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Three-dimensional direct numerical simulations (DNS) are performed to uncover the
effect of the horizontal aspect ratio (� = ky/kx , kx and ky being the wave numbers along
the x and y directions, respectively) on magnetoconvective instabilities using plane layer
Rayleigh-Bénard geometry in the presence of an external uniform horizontal magnetic
field. The fluid under consideration is an electrically conducting, Newtonian fluid (liquid
metal) having a very small Prandtl number (Pr ∼ 10−2) and vanishingly small magnetic
Prandtl number (Pm ∼ 10−6). Extensive DNS are conducted to explore the dynamics of the
system by varying the control parameters, namely, the Chandrasekhar number (Q, strength
of the magnetic field) and the Rayleigh number (Ra, vigor of the buoyancy) together with
� in the ranges of 0 < Q � 103, 0 < Ra � 7 × 103, and 1/2 � � � 6. It is found that
both Q and � have a similar effect on the system dynamics in the sense that an increment
in either of them delays the oscillatory instability and enhances the stability regime of
two-dimensional rolls. The onset of oscillatory instability is found to scale as Qα . Two
different scaling exponents have been identified depending on the strength of the magnetic
field and �. For weak and moderate magnetic field (Q < 100), the exponent α is found
to be much higher compared to that of a stronger magnetic field (Q � 100) and gradually
decreases with the increment in �. Different routes to chaos are also observed depending on
� and Q including the well-known period doubling and quasiperiodic routes to chaos. The
appearance of transient chaos (TC) in the system due to the presence of chaotic saddles is
found to be a remarkable finding of the present study. It is found that TC eventually leads to
persistent chaos and can be considered as a possible route to chaos in magnetoconvection.
Chaotic flow reversals induced by an attractor-merging crisis are also observed for � � 3.
Interestingly, we notice transient chaotic flow reversals in a wide parameter space which
may be attributed to the presence of a merged chaotic saddle there. It is found that transient
chaotic flow reversals also lead to persistent chaotic flow reversals as the Rayleigh number
increases.
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I. INTRODUCTION

The convective motion of an electrically conducting fluid in the presence of a magnetic field,
generally referred to as magnetoconvection (MC), has always fascinated researchers due to its
relevance to various astrophysical and industrial applications. For example, MC is considered to
play a major role in the formation of sunspots, solar granulation, and generation of magnetic
field in stars, planets, moons, and asteroids [1–3]. Apart from these examples, MC also has a
significant influence on several industrial processes such as crystal growth, nuclear heat exchangers,
and the vacuum arc remelting (VAR) refining process [4–6]. Thus, understanding the dynamics
of these systems is of utmost importance. However, the arbitrary geometry, remoteness, and
other complexities do not allow direct investigation of these systems. Therefore, generic models
are used to study these systems both experimentally and theoretically. The convective motion
of a fluid between two horizontal plates driven by an unstable temperature gradient, classically
known as the Rayleigh-Bénard convection (RBC), is one such generic model which allows one
to study the above mentioned systems in their simplest form [7–9]. If the working fluid is
electrically conducting, then RBC in the presence of a magnetic field provides a fundamental
model for MC, generally referred as Rayleigh-Bénard magnetoconvection (RBM) [10,11]. The
dynamics of RBM is controlled by four dimensionless parameters: the Rayleigh number (Ra,
measures the buoyancy force), the Chandrasekhar number (Q, measures the strength of the mag-
netic field), the Prandtl number (Pr, ratio of kinematic viscosity and thermal diffusivity of the
fluid), and the magnetic Prandtl number (Pm, ratio of kinematic viscosity and magnetic diffu-
sivity of the fluid). In the case of confined geometry, the aspect ratios (vertical and horizontal)
of the fluid vessel are also found to affect the system dynamics and are considered as extra
parameters.

The linear stability analysis of RBM assuming an infinite fluid layer reveals that the presence
of a horizontal magnetic field does not affect the critical Rayleigh number (Rac) for the onset of
convection, and it is independent of both Q and Pr [10]. However, the presence of a horizontal
magnetic field increases the region of stable two-dimensional (2D) rolls, which delays the onset of
oscillatory instability [12]. The onset of oscillatory instability is found to scale with the strength of
the magnetic field as Qα with α = 1.2 [12]. Such a scaling was also observed in the experiments
conducted in mercury by Fauve et al. [13]. However, the exponent α = 1.2 does not seem to be
universal as boundary conditions, and aspect ratios have a strong influence on it [13–15]. It is well
known that for low-Pr fluids (liquid metals), transition to the three-dimensional (3D) time-dependent
convection occurs very near the convection threshold due to the generation of vertical vorticity
[16]. The presence of a horizontal magnetic field suppresses the 3D time-dependent convection and
manifests 2D steady convection [17,18]. This causes an increment in Nusselt number (Nu) before
oscillatory convection sets in [17–19]. Apart from the oscillatory instability, another interesting
aspect is to investigate the development of chaotic flow with the increment in Ra corresponding
to different Q. Experiments conducted with low-Pr fluids exhibit two different routes to chaos
depending on the strength of the magnetic field [20]. The period doubling route to chaos is observed
for low Q, while the quasiperiodic route to chaos is found for higher Q [20]. A detailed numerical
investigation, including bifurcation analysis by Nandukumar and Pal, also supports these findings
[14]. The intermittent route to chaos is also observed in a low-dimensional model of RBM [21].
It is found that low-Pr fluids also exhibit flow reversals very near the convection threshold and
the presence of a horizontal magnetic field has a strong influence on it [22–24]. Understanding
the dynamics of flow reversals is fundamental due to its occurrence in geophysical and industrial
applications [6,25]. Experimental and numerical studies with liquid gallium in the presence of a
horizontal magnetic field reveals that flow reversals occur in confined RBM due to the coupling
of large-scale horizontal circulations and fluctuations present in the convection rolls, which induce
bending and reconnection of rolls [23,26]. More recently, Ghosh et al. performed the numerical
analysis of RBM assuming an infinite fluid layer and established presence of an attractor-merging
crisis in higher dimensional phase space which is found to cause the flow reversals [24]. It is also
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found that an increment in strength of the magnetic field delays the flow reversals phenomena until
higher Ra [24].

