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Cavitation bubble dynamics in a shear-thickening fluid
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Cavitation has been extensively studied in Newtonian fluids and to a lesser yet significant
degree in shear-thinning fluids. However, cavitation has not been previously investigated in
shear-thickening fluids, of which a water-cornstarch suspension is perhaps the best-known
example. An interesting property of such fluids is that, when subjected to an increase
in strain rate, their viscosity increases until they exhibit solidlike behavior and can even
fracture. As cavitation bubbles are capable of generating extreme strain rates, they could
be affected by shear-thickening fluid behavior. As visual access is limited by opaque or
non-index-matched particles present in such fluids, an experimental study of nominally
cylindrical spark-induced cavitation bubbles is conducted in a 2 mm gap between two
parallel flat and transparent plates, which allows visualization of the bubbles as they contact
the boundary. They are theoretically studied through the cylindrical Keller-Miksis equation
adapted to a shear-thickening fluid using a Cross model. For volume fractions starting from
φ = 0.44, the limit between continuous and discontinuous shear-thickening regime, cav-
itation bubbles deform increasingly until they are replaced by cavitation-induced fracture
between φ = 0.46 and φ = 0.52. Fracture propagation speeds were found to be in the same
range as fracture speeds previously reported for pressure-driven cavity expansion, albeit for
estimated initial pressures that are now orders of magnitude higher.

DOI: 10.1103/PhysRevFluids.7.023302

I. INTRODUCTION

The properties of shear-thickening fluids make them suitable for a variety of applications involv-
ing strong dynamic events, including personnel protection. There has been considerable research in
the field of liquid body armors, where shear-thickening silica suspensions are generally combined
with Kevlar [1–3] to improve the ballistic penetration resistance of the fabric. In general, when
such a fluid comes under stress, the suspended particles interact, modifying the fluid’s properties.
Although not yet fully understood, the resulting behavior can be classified into three different
regimes of interest depending on the concentration of solid particles present in the suspension and
stress applied to it: continuous shear thickening (CST), discontinuous shear thickening (DST), and
shear jamming (SJ) [4]. The increase in fluid viscosity with increasing strain rate is continuous in
the case of CST and almost discontinuous in the case of DST. SJ is the most extreme region where
the fluid becomes solidlike and is prone to undergoing fracture.
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In the event of a small projectile entering a viscoelastic or shear-thickening fluid, it has been
shown that its speed after impact is reduced in comparison to water, and that the projectile may
cause the fluid to vaporize along its path [5]. That is, cavitation may occur due to a sudden
decrease in pressure or by a sudden increase in temperature. Cavitation has been extensively
studied in Newtonian fluids [6] and has also received a fair amount of attention in non-Newtonian
shear-thinning fluids such as blood [7] and shear-thinning polymer solutions [8,9]. In developing
cavitation-induced jet printing, cavitation in viscoplastic fluids [10], as well as viscoelastic films
[11] have also been studied. Research in viscoelastic fluids [12–15] and solid shells [16–18] have
shown that the general equations of motion for a spherical cavitation bubble can be modified from
a Newtonian fluid to non-Newtonian by constitutive models, such as the Williamson, Kelvin–Voigt,
linear Maxwell, or 4-constant Oldroyd models. Cavitation rheology is, in fact, an emerging field that
has been used for investigating the material properties of biological tissues [19] and soft materials
such as polyacrylamide [20] and poly(vinyl alcohol) hydrogels [21], exploiting cavitation to probe
strain rates not attainable by existing rheometers. In these studies, sparks [e.g., Ref. [22]] or lasers
[e.g., Ref. [23]] are commonly used to generate the cavitation bubbles. However, no study on
cavitation in shear-thickening fluids has yet been reported.

Possibly the best-known shear-thickening fluid is a cornstarch particle suspension in water,
commonly referred to as Oobleck. It has been studied extensively [24–27] and is composed of
readily available materials. As this particular candidate, like most particle suspensions, is optically
opaque, a narrow nominally 2D geometry, inspired by Hele-Shaw cells, can be used to enable
visualization of the movement of the fluid interface. Recently, continuous and discontinuous shear
thickening as well as fracture due to injection of pressurized gas into a shear-thickening fluid has
been investigated in Hele-Shaw cells as a function of a particle suspension’s volume fraction in
cornstarch [24] and glass beads [28] suspensions, where both have investigated the Saffman-Taylor
instability in particle suspensions, capable of producing fracture at high volume fraction.

This work presents experimental and theoretical investigations of cavitation bubbles in a shear-
thickening cornstarch particle suspension in water with varying solids volume fraction. The effects
of the high strain rates produced by cavitation on the resulting dynamics are assessed, and the
different shear-thickening regimes, as well as fracture, are expected to be encountered, depending
on the particle volume fraction. The observed bubble dynamics are contrasted to those one would
observe in a Newtonian fluid to evaluate the effects of shear-dependent viscosity.

II. METHODS

A. Experimental setup

To visualize cavitation in an opaque particle suspension, an experimental setup capable of
producing nominally cylindrical cavitation bubbles in a narrow gap between two parallel plates is
utilized. Figure 1 shows the overall experimental setup and the electrical schematic used to generate
the spark in the center of the fluid-filled gap. The spark deposits a large amount of energy in a small
region resulting in vaporization of the liquid. The generated bubble contains vapor and traces of
noncondensable gases, and it expands until it reaches a maximum size. This maximum size depends
on the fluid properties and the deposited energy. Upon reaching the maximum radius, a collapse
immediately follows due to the pressure difference within the bubble and surrounding fluid, and if
sufficient energy remains after collapse, the bubble rebounds to a smaller maximum radius and the
cycle repeats itself until excess energy is dissipated [6,29].

