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The linear stability analysis of a ferrofluid confined in a cylindrical annulus with a
rotating inner cylinder and a resting outer cylinder is performed when a magnetic field and
a radial temperature gradient are applied to the ferrofluid. The inhomogeneous magnetic
field created by a stack of magnets inserted inside the inner cylinder interacts with the
magnetization of the ferrofluid and produces the Kelvin force. The later contains, besides a
conservative term, a nonconservative part which can be seen as a magnetic buoyancy with
a corresponding magnetic gravity. The magnetic buoyancy generates a thermomagnetic
convection in the cylindrical annulus at a critical value of the temperature difference. The
threshold of the thermomagnetic convection depends on the radius ratio of the annulus and
it is independent of the Prandtl number (Pr). The centrifugal instability is affected by the
magnetic buoyancy. The centrifugal buoyancy has been included in the analysis and its
effects are very sensitive to the diffusive nature of the fluid, i.e., to Pr. A weak rotation of
the inner cylinder decreases the threshold for Pr < 325 and it increases it for Pr > 325. An
energy analysis indicates the relative importance of the dominant mechanisms driving the
destabilization of the ferrofluid flow.

DOI: 10.1103/PhysRevFluids.7.023901

I. INTRODUCTION

A ferrofluid is a nonconducting synthetic stable colloid in which magnetic nanoparticles are
suspended in a liquid carrier [1,2]. A surfactant layer on the magnetic particles stabilizes the colloid
by preventing them from aggregation. A ferrofluid acts like a paramagnetic material: when an
external magnetic field intervenes, the magnetic moments of particles align themselves with the
field leading to a finite magnetization which depends on both the applied field and the temperature
[3]. The interaction of the magnetic field with the magnetization gives rise to the Kelvin force [3,4].

In the isothermal case, a misalignment of the magnetic field and of the magnetization produces
a force which tends to stabilize the flow and can be seen as a source of magnetic viscosity [5]. A
sheared flow can lead to such misalignment and for instance can induce the spontaneous rotation
of a pipe flow [6]. In particular, the sheared ferrofluidic flow in the Taylor-Couette system has
been investigated by many authors for different sources of magnetic fields and different rotation
regimes [7–11]. However, in the presence of a temperature gradient, there will be a stratification
of the magnetization which leads to the thermomagnetic buoyancy. In most studies [12–18], the
magnetization is considered as colinear with the magnetic field. In that case, the magnetic viscosity
can be considered with a static magnetization, or it can simply be neglected if the limit where the
motion time scale is much longer than the viscous relaxation time of the magnetic nanoparticles is
adopted [2,19].
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In addition to the thermomagnetic buoyancy, the centrifugal acceleration acts on the density
stratification to produce the centrifugal buoyancy. Depending on the direction of the temperature
gradient, this buoyancy may stabilize or destabilize the circular Couette flow. It is found that, both
for Rayleigh unstable [20–24] and Rayleigh stable regimes [25–28], the effect of the centrifugal
buoyancy increases for fluids with large diffusion properties. An important parameter defined as
the temperature drop parameter by Stiles and Kagan [29] or the centrifugal buoyancy parameter
by Meyer et al. [30] consists of the product of the thermal expansion parameter with the Prandtl
number and can successfully characterize the effect of the centrifugal buoyancy in various circular
Couette flows.

In this work, we will perform the linear stability analysis of a ferrofluid confined in a differen-
tially heated Taylor-Couette system with applied magnetic field and with a rotating inner cylinder.
Since the viscosity of a ferrofluid can take a large range of values (depending on the nature of
the carrier), the aim of this analysis is to characterize the role played by the centrifugal buoyancy.
In particular, two different values of the Prandtl number corresponding to a water-based and an
oil-based ferrofluid will be considered. The present work is an extension of the model derived by
Tagg and Weidmann [16] who neglected the contribution of the centrifugal buoyancy and focused
their research on fluids with relatively low values of the Prandtl number.

In Sec. II, the theoretical model is derived and the numerical method is introduced. The depen-
dence of the critical parameters on the flow control parameters is presented in Sec. III. In Sec. IV,
an energy analysis is performed to highlight the relative importance of the different mechanisms
responsible for the change of stability conditions. The behavior of the modes just above the threshold
is investigated in the framework of the Ginzburg-Landau analysis in Sec. V. The conclusion is
presented in Sec. VI.

