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We report nonlinear saturation of bubble evolution occurring in a two-dimensional
single-mode stratified compressible Rayleigh–Taylor instability via direct numerical sim-
ulation (DNS). A range of Atwood number (At = 0.1 ∼ 0.9) are tested at varying levels
of density stratification, corresponding to a range of static compressibility quantified as a
Mach number over Ma = 0.1 ∼ 1. Density stratification is found to cause different bubble
behaviors for different At, with a critical At of 0.25 at which nonlinear saturation of
bubble growth is realized. A modified buoyancy-drag model for stratified compressible
RTI is proposed giving an accurate analytical prediction on this DNS-obtained critical At.
Of special interest, similar nonlinear saturation is uncovered for the bubble evolution at
At = 0.9 as the pistonlike effect that describes the compressing effects of the rising bubble
of light fluid exerting on the heavy fluid ahead of its front is fully extracted. Furthermore,
it is demonstrated that the acceleration of the heavy fluid compressed in front of the bubble
characterizing the pistonlike effect is nearly constant for different Ma and its ratio to the
external acceleration has a fascinating power law scaling as At2.5Ma2.

DOI: 10.1103/PhysRevFluids.7.023902

I. INTRODUCTION

Rayleigh–Taylor instability (RTI) [1,2] that occurs in the interface where heavy fluid is supported
or accelerated by light fluid has a long history in classical hydrodynamics, dating back to the
ground-breaking paper of Lord Rayleigh [1]. It has been widely encountered as an important role
in natural phenomena and industrial applications where strong compressibility effects are involved,
for example, on the flame propagation and development of ignition bubbles in type Ia supernovae,
mixing and burning in x-ray bursts, and the inertial confinement fusion [3–7]. Thus, a physical
understanding of bubble growth of the compressible RTI is of great significance in manipulating the
evolution process of the unstable interface.

Bubble growth in RTI has completely different nonlinear behaviors when subjected to different
flow effects, for example, geometry convergence. Intriguing bubble behavior in the nonlinear growth
regime, commonly referred to as “nonlinear saturation,” has been obtained analytically for the
incompressible RTI of planar and cylindrical geometries. Specifically, the bubbles in the planar
RTI are found to have a linear-in-time growth for the nonlinear evolution saturating with a terminal
velocity Vt = √

2At/(1 + At)(gλ/Cd ), where At is Atwood number; g is the magnitude of external
acceleration g; λ = 2π/k is the perturbation wave length with k being the perturbation wave
number; and Cd = 6π and 2π for the two- and three-dimensional geometries, respectively. This
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saturating terminal velocity derived from the potential flow model [8–13] corresponds in physics to
a subtle balance of the buoyancy and drag forces integrated for the growing bubbles, as described
by the so-called buoyancy-drag model (BDM) [14–16]. In contrast, a quadratic-in-time growth for
the nonlinear bubble evolution has been found in the cylindrical RTI via a delicate analytical model
and verified by high-fidelity direction numerical simulation (DNS) [17]. Namely, it means that the
bubble growth of cylindrical RTI saturates fascinatingly at a terminal acceleration ab that has been
formulated as a simplified function of g, At, and k [17].

Density stratification caused by fluid compressibility is known to have complicated effects on
the later-time RTI flows, although its influence on nonlinear bubble evolution has not been well
studied. For example, increasing density stratification always stabilizes the single-mode RTI flow
and weakens vorticity production via the baroclinic source term [18], while the flow expansion-
compression process plays a destabilizing role [19]. For multimode RTI flows, a saturation of
the mixing layer thickness is obtained as the density stratification acts to annihilate turbulence
production by smoothing the initial density jump [20]. It is indicated that in the compressible RTI
the rising bubbles of light fluid act like pistons, compressing the heavy fluid ahead of the fronts.
Consequently, shocklets are observed via large eddy simulations [21] as strong compressibility
is obtained outside of the mixing layer for Ma � 3.0 and at At = 0.533 and 0.734. However,
background density stratification can either suppress or enhance the growth of RTI, depending upon
the value of At defined at the interface [19,22,23]. For an initial condition of thermal equilibrium,
the density stratification serves to suppress the RTI growth for a small At, while for a large At to
enhance the bubble evolution exceeding the nonlinear saturation of the incompressible case.

