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Rayleigh-Bénard convection in a rectangular enclosure of aspect ratio 2:1 filled by a
class of nonlinear viscoelastic fluids represented by the Phan-Thien–Tanner (PTT) consti-
tutive equation is investigated numerically. Governing equations are discretized by finite-
difference methods in space and time. The momentum and PTT constitutive equations
are written in a quasilinear formulation. Quasilinear terms are treated with the high-order
upwind central (HOUC) method and velocity-pressure coupling is handled through the
projection method. The developed model is validated for Oldroyd-B types of working
fluids. The onset of time-dependent convection is observed and the critical Rayleigh
number is determined for PTT types of fluids. The time-dependent flow pattern transition
is investigated and explained. A transition from time-dependent flow to steady-state flow
is observed at a higher Rayleigh number and the corresponding critical Rayleigh number
is computed. The effect of the rheological parameters on heat transfer is investigated.
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I. INTRODUCTION

Pattern selection at the startup of Rayleigh-Bénard convection (RBC) with Newtonian fluids has
been studied extensively numerically and experimentally. However, RBC studies with viscoelastic
fluids are few compared to RBC investigations with Newtonian fluids. Thus, there is a need
for further in-depth investigations of the RBC with nonlinear viscoelastic fluids as applications
both present and emerging abound in industry and nature. Some examples are chemical and
manufacturing processes and convection in the Earth’s mantle. Several aspects of this physical
phenomenon are still not yet elucidated. RBC is complicated enough by its very nature without
additional difficulties introduced by the nonlinear constitutive construct of the viscoelastic fluid
with additional material parameters such as relaxation and retardation times as well as the degree
of elasticity embedded in the fluid. Given the compounded difficulties, a numerical approach is best
suited to tackle this problem. A major difficulty in numerical simulations of the flow of viscoelastic
fluids is the instability caused by the increasing inertia and elasticity of the fluid independently
of the discretization chosen, called in the literature the high Weissenberg number problem. Linear
stability analysis predicts the critical Rayleigh number at which thermal convection starts whereas
the magnitude of the convection amplitude is determined by the nonlinear stability analysis [1].
Linear and nonlinear stability analyses in the literature provide evidence that many parameters have
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a huge impact on the critical Rayleigh number and convection flow pattern. The earliest linear and
nonlinear stability analyses of the RBC with Newtonian fluids were conducted by Chandrasekhar [2]
and Malkus and Veronis [3]. The first linear stability analysis for RBC with viscoelastic fluids
was published in 1968 by Green [4], who used an upper convected Maxwell model with a single
relaxation time to characterize the fluid and to describe the onset of convection in a thin fluid layer
heated from below to establish the conditions under which an oscillating convection instability may
appear. This was followed by Vest and Arpaci [5] and Sokolov and Tanner [6], who expanded the
investigation of this intriguing phenomenon to the oscillating mode of instability which appears
when the ratio of viscoelastic relaxation time to thermal relaxation time is high with the thermal
relaxation time defined by d2/κ , where d is the thickness of the viscoelastic fluid layer and κ is the
thermal diffusivity.

Nonlinear stability analysis of the RBC with viscoelastic fluids has been a focus of attention by
several investigators in the following decades, some of them of quite recent memory: Eltayeb [7],
Rosenblat [8], Renardy and Renardy [9], Martinez-Mardones and Perez-Garcia [10,11], Park and
Lee [12,13], Park and Ryu [14], Park and Park [15], and Park [16]. In their contributions, the rela-
tionship between viscoelastic parameters and the critical Rayleigh number reflecting the flow mode
instability that is the flow pattern transition from stationary convection to oscillating convection was
further investigated in depth and illustrated. Relatively more sophisticated viscoelastic constitutive
models were used in these studies as compared to the basic upper-convected Maxwell model used
much earlier in the pioneering work of Green [4]. The heating and cooling boundary conditions used
ranged from the rigid-free condition with a free surface to the rigid-rigid (solid wall) condition. Most
of the research works outlined above focused on periodic boundary conditions and/or an infinite
plane, which can be approximated by a one-dimensional instability analysis. This treatment also
limits the application of the stability analysis as the boundary conditions have a significant effect
on the flow and heat transfer in the Rayleigh-Bénard convection. The first linear and nonlinear
instability analysis of the Rayleigh-Bénard convection with viscoelastic fluids in an enclosed cavity
with an aspect ratio (A) different than one (A ∈ [1, 10]) was conducted by Park and Ryu [14]. They
used a Chebyshev pseudospectral method coupled with a general viscoelastic constitutive model
which encompasses Maxwell, Oldroyd, and Phan-Thien–Tanner (PTT) models. The effects of the
Weissenberg number We and β (ratio of solvent viscosity μs to total viscosity μ0 = μs + μp, where
μp is the molecular viscosity at zero shear rate) on the critical Rayleigh number for convection
startup as well as convection cell structure and formation with different aspect ratios were studied.
Park and Ryu [14] also investigated flow pattern selection mechanisms at different We and β,
with aspect ratios A = 2.0 and 6.0. They determine that the critical Rayleigh number decreases as
the Weissenberg number We increases and/or β decreases. Flow pattern selection is also strongly
dependent on the parameters We and β. The stability exchange criteria derived are only valid when
a new flow pattern grows monotonically without oscillation [13]. If the flow pattern grows with
oscillation, the instability is called overstability. As We increases and/or β decreases, the startup
convection flow pattern will be in the overstability mode, otherwise the convection will be steady,
as demonstrated by Park and Ryu [1]. Park and Park [15] and Park [16] also numerically simulated
the Rayleigh-Bénard convection with a PTT model to shows that the time period of local vorticity
intensity is almost two times larger than that of local momentum with growing values of β.

