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We compare the flow behavior of several shear-thinning fluids of xanthan gum (XG)
and polyethylene oxide (PEO) with a relatively similar shear-thinning index (∼0.34–0.50)
in a microfluidic planar contraction/expansion geometry. We explore vortex formation and
growth near the abrupt constriction over a wide range of Re (0.0046 � Re � 3.7) and
effective Weissenberg (134 � Wieff � 9381). An important aspect of the present study is
careful rheological characterization to determine the relaxation time of aqueous solutions.
From flow visualization experiments, we observed that corner vortices form in the weakly
elastic aqueous solutions upstream of the constriction. In the PEO solution, a Newtonian-
like behavior (with no corner vortex) was observed up to Re = 0.0067, and the vortex
length remained relatively unchanged up to much higher flow rates (Re = 0.4). The vortex
growth mechanism was observed at higher flow rates. When Re � 1 the flow became time
dependent and chaotic. In xanthan gum solutions, the initial vortex appeared at Re as low as
0.0046, and the vortex length grew by increasing the Re, and Wieff . Interestingly, at similar
Re, the vortex was much longer than the one in the PEO solution and the flow remained
stable over the entire range of flow rates studied. We believe fluid elasticity is central in the
vortex formation and growth. The onset of vortex formation and growth shifted to lower
Re and Wi by increasing the elasticity number (El = Wi/Re), revealing the importance of
fluid elasticity over inertia in the formation of upstream corner vortices. While chaotic flow
instabilities can offer advantages in micromixing, heat, and mass transfer by employing
elastic non-Newtonian fluids, instabilities have to be prevented in many other applications,
including microrheometry, inkjet printing, and roll coating. Understanding the onset and
mechanisms of flow instabilities can shed light on designing more efficient industrial
processes and optimal products.

DOI: 10.1103/PhysRevFluids.7.023303

I. INTRODUCTION

In many high-speed industrial processes such as roll coating, inkjet printing, and fiber spinning,
a complex fluid is highly stretched while passing through very small dimensions of the geometry,
e.g., between the rolls of a roll-coating process or through a narrow nozzle in inkjet printing. The
high extension rates induced during the process may cause flow instabilities that compromise the
quality of the final products; for example, in roll coating, flow instabilities result in nonuniform film
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thickness and wrinkles in the final film. Flow instabilities create bead structures in the woven fibers
in fiber spinning, diminishing the fiber strengths [1].

Entry flows of Newtonian and non-Newtonian fluids in contraction/expansion geometries have
been studied in various axisymmetric and planar geometries, among which are the work mentioned
in Refs. [2–5]. As Evans and Walters [3] concluded, observations regarding the formation of vortices
and flow instabilities strongly depend on the geometry and the type of fluid, and generalizations
cannot be easily made.

While macroscopic abrupt contraction/expansion geometries have shed light on the entry flow of
different viscoelastic fluids, many flow instabilities occur at relatively low Re and high Wi, which are
typically not accessible at large scales. On the other hand, microfluidic devices provide a convenient
platform to study the flow behavior of complex fluids; due to their small size, they require small
quantities of samples. By designing channels with ten to a hundred micron dimensions, a small range
of Re and a wide range of Wi and El can be achieved that are not accessible in macroscale. Here,
we define Re = ρV̄cDh

η(γ̇ ) , Wi = λγ̇ , and El = Wi
Re , where ρ is the density, V̄c is the average velocity in

the constriction, Dh is the hydraulic diameter, η(γ̇ ) is the shear rate-dependent viscosity, γ̇ is the
shear rate in the constriction, and λ is the relaxation time of the solutions. Apart from studying the
flow kinematics and stability of various fluids, flow in narrow microfluidic constrictions can have
many other applications, including the design of extensional microrheometry for weakly elastic
fluids [6–10], cell separation [11,12], cell deformation under sudden and gradual extension [13],
and mimicking the flow of polymeric solutions in porous media for enhanced oil recovery and
groundwater remediation [14–16].

The flow of polymeric solutions in planar abrupt microf luidic contraction and expansions
has been studied by many researchers experimentally [16–29] and numerically [7,29–33]. Below,
we briefly review these efforts, highlighting those that have attempted to explain the underlying
mechanisms by numerical or experimental observations.

It is customary to observe upstream vortices form near the constriction entrance in non-
Newtonian (Boger, and shear-thinning) fluids where the vortex size scales with Re and Wi. The
vortex size has been analyzed in a dimensionless form by dividing the vortex length (Lv) by the
upstream channel width (Wu), χ = Lv

Wu
. Phase diagrams have been created to map the flow behavior

of different fluids in Re-Wi space, a review of which is provided in Rodd et al. [17].
Some observed flow regimes in a die entry creeping flow (Re ∼ 10–4–10–2) of Boger fluids are

identified by the experimental work of Nguyen and Boger [2] in axisymmetric geometries. They
include vortex growth, asymmetric flow, rotating flow (rotation along the tube), and helical flow
(rotating and translating along the tube), which appear as the flow rate increases. The authors
comment that flow instabilities arise from fluid elasticity, and they initiate upstream of the con-
traction due to the distortion in the velocity profile. In addition, the vortex growth is a uniform
function of Wi and independent of contraction ratio (CR), when CR varied between 4 and 12
and slightly dependent on CR when CR > 12. Here and throughout this paper, CR is defined as
the ratio of the diameters (in axisymmetric geometries) or widths (in planar geometries) of the
upstream channel and downstream channel. Nigen and Walters [5] compared the flow behavior of
Newtonian and Boger fluids of similar viscosity in axisymmetric and planar contraction geometries
with CR ∼ 2–40. They observed that the vortex formation and growth, and the pressure drop in the
constriction, are much more pronounced in axisymmetric geometries.

A so-called vortex enhancement mechanism is usually observed in planar geometries, where a
salient corner vortex forms and its size scales with flow rate. Evans and Walters [3] compared the
behavior of Boger and shear-thinning fluids in planar and axisymmetric contraction geometries and
concluded that shear-thinning must be present in all contraction ratios (including 4:1, 16:1, and
80:1) to observe significant salient corner vortex and vortex growth. The vortex enhancement is
truncated at a critical Re when both elasticity and inertia become important and is often followed
by the formation of diverging flow patterns. In a divergent flow, the streamlines locally diverge from
the centerline upstream of the constriction and converge as they enter the constriction [17]. This
phenomenon is usually observed in shear-thinning fluids but has also been reported in Boger fluids
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at relatively low Re (Re ∼ 0.04 in axisymmetric contractions [34]). The emergence of divergent
flow patterns has been observed experimentally in planar contractions by Rodd et al. [17] and by
many others numerically, including Oliveira and Pinho [35] and Alves et al. [33]; more details
about divergent flow can be found in the work of Cable and Boger [36]. Using numerical methods
in planar geometries with rounded corners (as opposed to sharp corners), Alves et al. [33] suggested
that both inertia and (or) shear thinning are not required for divergent flow to appear. At the same
time, Rodd et al. [18] experimentally showed the importance of El in the formation of diverging
flow patterns in entry flow of weakly elastic polymeric solutions in microfluidic planar contraction
and expansions; diverging flow patterns do not necessarily appear at the onset of viscoelastic Mach
number (Ma) > 1, where Ma = √

Re Wi, but El has to be relatively large (e.g., El ∼ 68 in their
case) for the emergence of diverging flow. This can also explain the absence of diverging streamlines
as an indication for viscoelastic effects in entry flow of fluids with low elasticity numbers even when
Ma > 1.

Depending on the elasticity of solutions, viscoelastic entry flows may become unstable in
moderate ranges of Re and Wi [17]. The instability can be manifested by an unstable salient corner
vortex or the formation of Goertler-like and lip vortices [37,38], which are typically observed in
shear-thinning fluids in devices with 4:1 contraction ratios and aspect ratios (we define the aspect
ratio to be h/wc, where h is the depth of the device in the neutral direction and wc is the width of
the channel in the constriction) greater than 20.

