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Thin-film-based nanoporous membrane technologies exploit evaporation to efficiently
cool microscale and nanoscale electronic devices. At these scales, when domain sizes
become comparable to the mean-free path in the vapor, traditional macroscopic approaches
such as the Navier-Stokes-Fourier (NSF) equations become less accurate, and the use
of higher-order moment methods is called for. Two higher-order moment equations are
considered; the linearized versions of the Grad 13 and Regularized 13 equations. These are
applied to the problem of nanoporous evaporation, and results are compared to the NSF
method and the method of direct simulation Monte Carlo (i.e., solutions to the Boltzmann
equations). Linear and nonlinear versions of the boundary conditions are examined, with
the latter providing improved results, at little additional computational expense, compared
to the linear form. The outcome is a simultaneously accurate and computationally efficient
method, which can provide simulation-for-design capabilities at the nanoscale.
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I. INTRODUCTION

Recent developments in technologies, such as laser diodes, power amplifiers, and the upcoming
6G, require more sophisticated thermal-management systems than traditional cooling techniques, as
well as more compact solutions. For instance, gallium nitride-based power amplifiers generate hot
spots on the microscale, with heat fluxes of over 1 kW/cm2, temperatures reaching over 180 ◦C,
and temperature fluctuations of around 40 ◦C over the space of a few microns [1]. Such high
temperatures and heat fluxes, if unmanaged, lead to a decreased device efficiency and short operating
lifetimes.

One promising emerging technology aims to improve heat dissipation capabilities, while also
being substantially more compact than traditional cooling techniques. It uses a thin membrane
(thickness ∼1 μm) covered in nanometre sized pores (pore diameter ∼100 nm) to transfer heat
away via evaporation [2,3]. An advantage of this cooling mechanism is that the evaporated mass lost
is naturally replaced by the capillary action of the liquid (i.e., via wicking). This saves considerable
power and space, as substantial pumping is no longer needed.

Different factors can affect the evaporative capability of nanoporous membranes, including the
size of the nanopores [4], the thickness of the membrane [4], and the working liquid used [2]. The
liquid could also have an effect on the shape of the meniscus formed inside the nanopores, which
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will affect the evaporative surface area, potentially affecting evaporation rates [3]. Optimizing a
system over such a large parameter space can be challenging to explore experimentally, costly in
both time and money, and difficult to measure due to the small spatiotemporal scales of interest.
Computational models offer a cheaper alternative to experiments that enable access to “real-time”
flow characteristics. However, at the nanoscale, additional physics renders the widely used Navier-
Stokes-Fourier model inaccurate, motivating the use of both molecular dynamics [5,6] and methods
based on the full Boltzmann equation [7–9]. Unfortunately, whilst highly accurate, such approaches
can be computationally expensive, particularly when simulating device-scale dynamics.

Besides the Boltzmann equation, rarefaction effects that are beyond the resolution of the NSF
system can be predicted by extended macroscopic moment equations [10–12]. The moment equa-
tions have the favourable form of a set of partial differential equations describing the evolution
of macroscopic quantities, such as mass density, temperature, velocity, heat flux, stress tensor,
and so on, defined as moments of the distribution function. These equations are obtained by an
asymptotic reduction of the Boltzmann equation at different levels of approximation. The moment
method was introduced to gas kinetic theory by Grad [13], who expressed the distribution function
in terms of Hermite polynomials. More recently, the regularization of Grad’s 13-moment (G13)
equations have been obtained by Struchtrup and Torrilhon [14]. The regularized 13-moment (R13)
equations introduce additional terms to the G13 equations that overcome various deficiencies,
such as the prediction of subshocks at high Mach number (Ma � 1.65). Notably, other ap-
proaches for reducing the Boltzmann equation have been proposed [15,16], but these focus on
nonlinear and hyperbolic regimes beyond the remit of this article. Importantly, to capture micro-
and nanoflows, where surface effects can be dominant, Gu and Emerson [12] presented a set
of wall boundary conditions for the R13 equations derived from the Maxwell accommodation
model, with corrections to this work presented by Torrilhon and Struchtrup [11]. Subsequently,
the R13 equations have been considered for canonical boundary-value problems, such as planar
and cylindrical Couette and Poiseuille flows [17,18], transpiration flows and gas flow past a sphere
[19], among many others, in one-, two-, and three-dimensional numerical simulations [12,20–26].
Building on these successes, we are now able to focus these equations on a specific technological
application.

Section II introduces the equations, of which we consider three sets (or “levels” of accuracy and
complexity): the Navier-Stokes-Fourier equations (NSF); the Grad 13 equations; and the regularized
Grad 13 equations, known as the R13 equations. These are all moment-based approximations of the
Boltzmann equation, each more accurate than the previous [27]. We compare solutions of these
equations to computational results obtained by John et al. [28,29], who utilized the standard direct
simulation Monte Carlo (DSMC) method of solving the Boltzmann equation.

In Secs. IV, V, and VI, we present the results of nanoporous membrane simulations based on the
moment equations being solved using the finite element method. The different models are compared
to analytic results and DSMC for both a fully linearized model in Sec. IV, and a model incorporating
nonlinear boundary conditions in Sec. V; the latter providing the most accurate representation of
the DSMC simulation of nanoporous evaporation, and a marked improvement over the fully linear
model (see, e.g., Fig. 7). Section VI analyzes the effect of scale on the membrane simulations,
extending the work done in Secs. IV and V to higher Knudsen numbers.

Finally, in Sec. VII, conclusions and discussion are presented.

II. THE MOMENT EQUATIONS

The moment equations are derived as approximations of the Boltzmann equation by Grad’s
moment method [13]. Details of the derivation are well documented and are outlined in Appendix A.
Index notation is used throughout, with indices used for the spatial dimension. The Grad 13 and
R13 equations are a set of PDEs in terms of the following moments; the density �, the velocity Vi,
temperature given in specific energy units �, the trace-free and symmetric stress tensor �i j , and the
heat flux Qi. For a formal introduction to these moments, see Appendix A and Ref. [10]. This forms
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a set of 13 moments, which we denote

�[13] = �{1,Vi,�,�i j,Qi}.
The governing equations for the two 13-moment systems, describing the evolution of the set of
moments �[13], consist of the conservation laws,

Dt� + �∂kVk = 0, �DtVi + ∂i(��) + ∂k�ik = Gi,

3
2�Dt� + ��∂kVk + ∂kQk + �kl∂kVl = 0, (1)

with the additional balance equations for stress and heat flux,

Dt�i j + �i j∂kVk + 2��∂〈iV j〉 + 2�k〈i∂kV j〉 + 4

5
∂〈iQ j〉 + ∂kMi jk = −��

�i j

μ
, (2)

DtQi + 5

2
�ik∂k� − �ik�∂k ln � + �∂k�ik + 7

5
Qi∂kVk + 7

5
Qk∂kVi + 2

5
Qk∂iVk + 1

2
∂kRik

+ 1

6
∂iD + Mikl∂kVl − �ik

�
∂l�kl + 5

2
��∂i� = −5

2
��

Qi

κ
, (3)

where ∂i = ∂
∂xi

, Dt = ∂t + vk∂k is the material derivative, Gi are external forces, μ is the dynamic

viscosity, and κ = 15
4 μ is the heat conductivity. Indices in angular brackets denote the trace-free-

symmetric part of a tensor [10]. We also assume the gas to be ideal, with the pressure P = ��.
The five-moment NSF system for the moments �[5] = �{1,Vi,�} applies closure to Eqs. (1),

with well-known constitutive laws for stress and heat flux

�i j = −2μ∂〈iV j〉, Qi = −κ∂i�, (4)

which give the Navier-Stokes equations and the heat equation (based on Fourier’s law). While the
NSF system only requires the five moments �[5], it is worth noting that when solving this system
numerically, we consider the full 13 moments �[13], to retain a first-order system, replacing Eqs. (2)
and (3) by Eq. (4).

A. Closure of the 13 moment system

Equations (1)–(3) give 13 equations for the 13 moments �[13], but there are the additional
moments Mi jk,Ri j , and D. For the Grad 13 system, the higher moments Mi jk,Ri j , and D are
set to zero [10,13,30] to close Eqs. (1)–(3).

The R13 system is derived via the order-of-magnitude method as an approximation to the
Boltzmann equation from its infinite set of corresponding moment equations [10,31]. In the
order-of-magnitude method, first the leading order of all moments is determined by means of
the Chapman-Enskog expansion (in Knudsen number) and then the moment equations are sys-
tematically reduced by canceling terms of higher order. The R13 equations are obtained via third
order closure, i.e., an order equivalent to Super-Burnett (a model which is derived via a direct
Chapman-Enskog expansion of the Boltzmann equation [10]). Notably, over the years, a number of
different variants of these equations has been suggested with differences occurring in the nonlinear
terms of the higher moments, which will not concern us here, as we will focus on the linearized
form.

The closure for the R13 system is given by

2μ�∂〈i
� jk〉
P − 4

3

�〈i jQk〉
P = −Mi jk,

24

5
μ�∂〈i

Q j〉
P − 64

25

Q〈iQ j〉
p

− 20

7

�k〈i� j〉k
�

= −Ri j,

12μ�∂k
Qk

P − 56

5

QkQk

P − 5
�kl�lk

�
= −D. (5)
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In a similar vein to the NSF equations, though the R13 equations are a closed set of PDEs for the
moments �[13], the full set of 26 moments,

�[26] = �{1,Vi,�,�i j,Qi,Mi jk,Ri j,D},
are considered for numerical simulation.