The test cell consists of two flat plates separated by a 3D printed polylactide spacer ring with
an inner radius of Rcell = 100 mm, outer radius of 110 mm, height of H = 2 mm, and nominal
dimensional uncertainty of 0.1 mm. The ring also has four 0.25 mm wide and 1 mm deep slits to
allow for repeatable positioning of wire electrodes, which cross at the cell’s center and are kept
under constant tension to ensure contact. The spacer ring is glued on top of a 300 × 300 mm
transparent 4 mm thick Plexiglas plate forming a reservoir to contain the fluid. The test cell is
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FIG. 1. Side and top view schematic of the experimental setup. The shaded circle is the test cell with
height H = 2 mm and radius Rcell = 100 mm, where spark-induced nominally cylindrical cavitation bubbles
are studied. Cavitation occurs at the center of the cell where the wire electrodes (red lines of exaggerated
thickness) cross. The RC electrical circuit includes switches, a DC power supply, resistor with resistance R,
and capacitor of capacitance C.

sealed by tightening a second identical Plexiglas plate on top of the ring with bolts and nuts at the
four corners. However, during cavitation, small droplets are occasionally observed ejecting out from
the wire slits. The cavitation bubble is generated within the incompressible fluid surrounded by the
rigid ring. The expansion of the volume due to a 3 mm radius bubble would be accommodated by a
mere 0.1% expansion of the volume, which in a perfectly rigid container would results in a 2.2 MPa
increase in liquid pressure for a 2.2 GPa water bulk modulus. It is more likely that the gap formed
by thin walls expands by ∼2 μm to accommodate the cavity. This increase in gap being considered
small enough, the cell is assumed nominally rigid.

Figure 1 also shows the electrical schematic of an RC circuit, which is similar to that used in a
previous study by Ref. [22]. The circuit enclosed in a “spark-box” consists of an inner loop with
a 3 W, 2 kOhm, ±5% resistor, a 3300 μF, 9.7 A, 350 V, ±20% electrolytic capacitor, 22 AWG
wires, and an electrical switch to fully separate the capacitor from the 200 V, 2 A, 160 W power
supply (Elektro-Automatik). The outer circuit consists of a switch and 14 AWG wires to reduce the
resistance, as this affects the discharge time. The heavier wire is connected at the test cell to the 34
AWG copper wires used as wire electrodes and replaced after each experiment. The typical voltage
at which the capacitor is charged ranges from VDC = 50–80 V, which is found to produce cylindrical
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bubbles of maximum radii within the range Rmax ≈ 3–8 mm. The discharge time constant, τ , can be
computed by using the wire resistance Rw and capacitor capacitance C, τ = RwC ≈ 0.62 ms. Hence,
it is noted that for the smallest bubbles examined, the amount of time to reach their maximum radius
can be shorter than τ , in which case the start of the collapse may be delayed by the spark being still
on. Such bubbles are excluded from our analysis.

The cavitation bubbles are imaged from above the test cell via a high-speed camera (Photron
Fastcam Nova S12) with a resolution of 160 × 256 pixels at 125 kFPS. A photodiode detector
(Thorlabs, DET10A2) with a rise time of 1 ns is connected to an oscilloscope and pointed at
the cell center to trigger the high-speed camera upon the spark ignition. When experiments are
conducted in water, a broadband halogen fiber optic illuminator (Thorlabs, OSL2), located under the
test cell, is used as a backlight to enable bubble shadowgraphy. In opaque cornstarch suspensions,
the backlight is replaced by a flash-lamp (Cordin 605) placed above the test cell and used as a
frontlight. The image data are analyzed by a Matlab script implementing gamma correction, Otsu
edge threshold used for binarization, and Canny edge-detection. The processed results are verified
by superimposing the detected edge on the respective video frames. Subsequently, the bubble’s
nominal radius is extracted by counting the number of pixels contained within the detected edge,
and computing the equivalent circular shape of the same area. This procedure is necessary especially
at higher solids fractions, where the shape of the bubble is not circular. The overall uncertainty on
the computation of the radius is estimated to be two pixels, or 0.22 mm.

The temperature of the fluid is recorded using a thermocouple and found to be T∞ = 20 ± 1◦C.
The local atmospheric pressure is given by the nearby Swiss meteorology weather station and
amounts to p∞ = 1.00 ± 0.03 bar. When investigating repeatability, the maximum bubble radius
is found to have a standard deviation up to 14% of the mean of 14 tests in water, keeping all factors
nominally constant.

B. Fluid characterization

The shear-thickening particle suspensions utilized are composed of cornstarch and deionized
water at solids volume fractions ranging from φ = 0.00 to 0.52 ± 0.01. Water and cornstarch den-
sities based on literature are ρw = 998 kg/m3 and ρc = 1600 kg/m3, respectively, with cornstarch
density verified from measurements and a simple mean field approach of Ref. [26]. Samples are
manufactured by mixing 250 g packs of bulk Maizena cornstarch with the required amount of
deionized water to reach the desired volume fraction. The mean diameter of cornstarch particles,
dp = 9.66 ± 4.50 μm is measured by a particle sizer (Beckman Coulter, Multizer 4e).

While the liquid and solid densities are not matched, Ref. [30] showed that sedimentation can
still be avoided if the cornstarch suspension is stirred properly prior to experiment, and this also
ensures homogeneity of the mixture.

Furthermore, the justification to expect homogeneity of a particle suspension in the neighboring
of a collapsing bubble, capable of inducing extreme accelerating flow, can be verified by calculating
the particle response time, or Stokes time. It is the timescale for particles to follow the accelerating
flow and estimated as τp = d2

p /(3βν), where β is the density ratio between the fluid and particle,
β = 3ρw/(ρw + 2ρc), and ν is the kinematic viscosity of the fluid. The particle response time is
estimated to be between 12 and 94 μs, which is at least an order of magnitude lower than the bubble
dynamics, which correspond to an oscillation period of 400–2800 μs in the cases examined.

The assumption of negligible sedimentation is experimentally confirmed by delaying tests for
more than a few minutes instead of the actual maximum of 40 s from deposition of the continuously
stirred fluid into the test cell to spark ignition. In those cases, sedimentation effects can clearly be
observed, as water moves faster on the top layer than the particle-laden suspension at the bottom of
the test cell, and separation can clearly be seen.

