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The processing of thin-structured materials in a fluidic environment, from nearly in-
extensible but flexible graphene sheets to highly extensible polymer films, arises in many
applications. So far, little is known about the dynamics of such thin sheets freely suspended
in fluid. In this work, we study the dynamics of freely suspended soft sheets in uniaxial
extensional flow. Elastic sheets are modeled with a continuum model that accounts for
in-plane deformation and out-of-plane bending, and the fluid motion is computed using
the method of regularized Stokeslets. We explore two types of sheets: “stiff” sheets that
strongly resist bending deformations and always stay flat and “flexible” sheets with both
in-plane and out-of plane deformability that can wrinkle. For stiff sheets, we observe
a coil-stretch-like transition, similar to what has been observed for long-chain linear
polymers under extension as well as elastic sheets under planar extension: In a certain range
of capillary number (flow strength relative to in-plane deformability), the sheets exhibit
either a compact or a highly stretched conformation, depending on deformation history.
For flexible sheets, sheets with sufficiently small bending stiffness wrinkle to form various
conformations. Here the compact-stretched bistability still occurs but is strongly modified
by the wrinkling instability: A highly stretched planar state can become unstable and
wrinkle, after which it may dramatically shrink in length due to hydrodynamic screening
associated with wrinkling. Therefore, wrinkling renders a shift in the bistability regime.
In addition, we can predict and understand the nonlinear long-term dynamics for some
parameter regimes with linear stability analysis of the flat steady states.
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I. INTRODUCTION

Two-dimensional materials, such as graphene, boron nitride, and thin polymeric films, have
received great attention in recent years. Thin graphene flakes and graphene composites, due to their
superior mechanical and electronic properties, are widely used in the energy storage field [1–4].
Electronic nanomaterials, such as MoS2, GeSe, and graphene, are used in nanoscale thin films for
semiconductor nanomembranes in high-performance electronic devices [5,6]. Thin polymer sheets
and films are important in the development of cell-based biohybrid machines [7].

These examples all involve stages of synthesis or processing where thin sheetlike structures are
freely suspended in a fluidic environment, potentially showing complicated dynamics under external
flow fields. For instance, Fei and coworkers improved the performance of carbon nanofibers in
battery anodes by adding graphene oxide (GO) nanosheets to the fibers, which were produced by
water-based electrospinning [1]. Once the mixture of nanosheets and polymer solutions was injected
into the air, the uniaxial extensional flow near the needle tip stretched the nanosheet and helped
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it to wrap around the fiber surface. Park etal. investigated behavior and orientation of layered
silicate nanocomposites in uniaxial extensional flow, finding that exfoliated nanosheets tended to
align with the extensional direction [8]. Recently, Ng et al. performed capillary breakup extensional
rheometry with dilute GO solutions, demonstrating that a very small amount of GO nanosheets can
influence extensional rheology [9]. Yoon et al. synthesized GaAs nanomembranes in suspension
with a combination of dispersion and sonication that generated complicated flow fields [6]. Liu et al.
reviewed the fabrication of thin and ultrathin polymer films, some of which involved an exfoliation
process to dissolve the substrate where the films were suspended in solution [7].

The understanding of these nontrivial scenarios requires a comprehensive knowledge of the
dynamics of suspended deformable sheetlike structures in flow, an area which has barely been
explored. The above examples involve uniaxial extensional flow, which is therefore the focus of
the present work. To our knowledge, this is the first study of flexible sheets in uniaxial extension.

Though little is known about deformable sheet dynamics in extensional flow, other soft objects
such as flexible polymers have been well studied. De Gennes suggested the possibility of a discon-
tinuous, hysteretic coil-stretch transition for sufficiently long chain polymers under extensional flow
because of the conformation dependence of the hydrodynamic interactions between chain segments
[10]. Fuller and Leal modeled this situation in planar extensional flow with a bead-spring dumbbell
model with conformation-dependent drag on the beads, observing the discontinuous transition
and conformational bistability and hysteresis hypothesized by De Gennes [11]. Bistability was
experimentally observed by Schroeder and coworkers with dilute solutions of fluorescently labeled
Escherichia coli DNA under planar extension [12]. They also performed Brownian dynamics sim-
ulations of a bead-spring polymer model with hydrodynamic interactions, finding conformational
hysteresis consistent with what they observed in experiments. Recent computational work has also
suggested the transition not only happens in a dilute polymer solution but also for polyethylene
melts under planar extension [13].

Coil-stretch-like transitions have been shown to exist beyond linear polymers. Kantsler et al. re-
ported experimental observation of a tubular-dumbbell transition for vesicles in planar elongational
flow when a critical strain rate is reached [14]. They did not observe bistability. Zhao et al. found a
similar transition computationally for a vesicle in uniaxial extensional flow [15]: When reaching a
critical flow strength, the vesicle became unstable and deformed into an extended asymmetric dumb-
bell shape with two unequally sized ends. The simulation results are consistent with experimental
observations from Kantsler et al. in planar extension and vesicles did not show bistability. Soh and
Doyle studied the deformation response for two-dimensional kinetoplast DNA sheets, which are
networks of linked ring structures that appear in mitochondria, in planar elongational flow [16].
The DNA sheets underwent a relatively smooth transition from an undeformed state to a deformed
stretched state, with no evidence of a hysteretic coil-stretch transition. A recent computational study
from Yu and Graham demonstrated that a sufficiently deformable elastic sheet in planar or biaxial
extension can display a compact-stretched transition with hysteresis that is closely analogous to the
coil-stretch transition in long polymer chains in solution [17]. As in the polymer case, the bistability
was shown to arise from the hydrodynamic interaction between different parts of the sheet surface
and vanished if the hydrodynamic interactions were turned off. Due to the nature of biaxial and
planar extension, the long-time conformations of the sheets were always flat. However, as we shall
see, a flexible sheet in uniaxial extension experiences radial compressive stress and may wrinkle,
influencing the shape evolution and bistability.

