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In turbulent bluff body flows, the presence of vortex shedding, a form of coherent
structures (CS), introduces a new characteristic scale that is distinct from the scale of
background stochastic turbulence (ST). This double-scale picture essentially invalidates
the conventional single-scale modeling for the turbulence energy dissipation in steady
Reynolds-averaged-Navier-Stokes (RANS) simulations. In this paper, we present a con-
ceptual model to quantify the uncertainty in the steady-RANS dissipation closure for
flows past bluff bodies with vortex shedding. This model is developed in two steps.
First, we formulate a double-scale, double-linear-eddy-viscosity (DSDL) framework for
the transport of CS and ST energy, with an undetermined energy transfer rate from CS
to ST. In this framework, the dissipation of ST energy follows a conventional transport
model; the length scale of CS is determined such that the CS energy is intensely produced
in free shear layers. Second, we design a functional form for the energy transfer rate based
on a qualitative analysis and an analogy with the “return-to-isotropy” process. This form
contains two uncertain parameters that control the CS-ST interaction. Subsequently, the
DSDL model is tested on simulations of the flows past circular and square cylinders, and of
the flow in a pin-fin array. In all cases, the model provides a significant improvement upon
both conventional models and models with Reynolds stress shape perturbations. The sizes
of the recirculation zones are accurately predicted, and simulations with varying values
for the uncertain parameters predict intervals for the peak turbulence kinetic energy that
encompass reference data.
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I. INTRODUCTION

Reynolds-averaged-Navier-Stokes (RANS) modeling remains a popular approach for numerical
simulations of turbulent flows aimed at engineering analysis and design. Their low computational
cost is especially beneficial when a large number of simulations is required, such as for optimization
and uncertainty quantification. Despite the frequent use of RANS in engineering analysis, the
inaccuracies introduced by the turbulence models that close the RANS equations pose a challenge
when the results are used to inform design decisions. Uncertainty quantification (UQ) of the
turbulence models, aimed at providing predictions with confidence intervals, could address this
challenge.

UQ methods for turbulence models generally consider the relaxation of one or more model
assumptions. Specifically for steady-state, single-point RANS closure models based on the linear-
eddy-viscosity (LEV) hypothesis, UQ studies have considered the relaxation of free coefficients
[1–5], shear stress or eddy-viscosity values [6,7], empirical functional forms in the model equations
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[8–10], and the LEV assumption itself [11–15]. The latter approach, which directly perturbs the
shape and/or orientation of the Reynolds stress (RS) tensor, allows departure from the original
model form, thus providing a more general framework that has been applied with a variety of
perturbation strategies [16–20].

Gorlé et al. [12] and Iaccarino et al. [14] analyzed the reasoning behind the RS shape and/or ori-
entation perturbation approach. They indicated that the approach’s bounding behaviors for quantities
of interest (QoIs) are, to a large extent, attributed to its bounding behaviors for the production term
P in the transport equation of turbulence kinetic energy k; thereby a perturbation to the RS shape
and/or orientation indirectly alters k, a pivotal variable that directly influences the general level of
mean momentum transport. This mechanism of perturbation propagation has practically functioned
well in terms of bounding the QoIs in the above relevant references. However, failures have been
observed near the large separation regions in some cases, where k was significantly underestimated
(by up to 90%) consistently by all the simulations with various P-increasing perturbations [21,22].
Some other studies without model perturbations also found such type of severe underestimations
[23,24], which are plausibly improbable to be effectively corrected by only perturbing the RS shape
and/or orientation. Formally, these observations imply that this failure mode of RANS models is
unlikely to originate in the LEV assumption that controls the RS shape and orientation, but instead
originates in the closure for the turbulence energy dissipation rate ε.

In flow physics, the severe underestimation of k near large separation regions is closely related to
the presence of vortex shedding [25–28], which is a typical form of large-scale coherent structures
(CS) associated with the free shear layer instability (see Bonnet and Delville [29] for a general
review). Different from the chaotic nature of standard turbulence [termed “stochastic turbulence”
(ST) in this work], CS exhibit semideterministic and quasiperiodic dynamics, and are embedded
inside and interact with the background ST. A natural approach for handling such a CS-ST system
within the RANS framework is to assume some degree of timescale separation between CS and
ST and use unsteady simulations to partially resolve the CS. A variety of methodologies to adjust
original steady-RANS models to unsteady-RANS has been proposed (e.g., [30–34]). Nevertheless,
the substantially larger computational cost of unsteady simulations is a limiting factor in large-scale
engineering applications. These facts together raise the question of whether the CS effects can be
evaluated more efficiently within the steady-RANS framework that formally averages out both types
of fluctuations.

For steady-RANS modeling, the presence of CS causes a fundamental problem for the ε closure:
without distinguishing CS from ST, one has to assume that both types of fluctuations have identical
characteristic velocity and length scales, and thus identical dissipation behaviors. Obviously, this is
an oversimplification. ST with a high enough Reynolds number generally has a smooth and partially
scale-invariant energy spectrum; in contrast, the spectrum of CS is characterized by local “peaks”
[35] without an apparent energy cascade towards a considerably smaller scale [Fig. 1(a)]. When
CS are embedded inside ST, the former can lose their energy to the latter by breaking into smaller
turbulent eddies via a series of mechanisms (see [36–39] for the CS evolution in free shear layers),
which differ in nature from the turbulence cascade in the inertial range. This “double-scale” picture,
which was first postulated by Townsend [40], is beyond the capability of conventional RANS
models that use a single scale to characterize all the fluctuations and indiscriminately formulate their
dissipation; instead, a mechanism to evaluate the effects of CS on the dissipation closure should be
incorporated for steady-RANS modeling.

The objective of this paper is to present a conceptual model for quantifying the uncertainty in
steady-RANS dissipation closure for turbulent flows with coherent structures. We focus on CS of
the vortex shedding type in bluff body flows and develop the model in two steps:

(1) We formulate a double-scale, double-LEV (DSDL) framework for the transport of CS and ST
energy separately, with an undetermined energy transfer rate from CS to ST. In this framework, the
dissipation of ST energy is assumed to follow a conventional transport model; the length scale of
CS is algebraically associated with the mean flow field, such that CS energy is intensely produced
in free shear layers.
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FIG. 1. Principle of the DSDL model: (a) Sketch of a turbulent energy spectrum with coherent structures;
(b) tank-tube system analogy for the spectral energy transfer; (c) the supposition of the CS length scale, which
naturally yields intense generation of kc near the separation line behind a structure; and (d) the assumed
function to represent the effect of length scale separation on the CS-ST energy transfer.