The present study is a substantial extension of the previous studies by Nandukumar and Pal
[14] and Ghosh et al. [24]. We have varied the horizontal aspect ratio (� = ky/kx, kx and ky being
the wave numbers along the x and y directions, respectively) of the simulation box to explore its
effect on the system dynamics. We have carried out extensive direct numerical simulations (DNS)
of the hydromagnetic system with stress-free electrically conducting boundaries in a 3D simulation
box of size 2π/kx × 2π/ky × 1 for wide range of Q (0 < Q � 103) and � (1/2 � � � 6) for this
purpose. We found two different scalings for the onset of oscillatory instability depending on the
strength of the magnetic field. Standard routes to chaos, including the well-known period doubling
and quasiperiodic routes, are also observed depending on Q and �. The heat transport properties
associated with these solutions are also explored in detail. Interestingly, we noticed the presence of
transient chaos and transient chaotic flow reversals in the system, which are eventually found to lead
to persistent chaos and persistent chaotic flow reversals.

The rest of the paper is arranged as follows. In Sec. II we present the mathematical framework
of the physical system under consideration. Section III describes the numerical technique used to
solve the governing equations. Section IV is dedicated to the results, and some conclusive remarks
are drawn in Sec. V.

II. PHYSICAL SYSTEM AND GOVERNING EQUATIONS

The physical system consists of a classical Rayleigh-Bénard geometry in which an infinitely
extended thin horizontal layer of homogeneous, electrically conducting, Newtonian fluid is con-
fined between two parallel plates subjected to an external uniform horizontal magnetic field
B0 = (0, B0, 0). Both plates are assumed to be perfect conductors of heat and electricity. The lower
plate is heated uniformly, and the upper plate is cooled to maintain a steady temperature gradient
β = �T/d = (Tl − Tu)/d across the fluid layer. Tl and Tu are, respectively, the temperature of the
lower and upper plate with Tl > Tu and d being the thickness of the fluid layer. We assume the
validity of the Boussinesq approximation, i.e., the density of the fluid (ρ) under consideration varies
linearly with the temperature and the fluid is treated as an incompressible one [27]. The base state
is then the trivial conduction state characterized by

Tb(z) = Tl − βz, ρb(z) = ρl (1 + αβz), and Pb(z) = Pl − gρl

(
z + 1

2
αβz2

)
− |B0|2

2μ0
. (1)

In the above equation, Tl , ρl , and Pl , respectively, represent the temperature, density, and pressure
of the fluid at the lower boundary. The coefficients α, μ0, and g are, respectively, the coefficient of
volume expansion of the fluid, permeability of free space, and acceleration due to gravity. As the
temperature difference �T crosses a critical value, convection sets in and the base state becomes
slightly perturbed. The convective motion of the fluid is then governed by the following set of
dimensionless equations:

Dv
Dt

− Q

[
∂b
∂y

+ Pm(b·∇)b
]

= −∇p + Raθ ê3 + ∇2v, (2)

Pm

[Db
Dt

− (b·∇)v
]

= ∇2b + ∂v
∂y

, (3)

Pr
Dθ

Dt
= v3 + ∇2θ, (4)

∇·v = 0, and ∇· b = 0. (5)

In Eqs. (2)–(5), D/Dt = ∂/∂t + (v·∇) is the convective derivative, v = (v1, v2, v3) is the per-
turbed or convective velocity field, b = (b1, b2, b3) is the induced magnetic field, θ represents
the deviation of temperature from base state, p is the perturbation of pressure, and ê3 is the unit
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vector acting vertically upwards opposite to gravity. These equations are made dimensionless
using d as the length scale, viscous diffusion time d2/ν (ν being the kinematic viscosity of the
fluid) as the timescale, ν/d as the velocity scale, �T ν/κ (κ being the thermal diffusivity of
the fluid) as the temperature scale, and B0ν/λ (λ being the magnetic diffusivity of the fluid) as the
scale for the magnetic field. The nondimensionalization procedure gives rise to four dimensionless
parameters which control the dynamics of the system: the Rayleigh number Ra = αg�T d3/νκ ,
the Chandrasekhar number Q = B2