While the above discussion focuses on extensional flows, a number of recent studies consider the
dynamics of inextensible sheets in shear flow in order to understand synthesis processes of sheets
such as graphene, which usually involve a liquid-phase exfoliation in a shear-dominated flow where
complicated folding dynamics may occur. Xu and Green studied a Brownian bead-spring model for
a square sheet in simple shear flow [18], where they characterized a cyclic crumple-stretch-crumple
motion for a flexible sheet. In addition, they also applied the same model to investigate the dynamics
in biaxial extension [19], where sheets with large bending stiffness stayed flat while sheets with
small stiffness crumpled as a result of Brownian fluctuations. Silmore and coworkers studied
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semiflexible non-Brownian sheets in shear [20]. They found that, depending on initial conditions
and bending stiffness, the sheets can either undergo a continuous chaotic tumbling or follow a
Jeffery-like orbit then reach a flat state in the flow-vorticity plane. They also predicted some
transient buckling dynamics with a simple 1D elasticity model. Dutta and Graham studied piecewise
rigid creased sheets in shear flow [21]. Sheets approached a steady, periodic, or quasiperiodic
state depending on initial conditions. Botto and coworkers examined liquid-phase exfoliation of
multiple graphene sheets via molecular dynamic simulation and characterized the parameter regime
where exfoliation can occur [22]. They also applied molecular dynamic simulation to study thin
nanoplatelets in shear [23]. They found the effect of hydrodynamic slip influenced the dynamics,
allowing the platelet to attain a stable steady orientation with a fixed angle with respect to flow.

In the present work, we investigate the dynamics of soft, non-Brownian elastic sheets in uniaxial
extensional flow. We examine cases that range from relatively stiff sheets like graphene to highly
deformable polymeric sheets. We are interested in the wrinkling instability and its influence on
compact-stretched bistability, i.e., the analog of the coil-stretch transition in linear polymers. The
rest of the paper is presented as follows: Section II presents the model and numerical methods.
Section III presents the results in three parts: dynamics of stiff sheets (sheets with large stiffness
that prevents out-of-plane deformation), wrinkling transitions at low extension rates where sheets
are not highly stretched, and dynamics of stretched sheets and the interaction between wrinkling
and the compact-stretched transition. We conclude in Sec. IV.

II. MODEL DEVELOPMENT

A. Model setup

We consider an elastic thin sheet that is freely suspended in an unbounded uniaxial extensional
flow (v∞ = ε̇[−x/2,−y/2, z]T , with ε̇ as the flow strain rate). The fluid is Newtonian with viscosity
η and density ρ. We model the sheet as a continuum with a no-slip surface, so material points on
the surface move with the same velocity as the local fluid. The no-slip boundary condition also
implies that the sheet is impermeable—if the sheet moves with the local fluid velocity, then no fluid
is passing through the sheet. The sheet surface is discretized into triangular elements with a node
at each corner. The detailed numerical methods will be introduced in the following section. In the
present study, we focus on a sheet whose equilibrium shape is a disk with radius a and thickness h
such that h � a. Thus, the sheet has a traction-free edge, along which fluid exerts no forces.

The total strain energy of the elastic sheet can be written as the sum of in-plane strain energy Es

and out-of plane bending energy Eb:

E = Es + Eb. (1)

Here the in-plane strain energy is evaluated by integrating the strain energy density W over the sheet
surface. We choose a nonlinear Yeoh model (YH), as it is often used to model rubberlike polymer
structures [24], with the form:

WYH = G

2
(I1 − 3) + cG(I1 − 3)3. (2)

The two-dimensional shear modulus G scales with the equilibrium thickness h. The term I1 is the
first invariant of the right Cauchy-Green deformation tensor and depends on the local principal
stretch ratios λi along the tangential direction of the sheet surface:

I1 = λ2
1 + λ2

2 + 1

λ2
1λ

2
2

. (3)

The last term denotes λ3, as the stretch ratio along the thickness direction is obtained by incom-
pressibility of the material (λ1λ2λ3 = 1). The parameter c weights the cubic term in the energy
density and can be physically related to the properties of the material. For example, for a polymeric
sheet, c is inversely related to the distance between cross-linked points inside the sheet, thus small
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c indicates higher extensibility. Consequently, large c makes the material strain-hardening, due to
the penalty from the cubic energy term under large strain. If c = 0, then the model recovers the
strain-softening neo-Hookean model.

For the bending energy Eb, we apply a simple bending model that sums the energy due to dihedral
angles θαβ between neighboring elements [25,26]:

Eb =
∑

adj α,β

kb[1 − cos(θαβ − θ0)], (4)

where kb is the bending constant calculated from bending stiffness KB (kb = 3
√

3
2 KB). The angle θ0

is zero as we assume a flat equilibrium state.
In addition, we also add a truncated Lennard-Jones (LJ) repulsive potential to prevent the sheet

from self-intersecting. Numerically, the potential acts between all the nodes, except for the nodes
that are located within three-ring neighbors of the targeted node at the equilibrium state. The
potential has the form:

ELJ =
{

4ϕ0
[(

σ
r

)12 − (
σ
r

)6]
, if r < σ

0, otherwise
, (5)

where r is the distance between nonadjacent nodes at equilibrium state, σ is the range of the poten-
tial, and ϕ0 measures is the strength of the potential. Here we choose σ = 0.06a and ϕ0 = 4 × 10−6

such that the potential has no influence on the dynamics for sheets without intersection. We find that
the only case where the repulsive force is active is when the sheet edge would otherwise cut through
the surface, which only occurs for sheets with very small bending stiffness.

We introduce two nondimensional parameters to describe the aforementioned mechanical prop-
erties. The capillary number Ca = ηε̇a/G compares the viscous stresses exerted by the fluid on
the sheet to the in-plane elastic response of the sheet. Larger Ca indicates that the sheet is more
deformable. The relative size of the bending and in-plane stresses is measured by K̂B = KB/a2G:
The parameter comparing the bending with flow is Ca/K̂B = ηε̇a3/KB, and smaller K̂B indicates
that the sheet is more flexible. In this study, we explore two types of sheets: “stiff” sheets (K̂B = ∞)
with in-plane deformability, which strongly resist bending deformations and always stay flat, and
“flexible” sheets with both in-plane and out-of plane deformability, which can wrinkle. We consider
the stiff sheet case primarily as an idealized base case for comparison with the more realistic flexible
case.

Additionally, we do not include thermal fluctuations, as we estimate them to be negligible under
the conditions studied here. For example, for a polyethylene glycol hydrogel [27] sheet with radius
of 100 μm and thickness of 100 nm suspended in water, its estimated shear strain energy (∼109kBT )
and bending energy (∼3 × 105kBT ) are much larger than thermal energy.

