure of the LES models
to accurately capture the critical volume loading cannot be merely due to its inability to predict
accurate drag force and consequent inaccuracy in the feedback force. The discrepancy may originate
due to modeling error with increased anisotropy and low intensity of turbulence fluctuations at
higher volume loading. The Smagorinsky and dynamic Smagorinsky models may not be able to
properly capture the generation of vortical structures and self-sustaining mechanism of turbulence.
Further study is required to address this issue.

E. Fluid phase energy balance

The filtered kinetic energy equation of the mean flow in the stationary state can be described as
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1

ρ
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− ∂ (ũ′
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yŨx )
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+ ũ′
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FIG. 13. The diffusion term (D) averaged across the channel width from Eq. (14) plotted for a range of
average volume fractions (φav) for Reb = 5600. S: Smagorinsky model. DS: Dynamic Smagorinsky model.
DNS: Direct numerical simulation. FDNS: Filtered DNS.

In Eq. (16), the first term is the energy due to pressure work, the second and fourth terms are the
divergence of energy fluxes due to Reynolds stress and fluid viscous stress, respectively, the third
term is the turbulent production, the fifth term is the viscous dissipation due to mean shear, and the
sixth term is the loss of energy due to the particle drag. The filtered kinetic energy balance for the
turbulent fluctuations is written as
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where the first three terms on the right-hand side are the flux terms, the fourth term is the viscous
dissipation of turbulent kinetic energy, and the last term is the change in turbulent kinetic energy due
to the particle-fluid interaction at fluctuating scales. When Eqs. (16) and (17) are averaged spatially
in the wall-normal direction, the flux term becomes zero due to no-slip condition at the walls, and
the equations are represented as
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The terms in the energy balance equations are scaled by ū3/2δ. The mean pressure work (I),
mean viscous dissipation (εm), and mean dissipation due to the particle drag (T) in Eq. (18) are
significant. In Eq. (19), the transport of energy from the mean flow to the fluctuations due to
Reynolds stress and viscous dissipation of fluctuating kinetic energy are comparable in magnitude
close to the wall, while dissipation of fluctuating energy due to particles is smaller. The terms of the
energy balance equation for moderate Reynolds number (Reb = 5600) are shown in Figs. 14 and
15. It is observed that both the LES models underpredict the viscous dissipation at mean flow scale,
turbulence production, and viscous dissipation at fluctuating scale. However, dissipation due to the
particle drag is overpredicted. The Smagorinsky model is closer to DNS than dynamic Smagorinsky
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FIG. 14. The terms in fluid energy equations (18) and (19) scaled by u3/h plotted for Reb = 5600.
DNS: Black dotted (−(1/ρ f )ūxd p̄/dx), black diamonds ν(dūx/dy)2, black dashed u′

xu′
ydūx/dy, black dot-

dashed (−ũx
ρp f φ
ρτp

(̃ux − ṽx )), black circles ν[∇u′ : (∇u′)T ], black triangles (− ρp f φc

ρτp
(u′

iu
′
i − v′

iu
′
i )). Smagorinsky:

Red dotted (−(1/ρ f )̃uxd p̃/dx), red diamonds (ν + νt )(dũx/dy)2, red dashed ũ′
xũ′

ydũx/dy, red dot-dashed

(−ũx
ρp f φ
ρτp

(̃ux − ṽx )), red circles (ν + νt )[∇ũ′ : (∇ũ′)T ], red triangles (− ρp f φc

ρτp
(ũ′

i ũ
′
i − ṽ′

i ũ
′
i )). Symbols for dy-

namic Smagorinsky model are same as used for Smagorinsky model with blue color. (a) φ = 0.0010, (b)
φ = 0.0010, (c) φ = 0.0015, and (d) φ = 0.0015.

until turbulence is collapsed for this model, Figs. 14(a)–14(d). There is no significant variation in
the mean pressure energy from φ = 1 × 10−3 to φ = 1.5 × 10−3 as shown in Figs. 14(a)–14(d).
At higher volume loadings [Figs. 15(a)–15(d)], turbulent production and viscous dissipation at
fluctuating scales are almost zero for LES models. The dissipation due to particle-fluid interaction
in the fluctuating kinetic energy is negligible for all the volume loadings. It is observed that, at the
critical loadings predicted by both the LES models, there is a sudden decrease in turbulence pro-
duction but mean particle-induced dissipation does not show any abrupt increase. Direct numerical
simulations also reveal a similar collapse in turbulence (Fig. 3). However, the critical volume loading
is underpredicted by the LES models compared to DNS. Similar observations are also followed at
a lower Reynolds number. However, the figures are not shown here for the sake of brevity. All the
significant terms in the energy equations for mean flow and fluctuating energy equation are predicted
well compared to DNS results at the bulk Reynolds number of 3300 and with low volume loading
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FIG. 15. The terms in fluid energy equations (18) and (19) scaled by u3/h plotted for Reb = 5600. The
symbols are same as in Fig. 14. (a) φ = 0.0020, (b) φ = 0.0020, (c) φ = 0.0025, and (d) φ = 0.0025.