(2) We design a functional form for the energy transfer rate based on dimensional analysis and an
analogy with the “return-to-isotropy” evolution of RS anisotropy. This form includes two uncertain
parameters that control the CS-ST interaction.

We present results for three different flow configurations: flow over a circular cylinder, flow over
a square cylinder, and flow through a pin-fin array. In all cases, the model performance will be
quantified by comparing results for the mean velocity and turbulence kinetic energy obtained from
a set of simulations with the proposed model, using different values for the uncertain parameters,
to reference data available from experiments or large eddy simulations (LES). In addition, results
from a baseline RANS model, and from a RANS simulation with RS shape perturbations (RSSP)
towards the one-component limit, are included for comparison.

The remainder of this paper first introduces the formulation of the conceptual model in Sec. II.
Subsequently, we present the three test cases and their results in Sec. III. To conclude, Sec. IV
provides a summary and suggestions for further model improvements.

II. DSDL MODEL FORMULATION

In this section, we first introduce the double-scale concept and the transport equations for CS
and ST energy. Subsequently, we present how the LEV assumption is employed for the CS and ST
stress, respectively, resulting in a semiclosed form for the DSDL model with the energy transfer
rate unknown. Lastly, we introduce the parametrization of the energy transfer between CS and ST
with two uncertain parameters. Throughout this section, we consider an incompressible flow with
constant density ρ and kinetic viscosity ν.
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A. The double-scale concept

1. Triple decomposition

The proposed framework uses the triple decomposition concept [41] from unsteady-RANS to
decompose instantaneous variables such as the velocity ui into contributions from the mean field,
coherent structures, and stochastic turbulence:

ui = Ui + uc
i + us

i . (1)

In Eq. (1), Ui ≡ ūi, uc
i ≡ ũi − ūi, and us

i ≡ ui − ũi, where ūi and ũi are the long-time, i.e., consid-
erably longer than the timescale of CS, and short-time, i.e., considerably longer than the timescale
of ST but smaller than that of CS, averages, respectively. The total velocity fluctuation is defined
as u′

i ≡ uc
i + us

i = ui − Ui. Furthermore, we assume that any long-time cross correlation between uc
i

and us
i (e.g., uc

i us
j or uc

i ũs
ju

s
k) vanishes. Thus, the model’s ultimate output, i.e., the total RS u′

iu
′
j that

is to affect the mean momentum transport, is equal to the sum uc
i uc

j + us
i u

s
j .

2. Transport equations for CS and ST energy

The kinetic energy of total fluctuations k ≡ u′
iu

′
i/2 is the summation of CS energy kc ≡ uc

i uc
i /2

and ST energy ks ≡ us
i u

s
i /2. We can derive the exact transport equations for kc and ks, respectively,

as

D̄t kc = Pc − ζ − εc + Dc, (2a)

D̄t ks = P s + ζ − εs + Ds, (2b)

where

Pc ≡ −uc
i uc

jSi j, εc ≡ ν
∂uc

i

∂x j

∂uc
i

∂x j
, Dc ≡ ∂

∂xi

(
ν
∂kc

∂xi
− 1

2
uc

i uc
ju

c
j − uc

i pc

)
, (3a)

P s ≡ −us
i u

s
jSi j, εs ≡ ν

∂us
i

∂x j

∂us
i

∂x j
, Ds ≡ ∂

∂xi

(
ν
∂ks

∂xi
− 1

2
us

i u
s
ju

s
j − us

i ps

)
, (3b)

ζ ≡ −ũs
i u

s
js

c
i j . (3c)

In Eqs. (2) and (3), the operator D̄t ≡ ∂t + Ui∂i is the material derivative with respect to long
time t , and thus equals Ui∂i in steady simulations; Pc/s, εc/s, and Dc/s are the rates of production,
dissipation, and diffusion of kc/s, respectively; and Si j ≡ (∂iUj + ∂ jUi )/2 and sc

i j ≡ (∂iuc
j + ∂ juc

i )/2
are the strain rates of the mean flow and of CS, respectively. The variable ζ , which appears in both
kc and ks equations but has opposite signs, is the spectral energy transfer rate from CS to ST. For
high Reynolds numbers, εc is generally negligible compared to either εs or ζ ; in this paper, we omit
εc, and interpret εs as the overall energy dissipation rate, removing its superscript, i.e., εc = 0 and
ε = εs.

Figure 1(b) provides a conceptual illustration of the dynamics for kc and ks using a “tank-tube”
analogy. This analogy is similar to the sketch introduced by Hanjalic et al. [42] to illustrate their
multiscale modeling concept; however, due to the formal introduction of two separate transport
equations for kc and ks in this work, two additional phenomena are represented. First, we have an
energy production Pc or P s above each tank, indicating that the anisotropy of both CS and ST is
considered; in Hanjalic et al. [42], the production is only injected into the largest scale. Second, we
suppose the “tube” between the two “tanks” to have “inner roughness” and a “finite length,” which
indicates the dependency of the energy transfer rate on the length scale separation between CS and
ST (the reasoning is discussed in Sec. II C 1); the scale separation effect on the energy transfer is
not explicitly considered in Hanjalic et al. [42].
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B. The double-LEV assumption

1. LEV assumption for ST stress

The ST stress us
i u

s
j is closed using a conventional LEV model with

us
i u

s
j = 2ksδi j/3 − 2νs

t Si j . (4)

Using the standard k-ε model [43] as an example, the eddy viscosity νs
t in Eq. (4) is calculated from

a dimensional argument,

νs
t = Cμ (ks)1/2 ls, ls ≡ (ks)3/2/ε. (5)

Here, ks is determined from solving the ks equation (2 b) with a modeled diffusion term,

Ds = ∂

∂xi

[(
ν + νs

t

σk

)
∂ks

∂xi

]
, (6)

and a modeled ε equation,

D̄ε

D̄t
= ε

ks
[Cε1(P s + ζ ) − Cε2 ε ] + ∂

∂xi

[(
ν + νs

t

σε

)
∂ε

∂xi

]
. (7)

The constant Cμ is equal to 0.09, and Cε1, Cε2, σk , and σε are additional model-specific coefficients.
Note that in Eq. (7), the dissipation is characterized by the ST timescale ks/ε and the “production”
is represented by P s + ζ rather than Pc + P s, consistent with the fact that the turbulent dissipation
should not immediately respond to any large-scale motions.