In planar geometries, Evans and Walters [4] confirmed a lip-vortex mechanism is responsible
for vortex enhancement in all contraction ratios, which can only be experimentally observed over
a limited range of flow rates and in some specific polymer concentrations. Moreover, they reported
that wall imperfections in the reentrant geometry could significantly affect the shape, size, and
symmetry of the corner vortex in Boger fluids, but it hardly affects the behavior of shear-thinning
fluids in a similar geometry. These observations were later confirmed by the numerical work of
Alves et al. [31,32] in a Boger (Oldroyd-B) and a viscoelastic shear-thinning [Phan-Thien–Tanner
(PTT)] fluid in microfluidic planar abrupt contractions, with a solvent viscosity ratio β (β = ηs

ηs+ηp
,

where ηs and ηp are the solvent viscosity and zero-shear polymer viscosity, respectively) of 1/9.
They showed that vortices formed upstream of the constriction and the corner vortex length scaled
logarithmically with the De number, (where De is defined as De = λU2

H2
, and λ is the relaxation

time, U2 is the cross-sectional average velocity in the smaller channel, and H2 is the half height of
the smaller outflow channel) for a linear PTT fluid and decreased linearly with De for an Oldroyd-B
fluid at CR ∼ 4 : 1. When CR > 4, Alves et al. [32] confirmed the presence of a lip vortex and the
evidence of lip-vortex enhancement mechanism in the creeping flow of PTT fluids. In addition, the
dimensionless corner vortex length was shown to scale logarithmically with De/CR, whereas the
lip vortex scaled with De. Moreover, at an onset De/CR ∼ 1.0, the fingering of the corner vortex
towards the reentrant vortex was completed, and the vortex began to grow from a concave to a
convex shape.

In axisymmetric geometries, Rothstein and McKinley [39] explained the vortex growth dynamics
to be a consequence of two competing effects, including the shear rate at the upstream walls of the
contraction where γ̇ ∝ 1/CR3 and the accumulated strain along the flow centerline ε ∝ ln CR. They
suggested that at small enough contraction ratios, very low extension rates are present, leading to
lip-vortex formation. By increasing the De (or contraction ratio), the extensional stresses increase
and dominate normal stress differences arising from shear; this leads to the formation of a corner
vortex and displacement of the lip vortex. They concluded that transitions in vortex growth are
associated with extensional properties of viscoelastic fluids and affect equilibrium conformations
of the polymer chains. The chain conformations are influenced by solvent quality or stiffness of
the polymer backbone, as suggested in Refs. [40–42]. The importance of locally increased strain
rates and fluid extensional rheology in the dynamics of vortex formation and growth has been
further emphasized by three-dimensional (3D) flow visualizations in a recent work in Ref. [28].
Rodd et al. [43] experimentally showed that the upstream vortex formation is a consequence
of stretching dynamics in the constriction and the downstream relaxation in the expansion is
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equivalently important. They supported this argument by analyzing the effect of constriction length
on upstream vortex formation and stability in a planar contraction/expansion microfluidic device.
Their observations revealed that an entirely stable symmetric upstream vortex could be converted
into a chaotic asymmetric vortex by increasing the constriction length. At the same time, by increas-
ing the elasticity number (e.g., via increasing the solvent viscosity), the upstream flow instabilities
can be controlled to some extent. A recent study by Raihan et al. [44] also considered the effect
of constriction length on both contraction and expansion flows of a constant viscosity, viscoelastic
polyethylene oxide (PEO) solution, a shear thinning xanthan gum solution, and a shear-thinning,
viscoelastic polyacrylamide solution, and found that only the PEO solution showed constriction
length-dependent instabilities for the contraction flow.

Sousa et al. [23] investigated the flow of Newtonian and shear-thinning fluids in a square-square
microfluidic abrupt contraction/expansion flow over several contraction ratios (i.e., CR ∼ 2.4, 4, 8,
and 12) experimentally and numerically. For the shear-thinning fluid, a corner vortex was observed
independent of the contraction ratio. They observed that by increasing the flow elasticity, the vortex
size strongly increased while still at low Re until an elastic instability emerged; the flow became
time dependent at De ≈ 200, 300, 70, and 450 for CR = 2.4, 4, 8, and 12, respectively. Lanzaro and
Yuan [24] investigated the effects of contraction ratio on nonlinear dynamics of semidilute, highly
polydisperse polyacrylamide (PAAm) solutions in microfluidic contraction/expansion geometries.
They reported that the stability of the nonlinear flow structures could be tuned by El and that
the geometry (contraction ratio and aspect ratio), Wi and Re, and molecular weight distribution
of polymers affect the viscoelastic flow phenomena. A series of different microfluidic geometries
with strong extensional components have been studied experimentally by Galindo-Rosales et al. [9].
Depending on the geometry, Wi and Re, they observed different types of flow transitions, including
transition from a steady symmetric to steady asymmetric and unsteady flows and a direct transition
from steady symmetric to unsteady flows.

Haward et al. [21] investigated flow instabilities of polystyrene (PS) solutions in a planar
8:1:8 geometry in a wide range of Re (0.07 < Re < 11.2), Wi (8.7 < Wi < 1562) and elasticity
numbers (31 < El < 295). They reported flow transitions spanning between Newtonian-like flow
(i.e., stable converging streamlines near the constriction) to unstable flow at the critical Wi = 150
and from unstable flow to vortex growth in the upstream salient corners at the critical Wi = 400.
Transitions between the flow regimes scaled with Wi, independent of El, revealing the importance of
elastic forces compared to inertial effects in all the fluids they studied. By combining birefringence
analysis with flow measurements, Haward et al. estimated the macromolecular strain values in the
microchannel constriction. For the Newtonian-like flow regime (Wi � 150), this strain value was
reported to be zero but increased with the emergence of the unstable flow and reached a plateau
value at the onset of vortex growth (Wi � 400).

Despite extensive work in the entry flow of non-Newtonian fluids in abrupt contraction/expansion
geometries, there are unexplored features and unexplained mechanisms. For example, the mech-
anism of flow instabilities and time-dependent behavior is not well known yet, in part because
characterizing some fluid properties, such as the relaxation time, have created discrepancies that
make comparisons between different experiments and simulations challenging. In addition, the type
of fluid, contraction ratio [45], and aspect ratio [7] strongly affect the flow behaviors. Moreover, the
competition of shear and extension near the flow reentrance presents additional complications to
the flow behavior that cannot be easily explored in a rheometer. Therefore, it is worth testing more
fluids in various geometries and over a broader region in Wi-Re space both to gain additional insight
and to design strategies for more efficient industrial processes such as enhanced oil recovery and
extensional microrheometry.

In the present study, we compare the flow behavior of several shear-thinning fluids of xanthan
gum (XG) and polyethylene oxide (PEO) in a planar contraction/expansion geometry that is sym-
metric in the flow direction (fore-aft) and symmetric about the midplane of the depth and asymmetric
with respect to the “contraction” direction (Fig. 1). The solutions are prepared to have a relatively
similar shear thining index (∼0.34–0.50). We explore vortex formation and growth near the abrupt
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FIG. 1. Schematic of the device with a nominal contraction ratio of 4. (a) 3D view, (b) side view in
XY plane. The device dimensions include Wu = 460–475 μm, wc = 101.6–106.7 μm, Lc = 418 μm, h =
215.6–219 μm. The flow is from left to right. The device is about 13 mm long on each side of the constriction.
The videos were captured in the middle of the channels at z = 0.

constriction at different flow rates in this geometry. We explore flow behavior for shear-thinning
fluids over a broad range of Re (0.0046 � Re � 3.7) and Wi (134 � Wi � 9381). An important
aspect of the present study is careful rheological characterization to determine the relaxation time
of aqueous solutions in the absence of the Capillary Breakup (CaBER) instrument. Moreover,
by preparing solutions with similar shear-thinning indices, we can examine the importance of
other parameters, such as the interplay between inertia and elasticity in vortex formation and flow
instabilities.