0d2/μ0ρlνλ, the Prandtl number Pr = ν/κ , and the magnetic
Prandtl number Pm = ν/λ. We consider low-Prandtl number fluids (Pr ∼ 10−2) such as liquid
metals to carry out our investigation. For these fluids, the magnetic diffusion timescale is the
shortest one compared to the other timescales [17]. As a result, the induced magnetic field b
which is generated due to the fluid motion is much smaller than the external magnetic field B0 and
adjusts instantaneously to the time dependence of the velocity field [28]. Therefore, we adopt the
quasi-static approximation Pm → 0 [29]. Equations (2) and (3) in the vicinity of this limit reduce
to

Dv
Dt

− Q
∂b
∂y

= −∇p + Raθ ê3 + ∇2v, (6)

∇2b = −∂v
∂y

. (7)

The bounding plates are assumed to be stress-free, which gives the boundary conditions for the
velocity field

v3 = ∂v1

∂z
= ∂v2

∂z
= 0 at z = 0, 1. (8)

The boundary conditions for θ and b arise from the fact that both bounding plates are perfect
conductors of heat and electricity, which gives

θ = b3 = ∂b1

∂z
= ∂b2

∂z
= 0 at z = 0, 1. (9)

Therefore, Eqs. (4)–(7) together with the boundary conditions (8) and (9) provide the complete
mathematical framework to study the above mentioned physical system. The results from linear
stability analysis of the system are well known; i.e., the stationary convection onset is independent
of both Pr and Q [11,17]. Thus, the critical Rayleigh number (Rac = 27π4/4) and associated wave
number (kc = π/

√
2) are not different from the nonmagnetic case. However, both Pr and Q as

well as geometry of the system have a strong influence on the higher order instabilities when
nonlinearities are taken into account. To explore this, we perform direct numerical simulations
(DNS) of the governing equations by varying the horizontal aspect ratio (�) of the simulation box,
details of which are discussed in Sec. III.

III. DIRECT NUMERICAL SIMULATIONS (DNS)

An open-source pseudospectral code Tarang [30] is used to perform 3D DNS of the governing
equations (4)–(7) together with the boundary conditions (8) and (9). In the simulation code velocity
components and temperature are expanded in terms of orthogonal basis functions compatible with
the boundary conditions. Therefore, in the code the expressions for v1, v2, v3, and θ read as

(v1, v2) =
∑
l,m,n

(Ulmn(t ),Vlmn(t ))ei(lkxx+mkyy) cos(nπz),

(v3, θ ) =
∑
l,m,n

(Wlmn(t ), Tlmn(t ))ei(lkxx+mkyy) sin(nπz). (10)
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In expression (10), Ulmn, Vlmn, Wlmn, and Tlmn are the Fourier modes with l , m, and n being the
non-negative integers. Simulations are carried out in a rectangular box of size 2π/kx × 2π/ky × 1
with kx and ky being the wave numbers along the x and y directions, respectively. Periodicity is
assumed in the horizontal directions to idealize the infinitely extended fluid layer. The horizontal
aspect ratio of the simulation box is then defined as � = ky/kx. Thus, � > 1 indicates contraction
of the simulation box in the y direction, while � < 1 implies expansion of the box in the y direction
without affecting the box in the x direction. We perform simulations by varying � in the range
1/2 � � � 6. We set kx = kc and vary ky in the range kc/2 � ky � 6kc. Note that variation in �

does not influence Rac and kc. We consider maximum 643 grid resolution, while most simulations
are performed with 323. Time advancement is done with the fourth-order Runge-Kutta method
with Courant-Friedrichs-Lewy condition. To describe the results lucidly, we introduce a parameter
r = Ra/Rac in the subsequent discussions, called the reduced Rayleigh number. Therefore, at r = 1
convection sets in.

IV. RESULTS

We perform DNS in a widespread parameter space by varying � and Q in the ranges of
1/2 � � � 6 and 0 < Q � 1000 corresponding to Pr = 0.025. We focus on the dynamics of the
system that appear near the onset (r � 10) and explore several aspects of it, including the oscillatory
instability, transition to chaos, heat transport properties, and flow reversals. These aspects are
discussed in the following subsections.

A. The oscillatory instability

One of the interesting features of low-Pr convection is the oscillatory instability (OI) of rolls,
which occurs as Ra crosses a critical value after convection sets in [16]. In this process, steady
2D rolls lose stability due to the generation of vertical vorticity, and 3D time-dependent flow
emerges in the form of standing or traveling waves. It is found that the presence of a horizontal
magnetic field inhibits the OI and postpones it to the higher Ra following a well-defined power law
(RaQ

(O) − Ra0
(O) ) ∝ Qα where RaQ

(O) and Ra0
(O), respectively, represent the OI onset for given Q
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FIG. 1. Scaling of the oscillatory instability onset with Q corresponding to different �: (a) for weak and
moderate magnetic field (0 < Q < 100), and (b) for a stronger magnetic field (100 � Q � 500). Magenta
diamonds, blue circles, red triangles, and green squares, respectively, represent the data for � = 1/2, 2, 4, and
6. The dash-dot lines denote their best fit. A zoomed view of (a) is shown at the inset.
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FIG. 2. Variation of (ReQ
(O) − Re0

(O) ) as a function of Q corresponding to different �: (a) for a weak and
moderate magnetic field (0 < Q < 100), and (b) for a stronger magnetic field (100 � Q � 500). The color
coding and line style are same as in Fig. 1.