II. PROBLEM FORMULATION

We consider an incompressible ferrofluid with density ρ, kinematic viscosity ν, thermal diffu-
sivity κ and magnetic permeability μ0. The ferrofluid is confined between two coaxial cylinders
of infinite length. The inner cylinder of radius R1 rotates with angular velocity �1, while the outer
cylinder with radius R2 is at rest. A temperature difference �T = T1 − T2 between the two cylinders
is applied, where T1 and T2 are the temperatures of the inner and outer cylinder, respectively. A
magnetic field B is applied within the gap by the integration of a stack of cylindrical magnets inside
the inner cylinder (Fig. 1). The stack of magnets has an infinite axial extension, so that the spatial
variation of B due to the stack ends are neglected. It is assumed that the magnetization M of the
ferrofluid is in its saturated state and is always aligned with the magnetic field. This assumption
holds for ferrofluids with relatively small concentration of magnetic particle, so that the resulting
saturated magnetization of the ferrofluid is small. Otherwise, the magnetic field necessary to keep
the magnetization in its saturated state would lead to an effect of the thermomagnetic buoyancy so
important that the linear stability analysis could not be applicable. Under these assumptions, the
Kelvin force density acting on the fluid reads [3]

Fm = μ0M∇H. (1)

The magnetic field H and the magnetic induction B are related by a linear relation B = μ0(H + M)
and they satisfy the current-free magnetostatic Maxwell’s equations:

∇ · B = 0 ; ∇ × H = 0, (2)

where μ0 = 4π × 10−7NA−2 is the vacuum permeability. Under the assumption that the magneti-
zation is negligible compared to the magnetic field, it can be expressed that the magnetic induction
derives from a magnetic potential φ, i.e., B = −∇φ. The equation for the magnetic induction
in Eq. (2) results in the Poisson equation for the magnetic potential. In cylindrical coordinates
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FIG. 1. Schematic representation of the Taylor-Couette system with applied temperature difference and
magnetic field due to a stack of magnets located in the inner cylinder.

(er, eϕ, ez ), the Poisson equation for the scalar axisymmetric magnetic potential reads

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ ∂2φ

∂z2
= 0. (3)

The magnetic potential includes an axial periodicity due to the periodicity of the magnets stacked
in the inner cylinder. The bounded solution for φ is given by

φ = φ0K0(kbr) sin (kbz), (4)

where K0 is the zeroth order modified Bessel function of second kind and kb = 2π/λb is the wave
number characterizing the spacing between the magnets (see Fig. 1). The magnitude of the magnetic
induction is then given by Ref. [16]

B = B0K0(kbr)

√
1 +

[(
K1(kbr)

K0(kbr)

)2

− 1

]
sin2(kbz). (5)

We can see in Eq. (5) that if the quantity under the brackets is small compared to unity, the magnetic
induction reduces to B = B0K0(kbr), and the axial dependency vanishes. Taking λb = 3.54d , which
is the value used by Tagg and Weidmann [16] in connection with experiments, there is a variation
along the axial direction of 10% maximum for η = R1/R2 = 0.75. This percentage of variation
diminishes when η increases and diminishes with the radial distance so that the axial dependence of
the magnetic field can be ignored.

The density of the ferrofluid, and therefore its magnetization, decreases with the temperature.
For relatively small temperature deviation θ = T − T2 from the reference temperature T2 and at
temperature T below the Curie point, which is the case of most ferrofluids, the density and the
magnetization can be expressed using the linear functions of the temperature ρ = ρref (1 − αθ ) and
M = Mref (1 − αmθ ), respectively, where α is the thermal expansion coefficient [14,16,17]. ρref and
Mref are the density and the saturated magnetization of the ferrofluid at the temperature T2. The
coefficient of thermal variation of magnetization αm takes positive values of the order of 10−4K−1

to 10−2K−1 [31]. The Kelvin force (1) now reads

Fm = ∇[MrefB0K0(kbr)] + αmMref B0kbK1(kbr)θer . (6)
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The conservative part of the Kevin force is included into the pressure gradient of the Navier-Stokes
equations. The nonconservative part corresponds to the thermomagnetic buoyancy and can be
written as −αρrefθgm to highlight the analogy with the thermal buoyancy, The magnetic gravity
gm is given by

gm = −gmer with gm = αmMrefB0kbK1(kbr)

αρref
. (7)

The magnetic gravity is centripetal and decreases with the radial distance. Since the saturated
magnetization of a ferrofluid can be very large, the resulting magnetic gravity felt inside the
gap can be several times larger than that of the terrestrial gravity g. Indeed, for ρref = 1.4 ×
103kg/m3, α = αm = 10−3K−1, B0 = 524T , Mref = 104A/m, d = 3 × 10−3m and η = 0.8, we
obtain gm = 35g at the midgap. The value of the coefficient B0 leads to a magnetic induction of
0.2T at the inner cylinder, which is sufficient to ensure that the magnetization is in its saturated
state.

In the present study, the influence of the terrestrial gravity and consequently the Archimedean
buoyancy are neglected. However, an additional thermal buoyancy will act on the flow. Indeed,
the rotation of the inner cylinder induces the centrifugal acceleration gc = (v2/r)er , where v is
the azimuthal component of the velocity. This acceleration interacts with the density stratification
to produce the centrifugal buoyancy. The total resulting buoyancy force acting on the ferrofluid is
C = αθ (gm − v2/r)er . The centrifugal buoyancy and the thermomagnetic buoyancy always act in
opposite directions, i.e., depending on the heating direction, when one tends to destabilize the flow,
the other tends to stabilize it.