Below, we present the experimental procedures, including microfluidic device fabrication,
sample preparation, rheological characterization, and flow visualization methods, followed by
a discussion and further analysis of rheological results and flow visualization observations. A
comparison of vortex growth behavior is made between the aqueous fluids over a wide range of
Re and Wi, followed by more general conclusions.

II. EXPERIMENTAL PROCEDURE

A. Microfluidic device fabrication

Microfluidic devices were fabricated using a low-cost, fast prototyping technique reported in
Ref. [46]. The schematic of the device with a nominal contraction ratio of 4:1 and a nominal aspect
ratio of 2 is shown in Fig. 1. A significant difference between our geometry and the benchmark
planar contraction/expansion geometries is that it is symmetric about the obstacle in the y and z
directions but not in the x direction. The lower wall in this geometry creates a high shear stress
boundary to flow instead of the zero shear stress boundary in benchmark planar geometries due to
their symmetry in the x, y, and z directions.

Initially, a dry film photoresist of the Riston GoldMaster (GM) 100 series (DuPont) was lam-
inated on a steel wafer (Stainless Supply) to make a master. The lamination was performed in
an Akiles Prolam-Ultra laminator at 120 °C. The Riston Goldmaster is available in three nominal
thicknesses of 50, 75, and 100 μm. We were able to make masters of various thicknesses (h in
Fig. 1) by employing different combinations of film thicknesses. The microchannels were designed
in AutoCAD and printed on laser-plotted polyester-based film photomasks in 40 640 DPI (equivalent
to 8 μm resolution) by Fineline Imaging (Colorado Springs, CO). The mask was lined up with the
master on an OAI Series 200 lithographic mask aligner in vacuum contact mode with a 350-W
UV lamp (λ ∼ 360–440 nm) and exposed for a calculated time. The exposed masters were then
developed in a 10 g/l potassium carbonate solution while constantly agitated on a Bellco orbital
shaker at 67 rpm to remove the unexposed film. Finally, the developed masters were rinsed with
de-ionized water and dried with an air gun.
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The microfluidic devices were produced from the masters via casting and curing polydimethyl-
siloxane (PDMS) and bonding the PDMS devices to glass coverslips. A Sylgard® 184 silicone
elastomer kit (Dow Corning) with a 10:1 base to curing agent ratio was thoroughly mixed and
degassed in vacuum for 1 h at room temperature. The degassed PDMS was then poured over the
master and degassed again for another 30–60 min in a vacuum. After removing all air bubbles,
the PDMS was cured at 60 °C for 4 h in a vacuum oven. Inlet and outlet holes were punched
in the PDMS devices using a 22-G blunt tip needle (McMaster-Carr). Before bonding the cured
PDMS devices onto the glass slides, scotch tape was attached to the channel surfaces on PDMS to
remove any potential debris. PDMS devices were then bonded to glass coverslips (Fisherbrand,
cover glass No. 1) using a handheld laboratory corona discharger (BD-20AC, Electro-Technic
Products). Flexible Tygon tubing with 1/16-in. inner diameter was attached to the through holes of
the reservoirs. Here, 2.5-mL gastight glass syringes (Hamilton) were threaded with a 22-G plastic
dispensing tip (McMaster-Carr) attached to the tubing. The flow rate was controlled with a Harvard
Apparatus PHD 2000 syringe pump.

The actual depth of the channels was measured on PDMS replicas before bonding them to glass
slides using an optical profilometer (Solarius Development LaserScan) and the index of refraction
of PDMS was set to 1.40. This strategy was employed since the exact thickness of the masters
could not be directly measured due to the unknown refractive index of the UV exposed Riston
photoresist. More details about the fabrication process can be found in Ref. [46]. A schematic of
the device is shown in Fig. 1, with the actual dimensions as the following: the upstream channel’s
width, Wu = 460–475 μm, the constriction width, wc = 101.6–106.7 μm, the constriction length,
Lc = 418 μm, and the depth, h = 215.6–219 μm; the actual aspect ratios (h/wc) and contraction
ratios were 2.16 and 4.675 in the devices used for xanthan gum solutions and were 2.02 and 4.31 in
the devices used for the PEO solutions, respectively. The upstream and downstream channels were
roughly 13 mm in length on each side of the constriction.

Due to the small size of the obstacles, i.e., several hundred μm in length (Lc) by a few hundred
μm in width (wc), one may need to apply some extra pressure when bonding PDMS to glass.
Applying an uneven extra force may result in uneven pressure distribution on one side of the
device and, consequently, tilt the obstacle as it bonds to the glass. The nonuniform attachment of
obstacle walls to glass can result in a nonrectangular (e.g., trapezoidal) flow cross section under the
obstacle that can change the flow pattern and velocity field, shear stress, and pressure distribution
near the obstacle. The width of the obstacle (wc) was examined and measured at different depths
while the device was filled with water or isopropyl alcohol. In all cases, the width of the obstacle
remained uniform.

The exact dimensions of devices may slightly change from one device to another, therefore
the more accurate CR is reported for each device in the figure captions. In all cases, the channel
depths were around the nominal value of 200 μm. Also, due to the relatively short length of the
constriction, we expect the flow to be far from fully developed in the constriction area, which should
be responsible for interesting phenomenon upstream of the constriction.

B. Sample preparation

Aqueous solutions of polyethylene oxide POLYOX 301 (PEO) with a molecular weight of
4 × 106 g/mol and xanthan gum (KELTROL, CP Kelco) with a molecular weight of 2 MDa were
used in this study. Xanthan gum (XG) is a water-soluble, anionic polysaccharide produced by the
bacterium Xanthomonas campestris [47]. It has been used in food and personal care products to
provide stability, suspension, texture, pouring characteristics, and cling; it is also an excellent binder
in regular and specialty toothpaste, including antitartar and sensitive teeth toothpaste. Other impor-
tant industrial applications of xanthan gum include long-term suspension and emulsion stability in
alkaline, acid, and salt solutions, temperature resistance and pseudoplasticity, and shear thinning
(particularly useful in drilling, production, hydraulic fracturing, and enhanced oil recovery) [48]. In
the absence of any added ions, the aqueous xanthan gum molecules are fully extended due to the
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electrostatic repulsion of the negatively charged sidechains [49]. PEO is a nonionic water-soluble
polymer that offers many different properties, including lubricity, binding, water retention, and
thickening in various applications, including aqueous drag reduction and drift control, personal care
products [50], to name a few.

Aqueous solutions of xanthan gum and PEO were prepared at various concentrations spanning
from 0.1 to 1.0 wt%. Glycerol was added to 0.1 wt% xanthan gum solutions to increase viscosity at a
maximum concentration of 56 wt% (equivalent to 50 vol%). The solutions were stirred on a stirring
plate at the lowest possible rate until the polymer powder was dissolved within a few hours. PEO
solutions with relatively higher concentrations (e.g., ∼1.0 wt%) took much longer (∼1–2 days) to
dissolve. We found the following preparation approach to be very efficient for PEO solutions. A 1-in.
magnetic stirring bar was placed in an 80-mL VWR wide-mouth glass jar containing ∼40 mL of
de-ionized water. The weighed PEO powder (e.g., 0.6 g for a 1.0 wt% solution) was then uniformly
spread on the water surface to avoid any coagulation of the powder, which can significantly extend
the dissolution time. Then, 20 mL of water was carefully added to the powder using a spray bottle. It
is better to point the top of the spray bottle on the jar walls to ensure air bubbles are not introduced to
the solution. The weight of the whole container was measured after closing the top. The container
was then placed on a stirring plate, and the solution was mixed at the lowest possible rate for a
couple of days until the PEO was entirely dissolved. The container’s weight was measured after
the powder was entirely dissolved and compared with its initial weight to ensure the absence of
evaporation. In case of any evaporation, de-ionized water was added to match the original weight of
the whole container before mixing.

