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Resonant triad interactions in a stably stratified uniform shear flow
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We investigate resonant triad interactions (RTIs) in a two-dimensional stably stratified
uniform shear flow confined between two infinite parallel walls in the absence of viscous
and diffusive effects. RTIs occur when three interacting waves satisfy the spatial and
temporal resonance conditions of the form ±km ± kn = kr and ±ωm ± ωn = ωr with km,n,r

and ωm,n,r being the wave vectors and frequencies of the interacting waves, respectively.
In two-dimensional flows, the interaction between two primary modes having the same
frequency ω but different wave numbers km and kn produces two different secondary
terms: one time-dependent (superharmonic) mode having frequency 2ω and wave number
km + kn, and the other time-independent mean flow with zero frequency and wave number
km − kn, where km and kn are the horizontal components of the wave vectors km and kn,
respectively. The linear stability problem is solved analytically, which gives the eigen-
functions in the form of modified Bessel functions. The differential equations governing
the spatial amplitudes of the superharmonic mode and secondary mean flow are solved
numerically as well as analytically using the spectral collocation method and the method of
variation of parameters, respectively. It turns out that the linear operator associated with the
differential equation of both secondary modes is the same as the linear stability operator
and that the solvability condition of the differential equation is found to be associated
with the existence of RTIs. We address two types of RTIs: self-resonances and different
mode interactions. The self-resonating modes are identified using dispersion curves, but
in different mode interactions the prediction of RTIs using dispersion curves is not so
straightforward. Thus, to show the existence of RTIs for the different mode interaction case,
we adopt a numerical method; in addition, we use the fact that the superharmonic mode
diverges. Various cases of wave interactions in a stably stratified shear flow are analyzed
in the presence of a resonant triad for various frequencies and mode numbers.

DOI: 10.1103/PhysRevFluids.7.023904

I. INTRODUCTION

Stratified flows are ubiquitous in nature, for instance, in lakes, rivers, oceans, and atmosphere,
etc. With respect to gravity, stratification can be classified into two categories, namely, stable
and unstable stratifications. The fluid is stably stratified if its density decreases (or is constant)
with height and unstably stratified if, at least locally, its density increases with height. Such
flows in bounded and unbounded geometries have been studied for decades [1–4]. In particular,
stably stratified flows are of great interest from a geophysical point of view because of their
ability to support the propagation of various kinds of gravity waves [5–8]. Notably, there are a
number of instability induced phenomena associated with internal gravity waves, which are of
interest from engineering as well as geophysical points of view; not all of them, however, are
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fully understood at present [5,6,9]. One of the well-known phenomena associated with internal
gravity waves in stably stratified flows is resonant triad interactions (RTIs) [10,11], which arise due
to second-order nonlinear wave interactions satisfying the classical resonance conditions, namely,
±km ± kn = kr and ±ωm ± ωn = ωr , where km,n,r and ωm,n,r are the wave vectors and frequencies
of the interacting waves, respectively. It is worthwhile to note that RTIs—being the underlying
energy transfer mechanism in internal gravity waves generated, for instance, by winds and tides in
the ocean—play an important role in ocean related phenomena (tides, mixing, etc. [11]). If a small
wave vector or frequency mismatch occurs in the condition of RTIs, i.e., kr ± km ± kn = δk and
ωr ± ωm ± ωn = δω, where |δk| � |km,n,r | and |δω| � |ωm,n,r |, the interactions are referred to as
near-resonant triad interactions, which have also been studied for several decades [12–14].

There are two significant consequences of RTIs: triadic resonance instability and superharmonic
wave generation. In the former, one primary wave with wave vector k0 and frequency ω0 generates
two secondary waves with wave vectors k± and frequencies ω±, and, owing to RTIs, continuous
exchange of energy takes place among three waves [15,16]. In the latter, two primary waves having
fixed equal frequency ω and wave vectors km and kn generate a secondary superharmonic wave with
frequency 2ω and wave vector km + kn [17,18]. Another interesting resonance triad phenomenon is
the mean flow resonances [19], in which the secondary mean flow resonates with the background
flow. These resonances appear when two primary waves of different wave vectors km and kn with
equal and opposite frequencies ±ω interact and produce a spatially periodic mean flow with zero
frequency (ω − ω = 0) and wave vector |km − kn|.

The linear stability analysis forms a basic step for understanding wave interaction phenomena
in stratified flows. The linear stability of stratified flows was initiated by Taylor [20] and Goldstein
[21] where they conjectured that the sufficient condition for the stability of a heterogeneous shear
flow is Ri > 0.25, with Ri being the Richardson number (defined as the ratio of the squared
buoyancy frequency to the square of vertical shear). The work of Taylor [20] was extended by
Eliassen et al. [22], wherein the authors analyzed a stratified shear flow with a constant density
gradient in a bounded geometry by formulating an initial value problem, and found that the flow is
stable and unstable for Ri > 0 and Ri < 0, respectively. Their analysis revealed that for Ri > 0.25
the system admits infinite number of discrete eigenvalues, whereas for 0 < Ri < 0.25 no discrete
eigenvalue exists and the absolute of vertical and horizontal velocity disturbances decay asymp-
totically as t−1 and t−0.5+√

0.25−Ri, respectively, where t is time. Furthermore, they identified that
for −0.75 < Ri < 0 the horizontal (vertical) component of velocity disturbance grows (decays) as
t−0.5+√

0.25−Ri(t−1.5−√
0.25−Ri), and for Ri < −0.75 at least one pair of discrete complex eigenvalues

occur, thereby leading to exponentially growing disturbances.
Following Taylor’s and Goldstein’s works, Case [23] and Dyson [24] investigated the stability

of stably stratified shear flows for Ri > 0 in an idealized atmosphere by considering the inertial
effects of the density in the flow. They showed that (i) the system contains one or more continuous
spectra, and (ii) there exist an infinite number of discrete neutrally stable eigenvalues for Ri > 0.25.
Furthermore, Case [23] showed that the disturbance stream function decays as t−0.5+√

0.25−Ri using
the asymptotic evaluation in the complex plane. Later, Brown and Stewartson [25] confirmed that
the disturbance stream function varies as t−1.5±√

0.25−Ri, which agrees with the result of Eliassen
et al. [22]; however, it contradicts the results of Case [23]. For a comprehensive review, the reader
is referred to Yaglom [26]. For Ri > 0.25, the study by Booker and Bretherton [27] showed a
significant energy transfer from internal waves to the background flow at the critical layer—a region
where the phase velocity of the internal wave is the same as that of background flow. Later several
studies considered resonant interactions near the critical layer; e.g., see Brown and Stewartson [25]
and Grimshaw [28,29].