The velocity u = (u, v,w), the pressure π , and the temperature deviation θ satisfy the continuity
equation, the Navier-Stokes equations and the energy equation

∇ · u = 0, (8a)

∂u
∂t

+ (u · ∇)u = −∇π + ν�u + C, (8b)

∂θ

∂t
+ (u · ∇)θ = κ�θ. (8c)

In the energy equation, besides the viscous dissipation term, we have also neglected the term
containing the coupling between the temperature and the variation of the magnetic field intensity
[12,32,33]. Imposing no-slip conditions at the cylinder surfaces, the boundary conditions read

u = R1�1eϕ ; θ = �T; at r = R1, (9a)

u = 0; θ = 0; at r = R2. (9b)

Using the gap size d = R2 − R1, the viscous time τν = d2/ν, the pressure (ν/d )2 and the
temperature difference �T as characteristic length, time, pressure and temperature, the governing
equations (8) read in dimensionless form as

∇ · u = 0, (10a)

∂u
∂t

+ (u · ∇)u = −∇π + �u − γa
v2

r
θer + Ram

Pr

K1(kbr)

K1(kbR̄)
θer, (10b)

∂θ

∂t
+ (u · ∇)θ = 1

Pr
�θ, (10c)

where we introduced the Prandtl number Pr = ν/κ and the dimensionless thermal expansion param-
eter γa = α�T. The magnetic Rayleigh number Ram = α�T gm(R̄)d3/νκ is defined at the midgap
position R̄ = (1 + η)/[2(1 − η)]. We introduced the radius ratio η = R1/R2 and the Taylor number
Ta = Re

√
d/R1, where Re = R1�1d/ν, is defined with respect to the inner cylinder velocity.
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The boundary conditions (9) written in dimensionless form read

u = Reeϕ ; θ = 1; at r = η/(1 − η), (11a)

u = 0; θ = 0; at r = 1/(1 − η). (11b)

Seeking for a steady, axisymmetric and axially invariant solution, we find the base state which only
depends on the radial position

� = ln [(1 − η)r]

ln η
, (12a)

V = r� = Taη3/2

(1 − η)5/2(1 + η)

[
1

r
− (1 − η)2r

]
, (12b)

where � is the temperature, V is the azimuthal velocity and � is the local angular velocity of the
base flow. The velocity and the temperature fields are decoupled in the base flow. The temperature
gradient is negative, and the heating direction is indicated by the sign of γa: the system is in outward
heating when γa > 0 and is in inward heating when γa < 0.

We add infinitesimal perturbations to the base state and linearize the resulting equations
around the base state. These perturbations are expanded in normal modes (u′, v′,w′, π ′, θ ′) =
(û, v̂, ŵ, π̂ , θ̂ ) exp[st + inϕ + ikz] + c.c., where c.c stands for complex conjugate. The primed and
hatted quantities indicate the perturbation fields and their complex amplitudes, respectively. The
time evolution of perturbations is characterized by their complex growth rate s = σ − iω, where
σ is the temporal growth rate and where ω is the frequency. The axial wave number k is a real
positive quantity since the cylinders are of infinite length. The azimuthal mode number n takes only
integer values. We introduce the total wave number q =

√
k2 + k2

ϕ where kϕ = 2n(1 − η)/(1 + η)
is the azimuthal wave number determined at the midgap. The resulting equations for the complex
amplitudes of perturbations are

1

r
D(rû) + in

r
v̂ + ikŵ = 0, (13a)

(s + in�)û − 2�v̂ = −Dπ̂ + �û − û

r2
− 2in

r2
v̂ + Ram

Pr
θ̂ − γa(r�2θ̂ + 2��v̂), (13b)

(s + in�)v̂ +
(

d�

d ln r

)
û = − in

r
π̂ + �v̂ − v̂

r2
+ 2in

r2
û, (13c)

(s + in�)ŵ = −ikπ̂ + �ŵ, (13d)

(s + in�)θ̂ + (D�)û = 1

Pr
�θ̂, (13e)

where D = d/dr, � = D2 + D/r − n2/r2 − k2. The perturbations satisfy homogeneous boundary
conditions on the cylinder surfaces:

û = v̂ = ŵ = θ̂ = 0, at r = η/(1 − η); 1/(1 − η). (14)

The two last terms in the right-hand-side of Eq. (13b) represent the perturbed thermomagnetic
buoyancy and the perturbed centrifugal buoyancy. The centrifugal buoyancy includes the effect of
the base centrifugal acceleration on the perturbed density profile and the effect of the perturbed cen-
trifugal acceleration on the base density profile. In contrast, the thermomagnetic buoyancy consists
only of the effect of the magnetic gravity on the perturbed temperature. Indeed the perturbations
of magnetization are neglected compared to the base state one. This approach is justified when
thermomagnetic convections are considered in a cylindrical annulus since, in that case, the magnetic
field gradient responsible for the Kelvin force is mainly originated by the annulus curvature, and not
by the thermal aspect.
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FIG. 2. Magnetic Rayleigh number as function of the axial wave number k at the marginal state (σ = 0)
for η = 0.8, Pr = 15, γa = 0.01, Ta = 0 and for various values of n. The red curves represents the marginal
curve of the critical state which gives the critical parameters Ram,c = 1595.6, kc = 1.149, nc = 13 and ωc = 0.