B. Numerical methods

The numerical method for the elasticity problem is adapted from Charrier et al. [28,29]. We
simulate the sheet by keeping track of nodes that move as material points on the sheet surface. From
the above two energies, we obtain the summed nodal elastic force (Fe,i = Fs,i + Fb,i) exerted on
each node from the first variation of the total energy with respect to the nodal displacements. Each
discretized element of the sheet is assumed to have homogenous deformation, so the element edges
always remain linear. The deformed element is compared to its equilibrium shape under a local
coordinate transformation via a rigid body rotation, and the displacement for any point inside the
element is obtained by linear interpolation from the nodal positions. The detailed implementation
can be found in Refs. [25,26,28–30]. The total nodal force Fe,i is evaluated by summing the
elastic force (Fe,i ) j due to deformation of each surrounding element j shared by the node i:
Fe,i = ∑

j (Fe,i ) j , where the sum is over all elements meeting at the node. For the results shown,
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we discretize the disk with 1600 elements and 841 nodes. We have verified that changes in mesh
resolution lead to only small quantitative changes in the results and no qualitative changes.

In the present work, we consider a small, thin sheet and assume that the particle Reynolds number
Re = ρε̇a2/η is negligible. Under these assumptions, inertia of the sheet and fluid are negligible, so
the forces on each point on the sheet sum to zero and the fluid is governed by the Stokes equation.
For each node on the sheet surface, the elastic force Fe,i exerted by the sheet on the fluid is balanced
with hydrodynamic force Fh,i from the fluid:

Fe,i + Fh,i = 0. (6)

To account for the fact that the forces are not completely localized to the nodal positions, we use
the method of regularized Stokeslets to solve for the fluid motion [31]: The force Fi = −Fh,i exerted
by node i on the fluid corresponds to a regularized force density fκ

i = Fiδκ (x − Xi ), where Xi is the
position of node i and δκ (x) is a regularized δ function with regularization parameter κ . Thus,
the governing equations are the Stokes equation with regularized nodal forces and the continuity
equation:

−∇p + η∇2v +
∑

i

Fiδκ (x − Xi ) = 0

∇ · v = 0. (7)

The velocity field generated due to a regularized point force f = Fδκ (x − Xi ) can be represented
using a regularized Stokeslet Gκ :

vκ (x) = Gκ (x − Xi ) · F. (8)

As 1/κ → 0, Gκ reduces to the usual Stokeslet operator G(x − Xi ) = 1/8πηr(I + (x − Xi )(x −
Xi )/r2), where r = ||x − Xi||. There are many ways to regularize a δ function; we choose a regu-
larization function for which the difference between G and Gκ decays exponentially as κr → ∞
[32–34]:

δκ (x − Xi ) = κ3

√
π

3 exp(−κ2r2)

[
5

2
− κ2r2

]
. (9)

With this choice,

Gκ (x − Xi ) = erf (κr)

8πηr

[
I + (x − Xi )(x − Xi )

r2

]
+ κe−κ2r2

4π3/2η

[
I − (x − Xi )(x − Xi )

r2

]
. (10)

In the simulations, κ must be chosen to scale with the minimum node-to-node distance lmin. We
take κlmin = 2.1842, which is obtained from a validation case of a disk in biaxial extensional flow
discussed in Ref. [17]. We represent the total velocity at a point x as

v(x) = v∞(x) + vp(x) = v∞(x) +
∑

i

Gκ (x − Xi ) · Fi. (11)

At each time step, after updating the force balance, we update the nodal positions by applying
the condition that they move with the local fluid velocity in Eq. (11), thereby satisfying the no-slip
and no-penetration conditions:

dXi

dt
= v(Xi ). (12)

This equation is solved with a fourth-order Runge-Kutta method. For numerical stability, the
time step applied follows �t = 0.1Calmin. If Ca is large, then we apply an upper limit of 5 × 10−4

strain unit per time step.
Although we satisfy the no-slip and no-penetration conditions to high accuracy on the nodal

points Xi, with a finite discretization these conditions cannot be exactly satisfied at every point
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FIG. 1. Average magnitude of permeation velocity, 〈|vper|〉, at element centers for a sheet [the taco shape
in Fig. 3(a)] vs. mesh size 1/

√
Ne. The filled symbol indicates the mesh of 1600 triangular elements used for

the main set of results.

on the sheet. In particular, with a finite-resolution mesh, the sheet may be slightly permeable, so
we address here the effect of resolution on the velocity normal to the sheet surface relative to the
velocity of the sheet itself. At the center of each triangular element, we can define two velocities:
vint is the velocity estimated by linear interpolation from the velocities on the nodes, and vnum is
the velocity obtained from the regularized Stokeslet expression, Eq. (11), evaluated at that point. At
that point the permeation velocity vper, i.e., the error in the no-penetration condition, is given by

vper = n · (vint − vnum ), (13)

where n is the unit normal of the element. To evaluate vper, we use as an example the steady-state
“taco” conformation described in Section III B, and note that the linear size of each element in a
mesh with Ne elements scales as 1/

√
Ne. Figure 1 shows the averaged magnitude of perturbation

velocity 〈|vper|〉 vs. 1/
√

Ne for this case. The result indicates that the error is small and tends roughly
linearly toward zero as the mesh gets finer. The choice of mesh size (filled symbol on the plot) used
for the main results gives about 1% error for points at the element centers, and as noted above, we
perfectly satisfy no-slip and no-penetration conditions on the nodal positions Xi.

Finally, in all the results reported here, we examine the dynamics of the sheet based on a local
Lagrangian frame centered on the sheet. Because of the saddle point nature of the streamlines near
the stagnation point in uniaxial extensional flow, any small perturbation or symmetry breaking of
the sheet position or orientation will cause it to move away from the stagnation point. Nevertheless,
as in any linear flow, the sheet sees the same velocity gradient everywhere, so the shape dynamics,
which are our focus here, are not influenced by the Eulerian position of the sheet.

