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Influence of multiscale surface roughness on permeability in fractures
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We systematically study the role of surface roughness in fluid flow through rough frac-
tures by using direct numerical simulations. Random rough fractal surfaces are generated
with different relative roughness, which are then decomposed using the wavelet analysis
method. Different frequencies of surface topological information is filtered in a level-
by-level procedure, while the large-scale waviness remains approximately unchanged. To
explore the effects of surface roughness across a spectrum of length scales, simulations are
carried out for each approximation level under different flow conditions and fracture spac-
ing. Our results reveal the impact of relative roughness and roughness details at different
length scales on the nonlinear flow behavior due to inertia associated with the formation of
eddy flows. We further propose an error index to describe the relative error in permeability
induced by limited resolution in surface profile description. Our analysis shows that the
relative error in permeability from surfaces under different levels of approximation and
relative roughness can be well described by the proposed index for a wide range of flow
conditions and fracture apertures. This study provides insights into the role of multiscale
roughness on the fluid flow through rough fractures.

DOI: 10.1103/PhysRevFluids.7.024101

I. INTRODUCTION

Flow through rough fracture is involved in many geological and geotechnical applications, such
as petroleum reservoir exploitation and CO2 geosequestration [1–6]. Therefore, understanding fluid
flow through a rough-walled fracture is of great importance for accurate modeling and interpretation
of energy- and mass-transport processes through fractured networks.

Despite that the flow through rough fracture can be fully described by the Navier-Stokes
equations (NSEs), the nonlinear term due to inertia makes the equation difficult to solve. To
circumvent this problem, simplification of the NSE is applied, such as ignoring the inertia term
when the advective inertial forces are insignificant compared with viscous forces, i.e., Reynolds
number Re � 1, which leads to the Stokes equation [7–11]. With further simplification based on the
geometrical assumption according to which the variation of fracture aperture is gradual, the Stokes
equation can be reduced to the Reynolds equation (or the local cubic law). Due to its simplicity, the
Reynolds equation has been extensively applied in quantifying fluid flow through rough fractures
in many practical situations [9,12–15]. Nevertheless, the applicability and validity of local cubic
law are limited due to the presence of roughness and/or the effect caused by inertial force, which is
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reflected by the overestimation of flow rate compared with experimental observations and numerical
simulations [13,14,16–19].

With the development of numerical methods based on solving the nonlinear NSE, progress has
been made to understand the impact of surface roughness on fluid flow through rough fractures
[11,17,18,20–22]. At low Reynolds number, the flow is expected to obey Darcy’s law, i.e., a linear
relationship between the flux and pressure gradient. At higher flow rate, due to the more dominant
inertial effects, a pressure drop proportional to the velocity squared is expected [17]. In the seminal
work by Brown et al. [23], with the fracture roughness represented by sinusoidal curves, it was
shown that the overestimation of transmissivity as per the Reynolds equation increases with greater
relative roughness and Reynolds number, indicating the enhanced energy dissipation due to the
presence of roughness. Based on real rock samples, an earlier onset of deviation from the Darcy-type
flow as the pressure gradient increases is observed for fractures with greater relative roughness
[22]. For the random rough surface in rock fractures, the roughness can be characterized by the
large-scale waviness and small-scale unevenness, which are also called the primary and secondary
roughness [24,25]. Based on this understanding, Zou et al. [20] adopted the wavelet analysis
technique for roughness decomposition to investigate the effects of different scales of roughness
on nonlinear flow behavior in two-dimensional (2D) rough fractures. The authors revealed the
significant role of secondary roughness on generating eddy flow, which consequently causes a
decrease in permeability. Liu et al. [22] further conducted three-dimensional (3D) simulations using
the lattice Boltzmann method for detailed quantification of effects of multiscale surface roughness
on the flow behavior in rough fractures.