Motivated by the aforementioned findings, the goal of this work is devoted to the density
stratification effects on the bubble evolution in the compressible RTI, with special interest directed
to answer the following question: Can similar nonlinear saturation of bubble evolution occur in
a stratified compressible RTI? It is of interest whether the bubble growth saturates at velocity
or at acceleration if in a manner different from the incompressible cases. To this goal, DNS
of two-dimensional single-mode stratified compressible RTI is performed to examine the bubble
growth via increasing the density stratification at different Atwood numbers.

II. NUMERICAL SIMULATIONS

A. Governing equation and initialization

Following Reckinger et al. [22,23], we choose the perturbation wave length (λ∗), initial pressure
(p∗

I ) and temperature (T ∗
I ) at the interface as the characteristic scales for length, pressure (p∗), and

temperature (T ∗), respectively, where the subscript “I” means the quantities at the initial interface
and the superscript “*” means the dimensional physical quantities hereafter. Correspondingly, the
density (ρ∗) and velocity (u∗) are scaled by ρ∗

I = p∗
I (W ∗

h + W ∗
l )/(2R∗T ∗

I ) and u∗
I = √

p∗
I /ρ

∗
I , re-

spectively, where W ∗
h and W ∗

l represent the molar masses of the heavy and light fluids, respectively,
and R∗ is the universal gas constant. The dimensionless governing equations read as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + 1

Re
∇ · σ − Ma2ρey, (2)

∂ (ρe)

∂t
+ ∇ · [(ρe + p)u] = 1

Re
∇ · (σ · u + qT + qY ) − Ma2ρu · ey, (3)

∂ (ρYm)

∂t
+ ∇ · (Ymu) = 1

ReSc
∇ · (μ∇Ym), (4)

where u = [u, v] corresponding to the horizontal (x) and vertical (y) velocity components, respec-
tively; ey is the unit vector in the y direction; e = CvT + u · u/2 denotes the specific total energy
with Cv being the specific heats at constant volume; Ym = ρm/ρ is the species mass fraction with
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m = h, l denoting hereafter the heavy and light fluids, respectively. The shear stress tensor is
obtained as σ = 2μ[S − (∇ · u)δ/3], where S is the strain-rate tensor; the viscosity coefficient
μ = (T )3/2(1 + c)/(T + c) is computed by the Sutherland law with c = 124K/T ∗

r and T ∗
r be-

ing the reference temperature; δ is the unit tensor. The heat flux qT = Pr−1γ /(γ − 1)κ∇T and
qY = ∑

m=h,l CpmT ρDSc−1∇Ym account for the thermal diffusion and interspecies mass diffusion,
respectively, where κ is the heat conduction coefficient; D is the diffusion coefficient; and γ is
the ratio of specific heats. The fluid properties are defined as linear combinations of the individual
species’ properties weighted by the mass fractions, for example, Cv = ∑

m=h,l CvmYm.
The dimensionless parameters governing the RTI flow are the Mach number Ma, the Reynolds

number Re, the Schmidt number Sc, and the Prandtl number Pr, defined by

Ma =
√

g∗λ∗

p∗
I /ρ

∗
I

, Re = ρ∗
I U ∗

I λ∗

μ∗
I

, Sc = μ∗
I /ρ

∗
I

D∗
I

, Pr = C∗
pI

μ∗
I

κ∗
I

, (5)

respectively, where C∗
pI is the constant-pressure specific heat at the interface and g∗ is the magnitude

of external acceleration. Here, the Mach number is used to characterize the stratified compressibility,
i.e., the density stratification [22–24]. The perturbation Reynolds number Rep and Atwood number
At are defined as

Rep = λ∗√At/(1 + At)g∗λ∗

μ∗
I /ρ

∗
I

, At = W ∗
h − W ∗

l

W ∗
h + W ∗

l

, (6)

respectively. The relation between Rep and Re is given by Rep = √
At/(1 + At)MaRe.