The radius of gyration (Rg) and the extensibility parameter (L2) have been estimated for our
solutions which are comparable to literature values. Whitcomb et al. [51] reported a hydrodynamic
length of 1.5 μm and an extended length of 8.7 μm for xanthan gum with Mw ∼ 7.6 × 106. Milas
and Rinaudo [52] estimated the mass per unit length of xanthan gum with Mw ∼ 6.5–7.0 × 106, to
be ML = 100 g/A, and the contour length, Lc to be Lc = Mw

ML
or simply 65 000–70 000 A (equivalent

to 6.5–7.0 μm). In our studies, Mw ∼ 2 MDa for xanthan gum (KELTROL, CP Kelco); using Lc =
Mw

ML
, we estimate Lc to be about 2.0 μm. Assuming R2

g ∼ Mw for random coils [53], the radius of
gyration can be estimated to be Rg ∼ 141 nm. The extensibility parameter is then calculated using
L2 = ( Lc√

6Rg
)2 as indicated in Burshtein et al. [54] to be 33.5 for xanthan gum. For the PEO with

Mw ∼ 4 × 106, we use Rg and L2 to be about 152 nm and 5000 [54]. The estimated values for the
extensibility parameter show that PEO molecules should be a lot more extensible (L2 ∼ 5000) and
therefore flexible in comparison with xanthan gum (L2 ∼ 33.5).

The overlap concentration was estimated to be 0.0282 wt% (or simply 282 ppm) for xanthan gum
using c∗ = 3 Mw

4 NAπR3
g

[55], where Rg = 141 nm and Mw ∼ 2 MDa; the estimated overlap concentra-

tion is similar to 254 ppm reported by Raihan et al. [44] for a 2-MDa xanthan gum. For PEO with
Mw ∼ 4 × 106 Da, we use c∗ = 0.045 wt% or (450 ppm).

C. Rheological characterization

A Bohlin C-VOR (MALVERN Instruments) rheometer with two geometries, parallel plate
(PP40) and cone and plate (CP40, with 4° angle), was used to characterize the rheological properties
of the solutions at room temperature (i.e., 25 °C). Initially, the shear viscosity of xanthan gum
solutions of various concentrations was measured with both geometries (gap size: 0.8–2.0 mm for
PP40 and 50 μm for CP40) to ensure the lack of any wall slip. The steady shear results were
identical at each concentration using PP40 and CP40. First normal stress coefficients ψ1 could not
be measured experimentally for various solutions due to the very low normal force levels, and the
data were too noisy to be reported here.

Different rheological characterizations, including steady shear, creep, and small amplitude os-
cillatory shear (SAOS) measurements, were performed. More details about these experiments and
curve fitting of experimental results with different models are explained in Sec. III.
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FIG. 2. Steady shear viscosity of aqueous solutions. The data points show the experimental measurements
and the lines represent the best fits with the Carreau model.

D. Flow visualizations

Flow visualization experiments were performed using fluorescence microscopy. A Leica
DMIRE2 inverted microscope was used with an external light source (Leica EL6000). A dual-band
excitation/emission filter (Chroma 51004v2, 460–500/510–560 nm) was shown to be suitable for
our system. Here, 10× (Olympus) objectives were employed for flow visualization experiments.
Images and videos were taken by using a monochromatic Photometrics Cascade 512b charge-
coupled-device (CCD) camera. The aqueous solutions were seeded with 0.005–0.02 vol/vol % of
1-μm fluorescent polystyrene spheres (Fluoro-MaxTM green, Thermo Scientific). Then, 88.7 and
79.2 mg sodium chloride was added per gram of 0.2 wt% XG solution and 1.0 wt% PEO solution,
respectively, to match the density of the aqueous solutions to the fluorescent particles and ensure
solutions remain neutrally buoyant. It was observed that the vortex in xanthan gum solutions reached
its maximum length shortly after the flow rate was set, while for PEO solutions it took a few
minutes. So, each flow rate was maintained for at least 10 min before videos were taken. It is
worth mentioning that by using glass syringes instead of plastic ones, flow vibrations induced by the
syringe pump were minimized. In order to remove trapped air bubbles from our devices, each device
was initially flushed with a high concentration isopropyl alcohol (IPA) solution followed by rinsing
with water for 5–10 min before we ran the polymer solutions through each device. This procedure
was shown to be promising in cleaning the devices from any potential debris or air bubbles.

III. RESULTS AND DISCUSSION

A. Rheological characterization

Steady shear measurements were performed from high to low and then low to high shear rates,
and it was observed that the data overlapped to a great extent. The average of the two experimentally
measured data sets is reported in Fig. 2 and compared with the Careau model given in Eq. (1). From
Fig. 2, it can be observed that all solutions demonstrate significant shear-thinning behavior and were
well fitted with the Carreau model. The fitting parameters along with the overlap concentration c∗
are summarized in Table I. The Carreau model has four parameters, including η0 and η∞ which are
the zero shear and high shear viscosities, respectively, γ̇c is the onset of shear thinning and one of
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TABLE I. Parameters of curve fitting for Carreau model (1) in Fig. 2.

Solution c∗ (ppm) η0 (Pa s) η∞ (Pa s) n γ̇c (s–1)

0.1 wt% XG in 1-1 GC 3.16 0.006 0.40 0.089
0.2 wt% XG 282 1.75 0.001 0.34 0.23
1.0 wt% PEO 450 [54] 1.50 0.001 0.50 0.83

the fitting parameters, and n is the shear-thinning index (n = 1 for Newtonian fluids and 0 < n < 1
for shear-thinning fluids),

η(γ̇ ) = η∞ + (η0 − η∞)

[
1 +

(
γ̇

γ̇c

)2] n−1
2

. (1)

The viscosity of the aqueous solvent with 50 vol% (∼56 wt%) glycerol (hereafter referred to as
1-1 GC) was measured to be constant and equal to 0.006 Pa s; therefore, for curve fitting purposes,
η∞ was set to 0.006 Pa s in 0.1 wt% XG in 1-1 GC solution and 0.001 Pa s, equivalent to the viscosity
of water, in other solutions. From the results reported in Table I, it is evident that all solutions show
a shear-thinning behavior with 0.2 wt% XG solution slightly more shear thinning and 1.0 wt% PEO
moderately shear thinning with n = 0.50.

The shear-thinning index reported in Table I is consistent with literature values. At relatively high
concentrations (�1 wt%), xanthan gum solutions can be highly shear thinning (n ∼ 0.12–0.14),
which facilitates their processing in food, cosmetic, and pharmaceutical industries [56]. Other
reported values for the shear-thinning index of xanthan gum solutions span from 0.54 to 0.71 for
0.03–0.2 wt% aqueous solutions, respectively [57], 0.97 for 0.01 wt% solution, and 0.23 for 0.5 wt%
solution using power-law correlations [58]. In a recent work by Raihan et al. [44] the shear rheology
of a 2000-ppm aqueous XG solution along with the best fit with the Carreau model was reported;
the fitting parameters were quite consistent with the ones reported in Table I, with n = 0.33,
η0 = 1740 mPa s, η∞ = 1.8 mPa s, and a time constant (equivalent to 1/γ̇c in Table I) of 6.6 s.
For 3390 ppm (or 0.34 wt%) PEO with 2 × 106 g/mol molecular weight in a solvent containing 60
wt% de-ionized (DI) water and 40 wt% PEG (with Mw = 8000 g/mol), the shear-thinning index
was reported to be ∼0.889 [59] and ∼0.878 [60], respectively.