The equations for the complex amplitudes (13) are discretized using the Chebyshev spectral
collocation method and completed by the boundary conditions (14). The order of considered
Chebyshev polynomials was set to 30 to ensure the convergence of calculations. The resulting gen-
eralized eigenvalue problem, written in the matrix form, was solved by the QZ decomposition [34].
Solving numerically the eigenvalue problem gives us eigenvalues s for a given set of parameters
(η, Pr, kb, γa, Ta, Ram, n, k). A marginal stability state is obtained when the eigenvalue with the
largest real part changes the sign from negative to positive values. Marginal stability curves are
either plotted in the (k, Ta) plane for a given set of control parameters (η, Pr, kb, γa, Ram) or in
the (k, Ram) plane for a given set of control parameters (η, Pr, kb, γa, Ta). The global minimum
of marginal stability curves obtained for different azimuthal wave numbers n gives us the critical
conditions (Tac, nc, kc, ωc) for a given Ram or the critical conditions (Ram,c, nc, kc, ωc) for a given
Ta.

III. CRITICAL PARAMETERS

Under microgravity conditions, and in the absence of the cylinder rotation, thermomagnetic
convections in a cylindrical annulus have been found to be nonaxisymmetric. In particular, the
numerical and experimental researches carried out by Polevikov and Fertman [35], Odenbach [36],
and Morimoto et al. [37] showed the occurrence of counter-rotating pairs of vortices along the
azimuthal direction with vortices of about the gap size. The spiral modes have been found by Tagg
and Weidman [16] in the case of very low rotation rate of the inner cylinder and when the Earth’s
gravity can be neglected compared to the magnetic gravity. Figure 2 shows the marginal stability
curves obtained for several azimuthal mode number and for η = 0.8. The helical nature of the
critical mode is confirmed since the global minimum of the marginal stability curves is obtained
for nc �= 0 and kc �= 0. The helical vortices are stationary (ωc = 0) and their critical parameters
depend on the radius ratio, but are independent from the Prandtl number. It is worth highlighting the
fact that the selection of helical critical modes was also found when the motion of a fluid due to a
central force field was analyzed in a cylindrical annulus under microgravity conditions. Alonzo et al.
[38,39] and Pino et al. [40] found such modes while implementing a constant artificial centripetal
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FIG. 3. Variation of (a) the critical magnetic Rayleigh number Ram,c, (b) the critical wave number qc and
(c) the critical frequency ωc with the Taylor number Ta with η = 0.8 and |γa| = 0.01.

gravity field for various values of η and Pr. Similar results were found when a dielectric fluid is
subject to the thermoelectric buoyancy associated with an centripetal electric gravity [41–43].

In the absence of magnetic field, the isothermal circular Couette flow with only the inner cylinder
rotating is linearly unstable. Above a certain critical Taylor number, the base flow destabilizes to
counter-rotating axisymmetric (toroidal) vortices. The critical value of the Taylor number depends
only on the radius ratio η. When a radial temperature gradient is applied, the one-dimensional model
derived by Meyer et al. [30] demonstrated that the centrifugal buoyancy has a stabilizing effect on
the Couette flow when γa > 0 and destabilizes the flow when γa < 0. Independently of its stabilizing
or destabilizing configuration, the effect of the centrifugal buoyancy is improved by the increase of
the thermal expansion parameter and of the Prandtl number [24].

In the presence of a magnetic field, the effect of the thermomagnetic buoyancy on the non-
isothermal Taylor Couette system can be evaluated. Figure 3 shows the variation of the critical
parameters as functions of the magnetic Rayleigh number for a water-based (Pr = 15) and a
oil-based (Pr = 350) ferrofluid. The different curves are discontinuous at Ram = 0 because of
the discontinuous change of value of γa. In outward heating γa = 0.01, for Pr = 15, the helical
modes are stationary for Ta = 0, and are oscillatory for Ta > 0. The value of nc of these oscillatory
nonaxisymmetric (ONA) modes progressively decreases with Ta from its value with no rotation
(nc = 13) to nc = 0, however the total wave number increases with the increase of Ram [Fig. 3(b)].
The critical frequency of the ONA modes increases with the magnetic Rayleigh number [Fig. 3(c)].
As shown in Fig. 4, the azimuthal phase velocity cϕ = ω/kϕ of the ONA modes is proportional to
the Taylor number. The proportionality between cϕ and Ta indicates that the rotation of the inner
cylinder transports the nonaxisymmetric vortices and brings about the modes oscillation. The critical
modes are then stationary axisymmetric (SA). The value of Ta at the codimension-2 point between
ONA and SA modes decreases with increasing Pr and we determined that for Pr = 350, the ONA
modes become SA at Ta = 0.01, which implies that the domain of existence of these ONA modes
gets negligible for ferrofluids with sufficiently large viscosity.