III. RESULTS AND DISCUSSION

A. Dynamics of stiff sheets (K̂B = ∞)

We begin the discussion of dynamics in uniaxial extensional flow by introducing the dynamics of
a stiff sheet that has extremely large bending stiffness (K̂B = ∞) and always stays flat. The dynamics
of a stiff sheet serve as a base case to understand the more complicated flexible sheets discussed in
later sections. For simplicity, we impose the infinite stiffness criterion by directly preventing any
out-of-plane deflection in the numerical simulation. Our primary quantity for characterizing the
conformation of a sheet will be its half-length l in the z direction, which at rest reduces to its
radius a.
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FIG. 2. (a) Steady-state half-length ls vs. Ca for a stiff disk with c = 0 (neo-Hookean) in uniaxial
extensional flow, indicating a singularity in ls. (b) ls vs. Ca for a stiff disk with c = 1 × 10−5 in uniaxial
extensional flow. Blue symbols represent a compact final conformation and red symbols represent a stretched
final conformation. Cac and Cas are the two critical Ca marked beside the arrows. (c) ls vs. Ca for a stiff disk
with c = 5 × 10−5 in uniaxial extensional flow, with a smooth transition observed. (d) Examples of bistable
sheets for Ca = 0.37 with c = 1 × 10−5, corresponding to light symbols in panel (b). The figure shows the front
view of compact and stretched states with half-length labeled ls. (e) Examples of transient length evolution for
stiff sheets with Ca = 0.36 and c = 1 × 10−5, below the bistability regime. (f) Examples of transient length
evolution for stiff sheets with Ca = 0.37 and c = 1 × 10−5, in the bistable regime.

One important observation of a sheet in uniaxial flow is that the only stable orientation of the
sheet aligns with the flow direction. This observation agrees with Park et al. [8] for orientation of
nanocomposites in uniaxial extension. Therefore, we only focus on the initial condition where the
sheet aligns with flow direction: The sheet always lies in the x-z plane.

Figures 2(a)–2(c) presents bifurcation diagrams for the steady-state value ls vs. Ca with different
choices of parameter c, with the definition of l shown in Fig. 2(d). For a simple neo-Hookean model
(c = 0), shown in Fig. 2(a), the conformation stretches without bound once a critical capillary num-
ber Cac = 0.39 is exceeded, yielding a singularity. (This is analogous to the unbounded stretching of
a bead-spring dumbbell of a polymer in solution when the spring is Hookean [33].) For a nonlinear
Yeoh model with small but finite c [Fig. 2(b)], beyond Cac, the compact state loses existence, and
the sheets evolve to a stretched state—the singularity in the Hookean case at Cac is replaced by a
saddle-node bifurcation at which the compact branch loses existence. Quasistatically decreasing
Ca shows that the stretched steady-state branch persists down to another critical (saddle-node
bifurcation) value Cas, below which all initial conditions relax back to the compact state. That
is, when Cas < Ca < Cac, this case displays bistability between a weakly stretched compact branch
and a fully stretched branch. Figure 2(d) shows examples of compact and stretched conformations
for Ca = 0.37 from Fig. 2(b). This bifurcation behavior is qualitatively similar to what has been
previously predicted for sheets in planar and biaxial extension [17].
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We compare two examples from Fig. 2(b) to show the difference in dynamics for sheets with
and without bistability: Figure 2(e) shows the transient length evolution of sheets for a value of Ca
below the bistable regime, as either a compact or stretched initial condition both result in a compact
final conformation as the only stable steady state; Fig. 2(f) indicates that if Ca is inside the bistable
regime, then the sheet either becomes compact or remains stretched based on its initial condition,
with both states being stable.

The bistability regime depends on the value of c. Smaller c indicates larger extensibility, with
c = 0 the special case of neo-Hookean elasticity. The bistability arises only when c is small.
Figure 2(c) shows an example where c is sufficiently large that ls increases smoothly with increasing
Ca. (As c increases, Cas approach one another, eventually merging and disappearing.) Recalling
that c can be viewed as inversely related to the extensibility of the polymer subchains in the sheet,
we suspect that the reason that bistability was not observed in the DNA networks of Ref. [16] is
the relatively low molecular weight of the DNA that they used, leading effectively to a value of
c above the bistability regime. In addition, we note that changing c has negligible influence on
the stretching dynamics of the compact branch, because the strain is relatively small for compact
conformations. The current study focuses on the compact-stretched transition, so below we only
discuss the influence of deformation on the transition with choices of c that show bistability
(c = 1 × 10−5).

B. Dynamics of flexible sheets in the compact (low Ca) regime

In this section, we probe into the compact branch shown in Fig. 2(b). Here we remove the infinite
stiffness constraint to make the sheet flexible, so the dynamics depend on bending stiffness K̂B.
When the sheet is compact, the dynamics are not sensitive to c, as the penalty from cubic energy
term is small. Therefore, we present the following results with a simple neo-Hookean model (c = 0),
where a singularity appears beyond Cac = 0.39.

The dynamics of flexible sheets in uniaxial flow are complicated due to flow-induced out-of-plane
deformation and are highly dependent on Ca and K̂B. We perform numerical simulations by applying
a small and random out-of-plane perturbation to the flat steady states shown in Fig. 2(b). We found
that, depending on K̂B, the sheet either resists perturbation and stays flat or develops into different
wrinkled conformations. Figure 3 shows a transition of final conformation, for a sheet with fixed Ca
and decreasing K̂B, from a flat stable steady state to more complicated geometries. With decreasing
stiffness, the first nonflat conformation appeared is a C shape, or a “taco” shape [Fig. 3(a)], as the
circular sheet folds onto itself. The next conformation observed is an S shape, as shown in Fig. 3(b).
This shape and some of the other wrinkled shapes slowly rotate around the z axis during flow, due to
the asymmetry of the conformation. For even smaller K̂B, the sheet develops into more complicated
structures, such as “heart” and “double S,” as shown in Figs. 3(c) and 3(d), respectively. A full
parameter sweep of results for a range of Ca and K̂B will be given below, after we illustrate the
various types of conformations that we observe.

Since the sheets with different K̂B develop into various conformations, we here illustrate how
different conformations affect the stretching dynamics from two perspectives: the stretched length
of the sheet and the force dipole exerted by the sheet on the flow. Figure 4(a) shows the transient
stretched length l for the cases presented in Fig. 3. All sheets begin with the same flat steady state
(fixed Ca) and a small random perturbation. Interestingly, we observe that as the sheet begins to
wrinkle, the induced out-of-plane deformation leads to a decrease in stretched size. The decrease in
l can be easily observed in Fig. 3. From Fig. 4(a), sheets with smaller K̂B display a more significant
decrease in stretched length, and the decrease in the stretched length is associated with the type
of conformation observed. For instance, as the taco folds onto itself, it “embraces” and traps fluid
inside the taco, screening it from the fluid motion outside of the taco.