Whether the particles and fluid could segregate due to the acceleration caused by cavitation can
also be considered. However, for 20 μm particles, whose sizes are in the same order of magnitude as
the ones used in the present study, Ref. [31] showed that these should not be significantly accelerated
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FIG. 2. Measured shear viscosity μ and shear stress τ of cornstarch suspensions of four different volume
fractions φ as a function of shear rate γ̇ . The dash-dotted lines represent weight-fitted Cross models (with fit
parameters given in the legend), characterized by the zero and infinite shear rate viscosity, respectively, μ0 and
μ∞, the relaxation time k and a dimensionless power index n. The solid lines are weight-fitted Power laws,
τ ∝ γ̇ α , fitted to the shear-thickening part of the data and whose exponent value indicate the shear-regime of
each mixture. The error bars, hidden by the marker on some points, indicate the standard deviation of the three
tests conducted for each suspension.

at a different rate than the fluid. Similarly, radial segregation that would lead to the fluid becoming
clearer in the immediate boundary of the cavitation bubbles has not been observed in the present
study.

It is worth mentioning that, since this research is not focused on the rheological properties of
cornstarch suspensions per se, a few aspects are neglected to simplify the experiments. The fluid
is not degassed nor sonicated, and the cornstarch is not dried prior to mixing to remove ambient
humidity. It is, however, accounted for by using the average moisture content of cornstarch [32],
ξ = 0.10 ± 0.01. The volume fraction φ is corrected accordingly, such as

φ = (1 − ξ )mc/ρc

(1 − ξ )mc/ρc + mw/ρw + ξmc/ρw
(1 + λ), (1)

where mc is the mass of cornstarch and mw the mass of deionized water. The pore space in cornstarch
that can absorb water when fully submerged, λ is also considered, and its value is 0.3 [33]. These
approximations are common in the literature [26,30], hence they are adopted in the present study as
well.

Figure 2 displays the rheology measurements showing the evolution of the shear viscosity, μ

and shear stress, τ , with varying shear rate, γ̇ , for four cornstarch suspensions of different volume
fractions. Measurements are conducted using an Anton Paar MCR 502 shear rheometer and a 20 mm
plate geometry with a 0.8 mm gap. A 19-points shear sweep rheological measurement is conducted
with the shear rate as a variable and chosen from a logarithmic profile. All four tested samples
show a shear-thickening behavior over the range of shear rates they were subjected to. After a
first shear-thinning phase, they show continuous shear thickening (CST), a continuous increase
in fluid viscosity with increasing strain rate, which may be due to the shear-induced formation
of hydrodynamic clusters [34]. For high enough shear rates, these hydrodynamic clusters start to
locally aggregate, leading to a sudden increase in viscosity. This regime is called discontinuous shear
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thickening (DST) and is not obvious in Fig. 2. Although the limit between these regimes is not easy
to distinguish, by computing α, which is the exponent of the power law τ ∝ γ̇ α fitted to the shear
stress versus strain rate displayed in Fig. 2, it is possible to define a limit between these behaviors.
If α � 2, then the particle suspension will often be referred as discontinuous [4]. However, this
definition can be taken with a grain of salt, especially since there are no clear discontinuous
jumps in the viscosity measurements. Nonetheless, since a value of α = 2.00 has been found for
φ = 0.44 and experiments start showing bubble deformation for these and higher solid’s volume
fractions, it is assumed that DST is encountered. Note that, when increasing volume fractions, the
transition into CST and DST happen for shear rate values which are lower and closer to each other,
up to a critical value φc, where they vanish and the mixture directly undergoes shear jamming
(SJ) [25].

The standard deviations of three different tests conducted for each volume fractions in Fig. 2
indicate that the measurements are consistent, and the data compare favorably to literature [24].
Sedimentation is assumed to not play an important role in this case due to the sample being con-
stantly under shear-stress during experiments. Although it is unclear if cornstarch moisture content
is accounted for in studies by Refs. [25,27], their measurements conducted with a different geometry
show values in the same order of magnitude, albeit still relatively far from ours. The moisture effects
and limitations of the method together with the assumption of negligible sedimentation, might lead
to discrepancies when using the measured rheological data to simulate the viscous term in cavitation
bubble dynamics equations.

For its simplicity and adequate fit to the data in Fig. 2, the Cross model [35] is chosen to describe
the strain rate-dependent viscosity over alternative models such as Sisko, Carreau, and others.
However, it should be noted that a few studies with different viscosity measurement techniques
also report highly non-Cross behavior showing shear thinning at very low and high shear-rates
[25,36], the latter being expected to be relevant for cavitation bubbles. It has been referred to as an
instability and breakdown of local shear-jamming effects, which may originate from the elasticity
of particles at very high shear-rates [37]. The parameters of the Cross model are μ0 and μ∞, which
are, respectively, the zero and infinite shear viscosities, the relaxation time k, and the power index n.
Both viscosities are assumed constant at low and high shear rates, which will impact the modeling,
since cavitation bubbles mostly produce extreme strain rates in the order of 103–108 s−1 [20]. The
relaxation time represents the characteristic time a material takes to relax once the applied rate of
deformation is reduced to zero, and is inversely proportional to the shear rate at which the viscosity
reaches μ∞. The power index represents the slope of the transition from μ0 to μ∞ with increasing
shear rate γ̇ .

While cavitation bubbles produce extensional strain, only the shear-dependent viscosity is
characterized through rheometry measurements. However, the shear viscosity can be transformed
into the extensional viscosity μe via what has been defined as the Trouton ratio, Tr = μe/μ [38].
In the case of a particle suspension under uniaxial flow, it has been shown numerically that the
Trouton ratio for particle suspensions keeps a constant value of Tr = 3, as for a uniaxial flow in a
Newtonian fluid, until the volume fraction approaches the jamming point, beyond which it increases
for frictional particles [39]. This is however still considered an “unexplored area” according to
Ref. [40], with few experimental studies on extensional rheometry in particle suspensions [41].
Furthermore, if a range of strain rates is investigated, it is far from the ones generated by cylindrical
cavitation [42]. In the present study, a constant value is therefore assumed up to solids fraction of
φ = 0.44, which is the limit between the CST and DST regimes. The same value for Tr is assumed
to also hold for φ = 0.46, although it might be underestimated given the proximity to the jamming
point. The radial component of the deviatoric stress tensor τrr can be adapted from a Newtonian fluid
to a shear-thickening one by replacing the constant viscosity by a Cross model’s strain-dependent
viscosity:

τrr = 2μeε̇rr = 6μ∞ε̇rr + 6(μ0 − μ∞)

1 + (kε̇rr )n
ε̇rr . (2)
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This is only dependent on the radial component of the strain-rate tensor ε̇, and the conversion from
shear to extensional viscosity is accounted for by multiplying the Cross model by Tr = 3.