In line with the order-of-magnitude method, at the zeroth-order closure the Euler equations are
recovered, while the second order closure leads to the NSF equations. The Grad 13 moment
equations (for the Maxwellian molecules) were shown to be second order (i.e., Burnett order), and
R13 third order (i.e., super-Burnett order). The R26 equations obtained by Gu and Emerson [32] are
fifth order accurate.

Apart from the accuracy of the macroscopic theories, the equations also differ in their math-
ematical and physical nature. The Grad 13 system, due to their hyperbolic character, produces
unphysical subshocks for the flows with Mach number, Ma � 1.65 [33]. However, the NSF and
the R13 equations give smooth shock structures for all Mach number [33,34]. Moreover, the results
predicted by the R13 theory are closer to kinetic theory for Ma � 5 [34]. The Burnett equations are
known to show linear unstablites for time-dependent problems [35] while the NSF, Grad 13 and
R13 equations are stable [31].

B. Boundary conditions

The boundary conditions for the 13-moment systems can be derived by continuity of fluxes of
moments of the distribution function at the boundary [36]. The liquid is assumed to be in equilib-
rium, with temperature �L and saturation pressure Ps. The probability that a particle evaporates
and condenses at a liquid-vapor portion of the boundary is ϑ . The accommodation coefficient is χ ,
defined as the probability that a particle is thermalized. We consider only two-dimensional flows,
leaving us with the two-dimensional boundary coordinate system, with normal direction denoted n,
and tangential direction denoted t . The normal coordinate representation of a tensor Ti1,...,im is

Tn...n = Ti1...im ni1 ...nim ,

and similarly for tangential and mixed parts. The effective pressure is


 = P + 1

2
�nn − 1

120

D

�
− 1

28

Rnn

�
.

The resulting boundary conditions [36] are given in Eqs. (6)–(11), with the evaporation mass flow
condition

�Vn = ϑ

2 − ϑ

√
2

π

[Ps(�L )√
�L

− 
√
�

]
, (6)

tangential slip condition

�tn = − ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π�

[

Vt + 1

5
Qt + 1

2
Mtnn

]
− �VnVt , (7)

and the normal heat transfer condition

Qn = − ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π�

[
2
(� − �L ) − 


2
V2

t + 1

2
��nn + D

15
+ 5

28
Rnn

]

+
[

1

2

(
V2

t − �L
)− 5

2
(� − �L )

]
�Vn. (8)
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The R13 equations require additional boundary conditions on top of Eqs. (6)–(8), obtained by
considering higher-moment fluxes [36], and are given by

Mnnn = ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π�

[
2

5

(� − �L ) − 3

5

V2

t − 7

5
��nn + D

75
− 1

14
Rnn

]

− 2

5

[
�L + 3

2
V2

t

]
�Vn, (9)

Mttn = − ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π�

[
��tt − 
V2

t + Rtt

14
+ 1

5

(� − �L )

+ 1

5

V2

t − 1

5
��nn + D

150

]
+ 1

5

[
4V2

t + �L
]
�Vn, (10)

Rtn = ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π�

[

�Vt − 11

5
�Qt − 1

2
�Mtnn

− 
V3
t + 6
Vt (� − �L )

]
+ [7(� − �L ) + �L − V2

t

]
�VtVn. (11)

Notably, the mass-flux condition Eq. (6) is the generalization of the classical Hertz-Knudsen-
Schrage law to the higher-moment equations, with the vapor pressure P being replaced by the
effective vapor pressure 
, and the pre-factor being twice as large [37]. The condition Eq. (7) can
be seen as a generalized slip condition, relating the tangential velocity Vt with the shear stress �tn,
cf. the Navier slip model [38,39]. Similarly, Eq. (8) relates the temperature jump � − �L with the
heat flux Qn, extending the temperature continuity condition at the boundary. Equations (9)–(11) are
interface conditions for the higher moments. For nonevaporating surfaces (e.g., at a solid boundary),
where ϑ = 0, Eq. (6) reduces to the impermeability condition Vn = 0, and reproduces the well-
known jump coefficient χ

2−χ
for the remaining Eqs. (7)–(11), and removes additional contributions

of mass flux, giving the vapor-solid R13 boundary conditions [40].
In dealing with fluid flow through microdevices, one is faced with the question of which model

to use, which boundary conditions to apply and how to proceed to obtain solutions to the problem
at hand. Surface effects dominate in small devices: the surface-to-volume ration for a device with
character length of 1 m is 1 m−1, while that for microelectromechanical systems (MEMS) device
of size 1 μm is 106 m−1. The million fold increase in surface area relative to the mass of the
minute device substantially affects the transport of mass, momentum and energy through the surface
[41]. As such, proper modeling of the boundary conditions is essential, and it is often the case,
particularly when approaching the transition regime, that much of the extra behavior captured by the
higher-moment equations is dominated by modifications to the boundary conditions [42], as will be
confirmed in Sec. V. Still, gas rarefaction also leads to novel bulk phenomena, such as the Knudsen
layer, a region of few mean-free-path lengths thickness where nonequilibrium effects dominates.
A detailed examination of the moment models shows that in higher order moment equations the
Knudsen layer appears as superpositions of several exponential layers with different coefficients in
their exponents [17,26]. Notably, the NSF and Grad 13 theories cannot capture the Knudsen layer,
whilst the R13 theory does, with more moments (e.g., R26) giving a better description of it [17,43].

Over the years, a variety of methods have been devised for the simulation of different moment-
based systems [44–46] and, in particular, the R13 equations have been successfully applied to a
range of boundary value problems [17,20]. Different numerical schemes have been developed for
them, for example, finite difference [21], finite volume [12,22], finite element method [23–25], and
mesh-free methods such as the method of fundamental solutions [20,26,47].
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C. Linearization

We simplify the above equations and boundary conditions by linearizing about a homogeneous
state described by the temperature of the liquid �L and saturation pressure Ps. The saturation density
�s is such that Ps = �s�L. Therefore, we shall consider small perturbations from the equilibrium
and introduce characteristic scales (i.e., nondimensionalize) such that [14]

� = �s(1 + ρ), � = �L(1 + θ ), P = Ps(1 + ρ + θ ),

Vi =
√

�Lvi, �i j = �s�Lσi j, Qi = �s

√
�Lqi,

D = �s�
2
L�, Ri j = �s�

2
LRi j, Mi jk = �s

√
�L

3
mi jk . (12)

The linear (dimensionless) moments

ϕ[26] = ρ{1, vi, θ, σi j, qi,�, Ri j, mi jk}
are taken to be small; thus, only linear terms in these will appear in the equations. In this regime,
the ideal gas law becomes p = ρ + θ.

In Secs. IV–VI, we assess parameters in comparison to DSMC results, for which we require the
dimensional moments �[26]. We note that the equations are solved both analytically and numerically
in terms of the linear nondimensional moments ϕ[26], after which, for comparison to DSMC, they
are plotted in terms of the dimensional moments �[26].

We nondimensionalize the dependent variables,

xi = Lx̂i, t = L√
�L

t̂,

where L is the characteristic length scale. The hat notation for the dimensionless-dependent vari-
ables is henceforth dropped. The Knudsen number is defined as

Kn = μ
√

�L

PsL
= λ

L
,

where λ is the mean-free path of a particle. Therefore, in this setup, variations in length (e.g., pore
diameter) are obtained by varying the Knudsen number.

The saturation pressure and liquid temperature can also be considered as perturbations from their
spatially homogeneous equilibrium, with

Ps = P0(1 + ps), �L = �0(1 + θL ).

For the most part we will consider constant liquid temperature and saturation pressure, thus ps =
θL = 0. However, these terms will be left in the boundary conditions to more easily indicate pressure
and temperature jumps. We also consider stationary solutions, i.e., ∂t = 0.

Substitution into Eqs. (1)–(11) yields the dimensionless and linearized conservation laws

∂kvk = 0, ∂iθ + ∂iρ + ∂kσik = Gi, ∂kqk = 0, (1′)

and the expressions for stress and heat flux

− σi j

Kn
= 4

5
∂〈iq j〉 + 2∂〈iv j〉 + ∂kmi jk, (2′)

−2

3

qi

Kn
= 5

2
∂iθ + ∂kσik + 1

2
∂kRik + 1

6
∂i�. (3′)

The linearized NSF expressions for stress and heat flux are

σi j = −2Kn∂〈iv j〉, qi = −15

4
Kn∂iθ. (4′)
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The higher moments mi jk, Ri j,� all vanish for the Grad 13 system, while the closure of the R13
system is given by

−mi jk

Kn
= 2∂〈iσ jk〉, −Ri j

Kn
= 24

5
∂〈iq j〉, −� = 0. (5′)

The linearized boundary conditions are given by

vn = ϑ

2 − ϑ

√
2

π

(
ps − 
 − 1

2
θL

)
, (6′)

σtn = − χ̃

(
vt + 1

5
qt + 1

2
mtnn

)
, (7′)

qn = −χ̃

(
2(θ − θL ) + 1

2
σnn + 5

28
Rnn

)
− 1

2
vn, (8′)

mnnn = χ̃

(
2

5
(θ − θL ) − 7

5
σnn − 1

14
Rnn

)
− 2

5
vn, (9′)

mttn = −χ̃

(
σtt + Rtt

14
+ 1

5
(θ − θL ) − 1

5
σnn

)
+ 1

5
vn, (10′)

Rtn = χ̃

(
vt − 11

5
qt − 1

2
mtnn

)
, (11′)

where

χ̃ = ϑ + χ (1 − ϑ )

2 − ϑ − χ (1 − ϑ )

√
2

π
,

and the effective pressure 
 is


 = ρ + 1
2θ + 1

2σnn − 1
28 Rnn.