The theory of nonlinear wave interactions was introduced in the seminal work by Phillips
[30], wherein he proved that second-order resonant interactions are not possible among three
finite-amplitude surface gravity waves in deep water (in the absence of background shear) and that
the cubic-order resonant interactions can occur among a group of four of such waves. These findings
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were also confirmed experimentally by Longuet-Higgins [31]. Notwithstanding, RTIs exist among
surface gravity waves in the presence of shear [32]. It may be noted that Refs. [30–32] consider a
homogeneous (i.e., constant density) medium. Nonlinear wave interactions in a continuously stably
stratified inviscid fluid in the absence of background shear (a heterogeneous medium with vertical
anisotropy) were studied first by Thorpe [33], who proved the existence of RTIs among two surface
waves and an internal gravity wave as well as among three internal gravity waves—provided that not
all of them have the same mode number. A more generalized work that analyzes RTIs among internal
gravity waves in a continuously stratified fluid in the presence of shear was carried out by Grimshaw
[28]. He further extended this work to higher-order resonances [29]. Thus, the existence of RTIs
among internal gravity waves in a continuously stratified shear flow is well established [28,29,33].
However, to the best of authors’ knowledge, a weakly nonlinear analysis, which determines the
control parameters rendering RTIs among internal gravity waves in a stratified shear flow, has not
been reported so far. Therefore, the objective of this paper is to demonstrate a second-order weakly
nonlinear analysis to investigate RTIs among internal gravity waves in an inviscid, continuously
stratified shear flow. In particular, we focus on uniform shear (i.e., constant shear rate) in a stably
stratified medium. The analysis leads to the second-order weakly nonlinear solution containing
an arbitrary sum of the vertical modes at a fixed frequency to identify the existence of RTIs.
Furthermore, we introduce a method to determine the control parameters for the existence of RTIs.
The present study could prove useful for oceanic scenarios as the presence of shear flow (or any other
mean flow) in a continuously stratified medium affects the energy transfer among different internal
gravity wave harmonics as well as the energy transfer from the shear flow to each disturbance
significantly [34,35].

The paper is organized as follows. The problem definition and non-dimensional equations are
given in Sec. II. The linear stability problem and discussions on the analytical solution are studied
in Sec. III. The nonlinear problem is discussed in Sec. IV. The first- and second-order solutions are
given in Secs. IV A and IV B, respectively. The analytical solution for the second-order problem
is formulated in Sec. IV C. The existence of resonant triad interactions among two primary waves
having the same frequency ω and a superharmonic wave of frequency 2ω for self and non-self-
resonant cases are presented in Sec. V, and our conclusions are in Sec. VI.

II. PROBLEM DEFINITION

Consider a two-dimensional stably stratified incompressible inviscid flow bounded between two
oppositely moving solid walls at z = ±L with speed Ū0 along the x direction. The background flow
under consideration is a parallel shear flow with constant shear rate, i.e.,

Ū (z) = Ū0 z/L, (1)

in a stably stratified medium with density satisfying

ρ̄(z) = ρm − 1

2
ρd

z

L
, (2)

where ρm is a constant reference density and ρd is the density difference between top and bottom
walls. The shear flow is superimposed in a background state such that the pressure p̄(z) and density
ρ̄(z) are in hydrostatic balance:

∂ p̄

∂z
= −gρ̄. (3)

Note that the gradient of the background density is constant. To simplify the problem, we use the
Boussinesq approximation, i.e., the density variation is negligible in the equations of motion except
in the gravity term. Thus, the mass, internal energy, and momentum equations read

∇ · u = 0,
∂ρ

∂t
+ u · ∇ρ = 0, and ρm

(
∂

∂t
+ u · ∇

)
u = −∇p + ρg, (4)
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where u = (u,w) is the velocity vector and ρ, p, and g are the density, pressure, and gravity fields,
respectively.

A. Nonlinear disturbance equations

In order to find the disturbance equations, each of the flow variables is decomposed into its
background state and infinitesimally small disturbance, such that,

ρ(x, z, t ) = ρ̄(z) + ρ ′(x, z, t ), (5a)

p(x, z, t ) = p̄(z) + p′(x, y, t ), (5b)

[u(x, z, t ),w(x, z, t )] = [Ū (z) + u′,w′], (5c)

where the perturbations are denoted by a superscript prime. Substituting the above decomposition
(5) into (4), we get the following disturbance equations:

∂u′

∂x
+ ∂w′

∂z
= 0, (6a)

(
∂

∂t
+ Ū

∂

∂x

)
ρ ′ = −w′ ∂ρ̄

∂z
−

(
u′ ∂ρ ′

∂x
+ w′ ∂ρ ′

∂z

)
, (6b)

(
∂

∂t
+ Ū

∂

∂x

)
u′ + dŪ

d z
w′ = − 1

ρm

∂ p′

∂x
−

(
u′ ∂u′

∂x
+ w′ ∂u′

∂z

)
, (6c)

(
∂

∂t
+ Ū

∂

∂x

)
w′ = − 1

ρm

∂ p′

∂z
− gρ ′

ρm
−

(
u′ ∂w′

∂x
+ w′ ∂w′

∂z

)
. (6d)

At the solid boundaries z = ±L, the normal component of the velocity perturbation w′ is zero, and
the density perturbation ρ ′ is assumed to be zero. Taking the curl of momentum equations (6c)–(6d),
and introducing the perturbation stream function ψ ′, we get

(
∂

∂t
+ Ū (z)

∂

∂x

)
∇2ψ ′ = g

ρm

∂ρ ′

∂x
−

(
∂ψ ′

∂z

∂

∂x
− ∂ψ ′

∂x

∂

∂z

)
∇2ψ ′, (7)

where u′ = ∂ψ ′/∂z, w′ = −∂ψ ′/∂x, and ∇2 = ∂2/∂x2 + ∂2/∂z2 is the Laplacian operator. Note
that four disturbance equations (6a)–(6d) reduce to two equations (6b) and (7) for ρ ′ and ψ ′,
respectively.

B. Nondimensional equations

For nondimensionalization, we use half of the gap between the walls, L, as a reference length
scale, ρm as a reference density, the background flow speed at the wall, Ū0, as a reference velocity,
and L/Ū0 as a reference timescale. We will use the same notation for the nondimensional variables,
and here onward all the variables are in dimensionless form. The nondimensional disturbance
equations read as

(
∂

∂t
+ Ū (z)

∂

∂x

)
ρ ′ = −N2 ∂ψ ′

∂x
+ J (ψ ′, ρ ′), (8)

(
∂

∂t
+ Ū (z)

∂

∂x

)
∇2ψ ′ = gL

Ū 2
0

∂ρ ′

∂x
+ J (ψ ′,∇2ψ ′), (9)

where Ū (z) = z, the dimensionless buoyancy frequency N is expressed as N =
√

− g
ρm

d ρ̄

dz /
√

g
L , and

J ( f , g) = ∂ f
∂x

∂g
∂z − ∂ f

∂z
∂g
∂x is the Jacobian determinant. The dimensionless local Richardson number
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Ri is defined as Ri = gLN2/Ū 2
0 . Rewriting (9) in terms of Ri, we get(

∂

∂t
+ Ū (z)

∂

∂x

)
∇2ψ ′ = Ri

N2

∂ρ ′

∂x
+ J (ψ ′,∇2ψ ′). (10)

Furthermore, eliminating the density gradient term of (10) using (8), we obtain
[(

∂

∂t
+ Ū (z)

∂

∂x

)2

∇2 + Ri
∂2

∂x2

]
ψ ′ =

(
∂

∂t
+ Ū (z)

∂

∂x

)
J (ψ ′,∇2ψ ′) + Ri

N2

∂J (ψ ′, ρ ′)
∂x

. (11)

Note that Eqs. (8) and (11) form a coupled system of equations for unknowns ρ ′ and ψ ′. The
dimensionless boundary conditions are expressed as ψ ′ = ρ ′ = 0 at z = ±1. In the present paper,
we focus on stably stratified linear density variations. Therefore N2 and Ri are positive real
constants. We shall consider different uniform stable stratifications by varying the dimensionless
parameters (i) the buoyancy frequency N and (ii) the local Richardson number Ri.