To our knowledge, the way the flow pattern transition happens from time-periodic reversal
convection to the next flow pattern (turbulence or other) needs to be numerically and experimentally
investigated. In this paper, a direct numerical simulation model with a quasilinear treatment of the
convective terms in the momentum equation and a viscoelastic constitutive equation representing
a class of nonlinearly viscoelastic fluids are employed to solve the Rayleigh-Bénard problem.
The Phan-Thien–Tanner constitutive model is singled out of this class. It has two more material
parameters than the Oldroyd-B constitutive model, ε and ξ . The former material parameter ε is
linked to the elongational behavior of the nonlinearly viscoelastic fluid, and the latter material
parameter ξ is related to the slip behavior between long molecular chains in the solvent and the
solvent itself. The effect of material parameters ε, ξ , β and the parameter We on the flow structure
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FIG. 1. Computational configuration of aspect ratio A = 2.

and heat transfer were examined in the paper when the startup convection flow pattern is in the
overstability region. We introduce a second critical Rayleigh number, which describes the transition
of the flow pattern from time-periodic oscillating flow to steady flow and investigate the influence
of the material parameters on this second critical Rayleigh number.

II. COMPUTATIONAL MODEL

The Rayleigh-Bénard convection is simulated in a 2:1 cavity filled with a nonlinear viscoelastic
fluid (Fig. 1). In the Cartesian coordinate system, x is the horizontal direction perpendicular to g
(gravity), and y denotes the vertical direction parallel to g. A temperature difference �T = (T2 − T1)
is imposed between two horizontal walls with T2 > T1 representing the temperatures on the lower
and upper walls, respectively. Vertical walls are adiabatic. Adopting the incompressible Boussinesq
approximation, the governing field equations read as follows:.

∇ · u = 0, (1)

ρ0

(
∂u
∂t

+ (u · ∇)

)
u = −∇p + ∇ · σ − ρ0[1 − α(T − T0)]ge j, (2)

∂T

∂t
+ (u · ∇)T = k

ρ0Cp
�T + 2μsD : ∇u + τ p : ∇u, (3)

where u = (u1, u2) stands for the velocity vector in the two-dimensional (2D) flow field with u1 and
u2 representing the velocity components in the x and y directions, respectively. p, T , g, ρ0, k, and
Cp stand for the pressure, the temperature, the gravitational acceleration, the liquid density at the
temperature T0 = T2+T1

2 , the thermal conductivity, and the specific heat, respectively. e j is the unit
vector in the vertical direction and the α stands for the coefficient of heat expansion. The last term
of Eq. (2) represents the Oberbeck-Boussinesq approximation. The second and third terms on the
right-hand side (RHS) of Eq. (3) are the viscous dissipation and elastic dissipation terms leading to
the temperature rise in the flow. Their importance in RBC flow will be discussed. The total stress σ is
the sum of the contributions from the Newtonian solvent τs and from the embedded polymeric long
chain molecules τ p, respectively, σ = τs + τ p. The solvent contribution τs = μsD is well known,
where D = 1

2 (∇u + ∇uT ) is the rate of deformation tensor and μs is the solvent viscosity. The
polymeric contribution to the total stress, τ p, is the molecular contributed extra-stress tensor given
by the nonlinear viscoelastic constitutive equation. τ p is governed by the PTT constitutive model,

∇
τ p = ∂τ p

∂t
+ (u · ∇)τ p − ∇uT · τ p − τ p · ∇u, (4)

∇
τ p = −1

λ
τ p + 2

μp

λ
D + a

[
− ε

μp
tr(τ p)τ p − ξ (Dτ p + τ pD)

]
, (5)
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where λ is the relaxation time, and μp is the polymer viscosity at zero shear rate.
The following scale factors are introduced to nondimensionalize the governing field equations,

x∗ = x

H
, t∗ = t

Uc

H
, u∗ = u

Uc
, T ∗ = T − T0

T2 − T1
, p∗ = p

ρ0U 2
c

, and τ∗
p = τ p

ρU 2
c

,

with H the cavity height, T0 = T2+T1
2 , and the reference velocity Uc = κ

H

√
Ra. Here, Ra is the

Rayleigh number defined as

Ra = αg�T H3

νκ
, (6)

where κ = k
ρ0Cp

is the thermal diffusivity and ν is the kinematic viscosity of the working fluid. In
order to simplify the notation, hereafter we drop the asterisk (∗) from all the dimensionless variables.
The dimensionless governing equations are then written as

∇ · u = 0, (7)

∂u
∂t

+ (u · ∇)u = −∇p+β
Pr√
Ra

�u + ∇ · τ p + Pr T e j, (8)

∇
τ p + τ p

We
√

Ra
− 2

1 − β

Ma2 D = A

[
−ε

√
Ra

(1 − β )Pr
tr(τ p)τ p − ξ (Dτ p + τ pD)

]
, (9)

∂T

∂t
+ (u · ∇)T = 1√

Ra
�T + 2β

Ec Pr√
Ra

D : ∇u + Ec τ p : ∇u, (10)

where β = μs

μ0
is the ratio of solvent viscosity to total viscosity μ0 = μs + μp, Pr = μ0Cp

k is the

Prandtl number, We = λκ
H2 the Weissenberg number, and Ma = √

Ra We/Pr the Mach number. The
latter gives the ratio of the shear wave speed to the characteristic velocity of the fluid. In Eq. (10),
the dimensionless Eckert number Ec expresses the relationship between the kinetic energy and the
enthalpy, and is used to characterize the extent of the influence of heat dissipation:

Ec = U 2
c

Cp�T
. (11)

When Ec assumes a small value (�1), the effects of the viscous dissipation can be neglected. For all
the cases investigated in this work, Ec takes on values of the order of O(10−10), and the magnitude of
the values of β Ec Pr√

Ra
corresponds to O(10−11). Therefore, viscous dissipation and elastic dispersion

are ignored in the calculations presented in this paper.
We point out that due to the definition of the reference velocity Uc = κ

H

√
Ra in this paper, the

natural way to define We is to use Uc as has been done by Cheng et al. [17]. The drawback of using
Uc to define We is that We will now change with Rayleigh number. In this paper a definition of
We independent of Ra, We = κλ/H2, is adopted. For example, for Ra = 1600 and We = 0.1 in the
present work the equivalent Weissenberg number is We = 10.58 in the work by Cheng et al. [17]
(in their work Uc = √

αgH�T ).
The dimensionless problem is defined on the computational domain �: (x, y) ∈ [0, 2] × [0, 1].