The framework of using wavelet analysis for roughness decomposition and subsequent numerical
simulations offers an effective way for quantitative investigation of how different scales of rough-
ness impact the flow in rough fractures. However, one of the key issues is the proper definition
of the cutoff length separating the low-frequency waviness (general shape of fracture) and the
high-frequency unevenness (white noise). The current criterion as in Refs. [20,22] is based on the
variance of the surface profile, i.e., the variance of the primary roughness should be “approximately”
constant as the original surface profile, whereas a rigorous mathematical definition is missing. We
note that the criterion is purely a geometric consideration of the surface profile and independent
of fracture aperture and flow conditions. However, by decomposing the original surface profile
into two distinct surface profiles, i.e., the primary and secondary roughness [20,22], the effect of
surface features associated with different length scales, i.e., different approximation levels (or,
cutoff-length), remain unexplored. Another challenging aspect is the quantitative description of
the error in permeability when certain high-frequency roughness is ignored, where the error is
the discrepancy between the apparent permeability measured in fractures with limited resolution
(e.g., resolution in 3D printing for experiments, or mesh size in numerical simulations) and the true
permeability in original fractures. In this work, the wavelet analysis technique is used to decompose
the computer-generated random fractal rough surface. Instead of decomposing the original rough
surface into “primary” and “secondary” roughness using certain mathematical criterion, we probe
individually the effects of roughness across a spectrum of length scales. To quantify the degree of
effects from multiscale roughness, systematic direct numerical simulations are conducted across
different (1) flow conditions, i.e., Re, (2) fracture spacings, i.e., relative roughness, and (3) surface
profiles with different cutoff lengths, with a total of 234 sets of simulations. The influence of surface
roughness at different scales is evaluated and discussed, and an error index is proposed to quantify
the relative error induced when smaller-scale roughness is neglected for flow in rough fractures.

II. METHOD

Most natural surfaces and surfaces of engineering interest are self-affine across a wide range
of length scales [26,27]. In this study, the self-affine fractal surface, characterized by the power
spectral density (PSD) of the surface topography [26,28], is generated with a length of 50 mm
and a root-mean-square roughness Rq = 1.5 mm. A fractal dimension D f = 2.3, corresponding to
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(a) (b)

(c) (d)

FIG. 1. Characterization of surface profile. (a) The y coordinates of the original surface y0 is divided by
two and four to generate fractures with different relative roughness. (b) From bottom to top: original (A0)
and approximated (A1-A8) surface profiles using the wavelet analysis method. (c) Normalized variances of
surface profiles as a function of the approximation level. (d) Power spectra of surfaces A0-A3. The black-dashed
line represents the roll-off wave vector. The colored-dashed lines represent the cutoff wave vectors for each
corresponding surfaces. The black-solid line corresponds to a fractal dimension Df = 2.30

a Hurst exponent of 0.7, is chosen because it has been previously demonstrated that the fractal
dimension of natural and artificial (polished or sandblasted) surfaces is generally less than 2.3 based
on surface fragility [27]. Following the procedure in the literature [20,22], a fracture is formed by
two identical rough surfaces shifted vertically by a constant distance of H = 5 mm, as the constant
fracture aperture. To explore the effects of relative roughness defined as r = Rq/H , the y coordinates
of the original surface profile y0 is divided by two and four, which will be referred to as surfaces
y0/2 and y0/4, respectively [Fig. 1(a)].

The wavelet analysis method has been widely applied in various fields of engineering and physics
[29]. As mentioned by Zou et al. [20], different frequencies of surface topographic information from
the original surface profile can be extracted by using the wavelet analysis method, which provides
quantitative decomposition of the surface geometry at different frequency scales (levels) [20].
Following Wang et al. [21], the Db8 wavelet (Daubechies wavelet family) available in the wavelet
toolbox in MATLAB is used to decompose the original surface profile in a level-by-level procedure,
generating surfaces of approximation levels. In the following, the surface with approximation level
M and smoothed profile by a factor of N (y coordinates divided by N) will be referred as y/N-AM .
Figure 1(b) shows the original (A0) and decomposed (A1-A8) surfaces at different approximation
levels, where the surface features above a certain cutoff frequency are filtered. We refer to Ref. [20]
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FIG. 2. A flowchart listing the key steps in this work.