To visualize the effect of this hydrodynamic screening of the interior of the taco from the imposed
flow, we examine the velocity on a symmetry plane cutting vertically through the taco shape.
Figure 5(b) shows this plane and the velocity magnitude ||v|| on it. We show a slice through the
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FIG. 3. Top view (x-y plane) and front view (x-z plane) of shape evolutions for a deformable sheet with
Ca = 0.25 and decreasing K̂B: (a) taco (K̂B = 5 × 10−3), (b) S shape (K̂B = 1 × 10−3), (c) heart (K̂B = 3 ×
10−4), and (d) double S (K̂B = 1 × 10−4). See “movie 1” of the supplementary material [36].
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FIG. 4. (a) Transient stretched length evolution of different conformations in Fig. 3 with fixed Ca = 0.25.
(b) Largest eigenvalue σ1 evolution of the cases in panel (a).

flat steady state in Fig. 5(a) as a reference, where the velocity field is similar to the bulk extensional
flow. By comparing with the flat case, we observe that the velocity inside the taco is smaller than
outside, indicating hydrodynamic screening of the interior. In Fig 5(c), we also present results for an
S conformation. Here the decrease in velocity of the fluid inside the wrinkles is even more apparent
than in the taco case. Because of this effect, the sheet is less exposed to the extensional flow, leading
to the decrease in length. This hydrodynamic screening applies as well for the other conformations:
For the heart or double S shapes, fluid is trapped in the wrinkles. Those conformations have different
stretched lengths because of the different extents of hydrodynamic screening.

The deformation of the sheets is closely related to the stress that they exert on the fluid, so
it is also of interest to examine the force dipole associated with the deforming sheets. (The total
stress associated with the sheets is simply the force dipole per sheet times the number density in
suspension.) The force dipole is given by:

D = −
∑

i

Fixi, (14)

where Fi is the force exerted on the fluid by node i on the sheet. The eigenvalues σi of D reveal
the strength of the dipole along the three principal directions. Here the first eigenvalue σ1 indicates
the dipole acting along the z axis (flow direction). The second and third eigenvalues correspond to
two orthogonal dipoles on the x-y plane. In Fig. 4(b), we plot evolution of σ1 for same cases from
conformations from Fig. 4(a). Here we focus on σ1, as the two in-plane eigenvalues are negative
and small in magnitude. The evolution of σ1 follows that of stretched length. The magnitude of σ1

FIG. 5. Velocity norm ||v|| on a slice (plane x = 0) through the steady states at Ca = 0.25: (a) A flat sheet
as at t = 0 in Fig. 3. (b) The taco shape in Fig. 3(a). (c) The S shape in Fig. 3(b).
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FIG. 6. Top view of examples of deformation modes (added to the flat steady state) obtained from linear
stability analysis.

relates to the stretched length of the sheet because more stretched sheets exert stronger force dipole
along the flow direction.

To further understand the relation between conformation and deformability, we perform a linear
stability analysis to examine the response of the sheet to infinitesimal perturbations. We describe
the conformation of a sheet by stacking all the nodal positions into a vector X. The steady state, a
flat sheet, is described by Xs. The evolution of the sheet is described by

Ẋ = f (X), (15)

where f (X) is given by our numerical simulation algorithm described above. We first apply an
infinitesimal perturbation εX̂ along the out-of plane direction of the steady state Xs, where ε is the
magnitude of the perturbation and X̂ represents a deformation pattern:

X = Xs + εX̂. (16)

If ε � 1, then we assume that dynamics remain in the linear regime. We can Taylor-expand (15)
around Xs [note that Ẋs = f (Xs) = 0] and ignore higher-order terms in ε to find that

˙̂X = LX̂. (17)

This equation has the following solution:

X̂t+τ = eLτ X̂t = AX̂t . (18)

We determine AX̂t by performing simulations with our full nonlinear simulation method in the
case where ε is very small and the dynamics are approximately linear. The Arnoldi method [35] is
then used to determine the dominant eigenvalues and eigenvectors (modes) of A. In the analysis,
we take τ = 0.05 strain units and we need fewer than 200 iterations to get convergence of the
dominant eigenvalues. The matrices A and L have same the eigenvectors, and eigenvalues λL of L
are related to those of A (λA) by λA = eλLτ . If a mode has an eigenvalue with a positive real part
[Re(λL ) > 0], then the mode is unstable and its amplitude as a component of the initial condition
will grow exponentially until nonlinear effects become important. A mode with eigenvalue that has
a negative real part [Re(λL ) < 0] will decay exponentially. Figure 6 shows some typical modes
arising in our analysis and the names we have given them based on their shapes. One important
mode (leftmost in Fig. 6) is the rotational invariance mode, which always has a zero eigenvalue
(λL = 0). It arises because the shape dynamics are independent of orientation around the z axis.

We now apply the linear stability analysis to help understand the numerical simulation results
by performing a parameter sweep of Ca and K̂B. Figure 7 consists of two parts: The shaded area
with different colors are results from linear stability analysis, showing numbers of unstable modes
found for sheets with different Ca and K̂B; the markers represent final conformations from numerical
simulation. For nonlinear simulations, the initial condition chosen is a flat (compact) steady state
at the corresponding Ca (the steady state obtained from a stiff sheet) subjected to a small random
perturbation. If no compact steady state is available (the special cases above Cac), then we start
from a sheet at equilibrium with randomly perturbed surface.

The results in Fig. 7 are divided into three parts based on the number of unstable modes found.
The green area shows the regime where no unstable modes are found, so linear stability analysis
predicts that the sheet relaxes to the flat steady state under infinitesimal perturbation. For those
sheets with no unstable modes, their final conformations from finite random initial conditions in
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FIG. 7. Simulation results and linear stability analysis for a disk with neo-Hookean model (c = 0). The
symbols represent the final conformation from numerical simulation, where the initial condition is a compact
and flat sheet under random perturbation, except for the sheets above Cac. The color of the shaded region
indicates the number of unstable modes obtained from linear stability analysis.

numerical simulation also stays flat. We only introduce perturbations at t = 0, so if a sheet evolves
to the flat state, then it will stay there forever.