We used dimensionless numbers, the Weissenberg (Wi), the Reynolds number (Re), and the
elasticity number (El) to analyze the results. Re represents the ratio of inertial to viscous forces and
is defined in (2). Wi denotes the ratio of elastic forces to viscous forces and is defined in (3). Wi is
the product of the fluid relaxation time and a characteristic rate of deformation, and therefore has
been widely used as a suitable dimensionless number to analyze the nonlinear rheological effects
in the entry flow of non-Newtonian fluids. Here, we use Wieff defined in (4), which is scaled with
the solvent to total viscosity ratio, β (where β = ηs

ηs+η0
with ηs as the solvent visocity and η0, as the

zero shear visocsity from Table I). By using Wieff , we can account for the solvent contibution to the
shear stress τxy as suggested in Refs. [54,29],

Re = ρV̄cDh

η(γ̇ )
= 2ρQ

(h + wc)η(γ̇ )
, (2)

Wi = λγ̇ = λQ

hw2
c/2

, (3)

Wieff = Wi (1 − β ) = λγ̇ (1 − β ), (4)

El = Wieff

Re
= λ (1 − β ) η(γ̇ ) (h + wc)

ρhw2
c

= 2λ (1 − β ) η(γ̇ )

ρ

1

wcDh
. (5)
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In the above equations, ρ is the density, V̄c is the average velocity in the constriction, Q is the
volumetric flow rate, h is the channel depth, wc is the width of the constriction (defined in Fig. 1), Dh

is the hydraulic diameter, η(γ̇ ) is the shear rate-dependent viscosity extrapolated using the Carreau
model and the curve fitting parameters, and λ is the relaxation time of the solutions. By using the
mean velocity and device dimensions in the constriction (i.e., V̄c and wc), the highest value of Re
in the device was estimated at each flow rate. The range of shear rates corresponding to the flow
rates in flow visualization experiments spans from 17 to 12 000 s–1 for 0.1 wt% XG in 1-1-GC,
74–673 s–1 for 0.2 wt% XG, and 113–3395 s–1 for PEO solutions.

Elasticity number declares the importance of elastic forces to inertial forces and is defined in
(5). As shown in (5), El depends on fluid properties [i.e., λ, ρ, β, and η(γ̇ )] and the characteristic
lengths of the device (i.e., Dh and wc).

To estimate Wi, we need to estimate the relaxation time of the solutions. The Capillary Breakup
Extensional Rheometer (CaBER) is a well-known instrument to measure the relaxation time, time
to break up, and extensional viscosity of dilute polymer solutions. In this technique, the material
goes through a step uniaxial extension with a set value until it necks and finally breaks due to the
action of capillary forces. Even though CaBER has been shown to help estimate the relaxation time
of dilute polymer solutions, it has some drawbacks. For example, Haward et al. [61] suggested that
hydrophobic molecules can migrate to the material-air interface, affecting the extensional properties
and time to breakup by changing the interfacial rheology. In addition, it is nearly impossible to
impose a controlled deformation rate on a fluid using CaBER.

In the absence of CaBER, we used creep experiments and small amplitude oscillatory shear
measurements to estimate the relaxation time of our polymer solutions. Creep experiments were
performed at several different constant shear stresses ranging between 0.01 and 1.0 Pa, and creep
compliance (J) was measured. The results were then compared with theoretical predictions using
the differential form of the Maxwell model as the constitutive equation in (6) with the boundary
conditions expressed in (7),

τ + λ
∂τ

∂t
= −η0γ̇ → τ12 + λ

∂τ12

∂t
= −η0γ̇12, (6)

τ12 = lim
ε→0

⎧⎨
⎩

0, t � 0,
τ0t
ε

, 0 < t � ε,

τ0, t > ε,

(7)

where τ is the shear stress, t is the time, and τ0 is constant shear stress imposed at t = 0 that
continues for a time period of t , η0 is the zero shear viscosity, and λ is the relaxation time. γ̇ is
the strain rate and can be analytically calculated using the constitutive Eq. (6). Assuming, it would
take an ε amount of time for the stress to reach its final value, the shear stress increases at a rate of
∂τ12
∂t = τ0

ε
until the final value τ0 is obtained. Accordingly, the shear rate γ̇12, and therefore the strain

γ12, can be analytically calculated as follows:

γ̇12 =

⎧⎪⎨
⎪⎩

0, t < 0,

− τ0
η0ε

(t + λ), 0 < t � ε,
−τ0
η0

, t > ε,

(8)

γ12(0, t ) =
∫ t

0
γ̇12(t ′) dt ′ = lim

ε→0

{∫ ε

0
γ̇12(t ′) dt ′ +

∫ t

ε

γ̇12(t ′) dt ′
}

= lim
ε→0

{∫ ε

0

−τ0

η0ε
(t ′ + λ) dt ′ +

∫ t

ε

−τ0

η0
dt ′

}

= −τ0

η0
lim
ε→0

{
1

ε

(
t ′2

2
+ λt ′

)ε

0

+ (t ′)t
ε

}
= −τ0

η0
(t + λ). (9)
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FIG. 3. Creep test results for 0.1 wt% XG in 1-1 GC. (a) Modulus of creep compliance and recovery as
a function of time at different exposed shear stresses and (b) best linear fit of a tangential line to the creep
modulus at 0.25 Pa.

After imposing constant shear stress, the material response can be measured in the form of creep
compliance (J) and recovery, where

J (t, τ0) = γ12(0, t )

−τ0
= 1

η0
(t + λ). (10)

From (10) it is evident that by plotting J as a function of t , the relaxation time λ can be
estimated using the slope (1/η0) and the intercept (λ/η0). The relaxation time was estimated from
the experimental data by drawing a tangential line on the creep compliance diagram and finding the
slope and intercept of the best fit. Figure 3(a) shows the experimental results for creep and recovery
compliances of 0.1 wt% XG in the 1-1 GC solution at three constant stresses. A tangential line is
sketched on the creep compliance data in Fig. 3(b) for 0.25 Pa shear stress to determine λ and η0. A
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TABLE II. Parameters of creep experiment for different solutions. η1: The highest measured viscosity from
experiments. λcreep: Creep relaxation time calculated from the intercept. η0, creep: Zero shear viscosity calculated
from the slope.

Slope Intercept η0, creep λcreep η1 η0,Carreau

Material τ0 (Pa) = 1
η0

= λ

η0
(Pa s) (s) (Pa s) (Pa s)

0.03 0.4127 2.6275 2.42 6.37
0.1 wt% XG in 1-1 GC 0.05 0.4123 2.4191 2.43 5.87 2.42 3.20

0.10 0.4113 2.4600 2.43 5.98

0.03 0.7057 3.0618 1.42 4.34
0.2 wt% XG 0.05 0.6388 3.1355 1.57 4.91 1.75 1.80

0.10 0.6919 2.8028 1.45 4.05

0.50 0.6521 0.5579 1.53 0.86
1.0 wt% PEO 0.25 0.6265 0.9311 1.60 1.49 1.17 1.50

0.10 0.5755 1.2196 1.74 2.12

similar procedure was followed at other constant shear stresses. The results for different solutions
are summarized in Table II.