III. LINEAR STABILITY THEORY

In the linear stability analysis, we neglect the nonlinear terms of disturbance equations and solve
the resulting linear system by assuming the normal mode solution as

(ρ ′, ψ ′) = (ρ̂(z), ψ̂ (z))eik(x−ct ), (12)

where the hat over the quantity represents the complex amplitude, k is the streamwise wave number,
and c = cr + i ci is the complex phase velocity. The base flow is said to be stable, neutrally stable,
or unstable if k ci < 0, k ci = 0, or k ci > 0, respectively [36]. In the present study, we assume a
positive wave number (i.e., k > 0), and thus the stability is determined by the sign of ci. Neglecting
the right-hand side nonlinear terms and substituting the normal mode solution (12) into (8) and (10),
we get

(Ū − c)ρ̂ = −N2 ψ̂, (13a)

(Ū − c)
(
d2

z − k2
)
ψ̂ = Ri

N2
ρ̂, (13b)

where dz = d/dz and d2
z = d2/dz2. Eliminating density from (13b), we get

[
(Ū − c)2(d2

z − k2
) + Ri

]
ψ̂ = 0, (14)

which is the modified Taylor-Goldstein equation [22] for the linear background shear flow with
uniform stratification. The system of differential equations (13) or equivalently (14), along with the
boundary conditions ψ̂ = ρ̂ = 0 at z = ±1, forms a generalized eigenvalue problem.

It is worth noticing that the linear stability problem (13) or (14) becomes singular when the
background shear flow Ū = z ∈ [−1, 1] coincides with the phase velocity c of the perturbation,
which leads to all continuous modes in the spectrum. The case of continuous modes is beyond the
scope of the present study. Here the choice of Ri > 0.25 is made, which ascertains that the system
(13) possesses neutrally stable (ci = 0) discrete modes [23], i.e., the eigenvalue c is real. Thus to
avoid the singularity of (14) we assume that the phase speed c of interacting primary modes takes
values either greater than 1 (forward propagating mode) or less than −1 (backward propagating
mode). Due to the symmetry of the problem [37], it is sufficient to consider c > 1 in the present
problem.

The two forward propagating primary modes having the same frequency ω may interact and pro-
duce the superharmonic with double frequency and the secondary mean flow with zero frequency.
However, the focus of the present paper is the former one. For the sake of completeness the solution
of the latter system is presented in Sec. IV C. Further analysis of RTIs involving two primary waves
and a time-independent secondary mean flow is left for future.
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A. Analytical solution and dispersion relation

The second-order differential equation (14) can be transformed into the modified Bessel equation
[38]

Z2 d2φ

dZ2
+ Z

dφ

dZ
− (Z2 + γ 2) φ = 0, (15)

where ψ̂ (z) = √
Z φ(Z ), Z = k (z − c), and γ = √

0.25 − Ri. In the present problem, Ri > 0.25
everywhere in the flow domain, and therefore γ is always a purely imaginary number [22]. The
general solution of the modified Bessel equation has the form

φ(Z ) = AIγ (Z ) + BKγ (Z ), (16)

where A and B are two arbitrary constants, and Iγ (Z ) and Kγ (Z ) are the modified Bessel functions
of order γ in variable Z; see Refs. [22,39] for more details. Consequently, the general solution of
(14) reads

ψ̂ (z) = A f1(z) + B f2(z), (17)

where

f1(z) =
√

k(z − c)Iγ (k(z − c)) and f2(z) =
√

k(z − c)Kγ (k(z − c)), (18)

are two linearly independent solutions of (14).
For finding the arbitrary constants A and B, we apply the boundary conditions ψ̂ (∓1) = 0 in the

general solution (17), which give

AIγ (k(−1 − c)) + BKγ (k(−1 − c)) = 0 and AIγ (k(1 − c)) + BKγ (k(1 − c)) = 0. (19)

The condition for the existence of nontrivial solutions of (19) yields the dispersion relation

D (c, k; Ri) =
∣∣∣∣Iγ (k(−1 − c)) Kγ (k(−1 − c))

Iγ (k(1 − c)) Kγ (k(1 − c))

∣∣∣∣ = 0, (20)

or, in terms of frequency ω = c k,

D (ω, k; Ri) =
∣∣∣∣Iγ (−k − ω) Kγ (−k − ω)

Iγ (k − ω) Kγ (k − ω)

∣∣∣∣ = 0, (21)

where c /∈ [−1, 1]. It is verified that the dispersion relation remains invariant under the transfor-
mation ω → −ω. Thus for each forward propagating mode with frequency ω there always exists a
backward propagating mode with frequency −ω [37].

The linear system (19) has infinitely many solutions for A and B when the coefficients satisfy (20)
or (21). From these infinite set of solutions we choose A = Kγ (k(−1 − c)) and B = −Iγ (k(−1 −
c)). Finally substituting expressions of A and B into (17), we get

ψ̂ (z) =
√

k(z − c)[Kγ (k(−1 − c))Iγ (k(z − c)) − Iγ (k(−1 − c))Kγ (k(z − c))]. (22)

Under the long-wavelength approximation (i.e., for k = 0), the phase speed c and the eigenfunction
ψ̂ (z) [given in (22)] can be expressed in a compact form [22,37]. However, for a general k, it is
too cumbersome to obtain explicit expressions for c and ψ̂ (z). Therefore, for nonzero k, we shall
solve the dispersion relation (21) numerically in the following two ways: (i) for k by fixing ω, and
(ii) for ω by fixing k, in the computer algebra software Mathematica. In the former, the obtained
wave numbers at fixed ω are arranged in ascending order; i.e., mode 1, mode 2, ... have wave
numbers k1, k2, . . . , where k1 < k2 . . . . In the latter, the obtained frequencies at fixed k are arranged
in descending order, i.e., mode 1, mode 2, ... have frequencies ω1, ω2, . . . where ω1 > ω2 . . . . In
addition, the linear stability equations (13) are also solved numerically using the spectral collocation
method [40], which gives eigenvalues ω for a fixed wave number k. Table I summarizes the roots
k1, k2, . . . , k8 (arranged in ascending order) of the dispersion relation, which shows the presence of

023904-6



RESONANT TRIAD INTERACTIONS IN A STABLY …

TABLE I. The roots of the dispersion relation (21) for Ri = 5 showing the presence of different modes of
wave numbers k1 to k8 for several frequencies.

ω → 1.09730 1.45442 1.61782 2.0197 2.12460 2.53705 2.626178 3.04056 3.12646 3.541166

k1 0.721779 0.999998 1.13742 1.49994 1.59915 2.0 2.08802 2.5 2.58572 3.0
k2 1.0 1.34115 1.5 1.89586 2.0 2.441 2.5 2.91411 3.0 3.41465
k3 1.07379 1.42731 1.58973 1.99033 2.09508 2.50723 2.59633 3.01066 3.09657 3.51125
k4 1.09172 1.44799 1.61116 2.01275 2.11762 2.52999 2.61912 3.03348 3.11939 3.53409
k5 1.09598 1.4529 1.61625 2.01805 2.12295 2.53538 2.62451 3.03888 3.12479 3.53949
k6 1.09699 1.45406 1.61745 2.01931 2.12422 2.53666 2.62578 3.04016 3.12607 3.54107
k7 1.09723 1.45433 1.61773 2.01961 2.12452 2.53696 2.62608 3.04046 3.12637 3.54114
k8 1.09729 1.45442 1.6178 2.01969 2.12459 2.537046 2.62616 3.04054 3.12645 3.54116

various internal modes of different wave numbers at a fixed frequency ω. It is seen from the last row
of the table that k’s are tending to ω.