( �= 0) and Q = 0 [12,13]. Now, to unfold the effect of aspect ratio on the OI onset in the presence of a
horizontal magnetic field, we perform DNS by varying both � and Q. We first observe that the onset
of convection (r = 1) is independent of Q for all values of �, and steady 2D rolls aligned along the
y axis prevail there. At large � (� > 1), the orientation of rolls, aligned along the y-axis is found to
be consistent with the experimental findings of Stork and Müller as the y direction of the simulation
box is shorter [31]. On the other hand, at small � (� < 1), the rolls are aligned along the y axis due to
the presence of magnetic field in that direction. Now, as we increase the value of r, 2D rolls become
unstable depending on � and Q, and the OI emerges in the form of a standing wave. The appearance
of a vanishingly small-amplitude limit cycle with finite frequency also ensures the existence of a
supercritical Hopf bifurcation there. The effect of � on OI is shown in Fig. 1. In the figure, variation
of (RaQ

(O) − Ra0
(O) ) is displayed as a function of Q corresponding to different �. Interestingly, it is

found that for different �, (RaQ
(O) − Ra0

(O) ) scales as Qα with two distinct values of α depending
on the strength of the magnetic field. For relatively weak magnetic field (Q < 100), the value of α

is found to be higher compared to the case of stronger magnetic field (100 � Q � 500). In other
words, for fixed �, a stronger magnetic field is found to have more inhibition power compared to a
weaker one. Figure 1 also illustrates that at fixed Q, increasing � delays the OI onset as r increases,
just as increasing Q at fixed � delays the OI onset with r. The values of α for � = 2 and 4 obtained
in the present study show a close match with the experimental findings of Fauve et al. [13]. However,
the experiments involved only two aspect ratios (� = Lx/Ly = 4 and ≈2); the delay of the OI onset
when Q is increased is smaller when the aspect ratio is smaller. The present study also reveals the
same result. The small deviation in α arises due to the difference in the boundary conditions which
have a strong influence on the OI. For stress-free boundaries, the OI occurs at zero wave number
in contrast to the case of rigid boundaries, where it takes place at a finite wave number [16,32].
Moreover, for stress-free boundaries, the OI tends to the onset of convection (r = 1) as Pr → 0,
while it stays at a finite value above the convection threshold (r > 1) in the case of rigid boundaries.
This is related to the externally broken Galilean invariance in the case of rigid boundary conditions
[33]. Therefore, it is surprising that a reasonably good agreement is observed between simulations
and experiments. This may result from the small extension along the perpendicular axis of the rolls
considered in the simulations that limits the wavelength of the oscillatory instability.

023502-6



EFFECT OF HORIZONTAL ASPECT RATIO ON …

FIG. 3. Line bifurcation diagrams obtained from DNS for � = 1/2 corresponding to four Q: (a) Q = 5,
(b) Q = 8, (c) Q = 100, and (d) Q = 150. Magenta, green, blue, and yellow patches, respectively, represent
the regions of steady 2D rolls (SR), periodic wavy rolls (PWR), quasiperiodic wavy rolls (QPWR), and chaotic
wavy rolls (CWR). The cyan region in (b) denotes the parameter space where chaotic flow reversals (CFR)
occur, while the red diamond and star denote the interior and boundary crises points.

To check the universality of coefficient α, we further calculate the Reynolds number (Re) at
the OI onset defined as Re = V d/ν, V being the velocity of 2D rolls. The variation of (ReQ

(O) −
Re0

(O) ) as a function of Q corresponding to different � is displayed in Fig. 2; ReQ
(O) and Re0

(O),
respectively, represent the Reynolds number for the OI onset for a given Q ( �= 0) and Q = 0. From
Fig. 2 it is evident that for a weak and moderate magnetic field, (ReQ

(O) − Re0
(O) ) scales as Qα with

α ∼ 1 for all �. This is found to be in good agreement with the argument given in Ref. [13]. On the
other hand, the value of α is found to decay with the increment in � corresponding to a stronger
magnetic field [Fig. 2(b)]. Note that, for � = 1/2, we notice a sharp transition to chaos from steady
2D rolls for Q > 130. As a result, the OI does not appear corresponding to these parameter values.

From the above discussion, it is evident that � has strong influence on the flow dynamics of the
system, and we explore it further by investigating the subsequent OI transitions to chaos, which is
discussed in Sec. IV B.

B. Transition to chaos

1. Aspect ratio, � = 1/2

The evolution of oscillatory instability to the chaos in RBM of low-Pr fluids is found to be
a fascinating yet complex process [14,34]. Depending on the strength of the magnetic field, two
well-known routes have been documented in the literature, namely, the period doubling route to
chaos and quasiperiodic route to chaos. Experimental [20,35] and numerical studies [14] reveal that
the period doubling route to chaos is observed for a relatively weak magnetic field, while a moderate
or strong magnetic field favors the quasiperiodic route to chaos. To explore the effect of aspect ratio
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FIG. 4. Time series of the dominant Fourier mode W101 corresponding to three Q illustrating transitions to
chaos for � = 1/2. The left (a–d), middle (e–h), and right (i–l) columns, respectively, correspond to Q = 8,
100, and 150. The insets in (a), (b), (c), (f), and (g) show the zoomed view of the corresponding selections.