The speed of sound, density, surface tension, and viscous stress tensor are considered for the
water and cornstarch suspension at each volume fractions. The density is simply computed, and
the speed of sound in nondensity matched cornstarch suspensions in water is extrapolated to be
between 1660 and 1757 m/s for volume fractions of, respectively, 0.37 and 0.46, based on the data
of Ref. [26]. The surface tension has also been reported to be slightly lower than that of water for
cornstarch suspensions of mass fraction of w = 0.30 [43]. However, as it is of the same order of
magnitude and its impact on bubble dynamics is negligible due to the dominating inertial effects,
the surface tension of water at 20◦C is used, i.e., σ = 73 mN/m.

III. THEORY

Fortuitously, cylindrical cavitation in a Newtonian fluid has previously been studied, laying a
solid basis for the theoretical aspects of this research. Previous studies of cavitation bubbles in
microfluidic gaps have applied the incompressible cylindrical Rayleigh equation and the accompa-
nying fitted parameter, R∞, symbolizing the distance from the bubble center to the point at which
the fluid does not feel the bubble’s motion anymore due to the compressibility of the fluid [44–46].
A past study of collapsing vortex rings yielded the Rayleigh collapse time adapted to a cylindrical
geometry [47], which reads

Tc = 0.915R0

(
ρ∞

p∞ − pv(T∞)

) 1
2

log

(
R∞
R0

) 1
2

= Tc,spherical log

(
R∞
R0

) 1
2

, (3)

where R0 is the bubble’s maximum radius before the beginning of the collapse, ρ∞ and p∞ are
the homogeneous density and pressure of the medium, respectively, pv(T∞) is the temperature-
dependent vapor pressure in the medium and Tc,spherical is the Rayleigh collapse time defined for
spherical bubbles [48].

The effects of viscosity alone in a continuous shear-thickening fluid can be simulated and
compared to a Newtonian viscous fluid as long as the volume fraction of a particle suspension
is sufficiently far from the shear jamming point, where fracture is expected to occur. The Gilmore
equation [49] in cylindrical coordinates, simplified into the Keller-Miksis equation [50] is used, as
it accounts for compressibility and can be adapted for a shear-thickening fluid. This equation is
considered more appropriate than the simple Rayleigh-Plesset [51] equation, as it accounts for the
change in speed of sound in cornstarch suspensions with regards to water. However, its accuracy
has been reported to be inferior to that of the spherical form due to the cylindrical wave equation
assumption for compressibility [52]. The cylindrical Keller-Miksis equation reads(

1 − Ṙ

c∞

)
RR̈ +

(
1 − Ṙ

3c∞

)
3Ṙ2

4
=

(
1 + Ṙ

c∞

)
H

2
+

(
1 − Ṙ

c∞

)
R

c∞
Ḣ , (4)

where R, Ṙ, and R̈ are the radius, radial velocity, and radial acceleration of the bubble interface. The
speed of sound c∞ and density ρ∞ of the fluid are taken as constants. Here, H and Ḣ are the enthalpy
and first time derivative of the enthalpy of the fluid at the bubble wall, respectively. Enthalpy H is
given by

H = pB(t ) − p∞
ρ∞

= 1

ρ∞

(
pv(T∞) + pg,0

(
R0

R

)2κ

− σ

R
− p∞

)
+ 3

2ρ∞

∫ ∞

R

τrr

r
dr. (5)

The enthalpy consists of the time-dependent pressure at the boundary of the bubble, pB(t ), and
the ambient pressure of the fluid far from the bubble, p∞. More precisely, the boundary term can
be decomposed into a vapor pressure term pv(T∞), which is taken to be a constant computed
from the nominal temperature of the fluid using the Buck equation, the partial pressure of the
noncondensable gas pg,0 at a reference radius R0, the polytropic index of the vapor phase κ , and

023302-7



BOKMAN, SUPPONEN, AND MÄKIHARJU

FIG. 3. Normalized radius-time curves (top) of cylindrical bubbles simulated using the Keller-Miksis
equation [Eq. (4)] for Newtonian fluids of different shear viscosities, μ, and their corresponding strain-rate-time
curves (bottom). The markers show the collapse times according to the chosen definition.

surface tension σ . Note that the viscous term is still in the integral form with respect to the radial
component of the cylindrical coordinate system, r.

IV. RESULTS

A. Simulations

Figure 3 shows the temporal evolution of the normalized bubble radius and the absolute strain
rate computed by numerically solving the Newtonian Keller-Miksis equation. The constant shear
viscosity, noted μ for a Newtonian model, is varied to determine its effect on the bubble dynamics.
Note that the viscosity is always referred to in terms of shear viscosity to ease comparison to rheom-
etry measurements, but it is the strain viscosity which is considered during theoretical simulations.
To initially only asses the impact of the viscosity on the bubble dynamics, all constants are selected
for water at T = 20◦C. The initial conditions for all simulations are Rmax = 5 mm, which is the
typical size obtained during experiments, Ṙ = 0 m/s and pg,0 = 13 Pa. The estimated value for the
initial partial pressure of the noncondensable gas is obtained by numerically fitting the Keller-Miksis
equation to the first rebound of experimentally observed bubbles in water having a maximum radius
close to Rmax = 5 mm. This value is assumed to be similar in the cornstarch suspensions in which
the experiments are conducted in a similar fashion to those in water, but where the rebounds cannot
be visualized. Finally, the time is normalized by the collapse time, Tc, of a simulated 5 mm bubble
in water. The simulations, where the equations are solved utilizing an explicit Runge-Kutta formula
(ode45 in Matlab), show that for an increase in shear viscosity, the collapse time increases as well,
which is in accordance with previous literature and experimental work [e.g., Refs. [53,54]]. In other
words, an increasing viscosity results in a decrease of the collapse speed and in the dampening of the
rebounds until the collapse gets replaced by a monotonically decreasing curve that asymptotically
tends toward the equilibrium radius of the bubble. The equilibrium radius can be computed by

solving the steady state case of Eq. (5) for R: (pv(T∞) + pg,0( R0
R )

2κ

− σ
R − p∞), which yields

R/Rmax = 0.035 for the simulations of Fig. 3. The critical value μ = 3.8 Pa s for which damped
rebounds transition to an asymptotic collapse also depends on these initial conditions. At that
moment, the absolute value of the strain rate shows an absolute maximum value not exceeding

023302-8



CAVITATION BUBBLE DYNAMICS IN A …

FIG. 4. Contours of the collapse time extracted by numerically solving the Keller-Miksis equation [Eq. (4)]
for non-Newtonian fluids as a function of the Cross model [Eq. (2)] parameters: the infinite shear viscosity μ∞,
the relaxation time k and the power index n. The collapse time is normalized to that of a bubble in water, Tc,water.
All other constants are taken for water at T∞ = 20◦C.