for more detailed information on the wavelet analysis method. The variance of the surfaces at
different decomposition levels normalized by the original surface profile is plotted in Fig. 1(c),
where significant deviation of variance from the original profile (>40%) is observed for A7 and A8.
Since the focus of the current study is to investigate the effect of surface roughness on flow in rough
fractures, i.e., fine details of surface profile without changing the general shape (the dominating
features of the waviness) of the surface, subsequent simulations are only conducted for surfaces
A0-A6 (less than 10% variation in the variance). The power spectrum of surfaces A0-A3 is plotted in
Fig. 1(d), with the roll-off wave vector and the cutoff wave vectors for each corresponding profiles
shown as black-dashed and colored-dashed lines, respectively. The slope of the black-solid line
corresponds to a Hurst exponent H = 0.7, or fractal dimension D f = 2.30. Clearly, the power
spectra generally follow the straight line in the log-log plot, indicating the fractal nature of the
surface. However, beyond the cutoff wave vector, the power spectra deviate from the straight line and
quickly diminishes, implying that the higher-frequency surface features are filtered in the procedure.

The numerical simulations are conducted by solving the Navier-Stokes equations using the finite-
volume method (ANSYS Fluent code). No-slip boundary conditions are applied at fracture walls.
Constant pressure boundary conditions are assigned at the inlet (left side) and outlet (right side),
which leads to Reynolds numbers generally ranging from 0.05 to 150. The simulation is considered
to reach the steady state when | fi+1/ fi − 1| < 10−5, with f the total flux at the outlet and i is the
time step. For the mesh sensitivity analysis, three simulations with computation domain meshed
with average grid sizes of 0.2, 0.14, and 0.1 mm are performed, where the relative differences in
total flux for the former two cases based on the 0.1-mm case are 0.06% and 0.04%, respectively,
implying sufficient resolution of the mesh. Finally, the average grid size of 0.14 mm was chosen for
all subsequent simulations. Figure 2 shows a flowchart with the key steps in this work. Table I lists
the simulation parameters.

III. RESULTS AND DISCUSSION

A. Forchheimer’s law

In the regime of low flow rate with a Reynolds number typically less than 1, Darcy’s law is valid
for prediction of a linear relationship between the pressure gradient and flow velocity. At higher flow
rates, however, the inertial forces can no longer be neglected compared with the viscous forces, and
the flow will deviate from linearity due to extra energy dissipation as a result for formations of
localized eddy. In this case, the flow can be described by Forchheimer’s law as [30]

−∇P = aq + bq2, (1)
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TABLE I. Simulation parameters for the current study.

Simulation parameter Value

Fractal dimension 2.3
Relative roughness 0.075, 0.15, 0.3
Approximation levels 0, 1, 2, 3, 4, 5, 6
Liquid viscosity (kg/m s) 0.001003
Liquid density (kg/m3) 998.2

1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.03, 0.05,
Pressure at inlet (Pa)

0.01, 0.005, 0.001, 0.0005, 0.0001
Pressure at outlet (Pa) 0

with −∇P being the pressure gradient, q the flow rate per unit area, a and b constants, which are
related to fluid property and fracture geometry [31–33], leading to the reformulated Forchheimer
equation:

−∇P = μ

k0
q + βρq2, (2)

with μ being fluid viscosity, k0 the intrinsic permeability in Darcy regime, and β the Forchheimer
coefficient. At low flow rate, the nonlinear term vanishes as β approaches zero, and Eq. (2) reduces
to Darcy’s law.

Figure 3(a) shows the pressure drop as a function of average velocity across different Reynolds
number for the original surface y0-A0. The Forchheimer equation with best fit a and b is plotted as
a solid line. Note that the value of a is first fitted without consideration of the nonlinear terms using
the data for Re < 1 (dashed line), ensuring a recovery of Darcy’s law at vanishing flow rate [22].
The plot indicates that the simulation results can be well described by the Forchheimer equation,
and increasing deviation from Darcy’s law is observed at higher flow rate. Figures 3(c) and 3(e)
plot the same relation for surfaces y0/2-A0 and y0/4-A0, respectively. It can be seen that the relative
roughness in all cases impacts both the linear and nonlinear terms, with lower intrinsic permeability
(represented by a) and greater nonlinear effect (represented by b) for larger relative roughness,
consistent with past observations [21].