For Pr = 15, the critical magnetic Rayleigh number of SA modes decreases with increasing
Ta until it reaches Ram,c = 0 at the value of Ta corresponding to the nonisothermal Taylor-Couette
instability, which is found to be slightly helical for these values of γa and Pr [24]. The corresponding
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FIG. 4. Behavior of the critical azimuthal phase velocity cϕ,c of the ONA modes with respect to Ta and
with η = 0.8, γa = 0.01 and Pr = 15.

critical axial wave number is nearly independant of Ta. For Pr = 350, Ram,c for SA modes increases
with Ta. The associated total wave number qc decreases with the increase of Ram. At certain
value of Ta, the SA modes become oscillatory axisymmetric (OA) modes. The critical values of
Taylor number and wave number of the OA modes are independent of the magnetic Rayleigh
number, however their frequency decreases with the increase of the magnetic Rayleigh number.
The origin of these oscillations comes from the stabilizing effect of the centrifugal buoyancy in
outward heating configurations. At Ram,c = 0, the circular Couette flow with heated inner cylinder
destabilizes to oscillatory axisymmetric modes if the Prandtl number is sufficiently large. This result
was already discussed by Meyer et al. [24]. The radial density stratification is stable with respect to
the centrifugal buoyancy. The oscillation of modes is therefore excited by the centrifugal buoyancy
with a frequency related to the Brunt-Väisälä frequency associated with the centrifugal acceleration.
Therefore when the magnetic Rayleigh number increases, the critical frequency diminishes. From
Fig. 3(a), we can see that the Taylor number is independent of Ram,c for these OA modes, which
means that the influence of the centrifugal buoyancy is unchanged with the variation of Ram.
However the amplitude of the magnetic gravity increases with Ram leading to the decrease of the
Brunt-Väisälä frequency associated with the sum of the centrifugal acceleration and of the magnetic
gravity. This result has also been observed by Yoshikawa et al. [44] in the case of a dielectric fluid
subject to the dielectrophoretic force.

In inward heating (γa < 0), the centrifugal buoyancy plays a destabilizing role which can be ob-
served in Fig. 3(a) through the decrease of Tac with Pr. In the absence of magnetic field, the critical
modes are stationary axisymmetric (SA). The threshold Tac of these SA modes increases with the
increase of the magnetic Rayleigh number, indicating the stabilizing effect of the thermomagnetic
buoyancy. For sufficiently large values of (−Ram), the flow destabilizes through the occurence of
OA modes. For Pr = 15 the critical Taylor number of OA modes continues to increase with (−Ram)
while for Pr = 350, the threshold of OA modes is nearly independent of (−Ram). For Pr = 15,
oscillatory helical modes become critical between the SA and OA modes and over a short range of
Rayleigh numbers. These modes, also found in Ref. [44] in the case of thermoelectric convection,
are characterized by small number of modes in the azimuthal direction. The wave number [Fig. 3(b)]
of SA modes and of OA modes slightly increases with increasing Ram with a discontinuity at the
codimension-2 point between these two modes. The wave number of the helical modes occuring
for Pr = 15 decreases with the increase of Ram. The frequency [Fig. 3(b)] of OA modes and
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FIG. 5. (a) Magnetic Rayleigh number as function of the axial wave number k at the marginal state (σ = 0)
and (b) variation of Ram,c with Pr. The parameters are η = 0.8, γa = 0.01 and n = 0.

of helical modes increases with increasing (−Ram). For sufficiently large values of (−Ram), the
frequency of OA modes tends to be proportional to the root mean square of the magnetic Rayleigh
number. This result is similar to what was obtained in Ref. [44] for a dielectric fluid subject to
the dielectrophoretic force. The frequency then relates to the Brunt-Väisälä frequency, due to the
magnetic gravity acting on the stably stratified density of the fluid and which sustains the oscillation
of a perturbation. Figure 5(a) shows the effect of the Taylor number on the marginal stability
curves depending on the Prandtl number in outward heating. For a water-based ferrofluid (Pr = 15),
increasing the Taylor number diminishes the magnetic Rayleigh number at the marginal state. The
destabilization of the circular Couette flow is increased by the rotation due to the distribution of
angular momentum when only the inner cylinder rotates. However, for an oil-based ferrofluid with
Pr = 350, the Taylor number has the opposite effect on Ram at the marginal state. In that case the
centrifugal buoyancy plays an important stabilizing role that overcomes the classical Taylor-Couette
destabilization mechanism. The value of Pr has a major influence on the flow stability since it may
impact the role played by the rotation of the inner cylinder.