104 s−1, while for lower viscosity the strain rates reach up to 105 s−1. However, these simulated
values depend on Rmax. It is worth noting that for μ = 0.4 Pa s, the integration results in an
oscillating strain rate even after the bubble has reached its equilibrium radius, meaning that the
simulation is simply integrating around it.

The round markers in Fig. 3 depict the instants chosen in this study as the collapse times
based on the arbitrary criteria that bubble has collapsed to within 0.11 mm from the equilibrium
radius. Such a definition is needed particularly in the case of an asymptotic collapse, to avoid
having nonexplicit collapse times. The chosen limit corresponds to the size of a single pixel in our
experimental images, below which the image analysis script would not be able to assess variations
in the bubble radius evolution. Now that the range of typical strain rates in a Newtonian fluid have
been identified, the bubble collapse time one could expect in a shear-thickening fluid is explored
through a parameter study. Figure 4 displays contours of the simulated collapse times, according
to our previous definition, by numerically solving the Keller-Miksis equation. The viscous term is
expressed through the Cross model, and the effects of μ∞, k, and n from Eq. (2) are examined. The
zero shear viscosity μ0, density ρ∞, speed of sound c∞, surface tension σ , the isentropic coefficient
κ , and partial pressure of the vapor phase pv(T∞) are all set to the value of water and water vapor at
T∞ = 20◦C.

The results indicate that for the typical strain rates encountered in Fig. 3, a higher μ∞, which
translates into a higher difference between the zero and infinite shear viscosities, yields a higher
collapse time. Similar results have also been found in numerical research on general non-Newtonian
fluids such as polymer melts using a power-law model instead of a Cross model [54,55]. For high
relaxation times, k, the fluid finds itself within the μ∞ regime most of the time, as the shear rates
required to reach μ∞ correspond to the ones expected from any cavitation events, and can thus be
compared to a viscous Newtonian fluid with a constant viscosity of μ∞. The simulated collapse
times are also close to that of a cavitation bubble in water for μ∞ < 3 × 10−2 Pa s. However, for
low relaxation times, this limit gets slightly shifted to higher μ∞, as the shear rates required to reach
μ∞ in these cases are so high that they are almost never achieved within the simulated conditions.

Contours for three different power indices, n = 1, 2, and 5, are also compared. An increase in
the exponent beyond n = 5 did not yield any appreciable differences. The effect of n on the collapse
time appears to become more significant as μ∞ increases and k decreases, but overall, its role can
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FIG. 5. Side view of a cylindrical cavitation bubble at (a) the moment it reaches its maximum volume,
while displaying its shape adopted during expansion, (b) the moment the bubble interface transition from its
expansion shape to its collapse shape, and (c) the moment it collapses showing its collapse shape. The “outer”
and “inner” radii are displayed on the left and right side of the bubble, respectively. The “outer” radius in panel
(b) slightly overshoots the one in panel (a) due to the transition in interface shape.

be considered to be of secondary importance to viscosity as its impact is highly dependent on both
parameters.

B. Experiments

1. Visualizations

Visualizations of the growth and collapse of cylindrical cavitation bubbles in water and corn-
starch suspensions of different volume fractions are shown in Fig. 6. In water, apparent “inner” and
“outer” radii of the bubble can be observed, as shown in Figs. 5 and 6(a). This is caused by the
bending of the interface of the cylindrical bubble in the viewing direction. The bubble’s interface is
bent outwards during expansion and inwards during collapse as displayed in, respectively, Figs. 5(a)
and 5(c). Figure 5(b) shows the transition, which causes to observed “outer” radius of the bubble
to slightly exceed the value taken at the middle of the oscillation period, which corresponds to
the maximum radius as defined by theoretical cylindrical bubble dynamics. The overshoot being

FIG. 6. Selected frames from 125 kFPS visualizations of nominally cylindrical spark-induced bubbles in
(a) water, and in cornstarch suspensions of volume fractions (b) φ = 0.37, (c) φ = 0.44, (d) φ = 0.46, and (e)
φ = 0.52. Every sequence shows instants t = 0.32, 0.80, 1.28, 1.60, 1.92, 2.24, and 2.32 ms, with t = 0 ms
defined as spark ignition. The brightness of all frames has been increased.
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of a few tens of micrometers, which is still below the measurement uncertainty of 0.22 mm, it is
neglected.

The bubble remains almost perfectly circular throughout its growth until the beginning of its
collapse, as seen in the third frame of Fig. 6(a), where the interface transitions from being bent
outwards to inwards. During the bubble’s collapse phase, the distance between the “inner” and
“outer” radius reduces. A dark gray halo can be observed around the bubble boundary in the fifth
frame. This is likely due to the friction against the Plexiglas plate where traces of noncondensable
gas are mixed with the surrounding fluid. The bubble interface is slightly perturbed by remnants of
broken wire. However their influence on the overall bubble dynamics is considered negligible, as
it is not apparent during the first collapse and chaotic rebound phases that follow after the seventh
frame. This can also be verified by comparing data in water to theory. The cavitation bubbles in
Figs. 6(b)–6(e) have been generated in the shear-thickening cornstarch suspensions. In these images,
only the “outer” radius is apparent, which has been verified by comparing values between water and
a low volume fraction cornstarch suspension with frontlight illumination. The bubbles appear dark
against the light background of the more reflective cornstarch mixture.