In the blue regime, the stability analysis gives one unstable mode, the taco mode. The numerical
simulation agrees with what we understand from linear stability analysis: If the taco is the only
unstable mode, then it is the only unstable deformation that the sheet evolves into, as the sheet is
stable under all other types of perturbation. Therefore, the taco is the only stable conformation in
the long-term. The linear stability analysis also can predict the final conformation in this regime
when only one unstable mode emerges.

When it comes to the red area, the presence of multiple unstable modes implies that various
potential deformations can be obtained, depending on the initial condition. Here the numerical
simulation also suggests many complicated conformations. From the phase diagram, the simulation
shows a transition from taco to more complicated S, heart, and double S with decreasing K̂B. In
order to understand these complicated scenarios, we present two examples in this regime to help
illustrate the relation between unstable modes and final conformation. Figure 8 shows the shape
evolution of the unstable modes fed as the initial condition in two cases. The first case (Ca = 0.2,
K̂B = 3 × 10−3) only has two unstable modes and is located at the border of red and blue areas. The
second case (Ca = 0.2, K̂B = 1 × 10−3) has more than two unstable modes, and we only show two
of them.

Based on the evolution in Fig. 8(a), the first case, the long time dynamics from either taco
or S initial conditions evolve into a taco. This observation shows the limit of the linear analysis
that it is unable to precisely determine the long-term dynamics of a nonlinear simulation. The
second case, Fig. 8(b), is more complex, with multiple unstable modes that show different unstable
wrinkling patterns. The mirror symmetrical mode M and rotationally symmetric mode double S
keep their symmetry for both the short-term and long-term dynamics. Therefore, the mode evolution
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FIG. 8. Top view and front view of evolutions of modes when they become unstable, with their short-term
and long-term dynamics. (a) Taco and S with Ca = 0.2, K̂B = 3 × 10−3. (b) M and double S with Ca = 0.2,
K̂B = 1 × 10−3. See “movie 2” and “movie 3” of the supplementary material [36].

also implies that the long-time sheet conformations in the red area may vary based on the initial
condition, especially for cases with small K̂B.

We observed above that the wrinkling instability leads to a decrease in the steady-state length. We
conclude this section with an interesting extreme example of this phenomenon. If Ca exceeds Cac,
then there is no steady state at all for the flat neo-Hookean sheet: The sheet stretches indefinitely.
Nevertheless, if the bending stiffness is sufficiently small that the sheet becomes highly wrinkled,
then the wrinkled sheet will reach a finite-length steady state. This observation is indicated previ-
ously in Fig. 7 for Ca = 0.4. Figure 9(a) shows the length evolution for a case where this happens,
and Fig. 9(b) shows the corresponding shape evolution. The sheet is at rest at t = 0 when flow
begins. Initially the length increases, but once the sheet begins to wrinkle, l decreases then reaches
a steady-state value. The wrinkling leads to hydrodynamic screening of the sheet surface in the
folds, reducing the local drag on the sheet and causing it to reach a finite steady-state value of l .
These results imply that the actual Cac might vary with K̂B in the compact-stretched transition, as
we discuss in the next section.

FIG. 9. Dynamics of a flexible sheet for Ca > Cac for the neo-Hookean model (c = 0): Ca = 0.4, K̂B =
5 × 10−4. (a) Evolution of length. (b) Snapshots of evolution. See “movie 4” of the supplementary material
[36].
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FIG. 10. Simulation results and linear stability analysis for a disk parameters encompassing the bistable
regime for the flat sheet (c = 1 × 10−5). The symbols represent the final conformation from numerical
simulation, where the initial condition is a stretched and flat sheet under random perturbation. The boxed
region indicated where an initially stretch state reverts to a compact state on wrinkling. The color of the shaded
region indicates the number of unstable modes obtained from linear stability analysis.

C. Dynamics of flexible sheets in the stretched (high-Ca) regime and the compact-stretched transition

In this section, we first continue the discussion of wrinkling with a focus on the stretched branch
in Fig. 2(b). Then we address the influence of wrinkling on the compact-stretched transition and
bistability.

When a sheet is highly stretched, it experiences strong shear stresses due to its increased length
and surface area, which further affects the conformation. We performed a parameter sweep focusing
on the stretched Ca regime in Fig. 2(b) and combined the linear stability analysis to examine the
influence of K̂B, and thus the wrinkling instability, on the conformation. Figure 10 illustrates the final
conformation of the sheet with different K̂B, as well as the number of unstable modes obtained from
linear stability analysis. Compared with Fig. 7 for compact sheets, Fig. 10 indicates that stretched
sheets are more resistant than compact sheets at same parameter values to out-of-plane deformation
when K̂B is relatively large: a compact sheet wrinkles while a stretched sheet with same parameters
stays flat. Interestingly, in contrast to the compact regime, where sheets with larger Ca deform first,
stretched sheets with smaller Ca first evolve into nonflat conformations while stretched sheets with
larger Ca stay flat.

We observed that on decreasing K̂B, the stretched sheets close to Cas may snap to the compact
branch after wrinkling, exhibiting a significant decrease in stretched length. Due to hydrodynamic
screening (reduced drag) arising from wrinkling, a fully stretched shape can no longer be main-
tained. We indicate those cases in Fig. 10 as a boxed area. This observation implies an increase in
Cas for smaller K̂B.

We also performed linear stability analysis on the stretched steady states and split Fig. 10
into three parts based on the number of unstable modes. The stability analysis results agree with
simulation in identifying the regime where sheets stay flat and where sheets become taco shaped.
For sheets with multiple unstable modes, the final conformation again depends on the initial
conditions—multiple stable final wrinkled states are possible. Figure 10 shows that initially flat
sheets with small K̂B can form asymmetric shapes like the roll that is shown in Fig. 11. These
shapes slowly rotate due to their asymmetry, and the final conformations deviate significantly from
the shape of the unstable modes from linear analysis.
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FIG. 11. [(a)–(d)] Bifurcation diagram for a flexible disk (c = 1 × 10−5). For reference, the light blue
data indicate results for a flat stiff sheet. The hollow data points show a wrinkled sheet and the filled points
represent a flat state. (a) K̂B = 5 × 10−3. (b) K̂B = 2 × 10−3. (c) K̂B = 1 × 10−3. (d) K̂B = 3 × 10−4. Labels
Cac,w or Cas,w denote critical capillary numbers for the wrinkled case. [(e)–(l)] Conformations at the points
labeled (e)–(l) on the bifurcation diagrams.