The effect of the Prandtl number on the threshold of the SA modes is evaluated to better capture
the dual role that the rotation of the inner cylinder has on the flow stability. At fixed values of the
Taylor number (Ta = 10; 20; 40) the variation of the magnetic Rayleigh number with the Prandtl
number is calculated and shown in Fig. 5(b). For a given Ta, Ram,c increases nearly linearly with
Pr and the variation rate of Ram,c gets larger when the Taylor number is increased. For each
values of Ta, the magnetic Rayleigh number reaches the value Ram,c = 1614.7 at the value of the
Pradtl number close to Pr = 325. The value of Ram,c = 1614.7 corresponds to the minimum of the
marginal stability curve obtained for n = 0 in the case where the inner cylinder is at rest (Ta = 0).
This minimum takes a slightly larger value than the critical one obtained for n = 13, but it is the
reference from which the role played by rotation on the threshold of SA modes can be estimated.
For Pr < 325, the rotation of the inner cylinder destabilizes the circular Couette flow since the
magnetic Rayleigh number gets lower than its value in the absence of rotation and the larger the
Taylor number is, the lower Ram,c becomes. However Ram,c > 1614.7 for Pr > 325 and the higher
Ta is, the higher Ram,c gets, which indicates that the rotation now has a stabilizing role.

When the inner cylinder is hotter than the outer one, the thermomagnetic buoyancy destabilizes
the flow, but the rotation of the inner cylinder intervenes in two competing mechanisms. On the
one hand, the base azimuthal velocity profile exhibits a decrease of the angular momentum with
the radial distance. Hence, the increase of the angular velocity of the inner cylinder destabilizes
the circular Couette flow. On the other hand, the base azimuthal velocity produces a centrifugal
acceleration which impacts the density stratification and tends to stabilize the flow. Figure 5(b)
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FIG. 6. Variation of the different terms in (15) for η = 0.8 and Pr = 350. For γa = 0.01 (a) the energy
terms are plotted against Ta and for γa = −0.01 (b) the energy terms are plotted against (−Ram ).

indicates that there exists a value of the Prandtl number above which the stabilizing effect of the
centrifugal buoyancy overcomes the destabilizing mechanisms.

IV. ENERGY ANALYSIS

To get a better understanding of the role played by different driving forces intervening in the
present flow, we computed their associated powers involved in the equation of the kinetic energy.
The later is derived from the linearized equations of the perturbations. Multiplying Eqs. (13b)–(13d)
by u′, v′, and w′, respectively, and summing the resulting equations provides an equation describing
the local energy transfer from the base state to the perturbed state around the marginal stability of
the system. Integrating over a wavelength and over a period of the marginal perturbations results in

dK

dt
= WSh + WBu + WMb − Dν, (15)

where K is the kinetic energy, WSh is the power performed by the shear stress, WBu is the power
performed by the centrifugal buoyancy, WMb is the power performed by the thermomagnetic
buoyancy and Dν is the rate of viscous dissipation. These terms are given by

K =
∫

u′2

2
dV, WSh = −

∫
u′v′r

d�

dr
dV, WBu = −γa

∫
u′(r�2θ ′ + ��v′)dV,

WMb = Ram

Pr

∫
θ ′gmu′dV, Dν =

∫
�νdV, (16)

where the viscous dissipation function �ν is given by

�ν = 2

[∣∣∣∣du′

dr

∣∣∣∣
2

+
∣∣∣∣ imv′

r
+ u′

r

∣∣∣∣
2

+ k2|w′|2
]

+
∣∣∣∣r d

dr

(
v′

r

)
+ imu′

r

∣∣∣∣
2

+
∣∣∣∣ imw′

r
+ ikv′

∣∣∣∣
2

+
∣∣∣∣iku′ + dw

dr

∣∣∣∣
2

. (17)

Each of these power terms are normalized using the kinetic energy so that they are comparable from
one set of control parameters to another. In the following, these power terms are evaluated at the
critical state, where the growth of kinetic energy vanishes. For outward heating [γa > 0, Fig. 6(a)],
WSh and WMb are always positive while WBu is negative. This highlights the destabilizing contribution
of the sheared flow and of the thermomagnetic buoyancy, and the stabilizing contribution of the
centrifugal buoyancy. The thermomagnetic force is the leading mechanism for small values of
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Ta. When Ta increases, the contribution of the thermomagnetic buoyancy diminishes while the
destabilization by the shear flow increases. In contrast, WBu starts from zero at Ta = 0 and decreases
with Ta indicating an increase of the stabilizing mechanism. For SA modes, we always have
WMb > −WBu. As soon as we have WMb = −WBu, the critical modes become oscillatory and the
contribution of both mechanisms rapidly decreases with the decrease of Ram (see OA branch of
[Fig. 3(a)]). For OA modes, the two power terms become negligible, which indicates that the two
buoyancies are no longer contributing to the growth of perturbation kinetic energy. This mechanism
following the excitation of oscillatory modes was also found by Yoshikawa et al. [44] in the case
of a dielectric fluid subject to the dielectrophoretic force. In their case, the power performed by
the thermoelectric buoyancy played the same role as the power performed by the thermomagnetic
buoyancy in our case.