The presence of cornstarch particles burnt by the spark during bubble expansion and pushed
against the Plexiglas wall and bubble boundary also contribute to darkening the cavity and are
visible after collapse. Up to φ = 0.37, the small amount of darker particles remains dispersed and
is only mixed with the fluid during collapse and scattered by the flow inversion during the rebound,
as shown in Fig. 6(b). However, for cornstarch suspensions with higher volume fractions, such
as those in Figs. 6(c)–(e), the particles aggregate in a thin, yet compact layer of burnt cornstarch
that remains adjacent (but not adhered) to the Plexiglas wall after collapse. This phenomenon has
become the main challenge of this study, as it obstructs vision of the collapse in higher solids fraction
suspensions.

In Fig. 6 (see also the corresponding videos in Supplemental Material [56]), one sees broken
pieces of wire of radius smaller than 150 μm as bright spots ejected from the bubble center. They
are considered to have no noticeable effect on the bubble dynamics and act as markers that can
be seen under the layer of burnt cornstarch and, when visible in subsequent frames, they provide
information on the direction of the flow.

The bubbles generally keep their cylindrical shape up to φ = 0.44, which is the volume fraction
limit beyond which the transition from CST to DST of the fluid behavior is expected to occur.
The bubbles become clearly deformed in the suspension with φ = 0.46, and two spikes following
the horizontal electrode wire are observed. Finally, at φ = 0.52, above which success rate of spark
ignition drops drastically, no more bubble dynamics can be observed. Rather, the fluid behaves like
a solid and fractures appear. The fracture branches visible in such experiments are long compared to
their width, and typically 6 to 11 branches are observed. However, one cannot exclude the possible
existence of invisible branches that are too small to be detected or have not breached to the surface
against the transparent plate.

These results can be compared to those reported previously in Hele-Shaw cells [24,57]. However,
one must keep in mind that they are built on Stokes flow theory assuming that inertial forces are
negligible compared to viscous forces, and is not valid in the present study. This is confirmed
numerically by computing the Reynolds (Re) and Capillary (Ca) numbers corresponding to the
simulations in Figs. 7(b)–7(e), as recording the bubble wall speed is hindered during the collapse
by the presence of burnt cornstarch. Their maximum values are presented in Table I. Also, viscous
fingering, reported in past studies, is never witnessed in our experiments, confirming that the inertial
forces are dominant during cavitation events. However, the loss of radial symmetry in Fig. 6(d)
shows that the viscous forces start to counteract the inertial forces before producing actual fracture,
where Re ≈ O(101).

The fracture patterns observed here are also wider than reported in the previous studies, which
induced the fracture by injection of pressurized gas. For example, Ref. [24] observed a similar
number of branches as seen in the present study. However, in the gas injection inducing fractures,
the branches could also bifurcate as they grew and propagated further away from the center of
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FIG. 7. (a) Normalized radius-time curves of cylindrical cavitation bubbles in water and cornstarch sus-
pensions of increasing volume fraction, φ, visible in Fig. 6. The gray region depicts the growth phase. Rmax

ranges between 6.2 and 6.75 mm. The experimental data are compared to the Keller-Miksis equation, where
the viscous term is modeled by a Cross model for (b) water and (c) φ = 0.37, (d) φ = 0.44, and (e) φ = 0.46
cornstarch suspensions. The density and speed of sound are set accordingly to each fluid’s volume fraction
based on data by Ref. [26]. The errorbars show the normalized measurement uncertainty of 0.22 mm, and to
improve readability, only 1 recorded data point in 12 is shown.

the applied pressure. Bifurcation of the branches was never observed with the cavitation-induced
fracture. Further analysis on the fracturing phenomena is provided in Sec. IV B 3.

2. Comparison with theory

Figure 7(a) compares the measured radius-time curves at various solids fractions corresponding
to the bubbles shown in Fig. 6. The radii have been normalized to their maximum “outer” radius, and
the times to the simulated collapse time of a bubble of similar maximum radius in water, Tosc,water.
Note that to obtain a bubble of comparable size as in lower volume fractions (Rmax ranges between
6.45 and 6.75 mm for φ = 0.44–0.37) the capacitor voltage (hence total discharged energy) had
to be increased from 70V to 80V for the φ = 0.46 mixture (Rmax = 6.2 mm) to compensate for
the shear-thickening effects. The oscillation period in the φ = 0.37 cornstarch suspension is similar
to the one in water. During the growth phase (gray-shaded region), the extracted bubble radius is
overestimated due to the brightness of the spark, but this phase is in any case not considered in
our analysis. The radii measured in the φ = 0.44 and φ = 0.46 cornstarch suspensions are highly
affected by the presence of burnt cornstarch which obscured the true radius during the later half of
collapse. Nonetheless, while the minimum radius was not observable in these cases, the data show
the oscillation period through stabilization and a small rebound. Overall, the experiments agree
with the theory quite well in the early collapse stage, but comparison of the collapse and potential
rebound to the Keller-Miksis equation is limited. Despite the limitations of the experiment, it is clear

TABLE I. Maximum Reynolds and Capillary numbers resulting from the numerical simulations of the four
main volume fractions, as seen in Figs. 7(b)–7(e).

φ 0.00 0.37 0.44 0.46

Re 3 × 105 5 × 102 7 × 101 1 × 101

Ca 9 × 103 2 × 103 3 × 102 6 × 100
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FIG. 8. The measured oscillation period of spark-induced cylindrical cavitation bubbles in water and
cornstarch suspension of different volume fraction, φ, for different maximum radii (corresponding to varying
spark energies). Curves show the cylindrical [Eq. (3)] and spherical Rayleigh collapse time equations, doubled
to be comparable to Tosc. The highlighted region shows the numerically simulated boundaries of the oscillation
period using the Keller-Miksis equation for cornstarch suspensions of φ = 0.00 and φ = 0.46. Note: The
uncertainty in Tosc is smaller than the marker, while the uncertainty on Rmax is estimated to 0.22 mm and is not
shown to improve readability.

that the bubble’s oscillation period is longer in mixtures than in water, which is in agreement with
the simulations.