The velocity boundary conditions are no slip and the thermal boundary conditions are adiabatic on
the vertical walls and isothermal on the horizontal walls:

(1) at y = 0: u1 = u2 = 0, T = 1/2;
(2) at y = 1: u1 = u2 = 0, T = −1/2;
(3) at x = 0, 2: u1 = u2 = 0, ∂T

∂x = 0.
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III. NUMERICAL ALGORITHM

A. Quasilinear formulation

To simplify the numerical process, we firstly reorganized Eqs. (8) and (9) into a quasilinear
system by separating the homogeneous part and the source term,

∂W

∂t
+

2∑
i=1

Ai
∂W

∂xi
= Sql, (12)

where W = [u1, u2, τ11, τ12, τ22] is the vector of variables and includes velocity components ui and
extra-stress components τi j . Sql, the source term, includes pressure, buoyancy, and viscous terms of
the momentum equation and feature terms of the PTT constitutive equation and is written as

Sql =
[ −∇p + β Pr√

Ra
�u + Pr T e j

−τ p

We
√

Ra
− A

[
ε
√

Ra
(1−β )Pr tr(τ p)τ p + ξ (Dτ p + τ pD)

]
]
. (13)

Ai is the matrix acting on the first derivative of W in the direction i. For example, A1 is expressed as

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 0 −1 0 0

0 u1 0 −1 0

−2
( 1−β

Ma2 + τ11
)

0 u1 0 0

−τ12 −( 1−β

Ma2 + τ11
)

0 u1 0

0 −2τ12 0 0 u1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

In simple shear flow with an Oldroyd-B constitutive model, the system is hyperbolic only when
(τii + 1−β

Ma2 ) is positive for each i [18,19]. To reveal the hyperbolic feature of our quasilinear govern-
ing system, the real spectra of Ai need to be satisfied. Symbolic computation of the eigenvalues and

eigenvectors of Ai shows that the eigenvalues of Ai depend on (
√

τii + 1−β

Ma2 ) for each i, which means
that the eigenvalues are real only when

τii + 1 − β

Ma2 > 0. (15)

Following Tsai and Miller [20] for the Giesekus model, we get for the PTT model

G
(

τ p + 1 − β

Ma2

)
GT =

∫ t

−∞
e

t−s√
Ra We

[
1 − β√

Ra We Ma2
GGT

− ε

√
Ra

(1 − β )Pr
G tr(τ p)τ pGT − ξG(Dτ p + τ pD)GT

]
ds, (16)

where G is the decomposition transformation gradient. The hyperbolicity of the PTT model requires
that the RHS of Eq. (16) is positive,

1 − β√
Ra We Ma2

GGT − ε

√
Ra

(1 − β )Pr
G tr(τ p)τ pGT − ξG(Dτ p + τ pD)GT > 0. (17)

This should be verified a posteriori.
If Eq. (17) holds true, we can rewrite Ai as Ai = Li�iRi, where �i is a diagonal matrix containing

the eigenvalues of Ai. Li is the matrix formed by the eigenvectors of Ai and Ri is the inverse of Li.
The convective terms in Eq. (12) at a fixed point can then be transformed into

Ai
∂W

∂xi
= Li�i

∂RiW

∂xi
. (18)
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We note that at a fixed point Li and Ri have constant coefficients and that Ri can be placed under
partial differentiation in Eq. (18). This transformation allows us to calculate first �i

∂RiW
∂xi

by using

suitable numerical schemes and to compute explicitly the convective terms Ai
∂W
∂xi

at any fixed point
as can be seen hereafter.

B. Discretization and numerical method

The quasilinear formulation leads to the following governing system:

∂T

∂t
+ (u · ∇)T = 1√

Ra
�T,

∂W

∂t
+

2∑
i=1

Ai
∂W

∂xi
= Sql,

∇ · u = 0. (19)

It is discretized in time by a semi-implicit second-order scheme. Partial derivatives in time are
treated by a second-order backward differential formulation (BDF2); quasilinear terms, PTT-related
nonlinear terms, and the convective term in the energy equation are treated explicitly by a second-
order extrapolation in time. Diffusion terms, relaxation terms, mass conservation, and pressure
gradients are treated implicitly. Equation (19) discretized in time is then

3T (n+1) − 4T (n) + T (n−1)

2�t
+ 2[(u · ∇)T ](n) − [(u · ∇)T ](n−1) = 1√

Ra
�T (n+1),

3W (n+1) − 4W (n) + W (n−1)

2�t
+ 2

(
2∑

i=1

Ai
∂W

∂xi

)(n)

−
(

2∑
i=1

Ai
∂W

∂xi

)(n−1)

= S(n+1)
ql ,

∇ · u(n+1) = 0, (20)

with

S(n+1)
ql =

⎡
⎢⎢⎣

−∇p(n+1) + β Pr√
Ra

�u(n+1) + Pr T (n+1)e j( −τ
(n+1)
p

We
√

Ra
− 2A

[
ε
√

Ra
(1−β )Pr tr(τ p)τ p + ξ (Dτ p + τ pD)

](n)

+A
[

ε
√

Ra
(1−β )Pr tr(τ p)τ p + ξ (Dτ p + τ pD)

](n−1))
⎤
⎥⎥⎦. (21)

The above system is discretized on a uniform grid in space. All the unknowns are located at the
cell corners except for the pressure located at the cell center. A second-order central differencing
is applied to all the terms except for the quasilinear terms which are expressed by Eq. (18). A
high-order (third-order) upstream central (HOUC-3) scheme [21] is applied to ∂RiW

∂xi
according to

the sign of the eigenvalues in �i. For example, for i = 1 there are five eigenvalues λ1, λ2, . . . , λ5

and five components of R1W [(R1W )(1), (R1W )(2), . . . , (R1W )(5)]. In order to calculate λ2
∂ (R1W )(2)

∂x1
at the grid point (l, m), the following HOUC-3 scheme is applied:

λ2
∂ (R1W )(2)

∂x1

∣∣∣∣
l,m

=

⎧⎪⎪⎨
⎪⎪⎩

λ2
(R1W )(2)

l−2,m−6(R1W )(2)
l−1,m+3(R1W )(2)

l,m+2(R1W )(2)
l+1,m

6�x1
if λ2 > 0,

λ2
−2(R1W )(2)

l−1,m−3(R1W )(2)
l,m+6(R1W )(2)

l+1,m−(R1W )(2)
l+2,m

6�x1
if λ2 < 0,

0 otherwise.