2. LEV assumption for CS stress

For the CS stress uc
i uc

j , we also assume an LEV form similar to Eqs. (4) and (5),

uc
i uc

j = 2kcδi j/3 − 2νc
t Si j, (8)

νc
t = Cμ (kc)1/2 lc, (9)

as well as a modeled diffusion term in Eq. (2), which is similar to Eq. (6),

Dc = ∂

∂xi

[(
ν + νc

t

σk

)
∂kc

∂xi

]
. (10)

However, different from the ST length scale ls, the CS length scale lc in Eq. (9) is not defined as
(kc)3/2/ζ . Since the initial stage of the CS generation is usually a highly nonequilibrium process
with little dissipation or energy transfer towards small scales, ζ should not be used to characterize
lc. Instead, we associate lc with the mean flow field, as introduced in Sec. II B 3.

3. Estimation of CS length scale

Since the coherent structures of interest are associated with a specific mean flow pattern, it is
natural to assume lc to primarily scale with the mean flow length scale lm, i.e., lc ∼ lm. To estimate
lm, we first consider a parallel shear flow, where the only nonzero component of the mean velocity
gradient is ∂yUx. In this case, lm can be estimated following Wilcox et al. [44],

lm ∼ |∂yUx| / |∂2
yyUx|. (11)

For general mean flows, we simply generalize Eq. (11) and define lc as

lc = cmΩ / ‖∇S‖, S ≡ √
2Si jSi j, Ω ≡ √

2Ωi jΩi j, (12)

where Ωi j ≡ (∂iUj − ∂ jUi )/2 and cm is a prefactor to be determined. lc evaluated by Eq. (12) can
be large near the center of a strong shear layer, where Ω is large but ‖ ∇S ‖ is small. In bluff body
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flows, such a strong shear layer is generally induced by large flow separation and embeds vortex
shedding, as shown in Fig. 1(c).

To select a plausible value of cm in Eq. (12), we make the conceptual assumption that for a
turbulent flow in local equilibrium, the calculated values of the effective eddy viscosity νt = νc

t + νs
t

should be identical under two circumstances: (a) all fluctuations are due to ST, i.e., k = ks and
νt = νs

t , and (b) all fluctuations are due to CS, i.e., k = kc and νt = νc
t . If we take the log-layer in a

boundary layer as an example of locally equilibrium turbulence, then this assumption results in the
following relationship:

κ C1/4
μ k1/2y = cm Cμk1/2y, (13)

where κ ≈ 0.41 is the von Kármán constant. Equation (13) leads to

cm = κ/C3/4
μ ≈ 2.5. (14)

Finally, in near-wall regions, lc should also depend on the wall distance y and the friction length
lτ ≡ ν/uτ , where uτ is friction velocity on the wall. To represent these effects, we use the Baldwin-
Lomax mixing length [45] as a limiter of lc, yielding

lc = (κ/C3/4
μ ) min{Ω/‖∇S‖, y [1 − exp(−y+/A+)]}, y+ ≡ uτ y/ν, (15)

where A+ ≈ 26 and uτ is locally approximated using the parallel shear flow relation u2
τ ≈ C1/2

μ ks.
Equation (15) will be used in Eq. (9) to calculate νc

t .

C. Modeling the CS-ST energy transfer

The three transport equations (2), (2b), and (7), combined with the two LEV relations (4) and (8),
provide a three-equation, double-scale, double-LEV (DSDL) framework in semiclosed form. The
only undetermined variable is the energy transfer rate ζ between CS and ST. This section addresses
the formulation of ζ , which is a pivotal issue in the DSDL model development.

1. Background and dimensional argument

Closing the interscale energy transfer rates is centered in most multiscale modeling concepts
in general. One possible closing approach is to construct empirical transport equations through
elaborate calibrations in diverse benchmark flows (e.g., Hanjalic et al. [42], Kim and Chen [46],
Schiestel [47]). However, few studies have used this empirical approach to close the energy transfer
rate from a specific type of CS to ST. Another approach is based on two-point closure theories,
such as the Kovasznay hypothesis [48] adopted by Schiestel [49]; however, for turbulence with
a significantly distorted spectrum by CS, the dimensional ground of the Kovasznay hypothesis is
invalid. As such, we generally lack studies that directly inform the energy transfer rate modeling in
a CS-ST system for steady-RANS simulations. We therefore design a simple conceptual model for
the energy transfer rate ζ for the UQ purpose, using a dimensional argument as a starting point.

The interaction between CS and ST generally tends to destruct the former while feeding the
latter, i.e., it reduces kc while increasing ks at the rate of ζ . Since this process is an intrinsic
phenomenon of the dissipative system, we can infer that ζ does not directly depend on external
effects, e.g., Pc or P s; instead, it only depends on the instantaneous characteristics of CS and ST
themselves. Furthermore, informed by the definition (3), if we hypothesize that CS (or ST) can
simply be characterized by their velocity scale (kc)1/2 [or (ks)1/2] and their length scale lc (or ls),
then ζ should be expressed as

ζ = ζ (kc, lc, ks, ls). (16)

Using dimensional analysis, Eq. (16) can be rewritten as

ζ

(ks)3/2/ls
= ζ

ε
= F

(
lc

ls
,

kc

ks

)
, (17)
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with F a dimensionless function. Equation (17) indicates that ζ primarily scales with ε, and that it
depends on the length scale ratio lc/ls and the energy ratio kc/ks.

The dependence of F on kc/ks and lc/ls can be qualitatively informed by the tank-tube analogy
from Fig. 1(b): a “higher pressure difference” (i.e., larger kc/ks) or a “shorter tube length” (i.e.,
smaller lc/ls) will yield a “larger flow rate” (i.e., larger ζ ). Accordingly, we assume the following
form for ζ :

ζ = f (lc/ls) g(kc/ks) ε, (18)

in which g(kc/ks) is a nondecreasing function such that g(kc/ks) ε is the energy transfer rate when
lc/ls = 1, and f (lc/ls) is a nonincreasing function representing the effect of length scale separation
on the rate, with f (1) = 1. The functions g(kc/ks) and f (lc/ls) will be determined in Secs. II C 2
and II C 3, respectively.

2. An analogy with “return-to-isotropy”

To determine a plausible and concise form for ζ = g(kc/ks) ε under the condition of no length
scale separation (i.e., lc/ls = 1), we employ an analogy between the CS destruction process and
a process in another nonequilibrium system—the “return-to-isotropy” (RI) process for an RS
evolution [50].