(φ = 3 × 10−4). A maximum deviation of 5% is observed. With an increase in the particle volume
loading, there is a significant underprediction of the “turbulence production term” by the models,
and consequently, both the models show an early collapse of turbulence. To understand the reason
of the discrepancy in the prediction of CPVL by LES models, we estimate the average of viscous
dissipation, dissipation due to the particle drag, and the pressure work term across the channel using
Eq. (18) and plot as a function of the particle volume loading.

Figures 16(a) and 16(b) show all the averaged terms for two different Reynolds numbers. Both
the LES models overpredict the average of the viscous dissipation term at low volume fraction.
A steady decrease is observed with an increase in volume fraction as eddy viscosity decreases.
The Smagorinsky model shows a sharp decrease at a moderate Reynolds number, but the dynamic
Smagorinsky model does not. Figures 16(a) and 16(b) also show the total dissipation term (referred
as “sum” in the figures). It is observed that all the components of energy other than the pressure
work are predicted well by the models till the critical point. Both the models predict a higher
pressure work term at low volume fractions, which is consistent with a marginally higher turbulence
production term. The LES models predict erroneously that, at a volume fraction of 6 × 10−4 (at
Reb = 3300), there is a drastic drop in pressure work, turbulence production, and dissipation terms.
The dissipation due to particle drag increases at this point. The difference between the energy input
through pressure work and total dissipation, which is utilized for turbulence production, decreases
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FIG. 16. The average of terms from Eq. (18) for (a) Reb = 3300 and (b) Reb = 5600 are mean viscous
dissipation (εm), dissipation due to particle drag (T), sum = −(εm + T ), and I is input energy from pressure
work plotted for range of volume fractions (φav). Color as follows: Red: Smagorinsky model (S). Blue:
Dynamic Smagorinsky model (DS). Black: Direct numerical simulation (DNS).

discontinuously as shown in Figs. 17(a) and 17(b). However, such an observation does not confirm
that the drastic decrease in turbulence production originates due to the reduction in pressure work.
Due to a drastic drop in the pressure work and the turbulence production, the flow becomes laminar
with a constant fluid volumetric flow rate. It should be noted that, for this study, the resolution in the
volume fraction is 10−4 and the collapse in turbulence has been captured with such a small change
in volume fraction. It is shown in Fig. 16 that the deviation in total dissipation (which appears
in the mean energy balance equation) compared to DNS is much smaller than the deviation in
pressure work and the production term (shown in Fig. 18). The ratios of production terms predicted
by LES models to that predicted by DNS are presented in Figs. 18(a) and 18(b) for both the
Reynolds numbers. It is observed that the models erroneously predict the turbulence collapse when

FIG. 17. diff = I − (εm + T ) for (a) Reb = 3300 and (b) Reb = 5600. For symbols see Fig. 16.
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FIG. 18. The ratio of production term (P) from Eq. (18) predicted by LES models with respect to DNS
plotted against average volume fractions (φav) for (a) Reb = 3300, (b) Reb = 5600. S: Smagorinsky model.
DS: Dynamic Smagorinsky model. FDNS: Filtered direct numerical simulation.

the model prediction of PLES/PDNS becomes less than approximately 60%. To understand whether
the underprediction of CPVL by LES models originates due to the application of filter on the fluid
phase velocity field, we compute the turbulence productions at all the volume fractions by applying
a similar filter on the DNS data, which is shown in Figs. 18(a) and 18(b). The figures interestingly
depict that the ratios of the production computed by filtered DNS (FDNS) to that computed by
DNS do not show any decrease with an increase in volume fraction. It is worth noting that, with the
increase in volume loading, the anisotropy in the fluid fluctuations increases, and also, the intensities
of all the components of fluid fluctuations decrease. It is shown in Figs. 3(a) and 3(b) that there is
an increase in anisotropy (ratio of the second moment of streamwise fluctuation to wall-normal
fluctuation) by 1.5 times for the volume loading 5 × 10−4 compared to the unladen flow. Therefore,
it is expected that there will be an inaccurate prediction of the production term if the LES models are
not robust enough to capture the vortical structures associated with the low amplitude wall-normal
and spanwise fluctuations at higher volume loading.