Figure 1(a) illustrates the variation of the frequencies with the wave numbers of two forward
propagating modes (mode 1 and mode 2). In Fig. 1(a), dots are the frequencies ω calculated from
the dispersion relation (21), and the blue (red) line denotes numerically computed frequencies of
the first (second) forward propagating mode obtained from the eigenvalue problem (13). It is seen
that (i) numerically computed eigenvalues are in excellent agreement with those obtained from the
dispersion relation, and (ii) the frequency increases with increasing wave number for each forward
propagating mode. It is verified that the difference between frequencies of any two consecutive
higher modes (mode 3, mode 4, and so on) is very small for any fixed wave number. The variation
of corresponding phase speeds is also shown in Fig. 1(b). As mentioned earlier, we restrict ourselves
to the modes with c > 1 (ω > k). As ω → k or c → 1, the solution (22) of the linear problem (14)
becomes invalid as it becomes singular due to the presence of a critical layer on the boundary. To find

35.10

1

2

3
(a)

0 1.5 3

1

1.2

1.4

1.6 (b)

FIG. 1. Variation of the (a) frequency ω and (b) phase speed c = ω/k with the wave number k for Ri = 5.
In panels (a) and (b), solid-blue and dashed-red lines correspond to the first and second forward propagating
modes obtained from the eigenvalue problem (13), respectively, and circles represent the (ω, k) and (c, k) pairs
obtained from the dispersion relation (21). The black solid lines on panels (a) and (b) denote ω = k and c = 1,
respectively.
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101-
-1

0

1

(a)

Mode 1

101-
-1

0

1
(b)

Mode 2

101-
-1

0

1
(c)

Mode 3
101-

-1

0

1
(d)

Mode 4

FIG. 2. Normalized eigenfunctions representing (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4 for
Ri = 5 and k = 1. The solid and dashed lines denote analytical solutions in the presence and absence of shear,
respectively; symbols refer to the numerical solution in the shear case.

a solution to the linear problem in the limit ω → k (or c → 1), one must consider the continuous
spectra.

The variation of the first four eigenmodes of (14) with background shear (solid line) and without
background shear (dashed line) for k = 1 and Ri = 5 is depicted in Fig. 2. Here, symbols represent
the numerically obtained eigenfunctions by solving (13), and the numbers in the panels indicate the
extremities achieved by the eigenmode in the presence of shear flow. It is worth noticing that in
the absence of shear flow the eigenmodes are nothing but the sine and cosine functions [5], which
transform to the modified Bessel functions in the presence of uniform shear flow [22]; thus, the
presence of uniform shear flow breaks the top-bottom symmetry of eigenmodes. The mode number
of an eigenfunction is related to the number of zero-crossing as well as the number of extremum of
the eigenfunction—if n is the mode number of the eigenmode, then the eigenmode becomes zero
n − 1 times and achieves extremum n times between the domain z ∈ (−1, 1). The eigenfunctions
are asymmetric in the presence of background shear flow, which is in contrast to the no shear case
where the eigenfunctions are symmetric or antisymmetric about the mid-depth; see Fig. 2. The
shear flow also influences the frequency spectrum obtained from the nonlinear wave interactions.
Notably, in the presence of vertical shear, the stably stratified flow admits transient growth [41,42]
that originates either from the interaction of the edge waves [43] or the interactions of the members
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of the continuous spectrum of the linear dispersion relation [44,45]. Moreover, shear flow is also
responsible for shear-induced turbulent mixing and shear-induced breaking through the nonlinear
wave interactions [46,47].

IV. WEAKLY NONLINEAR ANALYSIS

For examining the nonlinear problem, we use the regular perturbation expansion [48] in which
the solution is expressed as an asymptotic power series in integer powers of a small parameter. Thus,
we consider the solutions of (8) and (11) in the following power series form

(ψ ′, ρ ′) = ε
(
ψ (1), ρ (1)

) + ε2
(
ψ (2), ρ (2)

) + · · · , (23)

where ε is a dimensionless small parameter, which quantifies the order of the amplitude of the
perturbed stream function ψ ′, i.e., O (ε) ≡ O (|ψ ′|)). In (23), the coefficients at O (ε) represent the
plane wave solution of the linearized problem, and the higher order coefficients signify the nonlinear
corrections due to the interactions among plane waves.

Substituting (23) into (8)–(11), and equating the coefficients of like powers in ε, we obtain a
system of equations for (ψ (n), ρ (n) ), which are solved successively. For instance, at O (ε), we obtain
the linear disturbance equations [cf. (8) and (11)]

L ψ (1) = 0 and (∂t + Ū ∂x )ρ (1) + N2 ∂xψ
(1) = 0, (24)

where L = (∂t + Ū∂x )
2∇2 + Ri ∂xx, and the subscripts x and t denote the respective derivatives.

Similarly at O (ε2), we get a second-order system for ψ (2) and ρ (2),

L ψ (2) = (∂t + Ū∂x )J
(
ψ (1), ∇2ψ (1)

) + Ri

N2
∂xJ

(
ψ (1), ρ (1)

)
, (25a)

(∂t + Ū∂x )ρ (2) = −N2 ∂xψ
(2) + J

(
ψ (1), ρ (1)

)
, (25b)

where the right-hand side contains quadratic nonlinear terms involving the solutions of O (ε)
problem.

A. First-order solution at O (ε)

We write the first-order solution (ψ (1), ρ (1) ) as a superposition of waves with different wave
numbers

ψ (1) =
∑

j

ψ j (z)ei(k j x−ω j t ) + c.c. and ρ (1) =
∑

j

ρ j (z)ei(k j x−ω j t ) + c.c., (26)

where ω j = k jc j with j � 1 being a positive integer, and c.c. denotes the complex conjugate terms.
Substituting (26) into (24), we get

Ljψ j (z) = 0 and ρ j (z) = −N2 ψ j (z)

(Ū − ω j/k j )
, (27)

where Lj ≡ L (∂t → −iω j, ∂x → ik j, ∂z → dz, . . . ) is a complex differential operator, which is
obtained by replacing the partial derivatives ∂t , ∂x, and ∂z by −iω j , ik j , and dz into the operator
L , respectively. As detailed in Sec. III, the exact solution of the first-order problem is expressed in
terms of the modified Bessel function as

ψ j (z) = √
p j[Kγ (−k j − ω j )Iγ (p j ) − Iγ (−k j − ω j )Kγ (p j )], (28)

where p j = k jz − ω j and ψ j (±1) = 0; see (22).
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B. Second-order solution at O (ε2 ) and three-wave interactions

Note that the right-hand side of the second-order system (25) is forced by the solution (ψ (1), ρ (1) )
of the first-order system. Owing to the forcing by primary (linear) waves, we can physically interpret
the generation of harmonics (waves which are forced by linear waves); e.g., the two primary
waves having the same frequency interact with each other, exchange energies, and give rise to the
superharmonic and correction to the mean flow. These interacting waves form a resonance triad if
the sums of their wave numbers and frequencies satisfy the resonance conditions,

±km ± kn = kr and ± ωm ± ωn = ωr, (29)

where km and kn are the wave numbers of two interacting waves that produce a wave of wave number
kr with ωm, ωn, and ωr being the corresponding frequencies.

In this paper, we consider the interaction between two primary modes of wave numbers km

and kn having the same frequency ωm = ωn = ω in two-dimensional Cartesian geometry. These
two primary modes interact with each other and yield a superharmonic and a time-independent
secondary mean flow with the wave number and frequency pairs as (km + kn, 2ω) and (km − kn, 0),
respectively. The superharmonic mode forms a resonant triad with two interacting primary modes
when 2ω is one of the eigenvalues of (13) at wave number km + kn, i.e., (km + kn, 2ω) satisfies the
dispersion relation D (2ω, km + kn; Ri) = 0. Similarly, the mean flow form a resonant triad with
two interacting primary modes when 0 is one of the eigenvalues of the linearized problem (13) at
wave number km − kn, i.e., (km − kn, 0) satisfies the dispersion relation D (0, km − kn; Ri) = 0. In
other words, under the resonance condition, there exists a primary internal mode with wave number
and frequency pair as (km + kn, 2ω) or (km − kn, 0) in the system giving rise to a superharmonic and
a time-independent secondary mean flow, respectively.