Since the magnitudes of λ and η0 could slightly depend on the magnitude of the imposed shear
stress, τ0, η0 was used as a control parameter and compared with the zero shear viscosity estimated
from the best fit of the Carreau model. When a close agreement was achieved, we considered the
relaxation time obtained from the creep experiment λcreep to be acceptable. This was the case in
the PEO solution. In the absence of a close agreement, we compared η0 from creep experiments
with the highest measured value of viscosity from steady shear results. This was the case in 0.1wt%
XG in 1-1 GC solution, where η0 from the creep test was 2.42 and 2.43 Pa s at τ0 = 0.03 and
0.05 Pa, respectively, while it was estimated to be 3.20 from Carreau curve-fitting parameters. The
highest measured shear viscosity from steady shear results of Fig. 2 was 2.42 Pa s. Therefore, an
average was taken between λ values from creep experiments which will result in λcreep= 6.07 s.
The error for the best fit of the tangential line to the experimental data was calculated using R2 =
1−

∑N
i=1 [ fexpt (i)− ffit (i)]2

(N−1)σ ( f ) , where N is the number of data points, f is the function value, which is the
compliance modulus (J) in this case, the difference fexpt − ffit is called the residual, which is the
difference between the experimental value fexpt, and ffit, the fitted value of the function f , and σ ( f )
is the variance of f . For all data reported in Table II, R2 � 0.998.

We performed small-amplitude oscillatory shear measurements at room temperature to further
investigate the validity of the obtained relaxation time from the creep experiments. Multimode
generalized Maxwell constitutive Eqs. (11) and (12) were used to find the best fit of the experimental
data, where, G′ (Pa) and G′′ (Pa) are the elastic and loss moduli, respectively, ω (rad/s) is the angular
frequency, Gi (Pa) is the relaxation modulus, λi (s) is the relaxation time for mode i, and m is
the number of modes. Using small-amplitude oscillatory shear (SAOS) data, the best fit of the
multimodal generalized Maxwell model can provide different values for λ. Since the frequency
sweep data were obtained over three decades of frequency, we used three modes of the generalized
Maxwell model for comparison. The least-squares function in Matlab (MathWorks) was used for
curve-fitting purposes, and the parameters for the best fit are reported in Table III. The longest
relaxation time from curve fitting was taken for comparison with λcreep in Table II:

G′ =
m∑

i=1

Gi λi
2ω2

1 + ω2λ2
i

, (11)

G′′ =
m∑

i=1

Gi λi ω

1 + ω2λ2
i

. (12)
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TABLE III. Fitting parameters for three-mode generalized Maxwell model and the relaxation time from
the creep tests.

Material G1 (Pa) G2 (Pa) G3 (Pa) λ1 (s) λ2 (s) λ3 (s) λcreep (s)

1.0 wt% PEO 0.79 2.19 6.44 1.51 0.21 0.04 0.86
0.1 wt% XG in 1-1 GC 0.43 0.77 2.47 3.04 0.28 0.03 6.07
0.2 wt% XG No data is available 4.91

The experimental SAOS results, along with the predictions of the three-mode Maxwell model,
are illustrated in Fig. 4(a) for 0.1 wt% XG in 1-1 GC and in Fig. 4(b) for 1.0 wt% PEO solution, and
the fitting parameters are summarized in Table III. We observed a difference between the relaxation
time from the creep experiments and the three-mode Maxwell model from the results reported in this
table. In the case of the PEO solution, λ was 0.86 s from creep experiments and 1.51 s for the longest
Maxwell relaxation time. In the case of 0.1 wt% XG in 1-1 GC, λcreep = 6.07 s while the longest
relaxation time from the Maxwell model was λ = 3.04 s . These values compare well with literature.
For 3390 ppm (or 0.34 wt%) PEO with 2 × 106 g/mol molecular weight in a solvent containing
60 wt% de-ionized (DI) water and 40 wt% PEG (with Mw = 8000 g/mol), the longest Maxwell
relaxation time was 0.328 and 0.287 s using SAOS measurements in Refs. [59,60], respectively.

For the PEO solution and 0.1 wt% XG in 1-1 GC, the relaxation time was taken as an average of
the longest relaxation time of the Maxwell model and the creep tests. For the 0.2 wt% XG solution,
we considered the relaxation time from the creep test to be acceptable since the SAOS results for
this solution are missing. Therefore λ was set to 1.185 s for PEO, 4.56 s for 0.1 wt% XG in 1-1 GC,
and 4.91 s for 0.2 wt% XG.

B. Flow visualization

Following rheological characterization, we ran the polymer solutions through the microchannels.
Flow visualization experiments were performed, and videos were captured in the central plane
of the channels (at z = 0). Capturing videos at the half depth of the channels resulted in some
optical distortion near the edges of some channels and low resolution of the streak images in some
snapshots. The flow rate was increased at 10 μl/h increments up to 100 μl/h, then at 100 μl/h
increments up to the flow rate of 1000 μl/h, and at 1000 μl/h increments for higher ranges of flow
rates. The snapshots of some recorded videos are demonstrated in Fig. 5–7 at various flow rates.
In all cases, the flow was from left to right. It was observed that vortices formed upstream of the
obstacle at a different onset flow rate in each solution. The vortex length increased with increasing
flow rate. When the vortex length was much longer than the field of view, it was not easy to measure
the vortex length accurately; therefore, only the range of flow rates where the vortex length could
be reliably measured is considered and reported for each solution.

The results for 0.2 wt% XG solutions are shown in Fig. 5, where the flow rate changes from
300 μl/h (Re = 0.013, Wieff = 362) to 2740 μl/h (Re = 0.4756, Wieff = 3304). The vortex was
first observed at 200 μl/h (Re = 0.0068). The size of the vortex gradually increased with increasing
the flow rate. Some individual fluorescent particles can be detected in the vortex from the snapshots
due to the much slower fluid flow than the main flow stream, where only streak lines can be observed
as the fluid approaches the constriction. Through the entire range of flow rates shown in this figure,
the flow remained stable and the vortex size stayed unchanged over time, at each flow rate.

Similarly, in 0.1 wt% XG in 1-1 GC, the initial corner vortex was observed upstream of the
obstacle at flow rates as low as 200 μl/h (Re ∼ 0.0046, Wieff = 224). Figure 6 displays streak
images of flow in the channels for 0.1 wt% XG in 1-1 GC at various flow rates spanning between
400 μl/h (Re = 0.0145, Wieff = 487) and 2000 μl/h (Re = 0.16, Wieff = 2237). The size of the
corner vortex grew with increasing flow rate. However, compared to the results reported in Fig. 5, the
vortex length was much longer at similar flow rates, even though 0.1 wt% XG in 1-1 GC is slightly
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FIG. 4. Small-amplitude oscillatory shear results for (a) 0.1 wt% XG in 1-1 GC and (b) 1.0 wt% PEO.
The data points represent experimental results, and the lines show the best fit with a three-mode generalized
Maxwell model.

less shear thinning (n = 0.4) compared to the 0.2 wt% XG solution (n = 0.34). This observation
could be due to the higher elasticity of the 0.1 wt% XG solution due to the addition of glycerol.

Figure 7 represents the streak images of flow in the channels for 1.0 wt% PEO at flow rates
spanning from 500 μl/h (Re = 0.0067, Wieff = 134) to 15 000 μl/h (Re = 1.06, Wieff = 4020). In
this solution, the initial corner vortices were observed at flow rates slightly higher than 500 μl/h
(Re ∼ 0.0067) upstream of the obstacle. Interestingly, the size of the corner vortex in the PEO
solution was much smaller than in the xanthan gum solutions at similar flow rates; we also noticed
that the vortex size remained relatively constant for the range of flow rates between 1500 and 5000
μl/h. At relatively higher flow rates (greater than 5000 μl/h), the vortex size began to grow, as is
shown in Figs. 7(e) and 7(f). At high enough flow rates (greater than 15 000 μl/h or Re � 1.06),
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FIG. 5. Streak images of flow in channels for 0.2 wt% XG at different flow rates. (a) Q = 300 μl/h,
Re = 0.013, Wieff = 362; (b) Q = 400 μl/h, Re = 0.021, Wieff = 482; (c) Q = 500 μl/h, Re = 0.030,
Wieff = 603; (d) Q = 1000 μl/h, Re = 0.094, Wieff = 1206; (e) Q = 2000 μl/h, Re = 0.287, Wieff = 2412;
and (f) Q = 2740 μl/h, Re = 0.476, Wieff = 3304. The scale bars show 100 μm. The double-sided arrow in
(a) shows the vortex length (Lv). The contraction ratio is 4.675.