(22)

Note that R1 as λ1, λ2, . . . , λ5 contains only information related to A1 at the grid point (l, m)
and that at any grid point (l, m) application of the HOUC-3 scheme to the five eigenvalues allows
us to calculate Ai

∂W
∂xi

explicitly. Second-order schemes are used for grid points near the domain
boundaries.

023301-6



PATTERN SELECTION IN RAYLEIGH-BÉNARD …

Equations (20) and (21), apart from the velocity-pressure coupling, lead to Helmholtz equations
for the unknowns T (n+1), u(n+1)

1 , and u(n+1)
2 , and simple scalar equations for τ

(n+1)
11 , τ (n+1)

12 , and τ
(n+1)
22 ,(

1 + 2�t

3 We
√

Ra

)
τ

(n+1)
i j = RHS, (23)

that can be easily solved at any grid point. We use the energy equation to illustrate the approach
used to solve the Helmholtz equations. The method is similar to the alternative direction method.
The Helmholtz equation for T (n+1) is written as(

1 − 2�t

3
√

Ra
�

)
T (n+1) = 4

3
T (n) − 1

3
T (n−1) − 4�t

3
[(u · ∇)T ](n) + 2�t

3
[(u · ∇)T ](n−1). (24)

The 2D Helmholtz operator can be factorized into a product of two 1D operators:

1 − 2�t

3
√

Ra
� =

(
1 − 2�t

3
√

Ra

∂2

∂x2
1

)(
1 − 2�t

3
√

Ra

∂2

∂x2
2

)
− 4�t2

9 Ra

∂2

∂x2
1

∂2

∂x2
2

. (25)

The cross term is of the order of �t2 and neglecting it results in a first-order time scheme. In
order to keep a second-order time scheme, the factorized operator is only applied to the temperature
increment (T (n+1) − T (n)) which is of the order of �t . In this way

4�t2

9 Ra

∂2

∂x2
1

∂2

∂x2
2

(T (n+1) − T (n) ) (26)

becomes of the order of �t3 and can be neglected without decreasing the accuracy of the second-
order time scheme. The final equation of temperature to be solved is the following:(

1 − 2�t

3
√

Ra

∂2

∂x2
1

)(
1 − 2�t

3
√

Ra

∂2

∂x2
2

)
(T (n+1) − T (n) )

= 2�t

3
√

Ra
�T (n) + 1

3
(T (n) − T (n−1)) − 4�t

3
[(u · ∇)T ](n) + 2�t

3
[(u · ∇)T ](n−1). (27)

The tridiagonal matrix algorithm (TDMA) is first applied in the x1 direction and then in the x2

direction to obtain the temperature increment. The same method is also used to solve the Helmholtz
equations for the velocity.

The velocity-pressure coupling is treated by the projection method. Enforcing the incompress-
ibility constraint at time step (n + 1) in the momentum equation results in a Poisson equation for the
pressure p(n+1) or its increment (p(n+1) − p(n) ). The pressure increment is used in the present study.
In the prediction step momentum equations are solved using the gradients of p(n). The resulting
velocity field is not divergence free. In the correction step this velocity field is projected onto a
divergence free space by using the gradients of (p(n+1) − p(n) ) and the resulting Poisson equation is
solved by a partial diagonalization method.

C. Numerical validation of the model

The intrinsic behavior of the numerical method was first tested. The results of the numerical
tests confirmed that the code is second-order accurate both in time and space, in agreement with the
theoretical behavior of the numerical schemes used in our previous work [22,23].

To validate that our solver has the ability to simulate the Rayleigh-Bénard convection with
viscoelastic fluids, we consider a cavity of aspect ratio 2:1 filled with an Oldroyd-B type viscoelastic
fluid heated from the bottom and cooled through the top. The parameters chosen for the validation
purpose are β = 0.2, We = 0.1, and Pr = 7.0. β = 0.2 implies that the polymeric contribution
is emphasized. For the same aspect ratio and the above parameters, Park and Ryu [14] reported
an overstability or Hopf bifurcation leading to time-dependent flows. They also showed that for
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FIG. 2. Square of the amplitude of the vertical velocity at four monitoring points vs Ra in a 2 : 1 cavity
filled with an Oldroyd-B fluid. (a) β = 0.2, We = 0.1, two-cell time-periodic flow (b) β = 0.2, We = 0.1,
three-cell time-periodic flow. The monitoring points are P1 (1, 0.5), P2 (0.75, 0.5), P3 (0.25, 0.5), and P4 (0.5,
0.25). Spatial resolution used is 128 × 64. The solid lines are linear fitting curves of the numerical results
and the linear relationship indicates that the corresponding bifurcation (Hopf bifurcation) is supercritical. The
estimated Rac is equal to 1387 (two-cell flow) and 1395 (three-cell flow).

the aspect ratio of 2 : 1 two modes with respectively two and three cells are unstable at almost
the same Rayleigh number (about 1380). The simulations we performed for the aspect ratio 2 : 1
yield only a time-periodic flow of two cells. A three-cell time-periodic flow was first detected for
the aspect ratio of 2.2 : 1 and then stabilized for the aspect ratio 2 : 1. We recall that due to the
nondimensionalization adopted in this paper We = 0.1 corresponds to We = 0.4 in the paper of
Park and Ryu [14]. Time-periodic flows were obtained for several supercritical Rayleigh numbers
to calculate the corresponding critical Rayleigh numbers for both flow structures. The square of
the velocity amplitudes versus Rayleigh number displays a linear relationship confirming that the
convection mode transition takes place through a supercritical Hopf bifurcation [Figs. 2(a) and 2(b)].
Extrapolation of the linear relationship yields Rac = 1387 for the flow structure of two cells and
Rac = 1395 for three flow cells. These critical Rayleigh numbers agree well with the results reported
in Park and Lee [13].