For inward heating [γa < 0, Fig. 6(b)], the shear flow still has a destabilizing effect since WSh >

0, but the role played by the thermomagnetic buoyancy and the centrifugal buoyancy are exchanged
compared to the case where γa > 0. The centrifugal buoyancy destabilizes the flow since WBu > 0
and the thermomagnetic buoyancy has a stabilizing effect with WMb < 0. When (−Ram) increases,
the stabilizing effect of the thermomagnetic force increases. This is accompanied with the increase
of the critical value of the Taylor number, which also increases WSh and WBu. The oscillatory modes
occur at sufficiently large values of (−Ram) through a similar process than that observed for γa >

0. For SA modes, we have WBu > −WMb, but as soon as WBu = −WMb, the axisymmetric modes
become oscillatory and both the centrifugal buoyancy and the thermomagnetic buoyancy see their
contribution to the exchange of energy vanish for sufficiently large values of (−Ram). In Fig. 7, the
eigenfunctions computed at the critical state are shown for the OA modes encountered in inward
heating. The temperature and the velocity field are shown in the first line while the energy density
resulting from the centrifugal and the thermomagnetic buoyancy are shown in the second and third
lines, respectively, together with their respective buoyancy fields �b′

c and �b′
m given by

�b′
c = −2�V v′ + V 2θ ′

r
�er, �b′

m = θ ′gm�er . (18)

The density of energy of the centrifugal buoyancy and by the thermomagnetic buoyancy are
given by

wBu = −γau′(r�2θ ′ + ��v′), wMb = Ram

Pr
θ ′gmu′. (19)

At magnetic Rayleigh number (−Ram) taking its value just above the transition from SA to OA
modes, the temperature and velocity field are in phase, meaning that hot fluids at the outer cylinder
are transported to the inner cylinder passing through a hot area. Meanwhile, the cold fluid at the
inner cylinder is transported toward the outer cylinder passing through a cold area. This mechanism
induces zones where perturbations are excited by the centrifugal buoyancy, but damped by the
thermomagnetic buoyancy. At larger values of (−Ram), a phase difference between the radial
velocity and the temperature appears and increases with the increase of (−Ram). The phase delay
induces the periodic appearance of zones with negative net product of θ ′ and u′. Therefore the
centrifugal buoyancy locally absorbs energy from the base state and tends to lower the overall
power performed by this mechanism. In counterpart, the thermomagnetic buoyancy locally transfers
energy to the perturbations and tends to increase WMb. In Fig. 7(e) obtained for Ram = −2500, the
phase difference between u′ and θ ′ is close to π/2. In that case, the density of energy of both
buoyancy mechanisms exhibits zones of positive and negative values with equivalent sizes and
amplitudes, so that the spatial integration tends to vanish. As a result, the powers performed by
the centrifugal buoyancy and by the thermomagnetic buoyancy tend towards zero. A similar result
has been described by Meyer et al. [24] in the case of a nonisothermal Taylor-Couette system with
the inner cylinder rotating.
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FIG. 7. Eigenfunctions plotted at the critical conditions for η = 0.8, Pr = 350, γa = −0.01 and for differ-
ent Ram. The first line shows the isosurface of perturbed temperature an the perturbed velocity field. The second
line shows the isosurface of energy density produced by the centrifugal buoyancy and the centrifugal buoyancy
field. The third line shows the isosurface of energy density produced by the thermomagnetic buoyancy and the
thermomagnetic buoyancy field.

V. LINEAR GINZBURG-LANDAU ANALYSIS

The Ginzburg-Landau equation describes the behavior of the amplitude A of a perturbation
around the critical state. Considering axisymmetric modes, this equation is given by [45]

τ0

(
∂A

∂t
− cg

∂A

∂z

)
= ε(1 − ic0)A + ξ 2

0 (1 − ic1)
∂2A

∂z2
− l (1−ic3)|A|2A + g(1 − ic5)|A|4A. (20)
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FIG. 8. Variation of (a) coherent length ξ0 and (b) the characteristic time divided by the Prandtl number
τ̃0 = τ0/Pr as functions of Ta for the SA modes with η = 0.8 and γa = 0.01.

The coefficients from the linear terms of Eq. (20) are calculated from the linear stability analysis in
two different ways. Either Ram is fixed and the coefficient are evaluated around the critical Taylor
number, or Ta is fixed and the magnetic Rayleigh number is varied around its critical value to
determine the coefficients. The coefficients for the linear terms of Eq. (20) are given by

ε = χ

χc
− 1 ; τ0 =

(
χc

∂σ

∂χ

∣∣∣∣
c

)−1

; ξ0 =
[
− ∂2σ

∂k2

∣∣∣∣
c

/

(
2χc

∂σ

∂χ

∣∣∣∣
c

)]1/2

; cg = ∂ω

∂k

∣∣∣∣
c

;

c0 = ∂ω

∂χ

∣∣∣∣
c

/
∂σ

∂χ

∣∣∣∣
c

; c1 = ∂2ω

∂k2

∣∣∣∣
c

/
∂2σ

∂k2

∣∣∣∣
c

, (21)

where χ ≡ Ta when Ram is fixed and χ ≡ Ram when Ta is fixed. The parameters ξ0 and τ0 represent
the coherent length and the characteristic time of the perturbation, respectively. They relate to the
time and distance needed by the perturbation to reach the saturated state. The perturbation oscillation
is characterized by the phase velocity cz = ωc/kc and the group velocity cg, as well as the two
coefficients c0 and c1. The Landau constant l determines the nature of the bifurcation. If l > 0
the bifurcation is supercritical, and one can see from Eq. (20) that for a stationary perturbation,
the amplitude saturates at the equilibrium value Ae = √