on these routes, we perform extensive DNS by varying r corresponding to given � and Q. We start
with � = 1/2 and notice two distinct routes to chaos depending on the strength of the magnetic field.
For relatively lower Q (Q � 130), where the OI exists, we observe a quasiperiodic route to chaos.
Figures 3(a)–3(c) illustrate the scenario for three different Q. For Q = 5 [Fig. 3(a)] and Q = 100
[Fig. 3(c)], we observe that the OI or periodic wavy rolls (PWR) bifurcate into quasiperiodic wavy
rolls (QPWR) with the increment in r, which finally becomes chaotic wavy rolls (CWR) as r is
increased further. The typical time evolution of the largest Fourier mode W101 corresponding to
these transitions is displayed in Figs. 4(e)–4(h) for Q = 100. Note that transition to QPWR in these
cases occurs due to the generation of an incommensurate second frequency. On the other hand, we
notice a different dynamics in the range 7 � Q � 36 where a chaotic window exists between PWR
and QPWR [Fig. 3(b)]. Figures 4(a)–4(d) display the corresponding time series of the dominant
Fourier mode W101. The appearance of chaos in the interval 1.018 � r � 1.05 may be attributed to
an interior crisis at r = 1.018 where sudden enhancement of the chaotic attractor takes place [36].
The wide chaotic attractor [B in Fig. 4(b)] and escaping of the trajectory from transient QPWR
to CWR is shown in Fig. 4(b). With the increment in r, chaotic flow reversals (CFR) appear in
the system, which will be discussed in greater detail in Sec. IV D. Now, as r increases further at
r = 1.05 a boundary crisis occurs [36]. As a result, the chaotic attractor suddenly disappears from
the system resulting in chaotic transient and QPWR is observed there [Fig. 4(c)]. Further increment
in r once again brings back CWR in the system from QPWR [Fig. 4(d)].

For relatively larger Q(Q > 130), we notice transient chaos in the system where trajectories
exhibit finite-time chaotic behavior before settling to the stable 2D rolls. Figures 4(i) and 4(j) depict
the scenario for Q = 150. The appearance of transient chaos may be attributed to the presence
of chaotic saddles or strange saddles in the system. These are nonattracting chaotic sets with the
properties of aperiodicity and sensitivity to the initial conditions [37–39]. As a result, neighboring
trajectories spend finite time in the vicinity of the chaotic set before converging to some coexisting
attractor. Now, as we increase r gradually, the transient trapping time of the trajectories also
increases, and we observe the appearance of persistent chaos in the system [Figs. 4(k) and 4(l)].
Therefore, we observe a direct transition to chaos from stable 2D rolls due to the appearance of
transient chaos in the system. Note that the appearance of transient chaos in magnetoconvection has
been reported earlier by analyzing a low-dimensional model (generalized Lorenz model) [21,37].
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FIG. 5. Line bifurcation diagrams computed from DNS for � = 2 corresponding to four Q: (a) Q = 5,
(b) Q = 10, (c) Q = 50, and (d) Q = 100. The color coding for SR, PWR, QPWR, and CWR is same that has
been used in Fig. 3. Light, medium, and dark violet patches represent period 2 (P2), period 4 (P4), and period
8 (P8) solutions, respectively. The region of the intermittent (I) solution is shown in red. Zoomed views of
forward and inverse period doubling cascades are shown in (a) and (b), while an enlarged view of QPWR is
shown in (c).

Here we show that it is a possible route to persistent chaos in the quasi-static magnetoconvection as
system geometry is varied.

2. Aspect ratio, � = 2

The route to chaos for � = 1 has already been explored in detail by Nandukumar and Pal [14].
For lower Q they found period doubling route to chaos, while the quasiperiodic route is observed for
higher Q. Now we turn our attention to � = 2. Figure 5 summarizes the findings where different flow
states bifurcate from PWR together with their successive transitions to chaos corresponding to four
different Q. We observe a period doubling cascade for lower Q and a quasiperiodic route to chaos
for moderate and higher Q. However, the dynamics associated with the period doubling cascade for
lower Q is found to be much more complex [see Figs. 5(a) and 5(b)]. For very low Q (Q = 5), we
notice a forward period doubling cascade which leads to CWR occurring in a very narrow regime,
i.e., PWR → Period 2 (P2) → Period 4 (P4) → Period 8 (P8) → CWR [Fig. 5(a)]. With the increment
in r, CWR turns into P2 following an inverse doubling cascade (CWR → P8 → P4 → P2), which
becomes CWR again via a forward doubling cascade (P2 → P4 → P8 → CWR) as r is increased
further. Now, as we increase Q by a small amount, the dynamics of the system changes. For Q = 10
we observe occurrence of forward (PWR → P2 → P4 → CWR) and inverse (CWR → P8 →
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FIG. 6. The time evolution of the largest Fourier mode W101 for � = 2 and Q = 10. The insets in (f) and
(g) show the zoomed view of the corresponding selections.