In this study, we consider the compressible RTI initiated with a hydrostatic equilibrium (u = 0)
and a thermal equilibrium (T = 1) [22,23,25]. In that, the momentum Eqs. (2) can be reduced to

∂ pH

∂y
= −Ma2ρH , (7)

where pH and ρH represent the background pressure and density, respectively. By using of the
dimensionless ideal gas equation of state p = ρT/W , it yields

ρH
h = (1 + At) exp[−Ma2(1 + At)y], ρH

l = (1 − At) exp[−Ma2(1 − At)y]. (8)

To smooth the interface density jump, the error function is introduced [22,25]. As shown in
Fig. 1(a), a single-mode perturbation, I (x) = a0 cos(2πx), where a0 = 0.02λ is the dimensionless
perturbation amplitude [19] with λ = 1 denoting the dimensionless wave length, is introduced at
the initially flat interface positioned at y = 0. Following the recent work [19,22], the computational
domain size is set as Lx × Ly = [0, 1] × [−4, 3] for all simulations, which has been verified large
enough to obtain the nonlinear behaviors of bubbles. In the present study, we set Pr = 0.72, Sc = 2,
γ = 1.4, At = 0.1 ∼ 0.9, and Ma = 0.1 ∼ 1. Figures 1(b)–1(d) show the initial density profiles for
various Ma and At. It is clearly seen in Figs. 1(b)–1(d) that At quantifies the density difference
between heavy and light fluids at the initial interface and Ma determines the strength of density
stratification along the vertical direction. As pointed by Wei and Livescu [32], the RTI flow is
dominated by diffusive process at a low perturbation Reynolds number Rep. For Rep � 200, the
RTI flow can be approximated potential at the bubble or spike tips and the velocity of the instability
front approaches nonlinear saturation. To this end, Rep is fixed at 1500, high enough for the RTI
flow to evolve into the nonlinear stage. Following previous study [26], the bubble height Hb is
calculated as the vertical distance from the unperturbed flat interface positioned at y = 0 to the
bubble tip corresponding to a mass fraction value of 99%. As the RTI flows have an unchanged
average interface position, i.e., at y = 0 for all At and Ma considered, Hb can be regarded as a proper
measure of bubble evolution. The bubble velocity is obtained as Vb = dHb/dt . In the following
discussions, the velocity and time, unless otherwise indicated, are rescaled by

√
Atgλ/(1 + At)

and τ = √
λ/(Atg), respectively, where the g = Ma2 is the amplitude of dimensionless external

acceleration.
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FIG. 1. (a) The computational domain with Lx × Ly = [0, 1] × [−4, 3]. (b–d) The typical density profile
of different At and Ma.

B. Numerical method and validation

In the present study, high-fidelity DNS has been performed to solve the governing Eqs. (1)–(4),
with the convection terms discretized by the seven-order WENO scheme and the diffusion terms
by the six-order central difference scheme, and the third-order Runge-Kutta scheme for the time
integration [17,27]. Periodic boundary conditions are applied along the x-direction and the variables,
i.e., ρ, ui, e, and Ym, are fixed at their initialized values at the y-direction boundaries [19,22,25,28].

To validate the numerical method used, extensive test calculations have been performed and the
results obtained are compared to those of previous DNS study on the single-mode compressible
RTI [19]. As shown in Fig. 2(a) for typical cases, the bubble growths represented by Hb of high At
(At = 0.9, Ma = 0.5) and low At (At = 0.1, Ma = 0.1) are in good agreements with those obtained
by Luo et al. [19]. Thus, the nonlinear bubble behaviors are accurately simulated for various At
and Ma. Furthermore, the grid resolution used is verified by the converged results obtained by
DNS in present study. As the case at At = 0.9 and Ma = 1 is most demanding in grid resolution
[19], the converged results depicted in Fig. 2(b) assure that the present simulations are reliable to
capture the essential flow dynamics in a single-mode stratified compressible RTI. A mesh size of
Nx × Ny = 200 × 1400 is used in all the calculations.

III. RESULTS AND ANALYSIS

Bubble velocity Vb plotted in Fig. 3 for the typical At demonstrates the At-dependent effects
of density stratification on the bubble growth, in agreement with the previous findings [19,22,23].
It is seen that for all the At values considered the bubble evolution has a nonlinear saturation at
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FIG. 2. (a) The bubble height (Hb) compared with that obtained by previous study. The (solid or dashed)
lines represent the results of our DNS and the symbols (circle or square) represent those of Ref. [19].
(b) Verification of grid resolution used based on the bubble velocity (Vb) obtained for At = 0.9 and Ma = 1 by
different mesh sizes. The horizontal black dashed line represents the terminal velocity Vt at which the bubble
evolution has a nonlinear saturation in the incompressible RTI.