In Figs. 7(b)–7(e), the Keller-Miksis equation is compared with the experimental collapse and
rebound phases. For bubbles in water, the measurement and theory are in satisfactory agreement up
to the end of the first oscillation, beyond which the bubble loses its cylindrical shape and is strongly
affected by the gap boundaries.

As the solid volume fraction increases, the agreement with theory deteriorates, and instead for
φ = 0.37 the theory predicts a longer collapse time compared to the experiments. Uncertainty on
the exact instant of the start of the bubble collapse may have contributed to this mismatch, as the
bubbles in cornstarch usually stay in the range of the maximum radius, given the experimental
uncertainty, for about 20% of the oscillation time. It could also be that the recorded “outer” radius
during collapse is underestimated due to opaqueness of the medium. The simulated rebound is,
however, predicted to be larger than that in water due to the higher speed of sound in this mixture
while being only weakly damped by viscosity.

Figure 8 shows the duration of the first oscillation period, Tosc, for various bubble sizes in
water and cornstarch suspensions of different volume fractions. Clearly for suspensions exceeding
φ = 0.37 the oscillation time increases compared to water. The increased viscosity is not the only
factor causing such prolongation, but also the increase in density of the mixture, while the speed of
sound’s contributions are minor in the first bubble oscillation. This explains why the Cross model
parameter values shown in Fig. 2, when used in the numerical simulations of Fig. 4, suggest shorter
collapse times than the experiments for φ = 0.44 and φ = 0.46. The shaded region of Fig. 8 depicts
the oscillation periods simulated through the Keller-Miksis equation and bounded by water and
a φ = 0.46 cornstarch suspension (lower and upper lines, respectively). To be comparable to the
oscillation period, the collapse time Tc is doubled assuming symmetrical growth and collapse. All
measured oscillation times for φ = 0.46 exceed the simulated predictions, which gives a reason to
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FIG. 9. Time series of the cavitation-induced fracture in a cornstarch suspension of φ = 0.52. The inter-
frame time is 80 μs with the first frame occurring 160 μs after spark ignition.

question the validity of the rheometry measurements and of the Cross model at very high shear
rates, or the definition of the experimental oscillation period. Indeed, as noted previously when the
shear is increased, a shear-thinning phase may follow shear thickening, which would not be well
represented by the Cross model. Additionally, friction with the Plexiglass plates possibly increased
by presence of burned cornstarch particles in contact with the Plexiglas plates may be delaying the
collapse. Note that although slippage of the shear-thickening mixtures against the parallel plates
[58] has not been clearly distinguished from the bubble dynamics, its influence can currently not be
excluded.

One also notices that the Keller-Miksis integration expects a linear relationship between maxi-
mum radius and oscillation period, as for spherical bubbles. However, the oscillation period based
on the cylindrical Rayleigh collapse time, Tc, as expressed in Eq. (3) and shown by the solid line
in Fig. 8, has a better agreement with the measurements. As this incompressible equation does not
account for viscosity, it is only fitted to data of cavitation in water and the fit to the measurements
yields a R∞. This fitted value is within 2% of Rcell, which might be telling on the effects of
confinement on bubble dynamics. However, the confinement effect has not been investigated further
in the scope of this research.

The Rayleigh collapse time equation for spherical bubbles has also been plotted in Fig. 8 (dash-
dotted line). One might expect the bubbles near 1-mm radius to be closer to it, since Rmax = 1 mm
is the limit for a spherical bubble to exist within the 2-mm gap. This, however, is not the case for
the few tests that were conclusive in this range, which could be explained by the prolongation of
the oscillation time due to the proximity of solid boundaries [59]. Note that reflection of spark-
induced shock waves against the test-cell boundaries are considered to have a negligible effect
on bubble dynamics. This is due to the fact that cylindrical propagation attenuates the pressure
wave’s peak pressure over the traveled distance, which is approximately 18 cm to come back to
the bubble interface during experiments [60]. The interaction with the two parallel plates induces
further reflection, leading to interaction between reflected shocks, which contribute to weakening
the overall pressure transient. Furthermore, granular suspensions have proven to be efficient means
for shock wave attenuation, due to their interaction with solid particles [61].

3. Fracture patterns

Figure 6(e) shows cavitation-induced fracture in a φ = 0.52 volume fraction cornstarch suspen-
sion, where rapidly growing dynamic jamming fronts are created by cornstarch particles interaction
in the fluid [4]. It is henceforth referred to as a fracture pattern with branches, as no bubble dynamics
are exhibited in this case. In contrast to the finite expansion time of a cavitation bubble, the event of
fracturing occurs in the first instants of the process, while the spark continues to deposit energy into
the system.

A better view on the fracturing is shown in Fig. 9, where the illumination has been lowered
during the spark’s presence to avoid saturation that would hide the actual fracture branches.
Figures 10(a)–10(c) show different fracture patterns visible at the discontinuation instant of the
spark. This corresponds to the maximum size of the pattern before the relaxation of the fluid, which
results in a partial “healing” of the fractures. This final event only lasts a few milliseconds, which is
in the same order of magnitude as the relaxation time, k found in Fig. 2 for φ = 0.52. Higher spark
voltages result in a larger fracture patterns, which, however, remain consistent in shape.
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FIG. 10. Mean fracture speed (top) and aspect ratio (bottom) of cavitation-induced fracture in a shear-
thickening fluid (cornstarch suspension of φ = 0.52) for different maximum radii Rmax. The color of the
symbols indicates the estimated initial gas pressure generated by the spark, and the dash-dotted line shows
the mean value for the aspect ratio. Images of different fracture patterns for a capacitor charged at (a) 60 V and
showing the wire electrodes, (b) 70 V, and (c) 90 V, are visible, as well as (d) image showing the equivalent
circular area computed from the dark pixels of the fracture shape in image (b). The circle shows the maximum
radius, Rmax. The uncertainty on v and A are indicated by error bars sometimes hidden by their marker. They
are computed from a 95% confidence interval Monte Carlo simulation, using the usual 0.22 mm inaccuracy on
distances such as Rmax and Pdark and 40 μs on time.