the flow of PEO solutions became time dependent, and the size of the corner vortex increased
more dramatically while fluctuating. Figures 7(g) and 7(h) exhibit the flow near the constriction at
25 000 μl/h (Re = 2.25, Wi = 6701) and 35 000 μl/h (Re = 3.7, Wi = 9381), respectively. The
time-dependent flow was also three dimensional as manifested by some particles migrating from
the lower wall to the upstream vortex. The yellow streaklines in Figs. 7(i) and 7(j) show evidence
for particle migration from the lower wall towards the corner upstream vortex due to this three
dimensional motion. From flow visualization experiments reported in Figs. 5–7 performed over a
wide range of Re (0.0046 � Re � 3.7) and Wieff (134 � Wieff � 9381), no lip vortex was observed
for any of the solutions, which is consistent with numerical predictions of Alves et al. [32] for a PTT
fluid in a geometry with CR ∼ 4 and a solvent viscosity ratio of β = 1/9. In the present experiments,
the solvent viscosity ratio was much smaller, ranging from 0.0006 to 0.002. The shape of the vortex
in the xanthan gum solutions is triangular, while the vortex looks concave in the PEO solution.

To further analyze the observations from the flow visualization experiments and make compar-
isons at similar flow conditions, the dimensionless vortex length χ = Lv/Wu is plotted as a function
of dimensionless numbers Re and Wieff in Figs. 8(a) and 8(b), respectively.

The data points represent the experimentally measured results, and the lines represent the best
logarithmic fit for xanthan solutions and a second-degree polynomial fit for the PEO solution. From
Fig. 8(a), both xanthan gum solutions exhibit a significant vortex growth over a narrow range of
Re (up to Re ∼ 0.5) compared to the PEO solution; however, this observation is more pronounced
in the case of 0.1 wt% XG solution. The 0.1 wt% XG solution exhibits a more dramatic growth in
vortex size over a narrow range of Wi, distinguishing its behavior from the other two solutions. By
extrapolating the best fit of experimental data, one can conclude that the vortex length in 0.1 wt%
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FIG. 6. Streak images of flow in the channels for 0.1 wt% XG in 1-1 GC at different flow rates. (a)
Q = 400 μl/h, Re = 0.0145, Wieff = 447; (b) Q = 700 μl/h, Re = 0.034, Wieff = 783; (c) Q = 850 μl/h,
Re = 0.0456, Wieff = 951; (d) Q = 1000 μl/h, Re = 0.058, Wieff = 1119; (e) Q = 1500 μl/h, Re = 0.106,
Wieff = 1678; (f) Q = 2000 μl/h, Re = 0.16, Wieff = 2237. The scale bars show 100 μm. The double-sided
arrow in (a) shows the vortex length (Lv). The contraction ratio is 4.675.

XG will only reach a plateau at a much higher range of Re and Wi. In other words, the vortex growth
mechanism in this solution will extend over an extensive range of Re and Wieff . The vortex size
increases more gradually in 0.2 wt% XG solution when Wieff spans between 360 to 3300 and seems
to reach a plateau at higher Weissenberg numbers. The PEO solution demonstrates a very different
behavior; for Re � 0.2 and Wieff � 1500, the vortex size is relatively independent of Re and Wieff

as is shown in Figs. 8(a) and 8(b) and a pronounced vortex growth does not occur until Re > 0.4
and Wieff > 2000. At much higher Re (Re > 1) and Wieff (Wieff > 4000), a time-dependent flow
behavior as manifested by vortex size fluctuations was observed in the microchannels.

Based on the results reported in Fig. 8, there is a clear difference in flow behavior of the xanthan
gum and the PEO solutions. We believe this difference originates from the difference in their
molecular structure and flexibility. The estimated extensibility parameter for PEO was 5000 and
much higher than 33.5 for xanthan gum. Therefore, the PEO molecules are expected to be more
flexible and more resistant to orientation in the flow direction compared to much shorter and less
flexible xanthan gum molecules. In addition, increasing the solvent viscosity in 0.1 wt% XG in 1-1
GC should present more resistance to orientation in the flow direction. More careful experimental
investigation (e.g., by light scattering techniques) and theoretical modeling (e.g., by incorporating
molecular dynamics simulations) are necessary to further explore the involved mechanisms which
is beyond the scope of this work. The instabilities observed in PEO solutions may not solely be due
to the increase in flow rate; they may have to do with the events downstream of the constriction.
Such events include relaxation of polymer molecules in the constriction, changes in polymer chain
orientation in the constriction due to very high shear rates and secondary stretch, and changes in
orientation of the polymer chains in the expansion region as suggested by Rodd et al. [43] and
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FIG. 7. Streak images (a)–(h) of flow in the channel for 1.0 wt% PEO at different flow rates and streaklines
(i, (j) at high flow rates. (a) Q = 500 μl/h, Re = 0.0067, Wieff = 134; (b) Q = 1000 μl/h, Re = 0.0188,
Wieff = 268; (c) Q = 2000 μl/h, Re = 0.053, Wieff = 536.4; (d) Q = 5000 μl/h, Re = 0.2076, Wieff = 1341;
(e) Q = 10 000 μl/h, Re = 0.5812, Wieff = 2680; (f) Q = 15 000 μl/h, Re = 1.06, Wieff = 4020; (g) and (i)
Q = 25 000 μl/h, Re = 2.25, Wieff = 6701; (h) and (j) Q = 35 000 μl/h, Re = 3.7, Wieff = 9387. The scale
bars show 100 μm. The double-sided arrows show the vortex length (Lv). The contraction ratio of channels is
4.31.
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FIG. 8. Dimensionless vortex length as a function of (a) Re and (b) Wieff for 1.0 wt% PEO, 0.2 wt% XG,
and 0.1 wt% XG in 1-1 GC. The lines show a logarithmic trend in the experimental results for the xanthan gum
solutions and a second-degree polynominal for the PEO solution.

Rothstein and McKinley [39]. PEO may also have experienced chain scission due to high shear
rates in the constriction, which further affects flow patterns upstream of the constriction. A recent
study by Raihan et al. [44] on the effect of constriction length on both contraction and expansion
flows of several fluids exhibited that unlike the xanthan gum, the PEO solution showed constriction
length dependent instabilities for the contraction flow.

Moreover, we did not observe any lip vortex or divergent flow, signature features for iner-
tioelastic flow behaviors in the entry flow of viscoelastic fluids. It is possible that due to the
absence of inertia at Re < 1.0, lip vortices and diverging flow were not present in our geometry;
however, more experiments need to be performed over a wider range of fluid concentrations,
flow rates, and contraction ratios before we rule out the possibility of having them in this
geometry.
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From the results reported in Fig. 8, one can conclude that elasticity is central in the formation and
growth of vortices. Our results are comparable to Sousa et al. [23], who investigated a Newtonian
and shear-thinning fluid flow in a square-square microfluidic abrupt contraction/expansion flow over
several contraction ratios (i.e., CR ∼ 2.4, 4, 8, and 12). For the shear-thinning fluid, a corner vortex
was observed independent of the contraction ratio. They observed that by increasing the elasticity
of the flow, the vortex size strongly increased while still at low Re, until an elastic instability
emerged and the flow became time-dependent at De ≈ 200, 300, 70, and 450 for CR = 2.4, 4, 8,
and 12, respectively. In our reported results, the instabilities emerged at Re > 1 and Wieff > 4000
in the PEO solution. Similarly, Haward et al. [21] investigated flow instabilities of polystyrene (PS)
solutions in a similar range of Re (0.07 < Re < 11.2) and Wi (8.7 < Wi < 1562) but over a narrow
range of elasticity numbers (31 < El < 295) compared to our case. They reported flow transitions
spanning between Newtonian-like flow (no corner vortex upstream of the constriction) to unstable
flow at the critical Wi = 150 and unstable flow to vortex growth in the upstream salient corners
at the critical Wi = 400. They showed that transitions between the flow regimes scaled with Wi,
independent of El, revealing the importance of elastic forces compared to inertial effects in all the
fluids they studied. In addition, by combining birefringence analysis with flow measurements, they
estimated the macromolecular strain values in the microchannel constriction. For the Newtonian-like
flow regime (Wi � 150), this strain value was zero but increased with the emergence of the unstable
flow and reached a plateau value at the onset of vortex growth (Wi � 400).