First, consider an RS tensor in free-decaying turbulence. Assume the matrix form under its
principal coordinate system to be

R =
⎡
⎣ u′2

v′2

w′2

⎤
⎦, u′2 � v′2 � w′2. (19)

Its energy k = tr{R}/2 follows the equation

dt k = −ε. (20)

Now decompose R into an anisotropic part Ra and an isotropic part Rb, where

Ra =
⎡
⎣ u′2 − w′2

v′2 − w′2
0

⎤
⎦, Rb =

⎡
⎣ w′2

w′2

w′2

⎤
⎦. (21)

According to the (linear) RI theory and the isotropic dissipation assumption, the evolution of Ra is
governed by

dt R
a = −CRI (ε/k) Ra

, CRI = 1.5 ∼ 1.8. (22)

Thus, the “energy” contained in Ra, ka = tr{Ra}/2, follows the equation

dt k
a = −CRI (ε/k) ka. (23)

Combining Eqs. (20) and (23) results in the equation for the energy fraction ka/k,

dt (k
a/k) = −(CRI − 1) (ε/k) (ka/k). (24)

Equation (24) basically reflects the RI process in which a nonequilibrium state (i.e., anisotropy or
ka/k > 0) spontaneously tends towards an equilibrium state (i.e., isotropy or ka/k = 0); this process
is characterized by the timescale proportional to k/ε.

Next, we draw an analogy between the energy ka and kb contained in an RS and the energy kc

and ks in a CS-ST system, respectively. On one hand, the equation for the energy fraction kc/k can
be obtained from Eq. (2) with negligible production and diffusion,

dt (k
c/k) = −(ε/k) (ζ/ε − kc/k), (25)
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TABLE I. Summary of DSDL model formulation.

Total RS u′
iu

′
j = uc

i uc
j + us

i u
s
j ;

CS stress uc
i uc

j = 2kcδi j/3 − 2νc
t Si j, νc

t = Cμ(kc )1/2lc,

lc = (κ/C3/4
μ ) min{Ω/‖∇S‖, y (1 − e−y+/A+

)}, y+ = C1/4
μ (ks )1/2y/ν,

D̄t kc = Pc − ζ + ∂i[(ν + νc
t /σk )∂ikc], Pc = −uc

i uc
jSi j (Ω/S) ;

ST stress us
i u

s
j = 2ksδi j/3 − 2νs

t Si j, νs
t = Cμ(ks )1/2ls, ls = (ks )3/2/ε,

D̄t ks = P s + ζ − ε + ∂i[(ν + νs
t /σk )∂iks], P s = −us

i u
s
jSi j (Ω/S),

D̄tε = (ε/ks )[Cε1(P s + ζ ) − Cε2ε] + ∂i[(ν + νs
t /σε )∂iε];

Energy transfer rate ζ = Ctr f (lc/ls ) (kc/k) ε,

f (lc/ls ) =
{

(1 + tanh{α ln[r1/2/(lc/ls )]})/2 if lc/ls > 1,

1 if lc/ls � 1,
α = 5.0,

with uncertain parameters Ctr ∈ (1, ∞) and r1/2 ∈ (1,∞).

while on the other hand, we assume a “return-to-ST” process in which kc/k behaves similarly to
ka/k and is governed by Eq. (24), i.e.,

dt (k
c/k) = −(Ctr − 1) (ε/k) (kc/k), (26)

where the coefficient Ctr ∈ (1,∞) controlling the CS-ST energy transfer is a counterpart of the
coefficient CRI controlling the RI process. Equations (25) and (26) result in

ζ = Ctr (kc/k) ε. (27)

This simple form indicates that ζ scales with ε and is driven by the energy proportion kc/k, which is
consistent with the qualitative analysis in Sec. II C 1. The coefficient Ctr ∈ (1,∞) can be regarded
as an indicator of the “cross-section area” of the tube between the two tanks in Fig.1(b).

3. Effect of length scale separation

Based on the analysis of the length scale separation effect in Sec. II C 1, we hypothesize the
following properties that a desired model function f (lc/ls) should have:

(i) f (lc/ls) is nonincreasing for any lc/ls > 0;
(ii) f (lc/ls) = 1 for lc/ls � 1;
(iii) f (lc/ls) → 0 as lc/ls → ∞.
Accordingly and for simplicity, a smoothed step function as shown in Fig. 1(d) is selected,

f (lc/ls) =

⎧⎪⎨
⎪⎩

1

2

[
1 + tanh

(
α ln

r1/2

lc/ls

)]
if lc/ls > 1,

1 if lc/ls � 1.

(28)

In Eq. (28), the parameter r1/2 ∈ (1,∞) represents the length scale ratio with which ζ reduces to
one-half of its value when lc/ls = 1. α is a smoothing coefficient and set to be 5 in this paper due to
the fact that varying α in the range ∼3–10 has little effect on the results. In Fig. 1(b), r1/2 ∈ (1,∞)
can be regarded as an indicator of the “inner roughness” of the tube between the two tanks, with a
smaller r1/2 indicating a “rougher tube,” and vice versa.

D. Summary and relation to conventional model

1. Summary of the model formulation

The DSDL model developed in Secs. II A–II C is summarized in Table I, using the standard k-ε
model to calculate the ST-related variables. We employ Kato’s correction [51] for the production
terms Pc and P s to avoid the “stagnation point anomaly” [52] that yields nonphysically high
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energy production near upwind stagnation points. This correction would not be necessary if the
wall-blocking effect on near-wall RS is accounted for separately in the baseline model. It would be
straightforward to apply the DSDL concept to most other conventional single-scale, two-equation
LEV models.

The uncertain parameters, Ctr ∈ (1,∞) and r1/2 ∈ (1,∞), control the energy transfer rate in the
DSDL model. A decrease of either tends to increase the system resistance to the CS-ST energy trans-
fer process, thereby retarding the ST energy accumulation and the total energy dissipation. As both
Ctr and r1/2 go to infinity, the energy transfer process becomes sufficiently fast to essentially prohibit
any CS energy accumulation, and thus the conventional single-scale LEV model is recovered. The
quantitative effects of the two parameters will be further investigated in Sec. III.

2. Relation to the conventional model

We conclude this section by further illustrating the relation between the conventional model and
the DSDL model. The latter will be reformulated to facilitate the comparison, specifically under the
condition of quasihomogeneity, i.e., with negligible diffusion terms.