P4 → P2 → PWR) doubling cascades in quick succession as r is raised [Fig. 5(b)]. The time
evolution of the dominant Fourier mode W101 corresponding to the forward and inverse cascades
is shown in Figs. 6(b)–6(h). Now, as r is raised further, the PWR loses stability and intermittency
(I) appears in the system followed by CWR [see Figs. 6(h)–(j)]. Further increment in r brings back
PWR again through an inverse doubling cascade (CWR → P8 → P4 → P2 → PWR) before
it turns into CWR following a forward doubling cascade (PWR → P2 → P4 → CWR). For
moderate Q (Q = 50), we observe that the regimes of 2D rolls and PWR are enhanced [Fig. 5(c)].
The PWR bifurcates to QPWR with the increment in r, which further gives rise to CWR. Thus, the
route to chaos in this case is standard quasiperiodic route to chaos. Further increment in Q does not
bring any qualitative changes in the system [see Fig. 5(d)], and we observe a quasiperiodic route to
chaos in a wide range (40 � Q � 1000).

3. Aspect ratio, � = 4

Next, we consider � = 4. For low Q, we observe appearance of PWR and 2D rolls windows
in alteration before a sharp transition from 2D rolls to CWR occurs. Figure 7 depicts the scenario
for Q = 10 where time evolution of the dominant Fourier mode W101 is displayed corresponding
to different solutions that occur at different r. From Fig. 7, we notice that the 2D rolls as usual
bifurcate into PWR through a supercritical Hopf bifurcation as r increases [Figs. 7(a) and 7(b)].
Now, as r is increased further, at r = 1.7 an inverse Hopf bifurcation takes place, and a transition
from PWR to stable 2D rolls is observed. Further increment in r brings back PWR (2.07 � r � 2.4)
in the system before 2D rolls occur again in the window 2.4 < r < 2.88. Near r = 2.88, transient
chaos appears due to the presence of chaotic saddles in the system, and in a small interval (2.88 �
r � 2.89) the transient chaos becomes persistent chaos with the increment in transient trapping
time [Figs. 7(f)–7(h)]. The occurrence of different flow states for Q = 10 are also summarized
in the line bifurcation diagram [Fig. 8(a)] as a function of r. Note that the scenario of transient
chaos which eventually leads to persistent chaos appears in the system only for weak magnetic
field, i.e., for Q � 20. For a moderate magnetic field (20 < Q � 90), the dynamics of the system
changes qualitatively. Figure 8(b) highlights the transition to chaos for Q = 50. We observe the
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FIG. 7. Temporal evolution of the largest Fourier mode W101 for � = 4 and Q = 10.

appearance of PWR windows in alteration with 2D rolls windows in this case too. However, the
width of PWR regimes becomes smaller compared to that of Q = 10. This is found to be consistent
with the property of the magnetic field when it acts in the horizontal direction, i.e., increment in the
strength of the magnetic field suppresses the time-dependent solutions that appear near the onset of
convection and postpones them to the higher r [18]. At r = 2.76, the steady rolls become unstable
through a supercritical Hopf bifurcation, and PWR appears in a very small window before QPWR
is observed. The QPWR becomes chaotic at r = 3.42, and a standard quasiperiodic route to chaos
is observed. For a stronger magnetic field (Q > 90), the PWR windows disappear from the system
and the regime of SR extends [Fig. 8(c)]. The SR then goes through a Hopf bifurcation at r = 1.923,

FIG. 8. (a–c) The line bifurcation diagrams constructed from DNS corresponding to Q = 10, Q = 50, and
Q = 100, respectively, for � = 4. The color coding is same that has been used in Fig. 3.

023502-11



SHARMA, GHOSH, AND PAL

FIG. 9. (a–c) The line bifurcation diagrams constructed from DNS corresponding to Q = 10, Q = 50, and
Q = 100, respectively, for � = 6. The color coding is same that has been used in Fig. 3.

and QPWR appears following the negligible appearance of PWR. At r = 4.49, CWR appears in the
system, and a standard quasiperiodic route to chaos is observed in this case too.

4. Aspect ratio, � = 6

Finally, we focus on � = 6. Only quasiperiodic route to chaos is preferred in the entire range of Q
(0 < Q � 103). The line bifurcation diagrams (Fig. 9) summarize the route to chaos corresponding
to three different Q. We notice the appearance of a tiny PWR window between two successive SR
windows for relatively lower Q (Q < 150). Now, as r is increased, the SR bifurcates into PWR via a
supercritical Hopf bifurcation. The width of this PWR regime is found to be small corresponding to
low Q [Fig. 9(a)] and negligible for moderate and higher Q [Figs. 9(b) and 9(c)]. Further increment
in r brings QPWR in the system before chaos is observed. Figure 10 displays the time series of
W101 corresponding to different flow states that occur at different r for Q = 10. The presence of a
quasiperiodic route to chaos (SR → PWR → SR → PWR → QPWR → CWR) is evident from

FIG. 10. Time series of the dominant Fourier mode W101 illustrating quasiperiodic route to chaos for � = 6
and Q = 10. The insets in (d) and (e) show the enlarged view of the selected areas.
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FIG. 11. Variation of Nu as a function r corresponding to four Q. Magenta diamonds, blue circles, red
triangles, and green squares represent Nu corresponding to � = 1/2, 2, 4, and 6, respectively, as obtained from
the DNS. The zoomed view of the selected area in (b) is shown at the inset.

Fig. 10. For a stronger magnetic field (Q � 150), the tiny PWR window occurring between two
SR windows vanishes, and the SR regime extends. The SR then bifurcates into a tiny PWR regime
which brings QPWR and CWR in the system, and a standard quasiperiodic route to chaos (SR →
PWR → QPWR → CWR) is observed in this case too.