To summarize the influence of wrinkling on the bistability, we present in Fig. 11 the bifurcation
diagrams of steady-state stretched length vs. Ca for four different values of K̂B, showing results for
flat sheets and sheets allowed to wrinkle. Figure 11(a) shows the bifurcation diagram for a relatively
stiff sheet (K̂B = 5 × 10−3): All cases on the stretched branch stay flat, while the compact branch
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wrinkles, displaying a taco shape. Figure 11(e) presents a snapshot of the taco shape that is found
at the point labeled “e” on Fig. 11(a). At this stage, both Cac and Cas are close to the values found
for the flat case.

If we decrease K̂B to 2 × 10−3 [Fig. 11(b)], then the Cac for the compact branch begins to
shift to higher Ca due to wrinkling, and we denote the new critical capillary number Cac,w. The
interval between Cac and Cac,w is similar to the case we described above for the neo-Hookean
model, in which cases above the singularity can maintain a compact state due to wrinkling-induced
hydrodynamic screening. For this parameter set, the steady shapes on the compact branch are tacos
[Fig. 11(f)] and the stretched branch remains flat.

When K̂B = 1 × 10−3 [Fig. 11(c)], we observe that some stretched sheets also wrinkle, which
induces a transition back to a compact state, resulting in a shift of the upper saddle-node bifurcation
to a larger value of Ca that we denote Cas,w. Here the conformations on that compact branch all
become a rotating S, as shown in Fig. 11(g). For the stretched branch, the deformed sheets form a
taco [Fig. 11(j)].

Finally, Fig. 11(d) shows a case, K̂B = 3 × 10−4, where both the upper and lower critical
capillary numbers strongly deviate from the stiff case. Here we did not determine the new Cac

specifically as it is above the parameter range we have considered. The compact branch exhibits
two different conformations: heart [Fig. 11(h)] for Ca < 0.38 and S [Fig. 11(i)] otherwise. On the
stretched branch, all cases evolve into two nonflat conformations. Except the case Ca = 0.375,
which becomes an S [Fig. 11(k)], all other cases become a slowly rotating roll shape [Fig. 11(l)]. In
summary, based on what we have observed, decreasing K̂B strongly modifies the compact-stretched
transition by shifting saddle-node bifurcations to higher Ca.

IV. CONCLUSION

We have applied numerical simulation and linear stability analysis to systematically explore the
compact-stretched transition of soft elastic sheets in uniaxial extensional flow.

For stiff sheets (K̂B = ∞) modeled with the neo-Hookean model, we observe a singularity in
conformation at a critical capillary number Cac. Sheets modeled with the Yeoh model and small
values of the nonlinearity paramter c exhibit a discontinuous transition to a highly stretched state
beyond Cac—a compact-stretched transition. The discontinuity in stretched length marks a bistable
regime (defined by Cas and Cac), where both compact and stretched states can exist based on
deformation history.

For flexible sheets, wrinkling instability strongly modifies the compact-stretched transition and
bistability. In the compact regime, we observe various wrinkled conformations with different
stretched length due to different extents of hydrodynamic screening: The sheet traps the fluid inside
wrinkles, leading to a decrease in stretched length. With sufficiently small K̂B, cases above Cac

can stay in a compact conformation without becoming fully stretched, resulting in a larger Cac

for wrinkled sheets. We develop a simple linear stability analysis that can predict some of the
conformations.

In the stretched regime, the linear stability analysis can also predict final conformation of
stretched sheets with limited unstable modes. Compared with the compact sheets at same parameter
values, the stretched sheets are more resistant to out-of plane deformation. Highly stretched flat
sheets with small K̂B may become wrinkle and snap to compact conformations, yielding a larger
Cas. Therefore, we find the decrease in K̂B shifts the bistable regime to higher Ca.

This study deepens our fundamental understanding of the dynamics of a soft sheetlike particles
in uniaxial extensional flow and displays important interactions between the compact-stretched
transition and wrinkling instabilities. The broad parameter range considered here covers sheets
with different in-plane deformability and out-of-plane flexibility, ranging from flexible nanosheets
to extensible polymer films. We believe the current work will help guide design of processes for
flow-controlled assembly and synthesis of sheetlike particles.

023601-16



WRINKLING AND MULTIPLICITY IN THE DYNAMICS …

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under Grant No.
CBET-1604767. We acknowledge Sarit Dutta for useful comments.

[1] L. Fei, B. P. Williams, S. H. Yoo, J. Kim, G. Shoorideh, and Y. L. Joo, Graphene folding in Si rich carbon
nanofibers for highly stable, high capacity Li-ion battery anodes, ACS Appl. Mater. Interfaces 8, 5243
(2016).

[2] M. AlAmer, S. Zamani, K. Fok, A. Satish, A. R. Lim, and Y. L. Joo, Facile production of graphenic
microsheets and their assembly via water-based, surfactant-aided mechanical deformations, ACS Appl.
Mater. Interfaces 12, 8944 (2020).

[3] S. Zamani, J. S. Won, M. Salim, M. AlAmer, C.-w. Chang, P. Kumar, K. Amponsah, A. R. Lim, and Y. L.
Joo, Ultralight graphene/graphite hybrid fibers via entirely water-based processes and their application to
density-controlled, high performance composites, Carbon 173, 880 (2021).

[4] L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, and Y. Liu, High strength graphene oxide/polyvinyl
alcohol composite hydrogels, J. Mater. Chem. 21, 10399 (2011).

[5] J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Synthesis, assembly and applications of semiconductor
nanomembranes, Nature (Lond.) 477, 45 (2011).

[6] J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik et al.,
Gaas photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies, Nature (Lond.)
465, 329 (2010).

[7] Y. Liu, J. Genzer, and M. D. Dickey, “2d or not 2d”: Shape-programming polymer sheets, Prog. Polym.
Sci. 52, 79 (2016).

[8] J. U. Park, J. L. Kim, D. H. Kim, K. H. Ahn, S. J. Lee, and K. S. Cho, Rheological behavior of
polymer/layered silicate nanocomposites under uniaxial extensional flow, Macromol. Res. 14, 318 (2006).

[9] H. C.-H. Ng, A. Corker, E. García-Tuñón, and R. J. Poole, Go CaBER: Capillary breakup and steady-shear
experiments on aqueous graphene oxide (go) suspensions, J. Rheol. 64, 81 (2020).