First, it is straightforward that the sum of Eqs. (2) and (2b) is identical to the k equation of the
conventional model,

D̄k

D̄t
= P − ε, (29)

where P = Pc + P s is the production rate of the total energy k.
Second, Eqs. (5) and (9) for the eddy viscosity lead to

P s

P = νs
t

νs
t + νc

t
= (ks)1/2 ls

(ks)1/2 ls + (kc)1/2 lc
= 1

1 + (lc/ls) h
, h ≡ (kc/ks)1/2. (30)

With Eq. (30) and the energy transfer rate form (18), the ε equation (7) can be formally rewritten as

D̄ε

D̄t
= ε

ks
[Cε1(P s + ζ ) − Cε2 ε ]

= ε

k

k

ks

{
Cε1

[
P P s

P + Ctr f (lc/ls)
kc

k
ε

]
− Cε2 ε

}

= ε

k
( C ′

ε1P − C ′
ε2 ε ),

(31)

which is identical to the conventional ε equation, except that the two coefficients are modified from
Cε1, ε2 to C ′

ε1, ε2 via

C ′
ε1

Cε1
= 1 + h2

[
1 − (lc/ls)/h

1 + (lc/ls) h
+ Ctr f (lc/ls)

ε

P

]
, (32a)

C ′
ε2

Cε2
= 1 + h2. (32b)

Equations (31) and (32) indicate that the introduction of the DSDL model is equivalent to
injecting perturbation fields to the two coefficients that control the ε dynamics. The perturbation
magnitudes are generally proportional to the local energy ratio h2 = kc/ks.

On one hand, the perturbation to Cε2 depends only on h and is always positive, thereby tending
to accelerate the loss of ε. On the other hand, the perturbation to Cε1 depends on additional local
flow variables, including lc/ls and P/ε, and can be either positive or negative. The effects of the
Cε1 perturbation may be partially illustrated by the following two properties:

(a) When h 
 1, we have 1−(lc/ls )/h
1+(lc/ls ) h � −(lc/ls)/h, so C ′

ε1/Cε1 � 1 − (lc/ls) h. It indicates that
at the initial stage of kc generation, the perturbation is negative and thus retards the increase of ε.
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FIG. 2. Mesh for the case of flow past a circular cylinder. Left: in the entire domain; right: near the cylinder.

(b) C ′
ε1 decreases monotonically with increasing lc/ls, and is asymptotic to zero as lc/ls → ∞.

This implies that a large length scale separation can force C ′
ε1 to nearly vanish, thereby significantly

retarding the increase of ε.

III. RESULTS

In this section, the DSDL model developed in Sec. II is applied to three cases of bluff body flows.
The low-Reynolds-number k-ε model [53] and/or the Shear-stress-transport (SST) k-ω model [54]
are used to calculate the ST-related variables. These models can be directly integrated to the walls
without using extra wall functions, which are necessary for the standard k-ε model.

For each case, three sets of steady-RANS simulations are implemented for comparison:
(1) BSL: one baseline simulation using a conventional single-scale LEV model [53,54].
(2) RSSP-1C(0.5): one simulation in which the RS shape predicted by the conventional model

is perturbed halfway towards the one-component limit (i.e., the most efficient route to increase the
local energy production rate, P) following the methodology in [15,22] (see the Appendix for a brief
introduction of the RSSP method).

(3) DSDL(Ctr , r1/2): a set of simulations in which the DSDL model (using the conventional
model to calculate ST-related variables) is applied for various values of Ctr and r1/2.

Note that Kato’s production correction [51], i.e., P = −u′
iu

′
jSi j (Ω/S), is also applied in the BSL

and RSSP-1C simulations.
All simulations are implemented using the open-source software OPENFOAM [55]. The differential

equations are spatially discretized using the second-order finite-volume method. The SIMPLE
algorithm is adopted for pressure-velocity decoupling. The solution is considered to be converged
when the global residuals of momentum and energy decrease more than four orders of magnitude
and the QoIs reach their steady-state values. The near-wall grid resolutions are high enough to
ensure �y+ � 1, avoiding the use of wall functions. For each case, the results presented in this
section were demonstrated to be grid independent by performing simulations with a finer mesh
(resolution ∼25–30% higher in each dimension) and verifying that discrepancies between the QoIs
predicted by both meshes were smaller than 1%.

A. Flow past a circular cylinder

The first test case considers the flow past a circular cylinder of infinite length with cross-section
diameter D. Reference data is available from an experiment in Lourenco and Shih [56] and LES
(“Run C2”) in Breuer [57]. The Reynolds number Re = U∞D/ν is 3900, where U∞ is the free
stream velocity. Figure 2 depicts the two-dimensional computational domain, which is discretized
using around 39 600 cells. The simulations employ symmetric boundary conditions at y/D = 0
and y/D = 8. To match to flow conditions from the experiments and LES, we impose a uniform
free stream velocity with a turbulence intensity Tu = √

2k/3/U∞ of 0.1% at the inflow boundary
(x/D = 8). Assuming that no CS exist at the inflow, we set kc/k = O(10−6) at the inlet. The outlet
boundary is placed at x/D = 17, with zero-gradient conditions for Ui, kc, ks, and ε (or ω).
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FIG. 3. Mean streamlines and total fluctuation energy contours around the recirculation region behind the
circular cylinder (using the k-ω SST model as the baseline). Ctr = 1.5 for DSDL simulations.

1. Results for varying r1/2

We first investigate the length scale separation effect on the DSDL model by varying r1/2 while
fixing Ctr . The latter is selected to be 1.5, similar to the RI coefficient CRI in Eq. (22).

Figure 3 visualizes the recirculation regions and the total fluctuation energy predicted by the
three sets of steady-RANS simulations. The BSL predicts an excessively long recirculation region,
while the increased turbulence kinetic energy in the RSSP-1C and DSDL reduces the wake regions
to around 1D. The value for r1/2 is found to have a limited influence on the mean velocity field
predicted by the DSDL, but it does affect the turbulence kinetic energy in the wake region. As
expected, decreasing r1/2, which decreases the energy transfer rate, results in an increase in the
overall level of turbulence.

FIG. 4. Distributions of mean velocity component Ux along the center line y = 0 downstream of the circular
cylinder. (Left: using the low-Re k-ε model as baseline; right: using the k-ω SST model as the baseline. Same
for Figs. 5, 10, and 11.) Ctr = 1.5 for DSDL simulations.
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FIG. 5. Distributions of total fluctuation energy k along the center line y = 0 downstream of the circular
cylinder. Ctr = 1.5 for DSDL simulations.