Substituting the expansion of (ψ (1), ρ (1) ) from (26) into (25), the right-hand side forcing terms
of (25) can be expressed as

∑
m,n�1

[
Amn(z) ei [(km+kn )x−2 ω t] + Bmn(z) ei (km−kn )x + c.c

]
, (30)

where

Amn(z) = (km + kn)
[ − (Ū − c3)

(
km ψm

(
d2

z − k2
n

)
dzψn − kn dzψm

(
d2

z − k2
n

)
ψn

)

+ Ri

N2
(−km ψm dzρn + kn ρn dzψm)

]
, (31a)

Bmn(z) = −(km − kn)
[

Ū km ψm
(
d2

z − k2
n

)
dzψn + Ū kn dzψm

(
d2

z − k2
n

)
ψn

+ Ri

N2
(km ψm dzρn − kn ρn dzψm)

]
. (31b)

The positive indices m and n are summed over all the primary wave numbers present in the system.
Here, the phase velocity of the superharmonic mode is defined as 2ω/(km + kn). Note that the right-
hand side forcing (30)–(31) arises due to the quadratic interaction between various modes present at
the leading order. Consequently, the second-order solution ψ (2) has the same form as the two terms
of the right-hand side forcing of (25a), thus the expression for ψ (2) reads

ψ (2)(z) =
∑

m,n�1

[
hmn(z)ei[(km+kn )x−2ωt] + gmn(z)ei(km−kn )x + c.c.

]
. (32)

Substituting (32) into (25a) and equating the coefficients of ei[(km+kn )x−2ωt] and ei(km−kn )x, we obtain
equations for hmn(z) and gmn(z). For mode pair (m, n), the spatial amplitudes of the superharmonic
mode and the secondary mean flow are defined as h̄mn(z) = hmn + hnm and ḡmn(z) = gmn + gnm,
respectively. The equations governing h̄mn(z) and ḡmn(z) satisfy the following nonhomogeneous
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differential systems:

L+
2 h̄mn(z) = Āmn(z), (33)

L−
2 ḡmn(z) = B̄mn(z), (34)

where Āmn = Amn + Anm and B̄mn = Bmn + Bnm with Anm and Bnm being obtained by interchanging
m and n indices in the expressions of Amn and Bmn, respectively; L+

2 and L−
2 are the linear differential

operators defined as

L+
2 = −(−2ω + Ū (km + kn))2

(
d2

z − (km + kn)2
) − Ri (km + kn)2, (35)

L−
2 = −Ū 2(km − kn)2

(
d2

z − (km − kn)2
) − Ri (km − kn)2. (36)

h̄mn(z) and ḡmn(z) satisfy the Dirichlet boundary condition, i.e., h̄mn(±1) = ḡmn(±1) = 0.
According to the Fredholm alternative theorem [49], exactly one of the statements holds. Either a

nonhomogeneous system [(33) and (34)] has a unique solution, or the corresponding homogeneous
system has a nontrivial solution. In the latter case, a nonhomogeneous system has no solution or
infinitely many solutions, depending on whether the right-hand side is orthogonal to all nontrivial
solutions of the corresponding adjoint homogeneous problem. For more details, see Sec. 8.7 of
Ref. [49].

Specifically, the system L+
2 h̄h

mn(z) = 0 has a nontrivial solution when 2ω is equal to one of the
eigenvalues of the linear problem at wave number km + kn. Moreover, the existence of a nontrivial
homogeneous solution of (33) is exactly the case of resonant triad interaction (RTI), see (29),
because there exist primary internal modes with frequency and wave number pair as (ω, km), (ω, kn),
and (2ω, km + kn). Due to this fact, the divergence of h̄mn(z) acts as an additional criterion for the
existence of the RTIs in the superharmonic case.

Similarly, the solution of (34) diverges when the corresponding homogeneous system
L−

2 ḡh
mn(z) = 0 has a nontrivial solution, the case when zero is one of the eigenvalues of the linear

problem at wave number km − kn. This is exactly the case of the RTIs because there exist linear
modes with frequency and wave number pairs as (ω, km), (ω, kn), and (0, km − kn). Similarly to
h̄mn(z), the divergence of ḡmn(z) acts as an additional criterion for the existence of the mean flow
resonance.

C. Analytical solution of L+
2 h̄mn(z) = Āmn(z) and L+

2 ḡmn(z) = B̄mn(z) systems

We shall find the particular solution of (33) and (34) using the method of variation of parameters,
which enables us to find the general solution of it. Let the general solution of the superharmonic
system be

h̄mn(z) = C1 f1(z) + C2 f2(z) + f1(z) u1(z) + f2(z) u2(z), (37)

where C1 and C2 are two arbitrary constants to be determined using the homogeneous boundary
conditions at z = ±1. { f1(z), f2(z)} forms a fundamental set of solutions of the corresponding
homogeneous problem of (33), which is expressed in terms of the modified Bessel function of
complex order γ = √

0.25 − Ri as

f1(z) =
√

(km + kn) z − 2 ω Iγ [(km + kn)z − 2 ω)],

f2(z) =
√

(km + kn) z − 2 ω Kγ [(km + kn)z − 2 ω)], (38)

and u1(z), u2(z) have the integral form

u1(z) = −
∫ z

−1

f2(ξ ) Āmn(ξ )

[2 ω − (km + kn) ζ ]2 Wh
dξ, u2(z) =

∫ z

−1

f1(ξ ) Āmn(ξ )

[2 ω − (km + kn) ξ ]2 Wh
dξ, (39)

where u1(−1) = u2(−1) = 0 and Wh = −(km + kn) is the Wronskian of f1 and f2. In order to find
the arbitrary constants, C1 and C2, we apply the Dirichlet boundary conditions h̄mn(∓1) = 0, which
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FIG. 3. The spatial amplitudes of (a) superharmonic mode (h̄mn) and (b) secondary mean flow (ḡmn). Solid
line and circles denote the analytical [(42) and (43)] and numerical solutions [(33) and (34)], respectively.

give

C1 f1(−1) + C2 f2(−1) = 0,

C1 f1(1) + C2 f2(1) + f1(1) u1(1) + f2(1) u2(1) = 0.
(40)

Solving the linear system (40), we obtain

C1 = −C2
f2(−1)

f1(−1)
and C2 = − f1(−1) [ f1(1) u1(1) + f2(1) u2(1)]

− f2(−1) f1(1) + f2(1) f1(−1)
. (41)

Finally, substituting C1 and C2 from (41) into (37) we obtain the analytical solution,

h̄mn(z) = [ f1(1) u1(1) + f2(1) u2(1)] [ f2(−1) f1(z) − f1(−1) f2(z)]

+ [ f2(−1) f1(1) + f2(1) f1(−1)] ] f1(z) u1(z) + f2(z) u2(z)], (42)

where f1, f2 and u1, u2 are given by (38) and (39), respectively.
Similarly, analytical solution ḡmn(z) of (34) is given by

ḡmn(z) = [ g1(1) v1(1) + g2(1) v2(1)] [g2(−1) g1(z) − g1(−1) g2(z)]