The present results agree well with the previous study of viscoelastic RBC in the literature in
terms of the flow structure (two or three cells), the flow feature (time dependent), and the critical
Rayleigh number [14], thus validating the use of the present numerical approach to solve the
viscoelastic RBC with fluids that obey the Oldroyd-B constitutive structure.

D. Grid independence verification

A study of the independence of the solver from grid resolution is required to have full confidence
in the results of the numerical computations. The dimensionless time step is kept small enough
δt = 0.001 in the verification process for the results not to be affected by the time step. Four grid
resolutions were tested (122 × 56, 128 × 64, 144 × 72, 160 × 80). The square of the amplitude
of the vertical velocity at monitoring point P1 as a function of Ra with all four grid resolutions
is shown in Fig. 3. The critical Rayleigh numbers computed were 1386.4, 1386.8, 1387.0, and
1387.0, respectively. Clearly, the grid 128 × 64 is good enough to simulate cases in this paper as
the Rayleigh numbers computed with grids with resolutions finer than 128 × 64 are not affected by
the grid refinement.

IV. RESULTS AND DISCUSSION

A. Convection onset and critical Rayleigh number Rac1

The material parameters of the PTT model studied in this paper control the elongational response
of the fluid, shear thinning, and the extent of the nonaffine motion. ε governs the elongational
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FIG. 3. Square of the amplitude of the vertical velocity at monitoring point P1 as function of Ra with four
grid resolutions. The parameters used are Pr = 7.0, We = 0.1, β = 0.2, ε = 0.1, and ξ = 0.05.

response and the shear thinning, while the parameter ξ controls the nonaffine movement of the
molecular lattice relative to the flow of the solvent, quantifying the slip between the long chain
molecules and the surrounding continuum. Simulations of two-cell flows have been conducted for
various values of ξ with ε = 0.1 and various values of ε with ξ = 0. These simulations aim to
an understanding of their effects on the convection onset and heat transfer in flows of a wide
range of viscoelastic fluids. The purpose in this paper is not to study a fixed fluid or industrial
application, but to generally understand and quantify the effect of these constitutive parameters on
the RBC. The rheological parameters of the PTT model, namely ε and ξ , come from experimental
measurements. We note that the physical values of the material parameters depend on the type
of working fluid. For example, dilute polymeric solutions such as low concentration polyethylene
(LDPE) are characterized by ε = 0.02 and ξ = 0.1, whereas concentrated polymeric solutions such
as molten polyethylene (HDPE) are distinguished by ε = 0.02, [24,25], or Shin et al. [26] who
measured ε = 0.015 and ξ = 0.1 for LDPE and ξ = 0.7 for HDPE. Other polymeric fluids, such
as 5% polyisobutylene (PIB) solutions are characterized by ε = 0.25 and ξ = 0.25 [27,28], or
solutions of 2.5% polyisobutylene have ε = 0.42, ξ = 0.07 [29].

The trends in the effects of the rheological parameters are important and should be determined
as is sought after in this paper. We note that the numerical values of the material parameters depend
not only on the specific working fluid but also on the structure of the constitutive equation adopted.
The family of constitutive structures with the material parameters ξ is rather large [30]. An affine
PTT or simplified phan thien tanner (SPTT) model is obtained when ξ = 0, and as for generalized
Maxwell or the Giesekus models, a multimode version of the PTT model can be obtained by defining
rheological parameters specific to each mode. If ε = 0 and ξ �= 0, the PTT model is reduced to
the Johnson-Segalman model [30,31]. Hence, the Oldroyd-B model and upper convected Maxwell
(UCM) model can be deduced from the PTT model with ε = 0 and ξ = 0 and when ε = 0, ξ �= 0,
and λ = 0 (relaxation time), the Newtonian behavior is obtained. In the light of the parametric
analysis, we observe that ξ and ε have both a very weak influence on the convection onset and the
critical Rayleigh number. With ξ = 0 and ε in the range of [0, 0.7] the critical Rayleigh number
Rac1 decreases slightly and remains almost constant thereafter. With ε = 0.1 and ξ in the range
of [0, 0.2] the decrease in Rac1 is comparatively larger but still less than 2%. This means that an
enhanced slip between polymer molecules and the surrounding continuum can make the onset of
the oscillating convection occur slightly earlier.

For each pair of ξ and ε, several Rayleigh numbers are investigated. We find that convection onset
takes place also with time-dependent flows. At supercritical Rayleigh numbers, the relationship
between Ra and the square of the velocity amplitude is linear. This means that the corresponding
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FIG. 4. Effects of ε, ξ , and We on the critical Rayleigh number of the two-cell flow pattern at Pr = 7.0,
β = 0.2. In (a), the Weissenberg number is fixed at We = 0.1, and the effects of ε are studied for fixed ξ = 0
while those of ξ are investigated for ε = 0.1. In (b), ε = 0.1, ξ = 0.05.

Hopf bifurcation is supercritical. Through an extrapolation approach illustrated in Fig. 2, the
corresponding critical Rayleigh number Rac1 is determined and presented in Fig. 4(a).

The effect of We on the onset of RBC is also studied. Figure 4(b) depicts the behavior of Rac1,
which decreases with increasing We. It decreases from Rac1 = 1700 for We = 0.075 to Rac1 = 764
for We = 0.25. It can be concluded therefore that among the parameters ε, ξ , and We, Rac1 is more
sensitive to We.