Figure 10 shows fracture quantities extracted from the visualizations in a φ = 0.52 volume
fraction cornstarch suspension where the input energy is varied through the spark voltage. Results
may be compared to literature where similar fractures are observed as a consequence of injecting
pressurized gas into a cornstarch suspension [24]. To enable a comparison, the initial pressure gen-
erated by the spark, pi = pv(T∞) + pg,0, where the vapor term is assumed constant and negligible,
is estimated by finding the initial partial pressure of the noncondensable gas, pg,0, necessary for
the Keller-Miksis equation to reach the mean maximum radius of all tests conducted at a specific
capacitor voltage in water. As initial conditions, the computation uses R0 = 0.15 mm estimated
as the initial radius of the plasma generated by the wire electrodes of this same diameter, and
Ṙ0 = 0 m/s. The resulting initial pressures range between 100 and 500 bar with capacitor voltages
ranging between 60 and 90 V (corresponding to discharge energies of E = ∫

u(t )i(t )dt ≈ U 2C
= 11.9–26.7 J) and are displayed as a color scale in Fig. 10. The pressures encountered in this
research are 1 to 2 orders of magnitude higher than in literature, however the energy input from
simple pressure times volume change estimate in Ref. [24] is of the same order of magnitude up to
≈ 6 J.

The fracture speed is deduced by recording the time it takes for the first fracture branch to reach a
circle of 4 mm radius, centered on the point where the spark ignites. By choosing such an arbitrary
value, one expects higher speeds for higher input energies, as the fracture pattern is bigger. Yet,
in general, the data in Fig. 10 show that the fracture speed in such a cornstarch suspension is in
the range v = 10-20 m/s, which is in the same order of magnitude as reported in literature, using
a similar approach [24]. This last point interestingly suggests that although initial pressures are
estimated to be much higher, the fracture speed seems to converge to a maximum value. Also note
that the mean fracture speed is comparable to the mean expansion speed of cavitation bubbles in
water from ignition to reaching a 4 mm radius.

023302-15



BOKMAN, SUPPONEN, AND MÄKIHARJU

Finally, the aspect ratio, A, is a dimensionless parameter quantifying the ratio of the mean spacing
between branches to the maximum radius of the circular area shown in Fig. 10(d), computed as

A = 2πRmax − Pdark

2πRmaxNbranch
, (6)

where Rmax is deduced from the area of the fracture pattern as an equivalent radius at the discon-
tinuation instant of the spark, Pdark is the circular perimeter passing over dark fracture branches
computed by counting the number of dark pixels on a 1-pixel-wide ring of inner radius Rmax, and
Nbranch is the number of branches having reached Rmax. This number gives indication on the shape
of the fractures: close to zero, the branches are very thick and short while close to 1/Nbranch, they are
very thin and long. As could be expected for tests conducted in a similar cornstarch suspension, the
aspect ratio stays constant through out the test with a mean value of 0.1 ± 0.02, as shown in Fig. 10.
In most of the tests, slightly larger fractures are visible along the wire electrodes shown in black in
Fig. 10(a), which suggests the wires to act as a weakness favorable for propagation. Also note that
fracture patterns in the present study are relatively wide compared to Ref. [24], where the reported
fractures were slim and typical for brittle materials.

V. CONCLUSIONS

A theoretical and experimental investigation of cavitation in a shear-thickening fluid is presented
for the first time. The theoretical simulations are based on the relatively simple Keller-Miksis-Cross
model adapted to shear-thickening fluids and reveal the properties expected from such a fluid to
show actual shear-thickening viscous effects, distinguishable from an inviscid or Newtonian viscous
fluid. A minimum infinite shear viscosity of 3 × 10−2 Pa s is necessary to start distinguishing the
collapse time from the inviscid one. Up to an infinite shear viscosity of 4 Pa s, the collapse time only
increases to 10% of the inviscid collapse time. However, the relaxation time drastically increases
this value when reduced below 10−3 s. The simulations also reveal damped dynamics and higher
collapse times for increasing fluid viscosity. Overall, although the Cross model fits the rheometry
data reasonably well, better models might be deduced by probing higher shear rates.

From the experiments, the bubble oscillation period could be measured and compared to that
predicted from theory. Only for solids fraction above φ = 0.37 does the oscillation period begin to
noticeably deviate from theory in water, although this is more likely due to increased shear viscosity
and density of the particle suspensions rather than their shear-thickening nature. Shear-thickening
effects on the observed bubble shapes appear to become important only in the discontinuous
shear-thickening regime, starting from φ = 0.44, where the bubbles are increasingly distorted
and eventually show cavitation-induced fracture starting at solids fractions between φ = 0.46 and
φ = 0.52. This behavior is similar to recently reported fracturing in a shear-thickening fluid by a
sudden introduction of compressed gas [24], where fracture propagation speeds are between 10 and
20 m/s.

The observed discrepancy of the oscillation periods between experiments and theory might be
caused by unaccounted wall effects in the cylindrical cavitation bubble dynamics equations. The
uncertainty associated with the extrapolation of the rheometry data to constant infinite shear vis-
cosity may also contribute to the discrepancy, making the Cross model invalid for this purpose. For
similar cornstarch water suspensions, utilizing different rheometer techniques, very non-Cross like
shear-thinning, -thickening, and -thinning again behavior as a function of monotonically increasing
shear rate has been reported [25,36]. Presently, rheometers capable of covering shear rates up to
106, way higher than for commercially available rheometry approaches, have been reported [62,63],
which might help in overcoming the uncertainty related to high shear rate rheometry. However, as
they often rely on very small gaps in parallel plate geometries, they will be limited by the particle
sizes in suspensions and this is where cavitation rheology may offer a useful additional method for
characterizing such complex fluids. Study of the viscosity of opaque shear-thickening fluids could
be achieved by improving current theoretical models for cylindrical cavitation bubble dynamics, and
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improving the experimental setup used in this study. The use of a shorter spark duration and increase
of voltage, or use of a laser in optically transparent fluids to mitigate burning of the particles could
potentially reduce the measurement uncertainty.

Further study could benefit from tests in a clear particle suspension such as fumed silica particles
in polyethylene glycol [64]. This would improve the extraction of quantities such as the time at
which the bubble radius extracted from experiments diverges from theory, which appears to happen
earlier with increasing φ. In general, a wider variety of particle suspensions could be examined
to enable observing more significant differences between shear-thickening and Newtonian viscous
effects on the oscillation period.
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