For all cases considered in this work, fully diffuse molecular re-emissions are considered at the
interface (i.e., χ = 1), as this is used for the DSMC results [28,29]. The evaporation coefficient is
zero at a solid-vapor interface, and we assume perfect evaporation at a liquid-vapor interface, i.e.,
ϑ = 1.

For comparison, we solve the Navier-Stokes-Fourier equations with conventional boundary
conditions; that is, Eq. (7′) is replaced by vt = 0 (no slip), and Eq. (3′) is replaced by θ = θL = 0
(no temperature jump). The evaporation condition Eq. (6′) remains.

For the avoidance of doubt, we solve the following systems: NSF, with conservation laws Eq. (1′)
and closure Eq. (4′), with the evaporation boundary condition Eq. (6′) accompanied by no slip
and no temperature jump; Grad 13, with conservation laws Eq. (1′), balance Eqs. (2′)–(3′) and
closure mi jk = 0, Ri j = 0,� = 0, with boundary conditions Eqs. (6′)–(8′); R13, with conservation
laws Eq. (1′), balance equations Eq. (2′)–(3′), and closure Eq. (5′), with boundary conditions
Eqs. (6′)–(11′).

III. PROBLEM FORMULATION FOR NANOPOROUS EVAPORATION

The nanoporous membrane is assumed to be two-dimensional to allow comparison with the
DMSC results of John et al. [28,29]. It is also necessary to validate the moment equations for
two-dimensional flows before modeling a three-dimensional nanoporous membrane, where the
computational tractability of the model becomes more important.

The geometry of a single pore of the nanoporous membrane is shown in Fig. 1, with this work
focusing on the unconventional modeling of the vapor flow, where we can compare to DSMC, with
future work coupling this to the liquid’s (conventional) dynamics. The vapor part (green) is the
domain of computation where we solve the moment equations. It is a rectangle, with a circular
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η = 0

pe
ri

od
ic

H

L W

x

y

O
wall wall

far-field

liquid

η = 1

vapour

FIG. 1. Geometry of a single nanopore. Two cases of meniscus curvature η are shown, with η = 0
corresponding to the flat meniscus and η = 1 corresponding to the semicircular meniscus. The porosity shown
here is φ = 0.5, though porosity can take any value between 0 and 1.

segment attached when considering a curved meniscus. The origin is marked O, and the base of
the rectangle is the interface with the nanoporous membrane at y = 0, and the top of the rectangle
represents a far field at y = H . The height H of the rectangle is set to be large enough so that
parameters decay sufficiently to an equilibrium before reaching the far field. Parameters at the far
field will be denoted

ψ∞ := ψ (x, y = H ).

We assume the geometry to be periodic in x, with the length of periodicity—the width of the
rectangle—being the combined width of the meniscus, L, and the width of the walls,1 W , ei-
ther side. The porosity φ is defined as the proportion of length consisting of the meniscus, so
φ = L/(2W + L). We take L as the characteristic length scale, so that in dimensionless parameters,
we have L = 1. A curved meniscus is modelled by adding a segment of a circle whose corners are
at x = − 1

2 and x = 1
2 . The meniscus shape is controlled by varying the radius of the circle, R. The

curvature is then η = 1
2R , so that a flat meniscus corresponds to η = 0, and a semicircular meniscus

corresponds to η = 1.
In accordance with the DSMC approach [28,29], we impose a constant dimensionless saturation

pressure ps and liquid temperature θL at the liquid-vapor interface. At the far field, we have three
unknown parameters, vi,∞, ρ∞, θ∞. We are free to set one of these [48]; we set the velocity field
vi,∞ = {0, v∞}, and solve for the other two. We also consider the process as adiabatic, so that
qi,∞ = 0.

The linearized 13 moment Eqs. (1′)–(5′) are solved on the interior of the domain. At the
liquid-vapor interface, we require the boundary conditions Eqs. (6′)–(8′) for the Grad 13 equations,
and additionally the boundary conditions Eqs. (9′)–(11′) for the R13 equations. At the solid-vapor
interface, we have ϑ = 0, so that Eq. (6′) becomes vn = 0.

1The physical width of the wall would be 2W when the wall from the adjacent pore is considered.

024201-8



EFFICIENT MOMENT METHOD FOR MODELING …

The equations are solved using COMSOL Multiphysics v5.6, a commercial finite-element-
method (FEM) software (COMSOL Inc., Sweden) [49]. Guided by standard approaches to
incompressible Navier-Stokes simulation [50], we use the Taylor-Hood elements for momentum,
with linear element discretizations for density and quadratic elements for velocity (and stress).
Building on this methodology for FEM we use linear elements for the temperature, and heat flux
and higher order moments have quadratic elements. In earlier works [31,51,52], the derivation of
entropy consistent boundary conditions were presented for the linearized moment equations. For the
problems considered in this paper we adopted the boundary conditions proposed in Ref. [36], and
while work has been done recently to obtain stabilised R13 FEM solvers for this system [23–25],
no instabilities were encountered here.

The height is set to be H = 5 + W + 5Kn, as this was found to always leave enough room for
parameters to reach free-stream equilibrium conditions. As an example, when φ = 0.5 and Kn =
0.05, the mesh consists of 12 369 triangular domain elements and 580 boundary elements for the
flat meniscus case, and 14 115 triangular domain elements and 637 boundary elements for the
semicircular meniscus case. These meshes are shown in Fig. 15 in Appendix B.

The DSMC results [28,29] have been carried out by John et al. using SPARTA [53], which is
a highly scalable parallel open-source DSMC code [54,55]. The gas was assumed to be argon and
the variable hard sphere (VHS) model was employed. It was shown that the DSMC method can
reproduce results of the Boltzmann equation, and so it serves as a good benchmark for the moment
method [56–58].

IV. RESULTS—LINEAR EQUATIONS

Simulations allow us to study the dynamics of the evaporative process for various membrane
porosities and meniscus shapes. To do so, we evaluate the free-stream parameters �∞,�∞ and
mass flux J∞ = V∞�∞ with respect to the free-stream Mach number, Ma∞ = V∞/

√
γ�∞ =

v∞/
√

γ (1 + θ∞), where γ = 5
3 is the specific heat ratio for a monatomic gas. Our choice of

linearization restricts us to small Mach numbers.

A. Analytic results for a planar evaporative interface (1D case)

The limiting case W → 0 with a flat meniscus corresponds a planar evaporative interface.
Analytic (one-dimensional) results have previously been obtained in this limit by various moment
methods [36,59], and are useful as a benchmark for our computational results, particularly given
the complexity of the R13 PDE system, even once linearized. Here, we solve all three systems
analytically, first finding the general solution to the R13 equations, of which the Grad 13 and NSF
are seen as special cases that can be obtained upon setting various terms to zero. The boundary
condition system derived is then solved to find far-field parameter expressions for each set of
equations. The R13 boundary condition system was previously obtained by Struchtrup et al. [36].

Here, we make the assumption that all parameters do not have x or z dependence, yielding a
one-dimensional system which is straightforward to solve, as considered by Struchtrup et al. [36].
The conservation Eqs. (1′) are the same for all three models, and reduce to

∂yv2 = 0, ∂yσ12 = 0, ∂yq2 = 0, ∂y(ρ + θ + σ22) = 0.

The R13 expressions for stress are

σ11 = 2
3 Kn2∂yyσ11 − 4

15 Kn2∂yyσ22, σ12 = 2
5∂yq1 + ∂yv1, σ22 = 6

5 Kn2∂yyσ22, (13)

and the expressions for heat flux,

q1 = 9
5 Kn2∂yyq1, q2 = − 15

4 Kn∂yθ − 3
2 Kn∂yσ22. (14)

In Eqs. (13) and (14), terms underlined indicate those that only appear in the R13 system, while
terms overlined indicate the only (derivative) terms that appear in the NSF system.
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Integration of the above gives the general solution

v2 = C1, v1 + 2

5
q1 = − C2

Kn
y + C5, ρ + θ + σ22 = C3,

5

2
θ + σ22 = −2

3

C4

Kn
y + C6,

q2 = C4, q1 = C9 exp

(
−

√
5

3

y

Kn

)
, σ11 = C7 exp

(
−
√

3

2

y

Kn

)
− 1

2
C8 exp

(
−
√

5

6

y

Kn

)
,

σ12 = C2, σ22 = C8 exp

(
−
√

5

6

y

Kn

)
. (15)

The positive exponential terms have been neglected since we may take y → ∞ and require that
parameters are bounded in the far field. This can also be used to conclude that C2 = C4 = 0. The
Grad 13 and NSF systems have C7,8,9 = 0.