B. Transmissivity

In hydrology, transmissivity T , which is directly proportional to the hydraulic conductivity, is
an important parameter for description of the liquid movement in fractures. Similar to permeability,
a velocity-independent behavior of transmissivity is expected at low flow rate, i.e., the intrinsic
transmissivity T0 = μ/a. With the increase of the flow rate, the apparent transmissivity Ta decreases
due to the inertial effect, which can be described using the normalized transmissivity [17,21]:

Ta

T0
= 1

1 + cRe
, (3)

where the parameter c is dimensionless. Figures 3(b), 3(d), and 3(f) plot the results of normalized
transmissivity for corresponding surfaces. Curves from Eq. 3 with c chosen to optimize the fit are
also plotted, which show good agreement with the values from simulations across four magnitudes
of Re. The normalized transitivity remains unity, before starting to decrease at Re = 1–10, consistent
with past experimental observations [34]. Furthermore, it can be seen that an increase in relative
roughness introduces greater decrease in the apparent transmissivity as Re increases, consistent with
the general trend observed in �P vs ūx plots. Note that the slight deviation, especially in Fig. 3(b)
in the range of Re ∈ [1, 20], is likely due to the weak inertia regime [17,35], which predicts that
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Pressure drop across the fracture vs average flow velocity at steady-state for surfaces (a)
y0-A0, (c) y0/2-A0, and (e) y0/4-A0, with black-dashed line and black-solid lines representing Darcy’s
law and Forchheimer’s law, respectively. Fitted values of a and b for fractures in panels (a)–(c) are a =
{55.1, 30.8, 25.8} kg/m3s, and b = {3413, 663, 373} kg/m4, respectively. Normalized transmissivity of flow
as a function of Reynolds number for surfaces (b) y0-A0, (d) y0/2-A0, and (f) y0/4-A0, with the solid curve from
Eq. (3). The inset shows a subregion of the corresponding fractures.
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FIG. 4. Nonlinear effect factor α vs pressure gradient −∇P. Plus, star, and cross symbols are results from
surfaces y0, y0/2, and y0/4, respectively, with color representing the approximation levels.

a cubic function of the flow rate is expected from the initial deviation from the linearity, instead
of quadratic. To quantify the relative effect from the fluid inertia, the nonlinear effect factor α is
calculated as the ratio of nonlinear pressure drop to total pressure drop [17,21,36]:

α = bq2

aq + bq2
. (4)

Figure 4 plots the nonlinear effect factor α as a function of pressure gradient −∇P for all surfaces of
different relative roughness and approximation levels. It can be observed that α increases faster with
pressure gradient for greater relative roughness. In addition, the presence of high-frequency surface
features, although relatively less influential compared with relative roughness, also enhances the
inertia effect.

C. Localized eddy flow

Figure 5 shows the typical velocity fields (magnitude represented by colors) and streamlines
(black lines) for three representative surfaces, y0-A0, y0-A6, and y0/4-A0, at low Reynolds num-
bers [Re = {0.045, 0.069, 0.019}, respectively, as in Fig. 5(a)] and high Reynolds numbers [Re =
{81, 122, 93}, respectively, as in Fig. 5(b)]. Note that the Reynolds number are not identical since
the constant pressure boundary conditions are applied.

For the surface profile y0-A0, the formation of different sizes of eddy flow can be observed at
high Re, whereas the flow generally remains laminar at low Re. When the high-frequency feature
of the roughness is removed, as in y0-A6, in spite of observation of eddy flow at high Re, greater
“smoothness” of the streamline of eddies are observed compared with a rougher surface. For the
surface y0/4-A0, however, the flow remains largely laminar at both low and high Re. Figure 5
qualitatively demonstrates that the formation of eddy flow is collectively facilitated by an increase
in relative roughness, the presence of high-frequency roughness features, and increases in Reynolds
number. In particular, it is important to note the formation of small eddies even at low Re for
y0-A0, as in Fig. 5(a). Such formation of eddies in flow regimes with Re � 1 was also observed
in numerical studies using the lattice Boltzmann method [37]. We also want to emphasize that it is
likely that smaller eddy flow can be resolved with a further increase in computational resolution.
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(a) (b)

FIG. 5. Velocity fields for different surface profiles. Only a subregion of simulation domain is shown for
clarity. The colorbar shows the velocity magnitude. Solid lines denote the streamlines. (a) At low Reynolds
numbers. From top to bottom, Re = {0.045, 0.069, 0.019}. (b) At high Reynolds numbers. From top to bottom,
Re = {81, 121, 93}.