B. Flow pattern transition

Convective flow of two cells observed at ε = 0.1, ξ = 0.05, and Ra = 1480 is chosen to better
understand the flow pattern transition corresponding to the convection onset. We use the time
evolution of the global kinetic energy defined by

EGlobal =
∫

�

1

2
(u2 + v2)d�, (28)

where � is the computational domain. Figure 5 plots the global kinetic energy EGlobal as a function
of time and shows a regular periodic behavior, similar to that recently analyzed experimentally by
Metivier et al. [32]. The present work on viscoelastic RBC is devoted to Pr = 7 due to the existing
studies available in the literature. Experimentally speaking, most of the viscoelastic fluids are water

FIG. 5. Time evolution of global kinetic energy EGlobal at five time points marked on the curve is studied in
detail to show the flow pattern transition with ε = 0.1, ξ = 0.05, β = 0.2, We = 0.1, and Ra = 1480.
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FIG. 6. Streamline and temperature (left) and extra-stress (right) snapshots of convection reversal in a 2:1
cavity filled with a PTT fluid (β = 0.2, We = 0.1, Pr = 7.0, ε = 0.1, ξ = 0.05, and Ra = 1480) at the five time
points indicated in Fig. 5. Streamlines are shown on the left side of each velocity module and the temperature
field on the right side. The extra-stress component τ11 is shown on the left and component τ22 on the right of
the column of figs.

solutions with polymers, surfactants, etc., and viscoelastic behavior is mainly due to increased
viscosity compared to that of water while the corresponding thermal conductivity, specific heat,
and density of the solutions remain to be more or less the same as water. In this sense most of
the viscoelastic fluids have much higher Prandtl numbers. In order to experimentally check the
existence of convection reversal observed in the present work and design experimental studies, it
will be crucial to explore higher Prandtl number cases.

To our knowledge, an analysis of the Rayleigh-Bénard thermal convection with regard to the rhe-
ological characteristics is lacking except for the very recent work of Metivier et al. [32], who work
with an elastoviscoplastic gel to investigate experimentally the transition from a two-cell structure
to three-cell structure in the Rayleigh-Bénard convection. Determining the velocity vectors over
a period of oscillation via experimental techniques, birefringence, and laser Doppler velocimetry,
they demonstrate that elasticity plays a major role in the occurrence of the oscillations and that
oscillations are in fact periodic traveling waves. This type of experimental bench will serve as a
benchmark for numerical modeling validations and hence could give confidence in further numerical
analysis and observations. In the present analysis, five points for half periods from t1 to t5 are marked
in Fig. 5. Maximum kinetic energy is reached at t1 and t5 whereas t3 is at the minimum kinetic
energy (about zero). Note that one time period of kinetic energy is only one half of a time period of
velocity. The flow fields corresponding to these five time points are displayed in Fig. 6. To clarify,
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FIG. 7. Time evolution of the extra-stress components τii at positions on the vertical centerline. It is clear
from the evolution of these entities from t1 to t5 that the extrema of τii occur later in time than the maximum of
kinetic energy and therefore also later than the velocity extrema.

time evolutions of τii at four points on the cavity midwidth are displayed in Fig. 7. It can be easily
observed that there is a phase shift between EGlobal and τii.

At t1, EGlobal is maximum and flow is upward along the cavity centerline. The velocity gradient
also reaches its extreme values. The extrema of the velocity gradient amplify and continue to amplify
τi j . At t2, the extrema of the τ11 and τ22 happen at about (x, y) = (1, 0.9) and (x, y) = (1, 0.3),
respectively. These extrema are much larger than those in the same regions at t1. From t1 to t2, the
amplification of τi j also amplifies its divergence, for example, u1 and u2 are amplified due to ∂τ11

∂x1
and

∂τ22
∂x2

, respectively. The increase in ∂τ11
∂x1

about (x, y) = (0, 75, 0.9) increases u1 there, and this makes

u1 (<0) evolve toward 0. The decrease in ∂τ22
∂x2

(<0) about (x, y) = (1, 0.4) decreases u2 there as well.
The amplification of τi j weakens considerably the velocity field as the maximum velocity changes
from approximately 0.09 at t1 to approximately 0.015 at t2. During the same period no significant
change is observed on the temperature field. The weakening of the velocity field continues from t2
to t3 and t4. At t2 two small vortices appear near the bottom wall about the cavity vertical centerline,
then grow rapidly up to t3 to form a four-cell structure at t3, and thereafter gradually merge and
transit into a two-cell structure again in the cavity at t4. It is in the interval from t3 to t4 that the
temperature field undergoes an important evolution. At t4 the temperature distribution is almost
completely conductive. Note also that at t4 the velocity field remains very weak and is downward
along the cavity centerline. A weak velocity field means also a weak source term of τ p. As τ p is
governed approximately by

∂τ p

∂t
+ τ p/We + ε

√
Ra

(1 − β )Pr
tr(τ p)τ p = 0, (29)

it is damped slightly from t2 to t3 and damped strongly from t3 to t4. The signs of τ11 and τ22

change along the vertical centerline on the way from t4 to t5. When t4 is reached τ11 is positive
at (x, y) = (1, 0.8) and negative at (x, y) = (1, 0.3), whereas at t5, τ11 changes sign at the same
locations and is negative at (x, y) = (1, 0.8) and positive at (x, y) = (1, 0.3). From t4 to t5 the
velocity field is amplified to reach an extremum at t5 and the temperature field also evolves from
a conductive to convective distribution. Again the amplified velocity gradient amplifies τ p and the
amplified extrema of τ p’s divergence weaken the velocity field; a weak velocity field damps τ p

in turn, small vortices appear near the top wall about the vertical centerline, grow rapidly and
invade the cavity, flow direction is reversed, and the convective temperature distribution switches
to a conductive distribution; the damping of τ p continues, τii change signs along the cavity vertical
centerline, velocity is amplified again to reach the extremum, and the temperature field becomes
again convective.