At the far field, y → ∞, we have vi,∞ = {0, v∞}, qi,∞ = {0, 0}. Thus, C1 = v∞ and C5 = 0.
Therefore, for NSF and Grad 13 we have v1 = 0, as expected.

With far-field notation, we find that θ∞ = 2
5C6, ρ∞ = C3 − θ∞, i.e.,

θ = θ∞ − 2

5
C8 exp

(
−
√

5

6

y

Kn

)
, ρ = ρ∞ − 3

5
C8 exp

(
−
√

5

6

y

Kn

)
.

At the meniscus, y = 0, we have the boundary conditions Eqs. (6′)–(11′). For R13 there are 5
unknowns, θ∞, ρ∞,C7,C8,C9, whereas for NSF and Grad 13 there are 2, θ∞, and ρ∞. The NSF
no temperature jump condition immediately gives θ∞ = θL = 0 for the NSF system.

For the R13 system, Eq. (7′) gives C9 = 0, i.e., v1 = q1 = 0, as expected. The constant C7 only
appears in Eq. (10′), and so can easily be expressed in terms of θ∞, ρ∞ and C8.

Boundary condition Eq. (6′) is needed for the NSF system to obtain ρ∞; Eqs. (6′) and (8′) are
needed for the Grad 13 system to obtain θ∞, ρ∞; Eqs. (6′), (8′), and (9′) are required to solve for
θ∞, ρ∞,C8 in the R13 system. In all cases, the boundary system may be written as

b = AU, (*)

with U[NSF] = {ρ∞}T , U[G13] = {ρ∞, θ∞}T , U[R13] = {ρ∞, θ∞,C8}T ,

b[NSF] = [v∞], b[G13] =
[
v∞
v∞
2

]
, b[R13] =

⎡
⎢⎣

v∞
v∞
2

2v∞
5

⎤
⎥⎦,

A[R13] =

⎡
⎢⎢⎢⎢⎣

−
√

2
π

− 1√
2π

3
5
√

2π

0 − 4√
2π

3
5
√

2π

0 4
5
√

2π
− 39

25

√
2
π

−
√

30
5

⎤
⎥⎥⎥⎥⎦,

A[G13] is the upper-left 2 × 2 submatrix of A[R13], and A[NSF] is the upper-left entry of A[R13].
Struchtrup et al. [36] previously arrived at the above boundary-condition system for the R13

equations; however, explicit expressions for the solved parameters were not given. Here, we solve
(∗) to give explicit expressions for discussion: the Grad 13 solution has

θ [R13]
∞ = −1

4

√
π

2
v∞, ρ[R13]

∞ = −7

8

√
π

2
v∞,

and R13 has

θ [R13]
∞ = −K

(
2
√

30π + 18
√

2π
)
v∞, ρ[R13]

∞ = −K
(
7
√

30π + 57
√

2π
)
v∞,

C8 = −10K
√

2πv∞,
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FIG. 2. Left: Far-field mass flux J∞, normalized with respect to JT = �s
√

�L/2π , against Mach number.
Right: Far-field density �∞ and temperature θ∞ against Mach number. Comparison between DSMC, NSF, Grad
13, and R13, for the one-dimensional case. Both numerical and analytic results for the moment equations are
shown, with numerical results matching analytic results well.

where K = 1
16

√
15π+120

. The temperature expression for Grad 13, θ [G13]
∞ , is in line with the analytic

expression for temperature obtained by Labuntsov and Kryukov [59], obtained via an alternate
approximation of the Boltzmann equation.

For classical NSF we have

θ [NSF]
∞ = 0, ρ[NSF]

∞ = −
√

π

2
v∞.

Equations (15) give insight into some of the differences between the three moment systems.
All solutions for the NSF and Grad 13 systems are spatially homogeneous, whereas for the R13
system there is an exponential decay on the order of the Knudsen number. This represents the fact
that the R13 system is able to capture Knudsen-boundary-layer effects [14,27], which typically
extend a few mean-free paths, λ, from the boundary [60]. This phenomenon also manifests in the
two-dimensional flows seen in the numerical results, and is discussed in Sec. VI.

The far-field solutions for all systems, however, are independent of Knudsen number, as the
characteristic length L is irrelevant in the evaluation of far-field parameters when considering an
infinitely long plane of liquid and a one-dimensional flow. In Sec. VI, we see that far-field solutions
are dependent on Knudsen number when two-dimensionality is introduced.

Numerical results for the planar case, computed in a 2D domain, match analytic results, which
gives us confidence in our computational approach. These are shown in comparison to DSMC
results in Fig. 2, showing the far-field mass flux J∞ normalized with respect to the total emitted
(evaporative) mass flux from a given surface, JT , given by

JT = �s

√
�L

2π
,

as well as the ratios �∞/�s and �∞/�L. The Grad 13 mass flux slightly closer approximates the
DSMC results for this case than that of the R13. While we expect R13 to be a better approximation
than Grad 13 in the mathematical limit as Kn → 0, as it is higher-order in Knudsen number, at finite
Knudsen numbers there is nothing to prevent Grad 13 fortuitously giving better agreement with the
DSMC than R13. Notably, from an engineering perspective, what we will see throughout the article
is that there is a general trend for R13 to be the most accurate method, most notably in Sec. VI and
Fig. 10.
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(a) (b) (c)

0

1.8

0.6

1.2

FIG. 3. Flow-fields near the interface showing the normalized y velocity, v/v∞, and velocity streamlines
for the flat meniscus cases, η = 0, with porosity φ = 0.5, at Kn = 0.05. The far-field velocity is v∞ = 0.2172,
corresponding to V∞ = 60 m/s. Three models are shown: (a) DSMC from Ref. [29], (b) R13, and (c) NSF.

B. Numerical results in comparison to DSMC for the general (2D) case

A plot of the normalized y component of velocity over a portion of the domain is shown in Fig. 3
for a representative case where both v∞ = 0.2172 and Kn = 0.05 are relatively low, so we expect
the models to agree; for all cases the meniscus is flat (η = 0) and the porosity is a half (φ = 0.5).
Results for three different models are presented (DSMC from Refs. [28,29], R13, and NSF from left
to right), overlaid with velocity stream lines. Grad 13 gives similar results to the R13 model, and is
therefore not shown. All moment models reproduce the DSMC velocity field well.

The density flow field is shown in Fig. 4, for all four models, for the same case. Grad 13 and
R13 show good agreement with DSMC for the variation of density, while NSF densities are clearly
inaccurate. Though the plots do not show it, NSF sees negative values of density around the contact
line between the meniscus, wall and vapor. This is caused by a singularity on the wall side of the
wall-liquid-vapor contact line, and is discussed in Appendix D. The singularity, however, is a local
artifact, and does not affect far-field parameters. Promisingly, the higher-moment equations, Grad
13 and R13, do not appear to exhibit singular behavior; see Fig. 18 in Appendix D for a comparison
of NSF and Grad 13.

For the assessment of far-field mass flux, it is convenient to normalize computed mass flux
values with respect to analytic results from the one-dimensional case derived by Labuntsov and
Kryukov [59]:

J1D
∞ = v∞

(
2C2

s + v2
∞ −

√
4C2

s v2∞ + v4∞
)/

2C2
s , (16)

where Cs = 0.6
√

2�L. We again assess the ratios �∞/�s and �∞/�L.

(a) (b) (d)(c) 
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0.4

0.5

FIG. 4. Surface plots near the interface showing the density ratio �/�s, for the flat meniscus case, η = 0,
with porosity φ = 0.5, at Kn = 0.05. The far-field velocity is v∞ = 0.2172, corresponding to V∞ = 60 m/s.
Four models are shown: (a) DSMC from Ref. [28], (b) R13, (c) Grad 13, and (d) NSF.
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FIG. 5. Normalized far-field parameters against far-field Mach number for the full-porosity case (φ = 1),
at Kn = 0.05. Shown are J∞/J1D

∞ for (a) the flat meniscus and (b) the semicircular meniscus; �∞/�s, �∞/�L

are shown for (c) the flat meniscus and (d) the semicircular meniscus. Comparison between DSMC, NSF, Grad
13, and R13.

Figure 5 shows the results for the limiting case of φ → 1, corresponding to a meniscus suspended
by platelike posts, for two cases of curvature, η = 0 and η = 1. Computed far-field mass flux
values for the two 13-moment systems (Grad 13 and R13), shown in Figs. 5(a) and 5(b), are in
relatively good agreement with DSMC compared to NSF, particularly at low Mach numbers. For
η �= 0, where a two-dimensional flow is generated (and thus parameters have x-dependence) the
Knudsen number becomes relevant, and so rarefied-gas dynamics modeling is required, even at
relatively low Knudsen numbers. For this reason, the 13-moment systems see excellent agreement
for the semicircular meniscus, while NSF deviates significantly [for example, showing the wrong
qualitative trend in Fig. 5(b)].

Far-field density and temperature both show good agreement with DSMC for the 13-moment
systems, and reasonable agreement with DSMC for the NSF system; see Figs. 5(c) and 5(d). In
particular, the initial slopes, corresponding to Ma∞ ≈ 0, of both densities and the temperatures
for both R13 and Grad 13 are in excellent agreement with DSMC. As a result, low-Mach number
results have near-perfect agreement in both density and temperature. The NSF system suffers in
this respect, especially for η = 1, since the initial slope in density does not agree with the higher-
order systems [Fig. 5(d)]. Thus, even at low-Mach numbers we have significant error for the NSF
system. This in turn means that higher Mach number results are even further away from DSMC
results.