a low stratification strength (Ma = 0.1). Namely, Vb varies in the nonlinear regime (t � 1.8) with
nearly a plateau value close to the terminal velocity Vt of the incompressible RTI. Intriguingly, there
exists a moderate value of At = 0.25 at which the nonlinear saturation of bubble growth is observed
similar to the incompressible RTI, namely, the density stratification effects on the bubble evolution
are almost trivial, and a slight change is found for Vb as Ma varies from 0.1 to 1 [see Fig. 3(b)].
However, at a smaller At (of 0.1), Vb obtains a marked decrease when t � 1.8 after an exponential
increase in the linear regime (t � 1.8). This trend of Vb becomes more remarkable as Ma increases
from 0.1 up to 1, indicating an enhanced decelerating effect on the nonlinear bubble evolution
induced by density stratification [see Fig. 3(a)]. In contrast, at a larger At (of 0.9), Vb obtains a
continuous increase versus t for Ma = 0.1 ∼ 1, indicating an accelerating effect which increases
significantly due to the enhanced density stratification [see Fig. 3(c)]. Similar to the finding of Luo
et al. [19], a nearly linear-in-time growth of Vb is demonstrated in the nonlinear regime at At = 0.9,
especially for high Ma of 0.75 and 1. The linearly dependent coefficients of Ma = 0.75 and 1.0 are
obtained as 0.999 and 0.993, respectively.

The occurrence of nonlinear saturation of bubble growth at At = 0.25 for different Ma can
be explained by an extension of the classical BDM [14,15,29] to the stratified compressible RTI.
Different from the classic BDM proposed for incompressible RTI [14,15,29], density stratification
effects have to be accounted for in the present study when taking integration for the growing bubble
to obtain the inertial ( fi), buoyancy ( fb), and drag ( fd ) forces that appear in sequence in the following

FIG. 3. Bubble growth versus time depicted by the bubble velocity Vb for (a) At = 0.1, (b) At = 0.25, and
(c) At = 0.9. The horizontal black dashed line in each panel represents the bubble terminal velocity Vt of the
incompressible RTI.
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FIG. 4. (a) The inertia fore fi evaluated by the modified BDM using the initialized density fields of stratified
RTI. (b) The difference between the modified buoyancy ( fb) and the buoyancy ( f c

b ) of the classic BDM for the
unstratified RTI. (c) The difference between modified drag ( fd ) and the drag ( f c

d ) of the classic BDM for the
unstratified RTI. Here, all forces rescaled by g are evaluated under an assumption that the bubble growth has
Vb = Vt as the nonlinear saturation is realized with roughly ηb = 0.1λ [14,31–33].

modified BDM,

(ρ l + Caρh)
dVb

dt
= (ρh − ρ l )g − ρ̂hCd

V 2
b

λ
. (9)

Here, Ca = 2 for 2D, ρh = V −1
∫

V ρhdV and ρ l = V −1
∫

V ρl dV are the volume-averaged densities
for the heavy and light fluids that are set in motion by the rising bubble of volume V , and
ρ̂h = S−1

∫
S ρhdS is the area-averaged density for the heavy fluid over the bubble interface of area S.

According to the classical BDM, bubble rising occurs as the buoyancy force is greater than the drag
force that comes from the interaction between the rising bubble and the heavy fluid ahead of its front
[14,15,29,30]. In that, the quantities in the modified BDM are integrated according to the above
physical interpretations of the corresponding force terms in Eq. (9). Inspired by Goncharov [11],
Layzer [8], Zhang [9], the shape of bubble interface is approximated as a dimensionless parabolic
profile, yb = [−16x2 + 1]ηb, which has a peak located at the bubble tip (0, ηb) and two intersections
with the unperturbated interface, i.e., (0.25, 0) and (−0.25, 0) due to the x-periodic condition. By
using the initially stratified density fields given in Eq. (8), the modified BDM yields the inertial
force fi as depicted in Fig. 4(a) for various At and Ma, providing that the bubble growth saturates
when Vb = Vt and roughly ηb = 0.1λ [14,31–33]. It is clearly demonstrated that a critical Atwood
number (At ≈ 0.25) is obtained for 0.1 � Ma � 1, at which the inertial force fi has a zero value
as fb is balanced by fd and the nonlinear saturation is realized for the bubble growth as expected
[see Fig. 3(b)]. To further interpret the nonlinear behaviors of bubble velocity in stratified RTI, the
buoyancy ( f c