The above observations indicate that there is a phase shift between the amplification and damping
cycles of the velocity (Fig. 7) and the extra stress. This phase shift is responsible for the time-
dependent flow regime.
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FIG. 8. Time evolution of u2 at the cavity center (x, y) = (1, 0.5). For both cases the amplitude and the
frequency increase and decrease, respectively, with increasing Rayleigh number.

C. Steady-state flow at higher Ra

For fixed values of ε, ξ , and We, when increasing further the Rayleigh number, we observed that
both the convection reversal period and the reversal amplitude increase with the Rayleigh number
(Fig. 8). These figures show that with constant values of ε and We the increase of the slippage factor
ξ increases the period of the velocity oscillations. That means the molecular slippage introduces
a delay or reduction of the intensity and the frequency of the velocity oscillations and helps the
stability of the system. Beyond a certain limit there is no more time-dependent flow and a steady-
state flow is observed. This transition from time-periodic flow to steady-state flow corresponds to
a drift pitchfork bifurcation not a Hopf bifurcation. In fact, the control parameter controlling the
frequency of the reversal is equal to zero at the critical point. The oscillation frequency ω of the
reversal convection flow is defined as ω = 1

q , where q is the oscillation period. Figure 9 displays

the relationship between ω2, the square of the oscillation frequency of the reversal convection flow,
and the Rayleigh number. A trivial linear relationship is obvious. The drift pitchfork bifurcation is
supercritical. The linear curve has a crossover point with ω2 = 0, which is the second bifurcation
point, Rac2. An extrapolation of the linear fitting curve can be used again to obtain Rac2, the second
critical Rayleigh number. Above Rac2, Rayleigh-Bénard convection flow is steady.

The same methodology is applied to ε ∈ [0.1, 0.7] with ξ = 0 and We = 0.1, ξ ∈ [0.01, 0.2]
with ε = 0.1 and We = 0.1, and We ∈ [0.075, 0.25] with ε = 0.1 and ξ = 0.05, and the corre-
sponding Rac2 was obtained. Figure 10 plots two critical Rayleigh numbers Rac1 and Rac2 against
different values of ε, ξ , and We used to illustrate their effects on the critical Rayleigh numbers. Rac2

FIG. 9. Square of the oscillation frequency of reversal convection flow vs Rayleigh number (β = 0.2, We =
0.1, Pr = 7.0, ε = 0.1, and ξ = 0.05). A linear relationship is observed and the extrapolation of the linear fitting
line yields Rac2 = 1635.
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FIG. 10. Critical Rayleigh numbers Rac1 and Rac2 vs ε and ξ . (a) Effect of the ε on Rac with ξ = 0 and
We = 0.1. (b) Effect of ξ on Rac with ε = 0.1 and We = 0.1. (c) Effect of We on Rac with ε = 0.1 and ξ =
0.05. The critical Rayleigh numbers Rac1 and Rac2 divide the flow regime into three regions: pure conduction
without convective flow (region 1), time-periodic convective flow bounded by Rac1 and Rac2 (region 2), and
steady-state convective flow for Ra > Rac2 (region 3).

decreases with increasing ε (with ξ = 0 and We = 0.1) and ξ (with ε = 0.1 and We = 0.1). The
decrease in Rac2 is more pronounced than that in Rac1. Rac2 decreases from 1762 at ε = 0.1 to 1585
at ε = 0.7 for ξ = 0 and We = 0.1 and from 1732 at ξ = 0.01 to 1500 at ξ = 0.2 with ε = 0.1 and
We = 0.1. We note that the impact of the slippage parameter ξ is higher than that of the elongation
related parameter ε [Figs. 10(a) and 10(b)]. Similarly, Rac2 decreases with increasing We (ε = 0.1
and ξ = 0.05). The influence of We on Rac2 slightly supersedes those of ε and ξ . This means that
the elasticity of the fluid, represented by the Weissenberg number, tends to make the transition to the
steady-state flow to occur at lower critical Rayleigh number Rac2. Two critical Rayleigh numbers
separate the studied domain into three regions in terms of flow and heat transfer. In Fig. 10(b): (i)
pure heat conduction without convection flow, Ra < Rac1 (region 1); (ii) time-periodic oscillating
flow, Rac1 < Ra < Rac2 (region 2); (iii) steady-state convective flow and heat transfer, Ra > Rac2

(region 3). Note that region 2 decreases with increasing ε and ξ due to the decrease of Rac2.
Despite the fact that both Rac1 and Rac2 decrease with We, region 2 becomes bigger with increasing
We. This enlargement of region 2 is essentially due to the decrease of Rac1, i.e., transition from
a pure conduction to convection regime, suggesting that elasticity tends to quicken the transition
(Rac1 = 800), but its effect on the stabilization of the flow to reach the steady state, via the decrease
of the Rac2, is less pronounced in the range of the Weissenberg numbers investigated. In other words,
this means that at small We, time-dependent flows exist only for a small range of the Rayleigh
number. However, for higher We, time-dependent flows take place for a larger range of Ra. The
steady-state flow regime in region 3 (above Rac2) is not investigated in the present paper.
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D. Heat transfer

To study heat transfer and the influence of the material parameters, we define the spatially
averaged Nusselt number Nus and the Nusselt number averaged in time and space Nuts:

Nus = 1

2

∫ 2

0

∂T

∂y

∣∣∣∣
y=0

dx,

Nuts = 1

λ

1

2

∫ λ

0

∫ 2

0

∂T

∂y

∣∣∣∣
y=0

dxdt .

To investigate the effects of ε and ξ on heat transfer, two pairs of (ε, ξ ), (0.1, 0) and (0.1, 0.05),
are chosen, several Rayleigh numbers are studied, and the corresponding Nusselt numbers are
displayed in Fig. 11. The time evolution of the spatially averaged Nusselt number Nus is shown
for the Rayleigh numbers investigated in Figs. 11(a) and 11(b). For a fixed pair of (ε, ξ ), both the
amplitude and the period of Nus increase with increasing Rayleigh numbers in the same way as the
velocity. It is worth mentioning that the frequency of Nus is twice that of the velocity. One time
period of velocity is twice that of Nus and there are two maximum values and two minimum values
of Nus in one velocity period.