However, the influence of these tiny eddies on the total flux in the fractures is expected to be
negligible, which is similar to the argument that the impact of surface roughness on permeability
below a certain cutoff length can be ignored [38,39]. These observations suggest that, although
the concept of primary waviness and secondary roughness separated according to certain criterion
in Refs. [20,22] is helpful for understanding the roughness effect on fluid flow in fractures, a
mathematically continuous description is desired for more rigorous quantification of the roughness
effect.

D. Roughness-dependent permeability

To quantitatively reveal the effects of flow condition and surface roughness on permeability,
Fig. 6 shows the contour map of normalized apparent permeability ka/k0, where ka is the perme-
ability measured at different Re and approximation levels, and k0 is the permeability at Darcy regime
without approximation [black-dashed lines in Figs. 3(a), 3(c), and 3(e)]. Two key observations

FIG. 6. Contour map of apparent permeability ka normalized by the intrinsic permeability k0 at different
approximation levels and Reynolds numbers. (a) Surface y0. (b) Surface y0/2. (c) Surface y0/4.
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FIG. 7. Apparent permeability at different approximation levels normalized by the permeability of the
corresponding surface without approximation.

from Fig. 6 include: (1) There is a competing phenomenon between the increase in approximation
level, i.e., less detail on high-frequency roughness, which leads to higher apparent permeability
and an increase in Re, i.e., more significant inertial effects, which leads to decrease in apparent
permeability. This is reflected by the decrease in ka from the top-left region to the bottom-right
region for all three plots. (2) The influence of both roughness detail and Re on the deviation from k0

is enhanced for greater relative roughness, according to the narrowed values of normalized apparent
permeability shown in the colorbar for surfaces with decreasing relative roughness [from Figs. 6(a)
to 6(c)]. As we show later, these observations also help to formulate the relation describing the
deviation of permeability due to limited roughness resolution from the one for original unfiltered
surface. Due to limited resolution of surface profiling equipment in experimental studies or com-
putational resources in numerical studies, the description of the surface profile is often only down
to a certain length scale. As a result, theoretical and numerical prediction of permeability for flow
in rough fractures may suffer from errors due to insufficient accuracy in description of surface
detail. It is thus important to quantify the error in permeability prediction under such scenarios.
Here, the surface profiles without approximation, i.e., surfaces y0-A0, y0/2-A0, and y0/4-A0, and
the corresponding simulation results under different Re are regarded as the “ground truth.” Figure 7
plots the permeability of approximated surfaces kAN normalized by that of the original surface kA0

as a function of approximation level. It is interesting to note that, for a given approximated surface,
the relative deviation of permeability from the ground truth is found to remain largely unchanged
at different Re, whose standard deviation is represented by the error bars in Fig. 7. Therefore,
the relative errors are mainly from the description surface geometry, while being insensitive to
flow conditions. For demonstration purposes, an error tolerance of 5% is chosen and shown as a
black-dotted line in Fig. 7. It can be seen that the discrepancy exceeds the error tolerance at lower
approximation levels for surfaces with greater relative roughness. Based on these observations, an
error index can be introduced as

Ir = C1

(
y∗

H

)C2

e(− y∗
x∗ ), (5)

which describes the relative error induced from the reduced resolution by ignoring the high-
frequency roughness, where H is the gap between the surfaces (aperture), x∗ and y∗ are the
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FIG. 8. Correlation between the error index Ir and calculated relative error due to limited resolution in
surface profile description.