C. Heat transport properties

Convective systems are often characterized by the changes occurring in global quantities such
as the Nusselt number (Nu), which is the ratio of total heat flux (conductive and convective) to the
conductive heat flux. In terms of nondimensional convective velocity and temperature, the definition
of Nu reads as

Nu = 1 + Pr2〈v3θ〉xyzt , (11)

where 〈·〉 represents the temporal and volume average of a specified quantity [40]. Therefore, in the
conduction state Nu = 1, and it deviates from unity as convection sets in. From the discussion in
Sec. IV B, it is evident that the physical system under consideration exhibits a diverse dynamics as
the parameters Q and r are varied together with the system geometry �. Now, to uncover the heat
transport properties associated with different solutions we construct four figures [Figs. 11(a)–11(d)]
corresponding to four different Q where Nu for different � is displayed as a function of r.

From Fig. 11 we notice that for fixed Q and �, Nu increases steadily in the SR flow regime with
the increment in r. A diminution in Nu occurs as time-dependent solutions appear in the system.
The diminution in Nu may be attributed to the extra dissipation caused by the toroidal component
of motion, which does not contribute to the work of the buoyancy force [41]. Further increment in
r once again shows a steady increase in Nu. The effect of Q on Nu is well known, i.e., increment
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FIG. 12. Top two panels show the temporal evolution of the dominant Fourier mode W101 for � = 2 and
Q = 100: before the reversals (a, b) and after the reversals (c). The bottom panel displays the convective flow
profile: before the reversals (left) and after the reversals (right) corresponding to the red stars (1) and (2) in (c),
respectively.

in Q enhances heat transport by increasing the regime of SR [17,19]. The present study reveals
similar results (Fig. 11). However, the effect of � on Nu for fixed Q is found to be interesting as it
also enhances heat transport by increasing the regime of SR (Fig. 11). Therefore, both Q and � are
found to have a similar influence on the dynamics of the system.

D. Flow reversals

Another interesting feature of low-Pr convection is flow reversal, which appears for relatively
lower values of Ra [22]. Recently, Ghosh et al. [24] reported appearance of flow reversals near
the onset of convection for � = 1 in the presence of an external horizontal magnetic field and
showed that an attractor-merging crisis is responsible for that. Now, to uncover the effect of �

on flow reversals, we perform DNS with varying � in our considered range. We find that flow
reversals occur in the system for � � 3 only. The reversal mechanism is found to be similar to
what has been reported by Ghosh et al. [24], i.e., attractor-merging crisis. The typical scenario
of chaotic flow reversals occurring in the system is shown in Fig. 12 corresponding to � = 2 for
Q = 100. Figures 12(a) and 12(b) display the time evolution of the dominant Fourier mode W101

corresponding to two coexisting chaotic attractors connected through mirror symmetry of the system
before reversals take place (r = 5.91). As the parameter r crosses a critical value (rc = 5.92), both
chaotic attractors collide with the mediating unstable conduction state to form a single merged
chaotic attractor and flow reversals set in. Figure 12(c) shows the time series of W101 corresponding
to the merged chaotic attractor for r = 6, while the bottom panel of Fig. 12 displays streamlines on
top of isotherms for two consecutive instants (1) at t = 1787.5 (left) and (2) at t = 1787.6 (right)
marked with red stars in Fig. 12(c). It is evident from Fig. 12 that as W101 switches its sign the
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FIG. 13. (a–c) The transition to persistent chaotic flow reversals from transient chaotic flow reversals
corresponding to � = 1/2 and Q = 400. (d) The onset of persistent flow reversals as a function of Q for
� = 1/2 (magenta diamonds) and � = 2 (blue circles), and the dash-dot lines denote their best linear fit.

direction of the velocity field reverses, indicating flow reversals. Note that we do not observe any
roll-merging phenomena reported by Yanagisawa et al. [23] as our simulation box does not allow
it [see ansatz (10)]. Also, we do not observe any periodic or intermittent reversals as observed by
Mandal et al. [42] in the presence of a vertical magnetic field. However, variation in � introduces
diversity to the reversal dynamics, which is discussed below.

In Sec. IV B we have already shown that variation in � reveals the presence of chaotic saddles
or strange saddles in the system, which lead to the phenomenon of transient chaos. We have also
noticed that the transient chaos may become persistent chaos with the increment in transient time
as r is increased gradually. The presence of transient chaos adds richness to the reversal dynamics
and leads to the phenomena of transient chaotic flow reversals which further give rise to persistent
chaotic flow reversals. The mechanism underlying transient chaotic flow reversals may be attributed
to an attractor-merging crisis where two chaotic saddles connected via the system symmetry merge
to form a merged chaotic saddle. This results in random transient reversals in the velocity field before
stable patterns are observed. Figure 13(a) shows the presence of transient chaotic flow reversals in
the system corresponding to � = 1/2 and Q = 400 in which time evolution of the largest Fourier
mode W101 is displayed for r = 1.36. From Fig. 13(a), we observe that W101 switches sign randomly,
indicating chaotic flow reversals before settling to the stable steady 2D rolls. Now, as we raise r the
transient time of the merged chaotic saddle increases [Fig. 13(b)], and finally we observe persistent
merged chaotic attractor and persistent chaotic flow reversals [Fig. 13(c)]. The appearance of chaotic
flow reversals directly from steady 2D rolls following the transient chaotic flow reversals is found
to be quite fascinating, and we notice it in a widespread parameter space: 237 � Q � 1000 for
� = 1/2. It is interesting to mention that the transient chaos is also observed in the system for � = 4
corresponding to lower values of Q (Fig. 7). However, for � = 4, the chaotic saddles never come
closer to the mediating unstable conduction state as r is varied. As a result, no attractor-merging
phenomenon takes place, and we do not observe flow reversals.