ε/l after a long enough time. If l < 0, the
bifurcation is subcritical and no saturation is expected, except if the fifth-order nonlinear term, i.e.,
the fourth term in the right-hand-side of Eq. (20), is taken into account. The coefficients l , g, c3,
and c5 cannot be extracted from the linear stability analysis, but they could be calculated through
numerical simulations or weakly nonlinear analysis. We first analyze the SA modes encountered
when γa > 0 and plot the coherent length ξ0 [Fig. 8(a)] and the characteristic time normalized
by the characteristic time of thermal diffusivity τ̃0 = τ0/Pr [Fig. 8(b)] as functions of Ta, the
fixed parameter in that case. For small values of the Taylor number, ξ0 is independent of the
Prandtl number and τ̃0 is nearly independent of Pr. Both coefficients are increasing with the Ta for
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TABLE I. Coeficients of the Guinzburg-Landau equation with fixing Ram with η = 0.8 and for various
parameters.

γa = 0.01

Pr Ram Tac kc ωc τ0 ξ0 cz cg c0 c1

15 479 40.79 3.131 0 0.186 0.323 0 0 0 0
350 479 47.65 3.131 0.7754 0.0759 0.2699 0.2477 0.2162 −0.0133 −0.0699

γa = −0.01

Pr −Ram Tac kc ωc τ0 ξ0 cz cg c0 c1

15 102 47.60 3.134 0 0.031 0.262 0 0 0 0
15 103 50.25 3.109 2.7078 0.070 0.268 0.8710 0.7231 −0.5635 −0.4015
350 102 33.81 3.150 0 4.015 0.259 0 0 0 0
350 2 · 103 47.36 3.131 0.3343 0.075 0.269 0.1068 0.0800 −0.3682 −0.1637

Pr = 15 while they are decreasing with Ta for Pr = 350. This once again indicates the impact that
the Prandtl number has on the role played by the centrifugal buoyancy. In practice, the occurrence of
SA modes in a water-based ferrofluid would be disadvantaged by the increase of the rotation rate of
the inner cylinder because of the finite length of the cylinders. However, in an oil-based ferrofluids
with Pr = 350, the increase of the rotation rate of the inner cylinder favors the occurrence of the
SA modes. Table I shows the values of the coefficients of the Ginzburg-Landau equation for the
axisymetric modes in outward and inward heating. Overall, we see that ξ0 weakly varies with Pr
while τ0 depends strongly on Pr. The OA modes exhibit normal dispersion since we have cz > cg.

VI. CONCLUSION

The linear stability analysis of a ferrofluid confined between a rotating inner cylinder and a steady
outer cylinder in the presence of a radial temperature gradient and a radially decreasing magnetic
field has been performed. A water-based (Pr = 15) and an oil-based (Pr = 350) ferrofluid were
investigated with the aim of evaluating the impact of the centrifugal buoyancy on the flow stability.
For a water-based ferrofluid in outward heating, we obtained results which are similar to those
obtained by Tagg and Weidman [16] when the magnetic gravity measured at the inner cylinder
is 10 times larger than the Earth’s gravity. The modes are helical for small rotation rates with a
number of modes in the azimuthal direction which decreases with the increase of Ta until the modes
become toroidal. In inward heating, the modes are axisymetric and are found to be stationary for
small magnetic Rayleigh numbers and oscillatory for larger ones. For this water-based ferrofluid,
the effect of the centrifugal buoyancy is minor.

For an oil base ferrofluid, it is found that the centrifugal buoyancy has an important impact on
the flow stability. In inward heating, the threshold between stable and unstable flow is obtained
at lower values than for the water-based fluid. In outward heating, the stationary axisymmetric
modes are stabilized by the increase of the rotation rate of the inner cylinder, which is counter-
intuitive regarding the destabilizing mechanism of the angular momentum. In addition, oscillatory
axisymmetric modes become critical at small values of Ram because of the stabilizing effect of the
centrifugal buoyancy.

The energy analysis allows us to determine how important the different mechanisms for sustain-
ing or damping of perturbations are. In addition to the global powers, the local energy densities
performed by each force can be observed and efficiently serve to depict the cause of a change in the
temporal nature of a critical mode.

The analysis using the linear Ginzburg-Landau equation highlighted the change of the role played
by the inner cylinder rotation in outward heating depending on the Prandtl number. The coefficients
of this equation are additionally given for different fluid properties and control parameters for
possible future determination of an experimental setup.
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