b ) and drag ( f c
d ) forces of the classic BDM for the unstratified RTI are also evaluated,

and the force differences, i.e., fb − f c
b and fd − f c

d , are shown in Figs. 4(b). It is clearly seen in
Figs. 4(b) and 4(c) that fb and fd are reduced as compared to their counterparts in the unstratified
RTI, leading to different behaviors in nonlinear bubbles’ evolution between the unstratified and strat-
ified RTI. Specifically, for large At > 0.25, a positive inertial force corresponding to an accelerating
bubble velocity is obtained [see Fig. 4(a)], resulting from that the buoyancy force has a decrease
extent much smaller than that of the drag force [see Figs. 4(b) and 4(c)]. While for small At < 0.25,
an opposite situation is obtained as shown clearly in Figs. 4(a)–4(c). The above predictions are in
excellent agreement with what illustrated in Fig. 3 by the bubble velocity Vb obtained from the
present DNS calculations. Furthermore, the procedure described above for the 2D bubble can be
applied to its 3D counterpart to obtain the critical Atwood number. Specifically, taking the y axis
as the direction of the density gradient and assuming a cylindrical symmetry for the 3D bubble
[11], the shape of 3D bubble interface can be approximated to have an axisymmetric parabolic
surface, i.e., yb = [−16(x2 + z2) + 1]ηb, which has a peak located at the bubble tip (0, ηb, 0) and
the intersecting curved line x2 + z2 = 0.252 within the unperturbed interface at y = 0. Similar to
the cases of 2D bubble, the modified BDM yields the inertial force fi for the 3D bubbles as depicted
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FIG. 5. The inertia force fi evaluated by the modified BDM as given in Eq. (9), providing that the bubble
growth saturates with Vb = Vt and roughly ηb = 0.1λ in the 3D RTI. Here, fi is rescaled by g.

in Fig. 5 for various At and Ma, obtaining a critical Atwood number (At ≈ 0.4) for the 3D stratified
compressible RTI in the range of 0.1 � Ma � 1.

According to Olson and Cook [21], the rising bubble of light fluid acting like a piston in a
stratified compressible RTI compresses the heavy fluid ahead of its front, resulting in a sharp
increase of the density, pressure, and velocity in the heavy fluid region especially when the density
stratification is sufficiently strong [22]. To confirm this pistonlike effect, the vertical velocity v

profiles along the vertical lines across the bubble (x = 0) and spike tips (x = 0.5) for the cases of
weak (Ma = 0.1) and strong (Ma = 1) density stratification are plotted in Figs. 6(a) and 6(d). For
the case of Ma = 1 [see Fig. 6(d)], the vertical velocities v at both x = 0 and x = 0.5 have a same
plateau value in front of the rising bubble at time t = 3.0, resulting from the compressing effects
of the rising bubble on heavy fluid. In contrast, for the case of Ma = 0.1, the heavy fluid ahead of
the rising bubble remains almost the hydrostatic equilibrium, indicating that the pistonlike effect is
negligible due to the weak density stratification.

To illustrate this pistonlike effect of rising bubble, the Helmholtz decomposition [34] are em-
ployed to the velocity field, i.e.,

u = us + uc, (10)

where us = [us, vs] and uc = [uc, vc] are the solenoidal and compressive (irrotational) components
respectively. Two intriguing flow physics are indicated by the contour plots of vc and vs shown
in Figs. 6(b) and 6(c) and 6(e) and 6(f) for the cases of Ma = 0.1 and 1, respectively. First, it is
clearly seen that for the case of Ma = 1 the vertical velocity v plateau ahead of the rising bubble is
mainly caused by the vertical compressive velocity vc, whereas the heavy fluid motion is induced
by the great compressing effect exerted by the rising bubble, i.e., dominated by the pistonlike effect.
However, for the case of Ma = 0.1, the vc value is almost zero in front of the rising bubble due
to that the flow compression is negligible for the RTI with weak density stratification. Second, it
is noted that the vertical solenoidal velocity vs is dominant to v near the spike interface for both
the cases of Ma = 0.1 and Ma = 1, namely, it accounts for the peak (rising) and valley (falling)
values of v occurring at x = 0 and 0.5, respectively, across the mushroom caps of the spike interface
[see Figs. 6(a) and 6(d)]. This observation is also obtained for the unstratified RTI [33], which has
been interpreted due to that the heavy (falling) and light (rising) fluid motions near the spike are
dominated by the intense shearing process. In that, the fluid motions near the spike in stratified
compressible RTI result from the shearing process other than the density stratification. As known
for the unstratified RTI at high At, such an intense shearing process results in the Kelvin-Helmholtz
roll-up effect and generates baroclinic vorticity near the spike tip [33], which in turn induces the
peak value of v near the rolled-up spike interface.