characteristic lengths of surface roughness in longitudinal and transverse direction of flow, re-
spectively, and C1 and C2 are fitting parameters. The characteristic roughness in the transverse
direction here is described by the root-mean-square roughness, i.e., y∗ = Rq, which directly reflects
the fluctuations of the surface perpendicular to the flow direction. The characteristic length in the
longitudinal direction x∗ can be directly represented by the inherent resolution of the profile along
the surface. In this study, since 1024 points are used to represent the original surface with a length of
50 mm [Fig. 1(a)], x∗ is therefore calculated as 50/1024 = 0.0488 mm. In the process of roughness
decomposition using the wavelet analysis technique, the high-frequency surface information is
filtered out progressively by using the low-pass filter, leading to an effectively doubled wavelength
of the finest surface information, which is reflected by the drastic decrease in the power spectra
above corresponding wave vector, as in Fig. 1(d). This means that the longitudinal resolution can be
determined by x∗ = x∗

0 × 2n at approximation level n, with x∗
0 = 0.0488 mm being the characteristic

length in the longitudinal direction for the original surface. So the term y∗/H in the power-law
relation in Eq. (5) is just the relative roughness, and the term y∗/x∗ quantifies the relative resolution
in the transverse direction with respect to the longitudinal direction. Therefore, according to Eq. (5),
large error due to inadequate surface profile description is associated with (1) significant relative
roughness, and (2) the actual length scale of the roughness. Particularly, Ir tends to vanish for small
relative roughness y∗/H and becomes insensitive to the actual resolution of the roughness.

Using the simulation results in Fig. 7, C1 and C2 in Eq. (5) are fitted to be 13.5 and 1.94,
respectively, with R2 = 0.967. Figure 8 shows the relative error in permeability from simulation
results vs Ir calculated from Eq. (5). It is found that the Ir can well describe the relative error in
permeability due to limited resolution in surface profile description for all surfaces with different
relative roughness and approximation levels, as indicated by collapse of points along the black-
dashed line. Thus, Eq. (5) can be used to estimate the errors in numerical modeling or experiments.
It can also provide guidance on the required resolution for capturing the necessary details of surface
roughness, given a tolerance of relative error. For field-scale modeling, the roughness details may
be ignored due to the computational constraints, while with the a priori knowledge of fracture
morphological features, the error index in Eq. (5) can be used to estimate the upscaling deviations
due to the geometric simplification for fracture networks. The insights gained in the current work
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could provide the foundation for future works involving 3D numerical studies combined with
experimental works.

IV. CONCLUSION

The effects of surface roughness on permeability in rough fracture are investigated by using direct
numerical simulations. Random rough surfaces with controlled fractal dimension are generated with
different relative roughness. The wavelet analysis technique is applied for surface decomposition,
where different frequencies of surface topological information are filtered progressively in a level-
by-level procedure, while the large-scale waviness (also called primary roughness profile in the
literature) remain approximately constant. As opposed to past studies where the focus was placed on
the primary and secondary roughness which are separated by a chosen cutoff length, here we explore
the effects of surface roughness across a wide spectrum of length scales. Systematic simulations are
conducted for surfaces with different relative roughness and approximation levels across a wide
range of flow conditions.

The onset of nonlinear flow behavior in the pressure gradient vs flow rate curve associated with
formation of eddy flow is observed as the Reynolds number increases, which can be well described
by Forchheimer’s law. The relative impact of inertial effect is quantified by the nonlinear effect
factor. It is found that the apparent permeability becomes more sensitive to Re when roughness
details of smaller scale (high-frequency roughness) are considered. Furthermore, an increase in
relative roughness (smaller fracture spacing) leads to enhanced sensitivity of apparent permeability
to both roughness and Re. Using the unfiltered original surface as the ground truth, the relative error
on the permeability due to limited resolution in surface profile description is determined. Based
on the observations of roughness effect from all simulation results, an error index is proposed to
quantify the relative error in permeability prediction. It is found that the relative error in permeability
from surfaces with different roughness resolutions and relative roughness can be well described
by Ir .

Our study provides insights into the role of roughness of different length scales on the fluid flow
through rough fractures. Given an error tolerance, the proposed error index can be a useful tool for
determining the required resolution of surface profile for experimental and numerical investigations
where accurate determination of permeability is needed. The improved understanding of effects
of multiscale roughness on fluid flow facilitates the accurate modeling and interpretation of mass-
transport processes through fractured networks.
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