Figures 4 and 5 present a quantitative comparison of the simulations and the reference data by
plotting the mean velocity and turbulence kinetic energy profiles along the center line y = 0. For the
mean velocity prediction, both the RSSP-1C and the DSDL significantly reduce the discrepancies
with the experimental data observed in the BSL result; overall, the DSDL velocity prediction, which
shows negligible dependency on r1/2, provides the best agreement with the experiment.

The turbulence kinetic energy profiles (Fig. 5) further demonstrate the superiority of the DSDL
over both the BSL and RSSP-1C. The BSL and RSSP-1C significantly underestimate the energy
levels downstream of the cylinder; the peak value discrepancies with the LES data are ∼ − 87%–
−83%. The DSDL model significantly reduces the discrepancies in both the profile shapes and the
peak values: for the uncertain parameter r1/2 decreasing from ∞ to 2.4, the peak value discrepancies
vary from +4% to +18% (with low-Re k-ε as the baseline) or from −11% to +14% (with k-ω
SST as the baseline). Compared to the mean velocity, the turbulence kinetic energy depends more
strongly on r1/2. Simulations considering the full range of possible values (r1/2 ∈ [1,+∞)) would
result in large uncertain intervals for the prediction of the turbulence kinetic energy. However,
adequate calibration can be expected to improve the predictive capabilities; based on the current
analysis, the interval r1/2 ∈ [2.4,+∞) is recommended for the case of flow over circular cross
sections.

To further investigate the mechanisms that cause the increased energy levels predicted by the
DSDL method, Fig. 6 provides contour plots of the scale ratio and the CS energy production rate.
As expected, large-scale ratios lc/ls exist around the border between the wake downstream of the
cylinder and the outer main flow region; these large ratios suppress the energy transfer from kc to
ks. At the same time, there is intense production of kc in this region. The resulting locally high

FIG. 6. Logarithmic contours of scale ratio lc/ls (left) and CS energy production rate Pc (right) behind the
circular cylinder. Simulation DSDL with Ctr = 1.5 and r1/2 → ∞; using the k-ω SST model as the baseline.
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FIG. 7. Isolines of the metrics m(xr ) (left) and m(km ) (right) with respect to parameters Ctr and r1/2 for the
case of a circular cylinder (using the k-ω SST model as the baseline). The axes of Ctr and r1/2, respectively, use
a logarithmic scale and a reciprocal scale, under which the isolines m( · ) = 1 are linearly fitted by the dashed
lines.

level of kc is subsequently transported via both the (modeled) turbulent diffusion and the mean flow
convection to the region near the center line.

2. Results for varying Ctr and r1/2

The results in Sec. III A 1 indicate that given Ctr = 1.5 ≈ CRI, the DSDL model with r1/2 ∈
[2.4,∞) achieves reasonable agreement with the reference data in terms of the size and the energy
level of the recirculation zone. In the following, we further relax the condition Ctr ≈ CRI and
investigate the predictions in the recirculation zone for jointly varying Ctr and r1/2. To support this
investigation, we define two metrics that represent the improvement in the DSDL predictions for the
size and the energy level of the recirculation zone compared to the BSL prediction.

On the center line y = 0 downstream of the cylinder, denote the x coordinate where the mean
velocity Ux is zero by xr and the maximum value of total fluctuation energy k by km. xr and km

are used to characterize the size and the energy level of the recirculation zone. Further define two
metrics m(xr ) and m(km) as

m(xr ) = (xr − xr |BSL) / (xr |REF − xr |BSL), (33a)

m(km) = (km − km|BSL) / (km|REF − km|BSL), (33b)

where · |REF and · |BSL represent the quantities resulting from the reference data (by LES or
experiments) and from the BSL simulation, respectively. Accordingly, the proximity of m( · ) to
a value of 1 represents the DSDL model’s capability to improve upon the BSL model prediction.

We select the values of Ctr from the set {1.5, 1.6, 1.8, 2.4, 3.2, 6.0, 12, 100, 500} and r1/2 from
{1.7, 2, 3, 5, 8, ∞}, and implement 9 × 6 = 54 DSDL simulations. The resulting isolines of m(xr )
and m(km) are plotted in Fig. 7 with respect to Ctr and r1/2. The figure shows that both m(xr ) and
m(km) are asymptotic to zero as Ctr and r1/2 simultaneously approach infinity, which is consistent
with the discussion in Sec. II D. As either Ctr or r1/2 decreases, both m(xr ) and m(km) generally tend
to increase. A total consistency with the reference data is realized on the isolines with m( · ) = 1,
which can be approximated by the fitted relations log10(Ctr/2.25) = 2.04/r1/2 for m(xr ) = 1 and
log10(Ctr/1.06) = 0.66/r1/2 for m(km) = 1. For 1.5 � Ctr � 10, the variation in m(xr ) is generally
small, within the range of ∼0.9–1.1. m(km) is much more sensitive to either parameter, varying
within the range of ∼0.3–1.3. When Ctr = 1.5 and 2.4 � r1/2 < ∞, as suggested in Sec. III A 1, we
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FIG. 8. Mesh for the case of flow past a square cylinder. Left: in the entire domain; right: around the
cylinder.

have m(xr ) ∼ 1.08–1.10 and m(km) ∼ 0.85–1.15. Similar ranges of m(xr ) and m(km) can be realized
when Ctr and r1/2 follow the relation log10(Ctr/a) = 0.66/r1/2 with a ∼ 0.8–1.5.

In summary, Fig. 7 demonstrates that reasonable predictions of both the size and the energy
level of the recirculation zone approximately require Ctr � 4. This implies that Ctr , if regarded as
a quasi-universal coefficient in similar flow configurations, is indeed not too far from the common
range of the return-to-isotropy coefficient CRI.

B. Flow past a square cylinder

The second test case considers the flow past a square cylinder of infinite length with cross-section
side length D. Reference data is available from an experiment [58] at Re = U∞D/ν = 14 000.
Figure 8 shows the computational domain, which is discretized using around 64 000 cells. The
boundary conditions are set similarly to the circular cylinder case, except that Tu = 6% at the inlet.