We believe any potential imperfections in the walls of the constriction could not be a reason for
major differences in the flow behavior of the solutions. This argument is supported by observations
of Evans and Walters [3], who reported that in CR ∼ 16 : 1, small changes in the corner geometry,
such as ramped lips and/or uneven reentrant corners or nonvertical walls, can influence the global
flow behavior in Boger fluids but have little effect in shear-thinning fluids.

Moreover, no divergent flow or vortex truncation due to increasing flow rate (or Re) was
observed. In benchmark planar contraction/expansion geometries with 4:1 contraction ratios,
Goertler-like or lip vortices [37,38] are typically observed in shear-thinning fluids for aspect ratios
(h/wc) higher than 20. In our geometry, no Goertler-like or lip vortices were observed and the aspect
ratio was slightly greater than 2.0.

Finally, Figs. 9(a) and 9(b) represent the results for Wieff versus Re and El number versus Wieff ,
respectively, where a vortex with measurable length was observed in each solution. Figure 9(a)
demonstrates the onset of vortex formation and growth is achieved at lower Re and Wieff for 0.1
wt% XG in 1-1 GC compared to the other two solutions and 0.2 wt% XG compared to the PEO
solution. For each solution, we estimated El at Re = 0.03 to be 23 054 for 0.1 wt% XG in 1-1 GC,
19 920 for 0.2 wt% XG, and 11 667 for 1.0 wt% PEO solutions. This reveals that the onset of vortex
formation transitions to lower Re and Wieff as the elasticity of the solutions increase. The trend line
in Fig. 9(b) represents the best fit with El = a Wi−b

eff , where a = 9.34 × 1010 and b = 2.06 for 1.0
wt% PEO solution, a = 5.58 × 109 and b = 1.62 for 0.2 wt% XG solution, and a = 1.44 × 1012

and b = 2.12 for 0.1 wt% XG in 1-1 GC solution. In all three cases, there exists a strong dependence
of El on Wieff . From this figure, in the creeping flow region (Re 
 1.0 or low Wieff ), the elasticity
of 0.1 wt% XG in 1-1 GC is about 10 000 more than 0.2 wt% XG and about 25 000 more than the
PEO solution. As the viscous forces become less important (higher Wieff ), the elasticity numbers
decay gradually to a constant value and become more similar as Wieff → ∞.

We also emphasize that we did not observe any downstream vortices in the range of Re and
Wi studied. Our observations are consistent with Rodd et al. [17], who studied the flow behavior of
weakly elastic PEO solutions in 16:1:16 planar contraction/expansion geometries. They showed that
elasticity is key to generating strong viscoelastic effects, and a similar behavior may not be observed
at the macroscale. For non-Newtonian fluids, they showed that downstream vortices did not form
for Re < 50. In our experiments, the highest achievable Re was about 3.7. The results reported in
Fig. 9 further confirm our interpretations regarding the importance of elasticity in vortex formation
and growth.
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FIG. 9. (a) Wieff vs Re and (b) El vs Wieff for 1.0 wt% PEO, 0.2 wt% XG, and 0.1 wt% XG in 1-1 GC.
The data points represent experimental results where a vortex with measurable length was observed. The trend
lines show the best power-law fit with the experimental data (El = a Wi−b

eff ).

IV. CONCLUDING REMARKS

Despite extensive work in the entry flow of non-Newtonian fluids in abrupt contraction/expansion
geometries, unexplored features and unexplained mechanisms make these flow interesting to further
investigate in various fluids, geometries, and flow kinematics. Besides the type of the fluid, contrac-
tion ratio [45], and aspect ratio [7], different ways of characterizing some fluid properties such
as the relaxation time can result in different interpretations of the flow behavior. In addition, the
competition between shear and extension near the flow reentrance presents additional complications
to the flow behavior that cannot be easily explored in a rheometer. These flow features call for further
investigation to make generalizable conclusions independent of the fluid type or geometry and map
different flow regimes in Wi-Re space more accurately.
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Experiments were performed to compare the flow behavior of several shear-thinning fluids of
xanthan gum and polyethylene oxide with relatively similar shear thinning index spanning from
0.34 to 0.50 in a microfluidic planar contraction/expansion geometry with a nominal contraction
ratio of 4. The geometry differs from those examined previously in the literature. In particular, in
previous studies, the flow has been symmetric about the flow centerline, while in the present work
that line is replaced by a solid boundary. We explored a wide range of Re (0.0046 � Re � 3.7)
and Wieff (134 � Wieff � 9381) for shear-thinning fluids. From flow visualization experiments, we
observed that for the weakly elastic aqueous solutions, vortices form upstream of the constriction
and the vortex length grew by increasing the Re, and Wieff . The onset of vortex formation and growth
shifted to lower Re and Wi by increasing the elasticity and the elasticity number El. This observation
is consistent with Rodd et al. [17] and can be attributed to the importance of the fluid properties
and the characteristic length of the device in vortex formation independent of flow kinematics, or
simply El. We believe the higher extensibility and therefore flexibility of PEO molecules introduces
more resistance to molecular orientation in the flow direction, which may have been the reason to
postpone vortex formation and growth to higher Re and Wieff compared to xanthan gum solutions. It
is noteworthy that the two xanthan gum solutions have similar shear rheology but different El, and
the flow visualization experiments revealed a significant difference between their flow behaviors
around the obstacle in the microchannels. The difference in the vortex size in xanthan gum solutions
shows the importance of solvent viscosity in vortex formation and the higher inherent elasticity of
the solution. In addition, increasing the solvent viscosity in 0.1 wt% XG in 1-1 GC should present
more resistance to orientation in the flow direction.

Moreover, no divergent flow or vortex truncation due to increasing flow rate (or Re) was
observed, which might be due to very low Re used in this study and the creeping nature of
flow. In addition, no Goertler-like or lip vortices were observed in our geometry with the aspect
ratio slightly greater than 2.0. It is noteworthy that Goertler-like or lip vortices were observed in
shear-thinning fluids in benchmark contraction/expansion geometries with 4:1 contraction ratios
when the aspect ratios (h/wc) exceeded 20 [37–39]. We also observed a time-dependent flow in PEO
solutions at relatively high Re and Wi numbers from flow visualization experiments. The mechanism
of time-dependent chaotic flow is not very clear and needs further investigation. Perhaps careful
pressure measurements in different regions of the geometry combined with flow visualization and
particle image velocimetry can shed more light on these observations and more vigorously support
future simulations. Chaotic flow instabilities can offer advantages in different applications such as
micromixing, heat, and mass transfer by employing elastic non-Newtonian fluids [25]. However, to
make the characterization of extensional properties more accurate, it is essential to avoid instabilities
in microrheometry; other industrial applications, including inkjet printing, roll coating, and fiber
spinning, call for minimizing flow instabilities to the extent possible to make optimal products.
Understanding the onset and mechanisms of flow instabilities can shed light on designing more
efficient industrial processes and optimal products and can pave the way to design microrheometric
devices for weakly elastic dilute polymer solutions.
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