Figure 6 shows the results for half porosity, φ = 0.5. We see large discrepancies from DSMC
values for computed far-field density, and thus mass flux, for all three moment models. The
introduction of walls into the simulation produces a strongly two-dimensional flow, particularly
near the interface, as seen in Figs. 3 and 4. This calls for more accuracy in both bulk and boundary
condition equations: for the one-dimensional case, only a small amount of terms are removed
upon linearization, while in the two-dimensional case, linearization removes many more terms.
This might explain the discrepancies between the moment equations and DSMC seen for the linear
results in Fig. 6, as DSMC inherently inlcudes the nonlinearities. Moreover, with linear boundary
conditions and bulk equations, the parameters ρ∞ and θ∞ appear to decrease linearly with Mach
number. We saw for the one-dimensional case in the form of the analytic solutions that these
parameters are linear in v∞, which, for small temperatures variations, gives an almost linear relation
with Mach number. By means of a Fourier expansion, it can be shown that for the two-dimensional
flat meniscus case far-field parameters are also linear in v∞, see Appendix C. In contrast, the DSMC
results for density begin to plateau as the Mach number increases. This makes it impossible to retain
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FIG. 6. Normalized far-field parameters against far-field Mach number for the half-porosity case (φ = 0.5),
at Kn = 0.05. Shown are J∞/J1D

∞ for (a) the flat meniscus and (b) the semicircular meniscus; �∞/�s, �∞/�L

are shown for (c) the flat meniscus and (d) the semicircular meniscus. Comparison between DSMC, NSF, Grad
13, and R13.

good agreement for high Mach numbers in the present set up. This is particularly prominent in
Figs. 6(c) and 6(d), where we see negative densities at moderate Mach numbers, for all moment
models.

The far-field temperature for the two 13-moment systems show good agreement with DSMC
values for all cases of porosity and meniscus shape, Figs. 5(c), 5(d) and 6(c), 6(d). The lack of a
temperature jump in the NSF system means no temperature variation is seen at the far field, and so
accuracy is lost with respect to the DSMC.

For all simulations in Figs. 5 and 6, Grad 13 and R13 show very similar results, as we would
expect at the fairly low Knudsen number of 0.05. Much larger differences are seen at higher Knudsen
numbers, seen in Sec. VI. We also see that an increase in either porosity or curvature gives an
increase in far-field mass flux, apparently due to the fact that there is increased surface area for
evaporation.

C. Discussion

The aim of this paper is to utilize the moment equations to simulate evaporation from a
nanoporous membrane. An important region for accuracy for this is that of low Mach number flows
at low-to-mid Knudsen numbers, 0.05 < Kn < 1, as DSMC is generally computationally expensive
in this regime, sometimes taking weeks to compute two-dimensional flows [61–63]. Macroscopic
equations present an efficient alternative, with our simulations from this section taking less than
a minute for a given value of v∞ on a standard laptop. For the linear results presented above, we
have accurate results up to Ma∞ ≈ 0.1, but beyond this the results are too inaccurate to be used
as a substitute for DSMC. We would therefore like to increase the range in which we can use the
moment equations and be confident in the results.

Our 2D model is aimed at giving a simplistic, analyzable representation of a nanoporous
membrane. Since we have considered the process to be adiabatic, energy is removed from the
system solely by evaporative mass flux, and so the accurate calculation of far-field densities is
critical to understanding the energy-dissipating capabilities of a nanoporous membrane for a given
configuration. The mass flux-driven energy dissipation would also be seen for the working device
[2], and so while our simplified 2D model will not provide exact data corresponding to a cooling
device, particularly as a confining “ceiling” is likely to be present in this case, it will provide general
trends which may aid the design of such a device.

024201-14



EFFICIENT MOMENT METHOD FOR MODELING …

To improve the accuracy of the macroscopic approach, we could consider even more moments,
since these would theoretically approximate the DSMC model to higher accuracy [10,64,65]. While
work has been done to understand the number of moments required for accurate simulation of a
given problem [66,67], the computational expense and modeling complexity added for an increased
number of moments, particularly for two- and three-dimensional flows, makes this strategy hard to
justify [10,68]. Notably, a promising new approach, based on using a different number of moments
in different regions of the domain [69], has the potential to overcome these limitations and should
be the focus of future work in this field.

However, any linearized system of higher-moment equations will still exhibit linear relations
between far-field density and v∞ for the flat meniscus case: for the one-dimensional case with
unitary porosity, we will always be able to obtain a boundary condition system of the form b =
AU, where A has no v∞-dependence, and the linear, two-dimensional analysis done for arbitrary
porosity in Appendix C works for arbitrary moment systems. Thus, high Mach number accuracy
will be sacrificed for low Mach number accuracy, or vice versa. Since the problem seems to stem
from our linearity assumption, a first-step improvement is to introduce nonlinearity in the boundary
conditions, which we now discuss.

V. EXTENSION TO NONLINEAR BOUNDARY CONDITIONS

Here we argue the case for relaxing the linearity assumption of a component of velocity at the
boundary, and then give the modified boundary conditions. Notably, the bulk equations remain
linear. We then present the results using these boundary conditions, including a comparison to the
linear case.

At the far field we have a constant velocity of v∞. When walls are introduced at the interface
(φ < 1), the continuity equation dictates that there must be some value of v2 such that v2 > v∞ at
the meniscus. Therefore, to retain accuracy at higher values of v∞ (and hence higher Mach numbers)
it is prudent to assume that v2 is no longer small along this boundary.

Insertion of Eq. (12) into Eqs. (6)–(11) with the above assumption, and setting χ = 1, gives the
following nonlinear boundary conditions:

vn(1 + ρ) = ϑ

2 − ϑ

√
2

π

(
ps − 
 − 1

2
θL

)
, (6′′)

σtn = −
√

2

π

(
vt + 1

5
qt + 1

2
mtnn

)
− vnvt , (7′′)

qn = −
√

2

π

[
2(θ − θL ) + 1

2
σnn + 5

28
Rnn

]
− 1

2
vn[℘L + 5(θ − θL )], (8′′)

mnnn =
√

2

π

[
2

5
(θ − θL ) − 7

5
σnn − 1

14
Rnn

]
− 2

5
vn℘L, (9′′)

mttn = −
√

2

π

[
σtt + Rtt

14
+ 1

5
(θ − θL ) − 1

5
σnn

]
+ 1

5
vn℘L, (10′′)

Rtn =
√

2

π

(
vt − 11

5
qt − 1

2
mtnn

)
+ vnvt , (11′′)

where ℘L = 1 + ρ + θL and 
 = ρ + 1
2θ + 1

2σnn − 1
28 Rnn.

The bulk equations remain the same for each of the three moment systems; only the boundary
conditions are changed, with Eqs. (6′)–(11′) replaced by Eqs. (6′′)–(11′′).

A. Analytic result for a planar evaporative interface (1D case) with nonlinear boundary conditions

We can again solve the system analytically for the case φ = 1, η = 0. The general solution
(containing unknown constants of integration) is unchanged from Eq. (15) from the linear case.
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The boundary system

b = An.l.U (**)

changes from the linear case with the new boundary conditions. The vectors b and U are unchanged;
however, the matrix A becomes

A[R13]
n.l. =

⎡
⎢⎢⎢⎢⎣

−
√

2
π

− v∞ − 1√
2π

3
5v∞ + 3

5
√

2π

− v∞
2 − 5

2v∞ − 4√
2π

13
10v∞ + 3

5
√

2π

− 2v∞
5

4
5
√

2π

6
25v∞ − 39

25

√
2
π

−
√

30
5

⎤
⎥⎥⎥⎥⎦,

and A[G13]
n.l. is the upper-left 2 × 2 submatrix of A[R13]

n.l. , and A[NSF]
n.l. the upper-left entry of A[R13]

n.l. . The
nonlinear assumption does not introduce a nonconstant system, but introduces v∞-dependence on
the right of (∗∗), extending the boundary condition system obtained by Struchtrup [36]: the matrix
A[R13]

n.l. can be written as

A[R13]
n.l. = A[R13]

lin. + Cv∞, C =

⎡
⎢⎣

−1 −0 3
5

− 1
2 − 5

2
13
10

− 2
5 0 6

25

⎤
⎥⎦,

where A[R13]
lin. is the matrix from (∗) in Sec. IV. This leads to a nonlinear relation between the

solutions and v∞, given in Appendix E. The solutions exhibit asymptotic behavior, approaching
a finite value as v∞ → ∞, which leads to greatly improved results in the subsonic region we are
concerned with, Ma∞ < 1. Notably, for these solutions, densities remain positive for all Ma∞ > 0.
In contrast, analytic results for the linear boundary condition system from Sec. IV see negative far-
field densities for all Mach numbers above a certain value (Ma∞ > 0.618 for NSF, Ma∞ > 0.8357
for Grad 13, and Ma∞ > 0.8092 for R13).

Numerical results once again match well with the analytic results, as now described.