Based on the above analysis, the nonlinear bubble growth is revisited in the following by
extracting this pistonlike effect which can be characterized by the velocity of the compressed heavy
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FIG. 6. The v profiles (a, d) along the vertical lines across the bubble (x = 0, denoted by the solid lines)
and spike (x = 0.5, denoted by the dashed lines) tips, and the contour plots (b, c, e, f) of the compressive (vc,
left half) and solenoidal (vs, right half) components of vertical velocity v, for At = 0.9, Ma = 0.1 (a–c) and
At = 0.9, Ma = 1 (d–f). The vertical black dashed lines in panels (a) and (d) represent the bubble terminal
velocity Vt of the incompressible RTI. The circles marked on the v profile denote the vertical position of the
bubble and spike tips at each moment. The dark lines in panels (b, c) and (e, f) represent the heavy/light fluid
interface where Yh = 0.5.

fluid ahead of the rising bubble, Vp, obtained as

Vp = 1

Lx

∫ Lx

0
v(x, yp)dx. (11)

In the above equation, yp is the y position at which the heavy fluid above two neighboring bubbles
at x = 0.5 [the dashed lines in Fig. 6(d)] has a peak value of v, i.e., the v value of the plateau when
appearing in front of the rising bubble. It is indicated in Figs. 7(a) and 7(b) that the pistonlike effect
becomes more important only in the nonlinear regime. Specifically, for the critical At of 0.25 the
pistonlike effect is quite weak as Vp, despite of its continuous increase versus Ma, obtains a very
small value compared to the terminal velocity Vt of the incompressible RTI [see Fig. 7(a)]. This
terminal velocity Vt is exceeded obviously by Vp due to its great nearly linear growth occurring in
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FIG. 7. The velocity Vp of the compressed heavy fluid ahead of the rising bubble versus time at (a) At =
0.25 and (b) At = 0.9. The bubble penetration velocity Vg versus time at (c) At = 0.25 and (d) At = 0.9.
Here, the velocity Vp is scaled by

√
At/(1 + At)gλ, while the bubble penetration velocity Vg is scaled by√

At/(1 + At)(g + ap)λ. The horizontal black dashed line in each panel represents the bubble terminal velocity
Vt of the incompressible RTI.

the nonlinear regime at At = 0.9 especially for Ma = 0.75 and 1 [see Fig. 7(b)]. Note that, the nearly
linear growth of Vp when t > 1.2 for all Ma corresponds to an almost constant acceleration ap =
dVp/dt , which can be viewed as an additional characterization of the pistonlike effect originated in
the density stratification.

Following Betti and Sanz [35], a bubble penetration velocity Vg = Vb − Vp is defined to examine
the nonlinear bubble evolution with the pistonlike effect extracted fully. As mentioned by Zhou [5],
both the gravitational field pointing from heavy to light fluid and the interface acceleration pointing
from light to heavy fluid can initiate the growth of the RTI. There is of course equivalence between
gravity and acceleration [5]. These two factors work near the rising bubble tips for the present
stratified compressible RTI. Specifically, the rising bubbles compress the heavy fluid in front of
it, causing the heavy fluid to move with the bubble at its acceleration ap which points from light
fluid to heavy fluid. To this end, the effective gravity driving the bubble growth in compressible
RTI is equivalent to g + ap. Thus, Vg obtained for the typical cases of At = 0.25 and 0.9 are plotted
in Figs. 7(c) and 7(d), rescaled by