To obtain further insight about the turbulence collapse by LES models, we perform a set of
simulations to compute the temporal evolution of the domain averaged second moments of the
fluid velocity fluctuations at different solid volume fractions and present these in Fig. 19. We use
the data from the stationary state of the fluid only phase simulations as the initial condition. The
temporal values of the second moment of fluctuations are normalized with the second moment of
the unladen simulation. A similar computation is performed using the FDNS technique for volume
fraction 5.5 × 10−4 and shown in Fig. 19(e). It should be noted that the figures show the initial
trend of the evolution of fluid fluctuations; the particle-laden flows do not reach the stationary state
within the time duration shown in the figures. However, the initial trend carries the signature of the
turbulence collapse. It is depicted that, in all cases, wall-normal fluid velocity fluctuations decay
faster than the streamwise fluctuations and the decay rates predicted by the LES models are higher
than the DNS prediction. It is shown in the figure that, when the particle volume fraction becomes
5.5 × 10−4, the wall-normal velocity fluctuations predicted by LES models become very low within
a time duration of 200 [Fig. 19(c)]. It is observed that the streamwise fluctuation for the Smagorinsky
model decays faster at this volume loading compared to the dynamic model. The Smagorinsky
model predicts a turbulence collapse at this point; the dynamic model shows the collapse at a little
higher volume fraction of 6.0 × 10−4. To understand whether the early decays predicted by the LES
models happen due to the effect of filtering, we calculate all the second moments of the fluctuations
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FIG. 19. Sum of square of fluid fluctuations (normalized with t∗ = 200 value) over time evolution for
different volume fractions at Reb = 3300. Colors are as follows: Red, Smagorinsky model; blue, dynamic
Smagorinsky model; black, DNS; pink, FDNS. Solid lines, streamwise; dashed lines, wall-normal; solid lines
with circle symbols, spanwise component. Also, t∗ is normalized with half-channel width and average fluid
velocity. (a) φ = 0.0004, (b) φ = 0.0005, (c) φ = 0.00055, (d) φ = 0.0006, (e) φ = 0.00055. In the inset
figure of Fig. 19(e), the FDNS data is normalized with DNS data.
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using filtered DNS (FDNS) data as shown in Fig. 19(e). It is shown that the filtered data show a decay
which is very similar to the DNS. Also, we simulate three hypothetical situations by controlling the
particle feedback forces on the fluid phase. In the first case, we consider that the particle exerts
no feedback force in the wall-normal (y) direction, but the magnitude of spanwise and streamwise
feedback forces are unaltered; in the second case, we switch off the feedback force in the y and z
directions but consider an unaltered streamwise feedback force; and in the third case, we reduce
the streamwise feedback force by 30% (which is the maximum deviation from DNS in relative
velocity). It is observed that there are no change in CPVLLES from the earlier value for the first
case, but in the second and third cases, there is a marginal increase of CPVLLES from 5.5 × 10−4 to
7 × 10−4. It should be noted that CPVLLES = 7 × 10−4 is also much lower than that predicted by
DNS, CPVLDNS = 1.0 × 10−3.

Therefore, all these observations suggest that the underprediction of the critical volume loading
(CPVL) by the LES models may originate due to the subgrid scale modeling error and the inability
of the models to capture the vortical structure and self-sustaining turbulence generation mechanism
at high particle loading, but not due to the filtering error or inaccuracy in predicting the drag force
on the particles. Further investigation on the prediction of coherent structure and their breakdown
to generate vorticity by the LES technique is left as a future scope.

In summary, two extensively used LES models, the Smagorinsky and dynamic Smagorinsky
models, predict the turbulence attenuation reasonably well for a range of volume fraction and
Reynolds numbers. The LES models also capture the drastic collapse of the turbulence fluctuations.
However, the critical volume loading at which the collapse happens is underpredicted by the
LES models. For an accurate prediction of CPVL and turbulence modulation, the models not
only require predicting the diffusion and viscous dissipation accurately but also the production of
turbulent kinetic energy. In the case of the Smagorinsky model, Cs is an input parameter which may
require modification due to the presence of particles. The dynamic model also fails to accurately
predict CPVL, although, in this technique, Cs is calculated locally with the evolution of the flow.
The detailed analysis presented in this paper suggests that further investigation is required on the
modification of the inertial range of spectra and Kolmogorov constant due to particle loading. Also,
an assessment of the capability of the LES models to capture the coherent structures and their
breakdown at high particle concentration needs to be addressed.