+ [ g2(−1) g1(1) + g2(1) g1(−1)] [ g1(z) v1(z) + g2(z) g2(z)], (43)

where g1, g2 and v1, v2 are defined as follows:

g1(z) =
√

(km − kn) z Iγ [(km − kn)z] and g2(z) =
√

(km − kn) z Kγ [(km − kn)z], (44)

v1(z) = −
∫ z

−1

g2(ξ ) B̄mn(ξ )

[(km − kn) ξ ]2 Wg
dξ and v2(z) =

∫ z

−1

g1(ξ ) B̄mn(ξ )

[(km − kn) ξ ]2 Wg
dξ . (45)

Here, Wg = −(km − kn) is the Wronskian of g1 and g2.
The calculations involved in the analytical solutions (42) and (43) are carried out with the help

of the computer algebra software Mathematica. In addition, the second-order solutions are also
computed numerically by solving directly (33) and (34) using a spectral collocation method [40]
in MATLAB. For comparison purposes, we display the spatial amplitudes of superharmonic h̄mn and
secondary mean flow ḡmn calculated numerically by solving (33) and (34) using 150 collocation
points, and calculated from the analytical solutions (42) and (43), respectively, for Ri = 5 and
ω = 4.5128; see Fig. 3. In panels (a) and (b), the characteristic lengths lh and lg of the superharmonic
(h̄mn) and secondary mean flow (ḡmn), respectively, are marked by an arrow. The characteristic
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length of superharmonic and secondary mean flow is defined as the depth where h̄mn and ḡmn vary
significantly. Note that both h̄mn and ḡmn vary in a region close to the top wall, and the spatial
amplitude of the superharmonic varies in a wider region in comparison to the secondary mean
flow. It is clear from Fig. 3 that the analytical (solid line) and numerical (circles) solutions match
excellently. Henceforth, we shall use the analytical solution for most of the results except for the
three-dimensional visualization results shown in Fig. 5.

V. RESULTS

As described above, the main objective of the present paper is to determine the existence of
RTIs among two primary modes at frequency ω and a superharmonic mode at frequency 2ω in a
stably stratified uniform shear flow by analyzing interactions among the primary modes of varying
frequencies.

For simplicity, we consider first four primary modes at a fixed frequency ω and label their wave
numbers as k1, k2, k3, and k4; see Fig. 2. Here we shall investigate all possible interactions among
any two of these modes of wave number km and kn that form RTIs with the superharmonic mode
hmn generated by them, where 1 � m � n � 4; thus we focus on the solution h̄mn(z) of (33). In the
following, we present results for two cases, namely, self-interaction (m = n) and different mode
interaction (m 
= n).

A. Self-interaction m = n (1 � m = n � 4)

Self-interactions occur when a primary mode interacts with itself. In this case, mode numbers
of interacting modes are the same, i.e., m = n and thus km = kn and ωm = ωn. The resonance
conditions (29) reduce to

km

kr
= ±1

2
and

ωm

ωr
= ±1

2
, (46)

where m and r are positive integers.
In a two-dimensional Cartesian geometry, self-interactions of primary modes are not possible in a

uniformly stratified medium in the absence of shear. This is due to the fact that the Jacobian terms in
the governing equations turn out to be zero [50]. However, in the presence of uniform shear Jacobian
terms in Eq. (11) are non zero implying the possibility of the existence of self-resonating primary
modes. Under the self-interactions, the spatial amplitude of the superharmonic mode satisfies the
following equation:

L+
2 h̄mm(z) = Āmm(z), (47)

where

L+
2 ≡ −(−2ω + 2 kmŪ )2

(
d2

z − 4 k2
m

) − 4 Ri k2
m,

Amm = 2 k2
m

[
−(Ū − cm)

(
ψm

(
d2

z − k2
m

)
dzψm − dzψm

(
d2

z − k2
m

)
ψm

) + Ri

N2
(ρm dzψm − ψm dzρm)

]
.

Note that the frequencies and wave numbers are assumed to be positive. To find the existence of
self-resonating modes, we need to find a (km, ωm) pair satisfying the relations D (ωm, km; Ri) = 0
and D (2ωm, 2km; Ri) = 0 simultaneously.

Figures 4(a)–4(d) display the existence of self-resonances graphically for Ri = 30, 40, 50, and
60, respectively. In order to identify self-resonating modes, two graphs, ω(k)/k (solid lines) for the
first four modes and ω(2k)/2k (dashed lines) for the first six modes, having the same abscissa k are
depicted in Fig. 4. An intersection of a solid line and a dashed line represents a self-resonance point
because ω/k = ω(2k)/2k, i.e., ω(k) = 2ω(2k). For a given primary mode, the mode number of the
resonating superharmonic mode can be determined from (4). The intersection patterns of dispersion
curves of primary and superharmonic modes at wave numbers k and 2k, respectively, suggest that
the mode number of the superharmonic is less than or equal to m − 1.
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FIG. 4. Evidence of self-resonances for Ri = (a) 30, (b) 40, (c) 50, and (d) 60. In each panel, four solid lines
from top to bottom denote the dispersion curves ω(k)/k as a function of k for modes 1–4, six dashed lines from
top to bottom denote the dispersion curves ω(2k)/2k as a function of k for modes 1–6, and intersection points
between a solid line and a dashed line represent the parameters k and ω satisfying the resonance condition (46).

B. Interactions among different modes m �= n (1 � m < n � 4)

For a broad range of Ri and ω, graphically finding out the resonance parameters for the interaction
among two primary modes having the same frequency is not feasible. Nevertheless, we can adopt
following numerical way based on the solutions of the dispersion relation, referred to as the mode
search method.

Mode search method

(1) Generate nx × ny grid points on the (ω, Ri) plane and follow the following steps for each
grid point.

(2) Generate a set Kω = { k | D (ω, k; Ri) = 0}.
(3) Arrange Kω in ascending order and label the elements as k1, k2, k3, k4, . . . .
(4) Calculate km + kn for km, kn ∈ Kω.
(5) Generate two sets:

(a) �mn = { ω | D (ω, km + kn; Ri) = 0},
(b) K2ω = { k | D (2ω, k; Ri) = 0}.

(6) Corresponding to each (m, n) pair define following sets:
(a) 
ω := { |2ω − ωr | | ωr ∈ �mn},
(b) 
k := { |km + kn − k2ω

r | | k2ω
r ∈ K2ω}.

(7) For each mode pair (m, n) calculate the minimum of 
ω and 
k:
(a) �ω = min 
ω and the corresponding ωr ,
(b) �k = min 
k and the corresponding k2ω

r .
(8) If �ω = 0, or equivalently �k = 0, there exist RTIs.
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The condition for the existence of RTIs reduces to either �ω = 0 or �k = 0. Note that the
conditions �ω = 0 or �k = 0 are equivalent since both these conditions imply that (2ω, km + kn)
satisfies the dispersion relation. However, due to the numerical limitations, achieving �ω and �k

exactly zero is not possible. Thus, we say that RTIs exist if one of these two parameters is zero with
some predefined accuracy specified by an error tolerance (Tol). By observing the values �ω and �k

for various (ω, Ri) pairs, we fix Tol = 10−4, and RTIs exist if |�ω| � Tol or |�k| � Tol.
Without loss of generality, to study the interaction among two different modes (m 
= n, 1 �

m < n � 4) at the same frequency ω we assume that nx = 50, ny = 80, and ω ∈ [0.01, 5] and Ri ∈
[2, 10], which implies that the effect of buoyancy is much more than the effect of velocity shear.