B. Numerical results in comparison to DSMC for the general (2D) case
with nonlinear boundary conditions

We assess all parameters in the same way as for the linear case, with mass flux normalized by
J1D
∞ , given by Eq. (16). For a direct comparison with the linear case, we look at the density profiles

for the case of half porosity and a flat meniscus, φ = 0.5, η = 0. Figure 7 shows this result.
We can see clearly the improvement of the new model and thus the importance of the boundary

conditions to the system’s behavior, as we may expect at Kn=0.05 where bulk nonequilibrium
effects are less pronounced. We see the effect nonlinearity has on the relationship between Mach
number and density, with asymptotic behavior similar to that discussed in the one-dimensional case
seen as Mach number increases. Moreover, the initial slope of the density plot for Ma∞ ≈ 0 is
in very good agreement with that of DMSC, meaning, along with better behavior for larger Mach
numbers, we see even better agreement at lower Mach numbers than with the linear case.

Further simulation data for combinations of φ = 0.5, 1 and η = 0, 1, can be seen in Figs. 8 and 9.
The improvement in accuracy allows us to look at Mach numbers up to Ma∞ ≈ 0.45, and still retain
reasonable accuracy. In contrast, the fully linear case saw negative far-field densities at Ma∞ ≈ 0.25.
Figures 8(a) and 8(c) show the results from the one-dimensional case where analytic results were
obtained. Analytic results are not shown, but match well with the numerical model, which was
computed in a two-dimensional domain. The results give good agreement with the DSMC results
for all moment systems. The nonlinearity of the solution allows calculated values to closely follow
the DSMC values for higher Mach numbers, compared to the linear one-dimensional case, Fig. 5(c),
where density started with good agreement, but fell away from DSMC values as the Mach number
increased.
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FIG. 7. Left: Far-field mass flux J∞, normalized with respect to J1D
∞ , against Mach number. Right: Far-field

density �∞ as a ratio of saturation density, against Mach number. Comparison between DSMC, and the linear
and nonlinear boundary conditions models of the two 13-moment system, for the half-porosity case (φ = 0.5),
at Kn = 0.05.

For the linear case, when walls were introduced, we saw far-field density results diverge greatly
from DSMC values at higher Mach numbers. The nonlinear boundary conditions give greatly
improved results here over the linear case, for both cases of curvature, seen in Fig. 9 (compared
to the linear boundary condition case, Fig. 6). We also see that for all results, when Ma∞ ≈ 0 the
slopes of density are very accurate compared to the DSMC plots, yielding excellent results for small
Mach numbers. As discussed in the linear case, low Mach number flows are an important region of
accuracy for the higher order moment systems.

The results presented give good results up to modest Mach numbers for all cases of porosity
and meniscus shape considered. This allows us to greatly extend the range of Mach numbers in
which we can have confidence in the moment equations results compared to the linear case, where
we could only be confident up to Ma∞ ≈ 0.1. For nonlinear boundary conditions, the 13-moment
systems give accurate results up to Ma∞ ≈ 0.3. Therefore, at least for Kn = 0.05, the 13-moment
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FIG. 8. Normalized far-field parameters against far-field Mach number for the full-porosity case (φ = 1)
and Kn = 0.05. Shown are J∞/J1D

∞ for (a) the flat meniscus, (b) the semicircular meniscus; and �∞/�s, �∞/�L

for (c) the flat meniscus, (d) the semicircular meniscus. Comparison between DSMC, and nonlinear boundary
condition models for NSF, Grad 13, and R13.
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FIG. 9. Normalized far-field parameters against far-field Mach number for the half-porosity
case (φ = 0.5), at Kn = 0.05. Shown are J∞/J1D

∞ for (a) the flat meniscus and (b) the semicircular meniscus;
�∞/�s, �∞/�L for (c) the flat meniscus and (d) the semicircular meniscus. Comparison between DSMC and
nonlinear boundary condition models for NSF, Grad 13, and R13.

systems make a good, efficient substitute for DSMC to reduce computational expense on simulating
nanoporous membrane dynamics.

VI. KNUDSEN-NUMBER ANALYSIS

So far, we have focused on Kn = 0.05. The moment equations are approximations of the
Boltzmann equation with increasing accuracy in Knudsen number, with NSF being first order
accuracy, Grad 13 second order, and R13 third order [10,31]. For the flat meniscus case, in the
limiting case of infinitely thin walls, φ → 1, the Knudsen number is irrelevant when evaluating
far-field parameters, and so we expect these models to be similar, with differences coming from
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FIG. 10. Far-field mass flux J∞ normalized with respect to J1D
∞ , against Knudsen number Kn. Comparison

between DSMC, NSF, Grad 13, and R13, for the half porosity (φ = 0.5), flat meniscus (η = 0) case, with V∞ =
30 m/s. Solid lines represent nonlinear boundary conditions models, dashed lines represent linear models.
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FIG. 11. Normalized far-field parameters against far-field Mach number for the full-porosity case (φ = 1),
at Kn = 1. Shown are J∞/J1D

∞ for (a) η = 0 and (b) η = 1; �∞/�s, �∞/�L are shown for (c) η = 0 and
(d) η = 1. Comparison between DSMC and nonlinear boundary condition models for NSF, Grad 13, and R13.
Very large negative densities and mass flux values are seen for NSF and most of the computed results are not
shown.

the different boundary condition models for each set of equations. When either η > 0 or φ < 1, the
solutions become dependent on the Knudsen number. This is seen in Fig. 10, which gives the results
of the normalized far-field mass flux for increasing Knudsen number for both linear and nonlinear
boundary condition models, for the representative flat meniscus, half porosity case, and a far-field
velocity of V∞ = 30 m/s, corresponding2 to v∞ = 0.1072. All macroscopic models retain accuracy
up to around Kn=0.1. For Kn > 0.1, the NSF solutions diverge greatly from DSMC. Meanwhile,
the Grad and R13 equations, which are of higher-order accuracy in the Knudsen number, maintain
reasonable accuracy to the DSMC values. We do see the Grad 13 far-field mass flux gradually
decreasing, dropping from J∞/J1D

∞ = 0.882 at Kn = 0.005, to J∞/J1D
∞ = 0.687 at Kn = 1 for the

nonlinear case. However, R13 maintains a value of J∞/J1D
∞ between 0.868 and 0.831 for all Knudsen

numbers for the nonlinear boundary conditions case, hugging the DSMC values between 0.848 and
0.801. We also see that as Kn → 0, all moment solutions converge, as expected.

All far-field parameters are assessed again with respect to Mach number for various membrane
configurations, this time for Kn = 1, in the same way as was done for Kn = 0.05: mass flux J∞ is
normalized with respect to Eq. (16), and we assess the density and temperature ratios �∞/�s and
�∞/�L. Simulations are carried out using the nonlinear boundary-condition model. Results are
shown in Figs. 11 and 12.

As expected, Figs. 11(a) and 11(c) show no change to the Kn = 0.05 case, as Knudsen number
is irrelevant for far-field parameter computation for the case of a flat meniscus and no walls. For the
semicircular meniscus case with no walls, shown in Figs. 11(b) and 11(d), the R13 system is still
showing good results at Kn = 1, with all three parameters showing good accuracy in comparison to
DSMC. Grad 13 is also reasonably accurate in comparison to DSMC, but less so than the R13. This
is in line with what we would expect to see at higher Knudsen numbers, since R13 is of higher order
accuracy in Knudsen number than Grad 13. The NSF system, which is even lower in accuracy in
Knudsen number than Grad 13, is completely inaccurate in this regime. The computed density and
mass flux values are seen to deviate by large factors from the DSMC results, even for small Mach
numbers.

2Assuming a molar mass of M = 0.02896 kg/mol and temperature of 273 K.
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FIG. 12. Normalized far-field parameters against far-field Mach number for the half-porosity case (φ =
0.5), at Kn = 0.05. From top to bottom are J∞/J1D

∞ , �∞/�s, and �∞/�L for both cases of meniscus shape.
Comparison between DSMC, and nonlinear boundary condition models for NSF, Grad 13, and R13. Very large
negative densities and mass flux values are seen for NSF, and most of the computed results are not shown.

The case φ = 0.5 paints a similar picture; the higher Knudsen number has a large impact on the
free stream calculation of density and mass flux, with very large negative values seen in Figs. 12(a)–
12(d) for the NSF system. For free-stream velocities v∞ > 0.4, the FEM solver for NSF failed
to converge altogether. The reason for this is unclear, but a failure to capture the flow near the
singularity discussed in Appendix D appears to be the most likely cause. The 13-moment systems
again fair much better at the higher Knudsen number than NSF; however, Grad 13 sees negative
densities at Ma∞ ≈ 0.25 in Fig. 12(c), and even sooner in Fig. 12(d). The R13 system once again is
better than the other moment systems, retaining good accuracy up to reasonable Mach numbers.

Changes in the porosity, φ, seem to highlight the difference between the Grad 13 and R13
systems: when φ = 1, far-field densities of the two 13-moment systems are comparable, as seen
in Fig. 11(d); when φ = 0.5, however, there are large differences in calculated densities between
Grad 13 and R13, as seen in Figs. 12(c) and 12(d). This could be due to the fact that Knudsen
layers have a large effect when walls are introduced, as parameters see large variations in values,
particularly near the interface; see the flow-field plots in Fig. 3. An increased number of moments
must be considered when dealing with sharp gradients [64,65,69].