[10] P.-G. De Gennes, Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients,
J. Chem. Phys. 60, 5030 (1974).

[11] G. G. Fuller and G. Leal, The effects of conformation-dependent friction and internal viscosity on the
dynamics of the nonlinear dumbbell model for a dilute polymer solution, J. Non-Newt. Fluid Mech. 8,
271 (1981).

[12] C. M. Schroeder, H. P. Babcock, E. S. Shaqfeh, and S. Chu, Observation of polymer conformation
hysteresis in extensional flow, Science 301, 1515 (2003).

[13] M. H. Nafar Sefiddashti, B. J. Edwards, and B. Khomami, Communication: A coil-stretch transition in
planar elongational flow of an entangled polymeric melt, J. Chem. Phys. 148, 141103 (2018).

[14] V. Kantsler, E. Segre, and V. Steinberg, Critical Dynamics of Vesicle Stretching Transition in Elongational
Flow, Phys. Rev. Lett. 101, 048101 (2008).

[15] H. Zhao and E. S. Shaqfeh, The shape stability of a lipid vesicle in a uniaxial extensional flow, J. Fluid
Mech. 719, 345 (2013).

[16] B. W. Soh and P. S. Doyle, Deformation response of catenated DNA networks in a planar elongational
field, ACS Macro Lett. 9, 944 (2020).

[17] Y. Yu and M. D. Graham, Coil–stretch-like transition of elastic sheets in extensional flows, Soft Matter
17, 543 (2021).

[18] Y. Xu and M. J. Green, Brownian dynamics simulations of nanosheet solutions under shear, J. Chem.
Phys. 141, 024905 (2014).

[19] Y. Xu and M. J. Green, Brownian dynamics simulation of two-dimensional nanosheets under biaxial
extensional flow, J. Polym. Sci., Part B: Polym. Phys. 53, 1247 (2015).

[20] K. S. Silmore, M. S. Strano, and J. W. Swan, Buckling, crumpling, and tumbling of semiflexible sheets in
simple shear flow, Soft Matter 17, 4707 (2021).

023601-17

https://doi.org/10.1021/acsami.5b10548
https://doi.org/10.1021/acsami.9b22824
https://doi.org/10.1016/j.carbon.2020.11.079
https://doi.org/10.1039/c0jm04043f
https://doi.org/10.1038/nature10381
https://doi.org/10.1038/nature09054
https://doi.org/10.1016/j.progpolymsci.2015.09.001
https://doi.org/10.1007/BF03219088
https://doi.org/10.1122/1.5109016
https://doi.org/10.1063/1.1681018
https://doi.org/10.1016/0377-0257(81)80026-2
https://doi.org/10.1126/science.1086070
https://doi.org/10.1063/1.5026792
https://doi.org/10.1103/PhysRevLett.101.048101
https://doi.org/10.1017/jfm.2013.10
https://doi.org/10.1021/acsmacrolett.0c00360
https://doi.org/10.1039/D0SM01630F
https://doi.org/10.1063/1.4884821
https://doi.org/10.1002/polb.23760
https://doi.org/10.1039/D0SM02184A


YIJIANG YU AND MICHAEL D. GRAHAM

[21] S. Dutta and M. D. Graham, Dynamics of Miura-patterned foldable sheets in shear flow, Soft Matter 13,
2620 (2017).

[22] S. Gravelle, C. Kamal, and L. Botto, Liquid exfoliation of multilayer graphene in sheared solvents: A
molecular dynamics investigation, J. Chem. Phys. 152, 104701 (2020).

[23] C. Kamal, S. Gravelle, and L. Botto, Hydrodynamic slip can align thin nanoplatelets in shear flow,
Nat. Commun. 11, 2425 (2020).

[24] O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol. 66, 754 (1993).
[25] D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood

cell models, Comput. Methods Appl. Mech. Eng. 199, 1937 (2010).
[26] D. A. Fedosov, Multiscale Modeling of Blood Flow and Soft Matter, Ph.D. thesis, Brown University,

Providence RI, 2010.
[27] A. K. Gaharwar, S. A. Dammu, J. M. Canter, C.-J. Wu, and G. Schmidt, Highly extensible, tough,

and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles,
Biomacromolecules 12, 1641 (2011).

[28] J. Charrier, S. C. Shrivastava, and R. Wu, Free and constrained inflation of elastic membranes in relation
to thermoforming—Non-axisymmetric problems, J. Strain Anal. Eng. Des. 24, 55 (1989).

[29] V. Pappu and P. Bagchi, 3D computational modeling and simulation of leukocyte rolling adhesion and
deformation, Comput. Biol. Med. 38, 738 (2008).

[30] A. Kumar and M. D. Graham, Accelerated boundary integral method for multiphase flow in non-periodic
geometries, J. Comput. Phys. 231, 6682 (2012).

[31] R. Cortez, L. Fauci, and A. Medovikov, The method of regularized Stokeslets in three dimensions:
Analysis, validation, and application to helical swimming, Phys. Fluids 17, 031504 (2005).

[32] J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, Fast Computation of Many-Particle Hydrody-
namic and Electrostatic Interactions in a Confined Geometry, Phys. Rev. Lett. 98, 140602 (2007).

[33] M. D. Graham, Microhydrodynamics, Brownian Motion, and Complex Fluids (Cambridge University
Press, Cambridge, UK, 2018).

[34] H.-N. Nguyen and R. Cortez, Reduction of the regularization error of the method of regularized Stokeslets
for a rigid object immersed in a three-dimensional stokes flow, Commun. Comput. Phys. 15, 126 (2014).

[35] L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, Philadephia, PA, 1997).
[36] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.023601 for

movies of sheet evolution at several parameter values.

023601-18

https://doi.org/10.1039/C6SM02113A
https://doi.org/10.1063/1.5141515
https://doi.org/10.1038/s41467-020-15939-w
https://doi.org/10.5254/1.3538343
https://doi.org/10.1016/j.cma.2010.02.001
https://doi.org/10.1021/bm200027z
https://doi.org/10.1243/03093247V242055
https://doi.org/10.1016/j.compbiomed.2008.04.002
https://doi.org/10.1016/j.jcp.2012.05.035
https://doi.org/10.1063/1.1830486
https://doi.org/10.1103/PhysRevLett.98.140602
https://doi.org/10.4208/cicp.021112.290413a
http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.023601