√
At/(1 + At)(g + ap)λ corresponding to an extraction of the

acceleration ap. It is seen that when the pistonlike effect is extracted, Vg of At = 0.25 demonstrates
a bubble evolution reminiscent of that of At = 0.1 [see Fig. 3(a)], growing exponentially in the
linear regime and decreasing markedly in the subsequent nonlinear regime [see Fig. 7(c)]. It means
that the nonlinear saturation of bubble growth at At = 0.25 for the stratified compressible RTI is
realized by virtue of the pistonlike effect. Of crucial interest, the penetration velocity Vg of At = 0.9
for all Ma also saturates roughly in the nonlinear regime, namely, when t > 1.5 it evolves into nearly
a plateau value quite close the terminal velocity Vt of the incompressible RTI [see Fig. 7(d)]. This
observation indicates that the bubble evolution of the stratified compressible RTI at At = 0.9 can
be approximated as a superimposition of the pistonlike effect induced by density stratification on
its counterpart of the incompressible RTI. Taken together with Vb shown in Fig. 3, the variations of
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〈
〉

FIG. 8. A scaling law fitted for the ratio of the compressed heavy fluid acceleration 〈ap〉 averaged over
1.5 < t < 3.0 to external acceleration g for various At and Ma. The red line corresponds to the linear fitting
of the data (orange circle) obtained in the present simulations for 0.1 � At � 0.9 and 0.1 � Ma � 1, where
the slope is 0.557 and the linearly dependent coefficient is 0.993. The blue square and green Delta denote the
data obtained by Reckinger et al. [22] (At = 0.7, 0.9 and 0.1 � Ma � 1) and Luo et al. [19] (At = 0.9 and
0.1 � Ma � 0.7), respectively.

Vp and Vg in Fig. 7 point to the following flow physics. For a low At < 0.25, the nonlinear bubble
evolution (namely, Vb) is dominated mainly by the bubble penetration velocity Vg which is generated
by the buoyancy force like in the incompressible RTI and gets suppressed due to the density
stratification. Whereas for a high At > 0.25, Vb is dominated by the velocity Vp characterizing the
pistonlike effect that becomes more significant versus increasing Ma.

The next examination is devoted to the acceleration ap of the compressed heavy fluid ahead of
the rising bubble. Enlightened by the nearly constant ap indicated by Figs. 7(a) and 7(b) in the
nonlinear regime, we attempt to propose a scaling law to quantitatively describe the averaged ap

when 1.5 < t < 3.0, i.e., 〈ap〉, for all the At and Ma considered. As the pistonlike effect is attributed
to the rising bubble acting like a piston to compress the heavy fluid ahead of its front, it is naturally
expected that 〈ap〉 can be formulated as a function of the compressibility of the heavy fluid that is
characterized by Ma and the buoyancy driving the rising bubble that is determined by At and g.
Specifically, a scaling law of 〈ap〉 could be obtained as AtαMaβ , when rescaled by g. By the fitting
test for the calculating results, it is found that when α = 2.5 and β = 2, 〈ap〉/g agrees well with a
linear growth versus AtαMaβ , and the linearly dependent coefficient is high up to ∼0.993. In other
words, the ratio of 〈ap〉 to g scales as a power law of At2.5Ma2 based on our numerical results, as
shown in Fig. 8. The data obtained by Reckinger et al. [22] and Luo et al. [19] are also plotted in
Fig. 8, which confirms this power law of 〈ap〉.

IV. CONCLUDING REMARKS

In summary, nonlinear saturation of bubble evolution occurring in a single-mode stratified
compressible RTI has been reported via DNS. Specifically, nonlinear saturation of bubble growth
is found to be realized alike to the incompressible RTI at a critical At (≈ 0.25) when the Mach
number Ma quantifying the density stratification varies from 0.1 to 1. A modified buoyancy-drag
model is proposed to account for the density stratification effects, which gives an accurate prediction
of the above critical At value analytically. Of special interest, a similar nonlinear saturation is
uncovered for the nonlinear bubble evolution at a high Atwood number (At = 0.9), as the so-called
pistonlike effect exerted by the rising bubble of light fluid to compress the heavy fluid ahead of
its front is extracted fully. It is found that at a lower At(< 0.25), the nonlinear bubble evolution
is dominated mainly by the buoyancy force which is the sole mechanism to facilitate the bubble
growth in the incompressible RTI even gets suppressed here due to density stratification, and at a
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higher At(> 0.25) by the pistonlike effect that acts like a piston to compress the heavy fluid ahead
of the rising bubble and induces great acceleration for the nonlinear bubble growth especially for
the high Ma cases. Furthermore, it is demonstrated that the acceleration of the compressed heavy
fluid ahead of the rising bubble, as an additional characterization of the pistonlike effect, is nearly
constant for different Ma and its ratio to the external acceleration has a fascinating power law scaling
as At2.5Ma2.
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