We can see some of the differences in the two 13-moment systems with the nonlinear boundary
conditions by looking at the behavior of temperature and heat flux in the domain. The temperature
surface plot, overlaid with heat flux streamlines, is shown in Fig. 13. With Kn = 1, Fig. 13(a) shows
that the Grad 13 system has a large temperature drop adjecent to the wall, while R13 exhibits larger
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FIG. 13. Temperature plots near the meniscus for (a) the Grad 13 systems and (b) the R13 system, overlaid
with heat flux streamlines, for the flat meniscus case, with φ = 0.5 and Kn = 1.

temperature drops next to the meniscus, Fig. 13(b). The latter is in line with DSMC results, which
show larger temperature drops at the meniscus for all Knudsen numbers; see Ref. [28], p. 14. Both
moment systems have flux lines emanating from the wall and absorbed at the meniscus. Therefore,
while streamlines of heat flux (in general) are directed from hot to cold for the R13 system, we see
an inverse Fourier-law prediction by the Grad 13 system, with streamlines of heat flux directed from
cold to hot.

Another difference in the two 13-moment systems is the presence of Knudsen layers in the R13
system, which are absent in the Grad 13 system. The existence of Knudsen layers is seen in Fig. 14,
where the temperature ratio �/�L is plotted along the central vertical axis, x = 0, for Kn = 0.05,
η = 1, and φ = 0.5. The Grad 13 profile for temperature is mostly monotonically increasing,
especially near the interface. Meanwhile, both R13 and DSMC see a decrease in temperature near
the interface, and then, after reaching a minimum, we see the monotonically increasing behavior,
where the calculated values plateau to equilibrium. The temperature minimum for R13 is attained
at y = −0.35, corresponding to roughly three mean-free-path lengths from the meniscus. Knudsen
layers typically extend a few mean-free-path lengths from the boundary, and we also saw that the
one-dimensional case had exponential decays on the order of the Knudsen number for R13, and so
the drop in temperature can be attributed to Knudsen boundary layer effects.
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FIG. 14. Temperature variation along the extent of of the domain, for the semicircular meniscus, at φ = 0.5
and Kn = 0.05.
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Heat flux in the R13 system is also subject to Knudsen layer effects, similar to those seen in
the temperature just discussed. Heat flux profiles along the lines x = ± 1

2 see an extremum at 0.5
mean-free-path lengths and 0.8 mean-free-path lengths from the interface for the tangential and
normal components of heat flux respectively. This results in a sign change inside the domain, leading
to the formation of heat flux vortices, seen in Fig. 13(b). These vortices are not seen for Grad 13.
Similar behavior is discussed in the problem of flow past a sphere, where Torrilhon shows the
existence of heat flux vortices for the R13 model, which are attributed to the Knudsen boundary
layers [19]. Moreover, Torrilhon showed that such vortices do not exist for a hybrid Stokes-R13
flow, consisting of Stokes bulk equations with R13 boundary conditions.

We have seen the R13 system able to produce accurate results up to Knudsen numbers 1,
while Grad 13 gives poor results in this regime, and NSF is completely invalid. We saw evi-
dence of Knudsen boundary layers from the R13 system, which are also in DSMC results, while
Grad 13 saw no such behavior, which rationalises R13’s superiority, as rarefaction effects play a
larger role in the overall flow when the mean-free-path length of particles becomes comparable
to the flow’s characteristic length scale. We can have confidence in the results from R13 with
nonlinear boundary conditions to be accurate for all 0 < Ma∞ < 0.3 and 0 � Kn � 1. This gives
us a large and useful range of membrane configurations which can be simulated accurately and
efficiently.

VII. CONCLUSION

In this work, the linearized moment equations were used to describe evaporation from a
nanoporous membrane. Initially, a fully linear system was considered, in particular with linear
boundary conditions; however, this failed to give accurate results for Mach numbers above Ma∞ ≈
0.1. When retaining nonlinearity for velocity in the boundary conditions, we derived an efficient
method capable of reproducing DSMC simulation results, effective up to reasonable Mach numbers
and Knudsen numbers, which see huge improvements over Navier-Stokes-Fourier results. The
nonlinear boundary condition model for the R13 equations is able to produce good results for Mach
numbers up to 0.3 and up to Kn = 1. The NSF is completely unviable in this regime.

With the interfacial evaporation processes validated for the moment equations versus DSMC
simulations, future work can be devoted to extending the geometry to a more representative
version of a nanoporous membrane. This could include the introduction of the liquid and solid
elements of the membrane using appropriate macroscopic equations, something not possible with
DSMC simulations due to the large variations in mean-free-path length of the different materials.
Introduction of new materials to the simulation requires proper treatment of conservation laws at
the interface, including mass, momentum, and energy balance, the basics of which can be found
in Refs. [36,37]. For a full description of the interface, particularly for curved menisci, the surface
tension must be introduced, relating the stresses to the meniscus shape [70,71].

In our model we assumed the existence of a far field where parameters are given space to decay.
For a cooling device designed for microscale devices, a more compact geometry is likely, in which
a ceiling is brought in, and the gas escapes from the sides due to a cross flow. Another direction this
project could be taken is to attempt to model this situation. The ceiling would complicate the model
since the evaporation would no longer be driven by the far-field velocity, and may need to be driven
by pressure gradients across the interface. Introducing the full geometry with liquid and solid below
the interface discussed above could be introduced for the calculation of saturation pressure, since
the interplay between saturation pressure and prescribed pressure gradients would play a large role
in the evaporation from the meniscus.

Another area of interest would be using the moment equations to simulate the full three-
dimensional geometry of a nanopore, something not done yet using DSMC. The efficiency of
the macroscopic approach would be very important for this, since large parameter spaces in three
dimensions is extremely computationally expensive for DSMC. The two-dimensional results given
here provide justification and validation for the use of the 13-moment systems in three dimensions.
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Future research may focus on analysis of the behavior in pressure/density at the wall-liquid-vapor
contact line for the higher-moment equations, as they do not appear to exhibit singularities, while
the NSF equations do (see Fig. 18 in Appendix D). Singularity-free equations are desirable from
a physical viewpoint as well as for numerical methods, since mesh refinement can drastically alter
local parameter values when a singularity is present. This study could involve a polar coordinate
analysis similar to that performed by Taylor [72], Moffat [73], and Nitsche and Parthasarthi [74].

More generally, our findings motivate the hybrid nonlinear-boundary linear-bulk equation system
which reduces computational complexity from the fully nonlinear approach and yet significantly
extends the window of accuracy of the moment equations to higher Mach numbers. Such a hybrid
allows application of the method of fundamental solutions, a highly efficient numerical scheme
that employs fundamental solutions to the linear bulk equations (Lockerby and Collyer [47],
Claydon et al. [20]). This approach could be useful for a variety of vapor/gas flows where moment
equations are considered useful.
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APPENDIX A: DERIVATION OF THE MOMENT EQUATIONS

The equations are derived from basic considerations of particles in a gas in the 6-dimensional
phase space of positions and velocities representing the system. Notation follows that of Ref. [10].
We consider the gas to be monatomic, with each particle having mass m. The phase space consists of
three positional directions, xi, and three velocity directions, ci. The distribution function f (xi, ci, t )
is defined such that f (xi, ci, t ) dxdc gives the number of particles in the cell dxdc at time t . One
considers the evolution of the distribution function in a given subset � ⊂ R3, from which one
obtains the Boltzmann equation,

∂ f

∂t
+ ck

∂ f

∂xk
+ Gk

∂ f

∂ck
= S, (A1)

where Gi are external forces, and S = − ∂
∂ck

(Wk f ) is the particle interaction term, Wk denoting the
intermolecular forces.

Appropriate integration of f over the velocity space gives the moments. For example, multipli-
cation of f by m, the particle mass, and subsequent integration gives the density

� = m
∫

f dc.

Multiplication of f by ci and subsequent integration gives the momentum

�Vi = m
∫

ci f dc.

The moments are generated by multiplication of f by polynomials in ci. Following Struchtrup
[10], we use the vector of polynomials

�[13] = m
{
1, ci,

1
3C2,C〈iCj〉, 1

2C2Ci
}

to generate our 13 moments. Indices in angular brackets denote the trace-free-symmetric part of a
tensor [10], and Ci = ci − Vi is the peculiar velocity. This gives the 13 moments3 as

�[13] = �{1,Vi,�,�i j,Qi}.

3The stress tensor is trace-free and symmetric and so has five independent components.
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FIG. 15. Domain mesh for nanoporous evaporation.

In the above, � is the temperature in specific energy units, i.e., � = k
m T , where T is the tem-

perature, and k is the Boltzmann constant. Additionally, �i j is the stress tensor, and Qi is the
heat flux tensor. We also study a five-moment system, the NSF system, consisting of the moments
�[5] = �{1,Vi,�}.

Next, we derive the equations describing the moments �[13]. We perform a similar process to the
one carried out to obtain the moments �[13], but carried out on the Boltzmann Eq. (A1), rather than
the distribution function f . That is, we multiply Eq. (A1) by a polynomial in ci, and then integrate
over the velocity space. For instance, multiplication of Eq. (A1) by m and subsequent integrating
gives the conservation of mass equation

Dt� + �∂kVk = 0.

Performing this process for all polynomials in the vector �[13] gives the Eqs. (1)–(3).