1. Results for varying r1/2

As in Sec. III A 1, we first discuss the r1/2 effect under a fixed Ctr = 1.5. Figure 9 shows the
predictions for the mean flow and turbulence kinetic energy in the recirculation region. Similarly to

FIG. 9. Mean streamlines and total fluctuation energy contours around the recirculation region behind the
square cylinder (using the low-Re k-ε model as the baseline). Ctr = 1.5 for DSDL simulations.
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FIG. 10. Distributions of mean velocity component Ux along the center line y = 0 downstream of the square
cylinder. Ctr = 1.5 for DSDL simulations.

the case in Sec. III A, the recirculation region predicted by the BSL is excessively large. In addition,
the flow on the side wall of the cylinder never reattaches. In contrast, the RSSP-1C and DSDL
predict recirculation lengths of around 1D, in combination with a small separation bubble on the
side wall. The differences in the mean flow are combined with higher predicted turbulence kinetic
energies around the edges of the separation zones. As for the circular cylinder, the value for r1/2 has
a limited influence on the mean velocity field predicted by the DSDL, but it does significantly affect
the turbulence kinetic energy.

Figures 10 and 11 present a quantitative comparison of the simulations and the reference data by
plotting the mean velocity and turbulence kinetic energy profiles along the center line y = 0. For
the mean velocity, the results demonstrate that the RSSP-1C and the DSDL provide a significantly
improved prediction compared to the BSL result.

Considering the turbulence kinetic energy, the BSL and RSSP-1C underestimate the energy
level more strongly than for the circular cylinder: the discrepancies with the experimental peak

FIG. 11. Distributions of total fluctuation energy k along the center line y = 0 downstream of the square
cylinder. Ctr = 1.5 for DSDL simulations.
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FIG. 12. Logarithmic contours of the scale ratio lc/ls (left) and CS energy production rate Pc (right)
behind the square cylinder. Simulation DSDL with Ctr = 1.5 and r1/2 → ∞; using the low-Re k-ε model as
the baseline.

values are ∼ − 93%–−88%. This discrepancy is moderately decreased to −72% when using the
DSDL method with infinite r1/2; for values as low as 1.4 to 1.1, the discrepancy is reduced more
significantly to −13% to +13% with the low-Re k-ε as the baseline or from −22% to −12%
with the k-ω SST as the baseline. The plots confirm the previously observed strong dependency
of the turbulence kinetic energy on r1/2. Calibration of this parameter can support reducing the
prediction intervals for the energy levels; based on the current analysis, we recommend the interval
r1/2 ∈ [1.1, 1.4] for the case of flow over bodies with square cross sections.

Figure 12 depicts the contour plots of the scale ratio and the CS energy production rate to further
investigate the mechanisms that cause the increased energy levels predicted by the DSDL method.
Different from Fig. 6, large lc/ls exist in two regions around the square cylinder: a more narrow
region is associated with the front-corner separation, while a wider region exists along the border
between the wake region and the outer mean flow. These regions support the transport of locally
generated turbulence downstream along the side wall and towards the center line via both the
(modeled) turbulent diffusion and the mean flow convection.

2. Results for varying Ctr and r1/2

In the following, we apply the same procedure as in Sec. III A 2 to investigate the dependence of
the recirculation zone characteristics on both parameters Ctr and r1/2. The set of Ctr values is {1.4,
1.5, 1.8, 2.4, 3.6, 6.0, 20, 100, 1000} and the set of r1/2 values is {1.1, 1.4, 2.0, 5.0, ∞}, yielding
9 × 5 = 45 DSDL simulations.

Figure 13 shows isolines of the metrics m(xr ) and m(km) with respect to Ctr and r1/2. Similar
trends as in Fig. 7 are observed in terms of the asymptotic behaviors, the joint monotonicity, and the
difference in sensitivity between m(xr ) and m(km). A characteristic of Fig. 13 that is different from
Fig. 7 is that smaller values for both Ctr and r1/2 are needed to achieve m( · ) = 1; the fitted relations
for m(xr ) = 1 and m(km) = 1 are log10(Ctr/0.68) = 1.34/r1/2 and log10(Ctr/0.70) = 0.41/r1/2,
respectively. The parameter values Ctr = 1.5 and 1.1 � r1/2 � 1.4 recommended in Sec. III B 1
correspond to m(xr ) ≈ 1.03 and m(km) ∼ 0.85–1.15. The same ranges of m(xr ) and m(km) can
also be approximately realized when Ctr and r1/2 follow the relation log10(Ctr/a) = 0.41/r1/2 with
a ∼ 0.65–0.75.

Similarly to the summary in Sec. III A 2, Fig. 7 demonstrates that reasonable predictions of both
the size and the energy level of the recirculation zone require Ctr � 2. This further confirms that
appropriate values of Ctr are within or close to the common range for CRI.

C. Flow in a pin-fin array

The third test case considers the flow in a pin-fin array consisting of eight staggered rows of
circular cylinders (pins) placed between two parallel flat plates (fins). This case was first studied
experimentally by Ames et al. [59], followed by several numerical studies including a high-fidelity
LES reported by Hao and Gorlé [60]. We will use the validated LES results presented in [60] as
the reference data in this paper. Figure 14 shows the computational domain, ranging over one-half
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FIG. 13. Isolines of the improvement functions m(xr ) (left) and m(km ) (right) with respect to parameters
Ctr and r1/2 for the case of a square cylinder (using the low-Re k-ε model as the baseline). The axes of Ctr and
r1/2, respectively, use a logarithmic scale and a reciprocal scale, under which the isolines m = 1 are linearly
fitted by the dashed lines.

of the lateral (y) pin spacing and one-half of the fin spacing due to symmetries. The Reynolds
number Re = VmD/ν = 10 000, where D is the diameter of the cylindrical pins and Vm is the average
velocity on the throat cross section between two laterally adjacent pins. The entire computational
domain is discretized using about 2 650 000 cells. More details on the simulation setup can be found
in Hao and Gorlé [22]. The k-ω SST model is used as the baseline model. Based on the suggestion
for the case of flow over the circular cylinder in Sec. III A, we use Ctr = 1.5 and r1/2 ∈ [2.4,+∞)
for this configuration with multiple circular cylinders.