Now we consider the interactions among two different modes with mode numbers m and n having
the same frequency ω, and our aim is to find parameters Ri, ω, m, n for which RTIs exist. For
different Richardson numbers (Ri), obtained by varying the density gradient, three waves satisfying
the resonant conditions (29) with Tol are identified using the mode search method explained above,
and the results are summarized in Table II. More precisely, at various Ri (first column) Table II
displays the frequency ω (second column) with the corresponding wave numbers km and kn (third
and fourth columns) of two primary internal modes. As discussed above, at frequency ω these two
interacting modes may or may not form a resonant triad with the third (superharmonic) mode.
Table II also exhibits the resonating frequency ωr (fifth column) and the resonating wave number
k2ω

r (sixth column) of the superharmonic mode, which forms a resonant triad with the primary
modes of wave numbers km and kn at frequency ω. The parameters �k (seventh column) and �ω

(eighth column), defined as the wave number and frequency mismatch (�k = |km + kn − kr
2ω| and

�ω = |2ω − ωr |), measure the accuracy in the resonance conditions (29) and tell us whether a
resonant triad exists for the corresponding parameters or not. Note that for each mode pair Table II
is arranged according to the ascending order of �ω, i.e., the bold cells represent the parameters for
which �ω is the smallest. The last column of Table II shows the maximum absolute value of the
second-order solution, i.e., max |h̄mn|. Note that, at a resonating frequency ωr , max |h̄mn| has a large
value as compared to the neighboring nonresonating frequencies. It can be clearly seen from the
parameters in bold in the table that RTIs exist for each listed mode pair (m, n).

Resonance conditions can also be checked graphically without a prior knowledge of �k or �ω

for given Ri and ω. In order to do so we first need to follow steps 2–5 of the mode search method
to obtain the set �mn for each mode pairs (m, n). By plotting �mn and the fixed point 2ω against
km + kn the existence of RTIs can be concluded. RTIs occur if the point (km + kn, 2ω) overlaps with
any point of the set �mn. As the exact values of �ω and �k are already mentioned in the table,
to avoid repetition, we restrict from showing the existence of RTIs graphically here. However, the
interested readers are referred to Fig. 4 of Ref. [51].

Divergence surface for m �= n

So far, we have analyzed the evidence of RTIs for selected values of (ω, Ri) by the mode
search method. However, for a wider range of parameters (ω, Ri), the mode search method is rather
tedious. This can be avoided by directly using the fact that the second-order solution h̄mn(z) diverges
at the resonance point on (ω, Ri) plane.

Figure 5 shows the surface plot in the (ω, Ri, log10 | max h̄mn|) plane, where ω ∈ [0.01, 5]
and Ri ∈ [2, 10] for each mode pair (m, n). The color bar ranges from 0.5 (dark blue) to 9
(dark red). At the possible resonance locations of the (ω, Ri) plane, due to the divergence of
h̄mn(z), log10 | max h̄mn| attains a large value as compared to the neighboring nonresonating points.
Nevertheless, not all such (ω, Ri) values where log10 | max h̄mn| achieves a large value correspond
to RTIs. The large values or peaks in the surface plot may also appear due to numerical error. For
all (ω, Ri) where h̄mn(z) attains a large value, we check the resonance conditions (29) in order to
confirm that RTIs exist or not.

By comparing panels (a)–(f) of Fig. 5 it is found that among all mode pairs
max

1�m<n�4
log10 | max h̄mn| is attained when (m, n) = (3, 4) for (ω, Ri) = (2.61, 2); and for this
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TABLE II. Richardson number, frequency, and wave numbers associated with resonance. For each (m, n)
pair, this table shows some parameters for RTIs predicted by �ω or �k . Parameters in bold correspond to
minimum �ω for each (m, n) pair.

Ri ω km kn ωr k2ω
r �k �ω max |h̄mn|

(m, n) = (1, 2)
7.0 1.4323 0.85033 1.2428 2.864505 2.09319 1×10−4 6.7799×10−5 2.1641×104

7.0 4.21 3.4327 4.2098 8.4199 7.64265 1×10−4 1.1151×10−4 3.6693×104

7.0 4.31 3.5327 4.3098 8.6199 7.84265 1×10−4 1.2691×10−4 3.4419×104

5.5 4.21 3.6080 4.2098 8.4198 7.81803 2×10−4 1.4440×10−4 1.5948×104

5.5 4.31 3.7080 4.3098 8.6198 8.01803 2×10−4 1.4890×10−4 1.6888×104

5.5 4.41 3.8080 4.4098 8.8198 8.21803 2×10−4 1.5200×10−4 1.7954×104

(m, n) = (1, 3)
8.2 4.51 3.599 4.5100 9.02000 8.10899 5×10−6 9.2455×10−7 5.6420×106

7.0 4.21 3.4327 4.2100 8.42000 7.64265 4×10−5 1.1922×10−6 3.4336×106

8.2 4.61 3.6990 4.6100 9.21998 8.30899 5×10−6 1.2925×10−5 4.3073×105

7.0 4.31 3.5327 4.3100 8.61998 7.84265 4×10−5 1.4208×10−5 3.0954×105

8.2 4.71 3.7990 4.7100 9.41998 8.50899 5×10−5 2.1125×10−5 2.7950×105

(m, n) = (1, 4)
7.3 4.21 3.3988 4.2099 8.42 7.60872 7×10−8 5.2173×10−8 8.0236×107

7.9 4.51 3.6319 4.5100 9.02 8.14189 1×10−7 1.2038×10−7 4.3527×107

8.1 4.81 3.9099 4.8100 9.62 8.71992 2×10−5 3.2267×10−7 1.9454×107

5.5 4.31 3.7080 4.3100 8.62 8.01803 4×10−7 4.0420×10−7 6.2365×106

7.3 4.51 3.6987 4.5100 9.02 8.20872 1×10−6 1.1522×10−6 4.4685×106

(m, n) = (2, 3)
6.7 4.21 4.2048 4.2096 8.41998 8.41482 4×10−4 1.1682×10−5 4.2440×106

2.0 3.21 3.2086 3.2099 6.42001 6.40547 1×10−4 1.3219×10−5 3.5347×106

6.7 4.31 4.3048 4.3096 8.62002 8.61482 4×10−4 2.2322×10−5 1.8541×106

6.4 1.21 1.0594 1.1663 2.42004 2.22566 4×10−5 3.6750×10−5 1.5914×105

2.7 3.81 3.8055 3.8099 7.61996 7.61554 1×10−4 3.6815×10−5 5.0191×106

(m, n) = (2, 4)
2.2 1.81 1.7910 1.8098 3.62 3.60081 1×10−5 7.9970×10−7 2.9213×107

3.7 1.71 1.6431 1.7077 3.42 3.35087 7×10−5 2.9214×10−6 1.0153×106

5.1 1.71 1.5860 1.7028 3.42001 3.28873 7×10−5 6.7562×10−6 1.0676×105

3.6 3.41 3.3449 3.4100 6.81999 6.75485 5×10−5 7.7865×10−6 1.1579×106

3.6 3.51 3.4449 3.5100 7.01999 6.95485 5×10−5 9.1866×10−6 1.0185×106

(m, n) = (3, 4)
2.0 2.61 2.6086 2.6099 5.22 5.21865 1×10−4 6.4018×10−8 4.4221×108