Finally, we compute the onset of persistent flow reversals corresponding to different Q (0 <

Q � 200) for � = 1/2 and 2 to uncover the effect of the strength of the magnetic field on reversal
dynamics. Figure 13(d) depicts the scenario where the appearance of persistent flow reversals is
shown with magenta diamonds (blue circles) corresponding to different Q for � = 1/2 (� = 2),
while the magenta line (blue line) represents the best linear fit. From Fig. 13(d), it is evident that the
phenomena of flow reversals are delayed as either � or Q increases. We identify that the critical value
of r corresponding to the flow reversals onset scales linearly with Q in our considered parameter
regime as r = 0.0262Q + 3.0303 for � = 2 and r = 0.0279Q + 0.7135 for � = 1/2.
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V. SUMMARY AND CONCLUSIONS

In summary, we have carried out extensive 3D DNS by varying the horizontal aspect ratio
(� = ky/kx, where kx and ky are, respectively, the wave numbers along the x and y directions) of the
simulation box to uncover its effect on the magnetoconvective instabilities using Rayleigh-Bénard
geometry in the presence of an external uniform horizontal magnetic field. We focus on the
dynamics of low-Prandtl number fluids (liquid metals) by varying the strength of the magnetic
field (measured by the Chandrasekhar number, Q) in a widespread range 0 < Q � 103. We have
addressed different aspects of the problem including the oscillatory instability, transition to chaos,
heat transport properties, and flow reversals. Several concluding remarks can be drawn from our
detailed numerical investigation:

(i) The oscillatory instability onset is found to follow a well-defined law (RaQ
(O) − Ra0

(O) ) ∝
Qα [43]. However, depending on the strength of the magnetic field we identify two distinct scaling
laws. For a weak and moderate magnetic field (0 < Q < 100), the exponent α is found to be higher
compared to that of a stronger magnetic field (100 � Q � 500). Moreover, for a weak and moderate
magnetic field, we find that α decreases with the increment in � indicating enhancement of the
steady roll regime. The Nusselt number (Nu) data obtained from DNS in this parameter regime also
support this finding. In contrary, the oscillatory instability is absent for � = 1/2 corresponding to a
stronger magnetic field, and we cannot draw any conclusion about its dependence on � in this case.

(ii) We notice different routes to chaos depending on the strength of the magnetic field and �.
The well-known period doubling route to chaos is observed for � = 2 corresponding to a weak
magnetic field (Q < 40). Presence of weak intermittency is also observed there. On the other hand,
a quasiperiodic route to chaos is preferred for � = 1/2 corresponding to a weak and moderate
magnetic field (Q � 130), for � = 2 and 4 corresponding to a moderate and stronger magnetic
field, and for � = 6 corresponding to an arbitrary magnetic field strength (0 < Q � 103). Note that,
for � = 1/2 corresponding to a stronger magnetic field (Q > 130) and for � = 4 corresponding to
a very weak magnetic field, we observe sharp transitions to chaos from steady 2D rolls due to the
presence of transient chaos in the system.

(iii) The occurrence of transient chaos (TC) for � = 1/2 and 4 which eventually leads to
persistent chaos is found to be a remarkable finding of the present study. The appearance of TC may
be attributed to the presence of chaotic saddles or strange saddles in the system [38,44]. Note that
TC has been reported earlier in low-dimensional models of magnetoconvection with finite magnetic
Prandtl number (Pm) [21,37]. However, our study reveals that it is a possible route to chaos in
quasistatic magnetoconvection (Pm → 0) when system geometry is varied.

(iv) Finally, we observe chaotic flow reversals in the system for � � 3 caused by an attractor-
merging crisis [24]. The presence of TC adds richness to the reversals dynamics and leads to the
phenomena of transient chaotic flow reversals for � = 1/2 where velocity field switches its direction
randomly for finite time before converging to the steady 2D rolls. The appearance of transient
chaotic flow reversals may be attributed to the presence of a merged chaotic saddle, formed due
to the merging of two chaotic saddles (connected via mirror symmetry of the system). It is seen
that the transient chaotic flow reversals eventually lead to persistent chaotic flow reversals with the
increment in transient trapping time as r is increased. The onset of persistent flow reversals is also
found to follow a linear scaling with the strength of the magnetic field for different �.

Although we have addressed different aspects of magnetoconvection in the instability region by
varying the horizontal aspect ratio of the simulation box, several questions are still unanswered
and open for future investigation. For example, in a recent study, Mandal et al. [42] reported
three different types of flow reversals, namely, periodic, intermittent, and chaotic, near the onset
of convection in Rayleigh-Bénard convection in the presence of a vertical magnetic field. However,
the effect of aspect ratio on these flow patterns and their origin are still unexplored. Also, the effect
of an inclined magnetic field together with different magnetic boundary conditions is an interesting
problem which deserves future attention.
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