IV. CONCLUSIONS

The present work reports a critical assessment of the applicability of two widely used LES models
(the Smagorinsky and dynamic Smagorinsky model) in predicting turbulence modulation for the
particle-laden flows. The results are reported for two different Reynolds numbers (Reb = 3300
and 5600) and a wide range of volume fraction. Effects of the particle-particle and particle-wall
interactions have also been considered. An analysis of the averaged second moments of fluid
velocity fluctuations shows that LES models can predict those with an accuracy of more than 80%
for volume fractions lower than the critical volume fraction. Although both the models predict the
increase in turbulent attenuation with increasing volume fraction, the deviation in the predicted
value compared to DNS results increases. Both the LES models underpredict the critical particle
volume loading (CPVL) at which turbulence collapses.

The sources of the discrepancy in the LES prediction compared to DNS may be the inaccurate
prediction of feedback force and consequent high particle-induced dissipation or the underprediction
of turbulence production. To estimate the error due to inaccuracy in drag prediction, we calculate
the distribution function of the relative velocity and compute all the terms appear in the momentum
balance equation. A statistical analysis of the relative velocity distribution shows that the distribution
functions are qualitatively similar to the DNS. At low Reynolds number, a maximum deviation of
15% in the mean relative velocity is observed for volume fractions lower than CPVL, whereas at
moderate Reynolds number, the maximum deviation is around 25% before the turbulence collapses
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for LES models. Similarly, we find a maximum deviation of 25% compared to DNS results in the
feedback force term at a volume loading which corresponds to CPVLLES.

All the significant terms which appear in the energy balance equations have been computed
for different volume loadings. It is observed that the energy dissipation due to particle drag is much
lower than the viscous dissipation at the mean scale. The total dissipation does not vary significantly
from the DNS value, but the energy input due to pressure work and the turbulence production drop
drastically.

To understand whether the early decays predicted by the LES models happen due to filtering, we
have calculated all the second moments of the fluctuations using filtered-DNS (FDNS) data. It is
observed that the filtered data show a decay which is very much similar to that predicted by DNS.
To check whether the difference in the prediction of particle feedback force and particle induces
dissipation by LES models is responsible for the early collapse of turbulence, we have hypothetically
reduced the extent of feedback force in LES simulations to predict the critical volume loading.
Such a numerical experiment reveals that CPVLLES is marginally increased for 30% reduction in
streamwise drag force. Therefore, all these observations suggest that the underprediction of the

FIG. 20. The unladen (a) streamwise mean velocity, (b) streamwise fluid fluctuations, (c) wall-normal
fluctuations, and (d) cross-stream stress normalized by frictional velocity (uτ ) at Reb = 5600. y+ is wall-normal
distance normalized by viscous scales. S: Smagorinsky model. DS: Dynamic Smagorinsky model. DNS: Direct
numerical simulation. DNS data from Moser [55]; experimental data from Eckelmann [54]. “Experiment”
shows the laboratory experimental results at Reb = 6500.
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critical volume loading (CPVL) by the LES models may originate due to the subgrid scale modeling
error and the inability of the models to capture the vortical structure and self-sustaining turbulence
generation mechanism at high particle loading, but not due to the filtering error or inaccuracy
in predicting the drag force on the particles. Further investigation on the prediction of coherent
structure and their breakdown to generate vorticity by the LES technique is left as a future scope.
It is to be noted that the present study is performed at low and moderate Reynolds numbers. The
range of volume fraction over which LES performs better may increase with increase in Reynolds
number, which is left as a future scope.
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APPENDIX: VALIDATION

Mean fluid phase velocity and the root mean square velocity fluctuations obtained for unladen
flow using the Smagorinsky and dynamic Smagorinsky models are compared with DNS for Reb =
5600. In case of the Smagorinsky model, Cs = 0.125 is used. The mean velocity profile is shown in
Fig. 20(a). The mean profile predicted by the Smagorinsky model and dynamic Smagorinsky model
matches well with DNS. The rms of streamwise fluctuations is also predicted well by both the LES
models by a maximum difference of 5% at the peak location, Fig. 20(b). The rms of wall-normal
fluctuations matches well with DNS results. There is a difference of less than 10% at the peak
value of Reynolds stress. We have also included DNS data Moser et al. [55], experimental data by
Eckelmann [54], and also data generated by in-house experiments performed at Reb = 6500. LES
results also show good agreement with the experimental data.
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