APPENDIX B: DOMAIN FINITE ELEMENT MESH

The domain mesh for a representative case of Kn = 0.05 and with half porosity (φ = 0.5) is
shown in Fig. 15, for both the flat meniscus and semicircular meniscus case. The mesh consists
of 12 369 triangular domain elements and 580 boundary elements for the flat meniscus case, and
14 115 triangular domain elements and 637 boundary elements for the semicircular meniscus case.
The mesh is made finest near the interface where most two-dimensional-type flow occurs. Near the
far field, where the flow is essentially one-dimensional, only a coarse mesh is required

APPENDIX C: FOURIER DECOMPOSITION FOR THE TWO-DIMENSIONAL CASE

Here we examine the structure of the analytic solutions for the flat meniscus with arbitrary
porosity. For porosity φ = 1, we saw a linear relationship between density and far-field velocity.
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We will see that this is the case also for arbitrary φ. We assume parameters take the form

ψ (x, y) =
∑
k∈Z

ψk (y)e−ikπ x
� ,

where � = 1
2 L + W is the (half) length of periodicity (the half coming from the factor of 2 in front

of π ).
With this, the linearized moment Eqs. (1′)–(2′) become an infinite set of ordinary differential

systems, one for each mode k. For each mode, the (arbitrary N) moment system can be reduced to
a matrix differential system of the form

d

dy
ϕ

[N]
k = Qkϕ

[N]
k (no sum over k), (C1)

for the vector of N moments

ϕ
[N]
k = {ρk (y), vi,k (y), θk (y), σi j,k (y), qi,k (y), ...}t .

Here, Qk is a matrix dependent on k, �, and Kn.
The general solution to Eq. (C1) has the form

ϕ
[N]
k = exp(Qky)C′

k = Pk exp(Jky)Ck,

where Jk is the Jordan matrix of Qk , Pk is the matrix of generalized eigenvalues, and Ck = P−1
k C′

k is
a column vector of constants dependent on k.

The boundary condition Eq. (6′) becomes

v2(x, 0) =
√

2

π

[
ps(x, 0) − 
(x, 0) − 1

2
θL(x, 0)

]
χ�(x), (C2)

where

χ�(x) =
{

1, |x| < 1
2 ,

0, 1
2 � |x| � 1

2 + W,

and other moment boundary conditions remain the same, as well as the moment boundary conditions
for the general N moment system. The effective pressure 
 is also the generalization for the N
moment system.

The remaining boundary conditions do not involve the function χ� and so can be written as an
infinite list of N − 1 × N − 1 matrix boundary condition systems of the form

bk = AkCk,

one for each k, similar to (∗). These can be solved directly to write all but one of the constants in Ck

linearly in terms of the remaining one, leaving a single constant to be solved for, say zk , for each k.
The zk are found using Eq. (C2).

The function χ� can be written as a Fourier expansion, with

χ� =
∑
j∈Z

a je
−iπ jx,

where

a j = 1

2

∫ 1
2

− 1
2

eiπ jxdx =
{

1
π j sin

(
π j
2

)
j �= 0,

1
2 j = 0.
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The kth mode of Eq. (C2) becomes

v2,k (0) +
√

2

π

∑
r∈Z


r (0)ak−r = 0. (C3)

The parameters v2,k and 
k are linear in zk , thus we can write Eq. (C3) as

f (k, �)zk +
√

2

π

∑
r∈Z

g(r, �)ak−rzr = 0, (C4)

for all k, for some known functions f and g linear in k.
Looking more closely at the differential equations for each mode, the zeroth mode corresponds

to the one-dimensional system, so we deduce that v2,0 = v∞, since the continuity equation dictates
the velocity is constant in y for this mode. This means that any of the moments ϕ

[N]
k will have at

most linear dependence on v∞ and zn, with no products. Therefore, the zeroth moment system will
take the form √

2

π

∑
r∈Z

g(r, �)a−rzr = −v∞. (C5)

The entire system Eq. (C4) can be brought into the form

Frkzr = −v∞δ0k, (C6)

where δi j is the Kronecker δ symbol, and summation is performed over r. The right-hand side has
linear dependence on v∞, and since Fi j has no dependence on v∞, we must have that zk is at most
linear in v∞ for every k.

To verify this solution, this process is done for isothermal NSF system (with no slip or tempera-
ture jump). The matrix Qk in this case is

Qk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 i πk
�

0 −1
Kn

i πk
�

0 0 0

0 −2Kn
(

πk
�

)2
0 −i πk

�

−2Kn
(

πk
�

)2
0 iπk 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C7)

and then for k �= 0 we have

Jk =

⎛
⎜⎜⎜⎜⎜⎝

−πk
�

1 0 0

0 −πk
�

0 0

0 0 πk
�

1

0 0 0 πk
�

⎞
⎟⎟⎟⎟⎟⎠, Pk =

⎛
⎜⎜⎜⎜⎜⎝

�
2Knπk 0 − �

2Knπk 0

− i�
2Knπk − i�2

2Knπ2k2 − i�
2Knπk

i�2

2Knπ2k2

0 − i�
πk 0 − i�

πk

1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠,

and

J0 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎠, P0 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 −Kn

⎞
⎟⎟⎟⎟⎠.
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FIG. 16. Velocity and density profiles along the interface for isothermal NSF, with v∞ = 0.1, φ = 0.5 (i.e.,
� = 2), Kn = 0.05. Comparisons between the FEM approach and the Fourier approach, showing convergence
in M, for three values of M; M = 10, 100, and 1000.

The Fjk are given by

Fjk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
π

�
π ( j−k) sin

(
π ( j−k)

2�

)
j �= k,

1
2

√
2
π

+ �
2Knπ | j| j = k �= 0,

1
2

√
2
π

j = k = 0.

The system Eq. (C6) is solved by truncating the system, considering only |i| � M for some
M ∈ N. Normal velocity and density profiles across the interface are shown in Fig. 16, and are seen
to converge to the numerical solution as M increases. We also see evidence of the singularity in
density present in the NSF equations along the wall-liquid-vapor contact line, which we discuss in
the next Appendix.

APPENDIX D: A BRIEF DISCUSSION ON THE SINGULARITIES AT
THE WALL-LIQUID-VAPOR CONTACT LINE

As mentioned in the main text, the density profile seen in Fig. 4 for NSF is caused by a singularity
in the interfacial density at the wall-liquid-vapor (WLV) contact point. This singularity can also be
seen in Fig. 16 in Appendix C, where the density drops dramatically on the wall side of the interface.
The behavior of pressure (and thus density) at such contact lines for Stokes flow is discussed by
Nitsche and Parthasarathi [74]. For the Hertz-Knudsen-Schrage-like boundary condition

vn = −p,

they found a singularity of order r− 1
2 in pressure, compared to the usual r−1 type singularity

found in Stokes flow under the prescription of uniform evaporative normal velocity. Validation of
this singularity class is seen in Fig. 17 (recall that we assume an ideal gas, and in this instance
temperature is constant, so density is proportional to pressure), where numerical results from our
model are seen to be approximately proportional to r− 1

2 as r → 0 (there will be other exponents
of r contributing to pressure, though − 1

2 is the dominant exponent for small r). While r− 1
2 is an

integrable singularity, the singularity still manifests in the numerical model for NSF, and causes
significant mesh-size-dependence for the pressure profile at the WLV contact point, as well as large
spikes in values. For the singularity-free higher-moment methods, finer meshes produce graphically
indistinguishable curves in all figures. For instance, the relationship with mesh size is examined in
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FIG. 17. Numerically calculated density for the NSF model for increasing radius from the WLV contact
point, suggesting a singularity of type r−1/2.

Fig. 18 for Grad 13 and NSF. NSF is clearly dependent on the mesh size, whereas Grad 13 converges
on a value as the mesh becomes finer. For context, the mesh size at the WLV contact point for all
simulations carried out in the main sections of this paper was 5 × 10−3.

APPENDIX E: ANALYTIC SOLUTIONS FOR THE NONLINEAR BOUNDARY
CONDITION MODEL IN THE 1D CASE

Inversion of (∗∗) yields

ρ[G13]
∞ = − v∞(10πv∞ + 7

√
2π )

10πv2∞ + 17
√

2πv∞ + 16
, θ [G13]

∞ = − 2
√

2πv∞
10πv2∞ + 17

√
2πv∞ + 16

,
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FIG. 18. Numerical values for density at the WLV contact point, for increasing mesh size, and for the
NSF model and Grad 13 model. Curves are normalized with respect to the highest attained (absolute) value of
density, with NNSF = 22.73 and NG13 = 0.3093.
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and

ρ[R13]
∞ = −

√
πv∞[(5π

√
30 + 36

√
2π )v∞ + 7

√
15π + 57]

D
,

θ [R13]
∞ = −2

√
πv∞(2

√
2πv∞ + √

15π + 9)

D
,

C[R13]
8 = 10

√
πv∞(

√
2πv∞ + 2)

D
,

where

D =5π
√

2(
√

15π + 6)v2
∞ + (17π

√
15 + 115

√
π )v∞ + 60

√
2 + 8

√
30π.

Finally, the density for the NSF system is

ρ[NSF,1D]
∞ = − v∞√

2
π

+ v∞
.

All expressions are seen to converge as v∞ → ∞.
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