2.0 2.71 2.7086 2.7099 5.42 5.41865 2×10−4 4.5595×10−6 6.9869×106

2.1 3.21 3.2083 3.2098 6.41999 6.41833 2×10−4 4.7191×10−6 8.2771×106

2.0 2.51 2.5086 2.5099 5.01999 5.01865 1×10−4 5.1032×10−6 4.8302×106

2.0 2.81 2.8086 2.8099 5.62001 5.61865 1×10−4 8.1396×10−6 4.3229×106

case the second-order solution h̄mn(z) diverges, thereby leading to the possibility of resonant triad
formation. Recall from Table II that for the above mentioned parameters, �ω is indeed of order
10−8, which also confirms the existence of RTIs. For mode pairs (1, 4) and (2, 4) [panels (c) and
(e)], there exist several (ω, Ri) pairs for which log10 | max h̄mn| attains large values, implying the
possibility of RTIs at those points; see red peaks in panels (c) and (e). On the other hand, in the case
of mode pair (1, 3), | max h̄mn| is very large [O (106)] at two values of (ω, Ri), i.e., (4.51, 8.2) and
(4.21, 7.0), as compared to their neighboring points; see panel (b). For these parameters, observing
the values of �ω and �k from the corresponding rows of Table II one can conclude the occurrence
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(a) (b)

(c) (d)

(e) (f)

0.5 1 2 3 4 5 6 7 8 9

Maximum amplitude (dimensionless) of superharmonic in logarithmic scale

FIG. 5. The variation of log10 | max h̄mn| in the (ω, Ri) plane for six mode pairs (m, n): (a) (1, 2), (b) (1, 3),
(c) (1, 4), (d) (2, 3), (e) (2, 4), (f) (3, 4).

of RTIs. Likewise, in the case of mode pair (2, 3) we have obtained some additional (ω, Ri) values
for which RTIs occur by observing log10 | max h̄mn|; see panel (d).

The above results show that for each considered mode pair, one can always define a minimum
frequency ω = ωmin below which RTIs are not possible for any value of Richardson number (Ri)
considered in the present analysis; see Table III. In other words, the operator L+

2 is always non-
singular for ω < ωmin and Ri ∈ [2, 10], that rules out the possibility of RTIs.

Thorpe [33] showed that RTIs among self-resonating modes (m = n) are not possible in the ab-
sence of shear and that RTIs formed by the modes of mode numbers m and n must satisfy 1

3 < m
n < 3

with m 
= n. The present study confirms that self-resonances can occur in the presence of a constant
background shear; see Sec. V A. It is verified that self-resonances (m = n) develop at comparatively
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TABLE III. Identified minimum frequencies below which RTIs are not possible for given mode pairs
(m, n), m 
= n.

(m, n) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

ωmin 1.91 2.41 1.21 1.71 0.01

higher Ri than the interactions among two different modes (m 
= n). In self-resonance, the mode
number of resonating superharmonic mode is found to be less than or equal to m − 1, with m being
the mode number of the primary mode (see Fig. 4). In contrast, in the different mode interaction case
(i.e., when m 
= n), the mode number of the resonating superharmonic mode cannot be predicted
from the mode numbers m and n of the primary modes in the constant shear case; nevertheless, in
this case, the mode number of the superharmonic wave can be calculated by counting the number of
local extrema in the variation of spatial amplitudes. It should be noted that for uniformly stratified
system with no background current, the mode number of the resonating superharmonic mode equals
m − n with m and n being the mode numbers of the primary modes [33].

VI. CONCLUSION

This paper has discussed the interaction of internal gravity waves in a two-dimensional stably
stratified uniform shear flow bounded between two infinite horizontal parallel plates. In particular,
we have focused on resonant triad interactions (RTIs) among two primary modes of the same
frequency ω and a superharmonic mode of frequency 2ω. Various waves have been determined
using the analytical solution by finding wave numbers for a specified wave frequency or vice
versa. Furthermore, these calculated values have also been verified numerically by solving an
eigenvalue problem. The existence of a resonance triad has been found to be associated with the
divergence of the superharmonic mode h̄mn(z). The superharmonic mode diverges when any of the
following two conditions are satisfied: (i) (2ω, km + kn) satisfies the dispersion relation, and (ii)
the right-hand side Āmn(z) of (33) is nonorthogonal to the adjoint eigenfunction associated with
the homogeneous problem. While the first condition is the standard resonance triad condition (29),
the other is the Fredholm alternative [49]. It has been established that for a given (m, n) mode
pair, the resonance conditions are indeed met at some specific peaks—referred to as diverging
second-order solutions—of the surface plot in the (ω, Ri, log10 | max h̄mn|) plane. These peaks are
generated due to the divergence of the spatial amplitude h̄mn(z) of superharmonic mode, implying
the existence of resonance triads. Following the same analysis for finding the parameters for RTIs
in the superharmonic case, the existence of mean flow resonances can be analyzed. For mean
flow resonances (0, km − kn) must satisfy the dispersion relation, i.e., D (0, km − kn; Ri) = 0. This
analysis is beyond the scope of the present work and is left for the future.

In the present work, the existence of RTIs in the presence of uniform background shear and linear
stable stratification has been studied. For various local Richardson numbers Ri and frequencies ω,
the existence of RTIs involving the primary modes of mode numbers m and n with frequency ω,
and the superharmonic mode formed by these, have been explored. The results have been shown
for two cases: self-resonance (m = n) interaction and interaction between different modes (m 
= n).
Note that self-resonances are not possible in a uniformly stratified system in the absence of shear.
However, self-resonance may occur in a nonuniformly stratified system without any background
shear flow [5]; for instance, under Earth’s rotation, the existence of RTIs among primary internal
modes in a nonuniformly stratified system has been reported in Ref. [18]. In the present scenario,
i.e., a uniformly stratified system with uniform background shear, it has been observed that self-
resonances occur at higher Ri than different mode interactions (m 
= n). For each Ri considered
in this paper, it has been observed that the self-resonance interactions of primary mode 1 are not
possible, but self-resonances occur for each primary mode with mode numbers m = 2, 3, and 4.
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By observing the intersection patterns of dispersion curves for primary modes and their second
harmonics from Fig. 4, it can be concluded that the mode numbers of the corresponding resonating
superharmonics are less than or equal to m − 1 for each of these primary modes. The wave numbers
and frequencies of the self-resonating modes have been determined by plotting the dispersion
relation. In contrast, finding the existence of RTIs by plotting the dispersion relation is tedious
in the case of interactions among different modes (m 
= n). Thus we use the fact that superharmonic
mode diverges at a resonance point to find the resonance points in this case.

To find the resonance parameters for a wider range of Ri and ω, we have developed a numerical
technique. It turns out that the criteria for the existence of RTIs involving the modes m and n having
frequency ω are �k = |km + kn − k2ω

r | = 0 or �ω = |2 ω − ωr | = 0. Notably, h̄mn(z) diverges when
�k and �ω are exactly zero, which is when the associated homogeneous equation has a nontrivial
solution. Note that zero �k and zero �ω cannot be ascertained in the numerical solutions. Thanks
to the above fact, we could find the solution h̄mn(z) and hence an integer r to determine k2ω

r as well
as ωr . In contrast to the mode search method based only on the triad conditions, the superharmonic
solution h̄mn(z) allows us to determine the positions of resonance triads for the full range of
parameters (ω, Ri) more efficiently. Note that the present nonlinear problem has been tackled
analytically and verified numerically. The evidence of resonant triads gives us an understanding
of the energy transfer among modes of different wave numbers. The present work can be extended
towards more realistic velocity and stratification profiles commonly seen in nature, for instance,
(i) ocean-like stratification profiles where the density increases rapidly with depth in a pycnocline
region [52], and (ii) estuarine velocity profiles where the part closer to the free surface is analogous
to a shear flow and the part near the bottom boundary is analogous to boundary layer profile [53].
RTIs in critical layers (where the disturbance phase speed coincides with the background flow
velocity) can also be an interesting extension of the present study. Moreover, the present study could
serve as a benchmark for several other stratified flow problems, for instance, multilayer stratified
flows, compressible stratified flows, etc.
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