When velocity gets to its maximum value, Nus reaches the first maximum value [instantaneous
local Nu distribution is shown in Figs. 11(c) and 11(d) and maximum Nu takes place near the two
vertical walls]; then convection reversal occurs, velocity drops from maximum to zero, and Nus

moves from the first maximum to the first minimum value of about one. Subsequently, velocity
continues the decrease to reach its minimum value and fluid moves in the opposite direction, and at
the same time Nus reaches the second maximum value [local Nu on the bottom wall is depicted in
Figs. 11(e) and 11(f) and maximum Nu locates at the cavity midwidth].

To illustrate clearly the effect of the fluid parameters ε and ξ on the heat transfer, Figs. 12(a)
and 12(b) present the evolution of the Nusselt number averaged in time and space Nuts vs Ra for
different values of (ε, ξ ). These figures are to be analyzed in the light of Fig. 10. In fact, we can
note that, due to the reduction of region 2 with increasing ε and ξ , Nu curves are shorter for large ε

and ξ .
We find that for ξ = 0, increasing ε decreases Nuts, and that for ε = 0.1, increasing ξ in-

creases Nuts slightly. ε and ξ have opposite but limited effects on heat transfer. In other words,
increasing elongational behavior of polymer molecules decreases slightly the heat transfer in the
time-dependent flow regime, but the slip parameter ξ enhances a bit the heat transfer. The influence
of the We on the Nuts under different Ra with β = 0.2, ε = 0.1, and ξ = 0.05 is also investigated
[Fig. 12(c)]. As in Fig. 9, this figure shows that when increasing We the Nuts curves become longer
due to a larger region 2 and shift to smaller Ra due to the decrease of Rac1. Clearly it shows the high
impact of the elasticity on the transition from the conduction regime to the convection-conduction
one, and hence increases the Nusselt number. It can be seen that at the same Ra, the increase of We,
i.e., the increase of elasticity, will enhance heat transfer. Compared with ε and ξ , We has a stronger
and more beneficial influence on Nuts.

V. CONCLUSION

A two-dimensional numerical simulation of laminar convection in a rectangular enclosure filled
with a nonlinear viscoelastic fluid and heated from the bottom is performed in the present study.

In the case of an Oldroyd-B fluid, with increasing Weissenberg number and decreasing viscosity
ratio β, a time-dependent flow, instead of a steady flow, exists at the convection onset. Time-
dependent convection onset in an enclosure of aspect ratio 2:1 is chosen to validate the code
developed using the parameters β = 0.2, We = 0.1, and Pr = 7. Critical Rayleigh numbers are
obtained and compared with those in the literature for these values of the parameters for both
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FIG. 11. Time evolution of Nus [(a) and (b)] and instantaneous local Nu on the bottom wall [(c)–(f)] at
different Ra for two-cell convective flow. (c) and (d) correspond to the time point t1 while (e) and (f) to the
time point t5. Both t1 and t5 concern the maximum of the global kinetic energy: At t1 upward convective flow
near the cavity center is at its maximum and the minimum of Nu on the bottom wall is located at x = 1; at t5

downward convective flow near the cavity center is at its maximum and the maximum of Nu on the bottom
wall is located at x = 1.

two-cell and three-cell convection flow configurations: The good agreement obtained thus validates
the code developed.

Critical Rayleigh numbers corresponding to the onset of time-dependent convection, Rac1, are
determined for various values of the constitutive parameter ε with ξ = 0 and We = 0.1 and various
values of the constitutive parameter ξ with fixed ε = 0.1 and We = 0.1. There is only a slight
dependency of the critical Rayleigh number on these parameters. A similar study conducted with
ε = 0.1 and ξ = 0.05 reveals that Rac1 decreases with increasing We and that the influence of We
on Rac1 is more significant. A two-cell flow structure is investigated in detail. We determine that
the phase shift between the periodic cycles of the velocity and the extra stress is responsible for
the time-dependent flow. At higher Rayleigh numbers, time-dependent flow is replaced by a steady-
state flow. This flow transition corresponds to a drift pitchfork bifurcation. The critical Rayleigh
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FIG. 12. (a) Effects of ε on the Nusselt number averaged in time and space Nuts of two-cell convection flow
at Pr = 7.0, β = 0.2, ξ = 0, and We = 0.1. Increasing ε decreases Nuts. (b) With Pr = 7.0, β = 0.2, ε = 0.1,
and We = 0.1, increasing ξ only slightly increases Nuts. (c) With Pr = 7.0, β = 0.2, ε = 0.1, and ξ = 0.05,
higher We leads to higher Nuts at the same Rayleigh number. Note that the reduced range of Ra at higher ε

and ξ corresponds to the fact that Rac2 is reduced at higher ε and ξ (the Ra range of the time-dependent flow is
reduced).

number Rac2 is also determined for various values of ε with ξ = 0 and We = 0.1, various values
of ξ with ε = 0.1 and We = 0.1, and various values of We with ε = 0.1 and ξ = 0.05. For the
parameters investigated, all the three parameters, ξ , ε, and We, have an important influence on Rac2,
and furthermore, Rac2 decreases with the increase of the three parameters.

The influence of ε and ξ on heat transfer is investigated for the time-dependent flow regime. ε

and ξ have opposite but limited effects on heat transfer. Increasing ε decreases the Nusselt number
whereas the Nusselt number increases slightly with increasing ξ . The impact of We on heat transfer
is also studied for the time-dependent flow regime with Pr = 7.0, β = 0.2, ε = 0.1, and ξ = 0.05,
and increasing We increases Nuts was found for a fixed Rayleigh number.

The onset of the time-dependent convection in the Rayleigh-Bénard convection with nonlinear
viscoelastic fluids is an interesting flow feature because of the particular flow patterns and flow
reversal. These flow reversal characteristics should be distinguished from random reversal in
turbulent Rayleigh-Bénard convection.
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