Figure 15 displays the recirculation region and the total fluctuation energy predictions behind
different pin rows. In the LES results, the recirculation region first decreases in size from rows 2
to 5, before becoming more constant on rows 5 to 7. The BSL predicted wake extents are larger
and hardly change from rows 2 to 7. The results of RSSP-1C and DSDL are similar in terms

FIG. 14. Computational domain and mesh for the pin-fin array configuration.
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FIG. 15. Mean streamlines and total fluctuation energy contours on the center plane z = 0 behind pin rows
2, 5, and 7 of the pin-fin array. Ctr = 1.5 for DSDL simulations.

of the wake extents; relative to the LES, the predicted recirculation sizes are smaller for row 2,
but comparable for rows 5 and 7. Considering the turbulence kinetic energy, the RSSP-1C has
only a limited improvement over the baseline model; in contrast, the DSDL is far more capable of
representing the levels of energy predicted by the LES.

Figures 16 and 17 show profiles of the mean velocity and turbulence kinetic energy along the
center line y = 0 on the center plane z = 0. Considering the mean velocity profile, the plot confirms
the improved performance of the RSSP-1C and DSDL compared to the BSL in the fully developed
flow regime (approximately from pin row 4 to 8). Considering the turbulence kinetic energy, Fig. 17
shows the significant energy underestimations by the BSL and RSSP-1C from row 3 to 8, while the
DSDL results with r1/2 ∈ [2.4,+∞) properly bound the majority of the LES data.

FIG. 16. Distributions of mean velocity component Ux along the center line y = 0 on the center plane z = 0
of the pin-fin array.
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FIG. 17. Distributions of total fluctuation energy k along the center line y = 0 on the center plane z = 0 of
the pin-fin array.

The most notable difference between the DSDL and the LES results is the slower energy decay
process downstream of each energy peak in the DSDL. This inadequacy can primarily be attributed
to the double-LEV assumption. Due to the geometry of this configuration, the flow downstream of
a pin is subjected to a rapid contraction process as it approaches the throat cross section formed
by the next row of pins. As indicated in a previous study of axisymmetric contraction flow in Lee
and Reynolds [61], the RS cannot evolve synchronously with the mean strain rate during this rapid
contraction; the real energy production rate is thus lower than that predicted by LEV assumption.

IV. CONCLUSIONS

In this paper, we present a conceptual model, termed the double-scale double-LEV (DSDL)
model, to quantify uncertainty in the turbulence dissipation closure in steady-RANS simulations
for flow past bluff bodies with vortex shedding. The model solves three transport equations,
respectively, for the energy of coherent structures (CS), the energy of stochastic turbulence (ST),
and the energy dissipation rate of ST. The energy transfer rate from CS to ST is modeled by an
algebraic form with two uncertain parameters Ctr ∈ (1,∞) and r1/2 ∈ (1,∞) controlling the CS-ST
interaction.

The DSDL model has been tested on the flow behind a circular and square cylinder of infinite
length, and on the flow through a pin-fin array. For Ctr values similar to the common value of
the “return-to-isotropy” coefficient CRI ≈ 1.5, the model significantly improves upon conventional
two-equation LEV models [with or without RS shape perturbations (RSSP)], in terms of estimating
the mean flow field and the fluctuation energy levels behind bluff bodies. The parameter r1/2 is
found to have a limited influence on the mean flow, but a strong effect on the fluctuation energy.
A reduction of r1/2 tends to amplify the scale separation effect and suppress the CS-ST energy
transfer, resulting in a suppressed dissipation and an increase of the total fluctuation energy. The
results for the flow configurations in this paper preliminarily suggest the intervals r1/2 ∈ [2.4,∞)
and r1/2 ∈ [1.1, 1.4] to be used for bluff bodies with circular cross sections and with square cross
sections, respectively. In addition, the tests for varying Ctr values in this paper demonstrate that
an appropriate value of Ctr for reasonably predicting both the sizes and the energy levels of the
recirculation zones should be relatively close to the common value of CRI.

To further improve the model performance, additional parameters, functional forms, and/or
model structures in the proposed conceptual model could be relaxed and perturbed. First, different
functional forms of the energy transfer rate, either revisiting f (lc/ls) and g(kc/ks) in Eq. (18) or
incorporating more physics into Eq. (18) directly, could be explored. Second, the simple form
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for the CS length scale determination in Eq. (12) should be evaluated for various flow patterns;
methods to replace the algebraic expression for lc by constructing transport equations for the length
scales as in Schwarzkopf et al. [62] are worth exploring. Third, the constants Cμ in Eqs. (5) and
(9) could be revisited. A larger Cμ in Eq. (9) than that in Eq. (5) could be considered to represent
the general descending anisotropy of turbulence from large to small scales. Fourth, the properties
of the model should be investigated in more diverse scenarios; in particular, discussions on its
conformity to various physical constraints as summarized in Xiao and Cinnella [63] would be
instructive to enhance the model’s robustness. Last, the two LEV assumptions, and especially that
for CS, might have to be perturbed. For example, both the shape and orientation of the RS related
to CS could be perturbed to reflect the quasi-two-dimensional nature of vortex shedding. One could
also comprehensively explore combining the proposed model with perturbations to the RS shape
and/or orientation. This exploration, which could be aided by various data-driven techniques, could
generate new insights on the relative importance of uncertainty introduced by the LEV assumption
versus uncertainty introduced by the dissipation closure in conventional two-equation LEV models.
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APPENDIX: THE REYNOLDS STRESS SHAPE PERTURBATION (RSSP) METHOD

The RSSP method was first proposed by Emory et al. [13] to quantify uncertainty in QoIs related
to mean momentum transport by turbulence. This Appendix briefly summarizes the method.

A Reynolds stress tensor Ri j ≡ u′
iu

′
j can be eigendecomposed as

Ri j = 2k( δi j/3 + Vik Vjl �kl ), (A1)

with [�i j] = diag[λ1, λ2, λ3] (λ1 + λ2 + λ3 = 0 and λ1 � λ2 � λ3), representing the shape of Ri j ,
and Vi j an orthogonal tensor representing the orientation of Ri j . Under the realizability constraint,
there are three limiting states: the one-component limit with [�C1

i j ] = diag[2/3,−1/3,−1/3], the
two-component limit with [�C2

i j ] = diag[1/6, 1/6,−1/3], and the three-component (i.e., isotropic)
limit with [�C3

i j ] = diag[0, 0, 0]. The shape �i j of any realizable Ri j can thereby be uniquely
expressed by a convex combination of �C1

i j , �C2
i j , and �C3

i j as

�i j = s1 �C1
i j + s2 �C2

i j + s3 �C3
i j , s1, s2, s3 � 0, s1 + s2 + s3 = 1. (A2)

Equation (A2) can be graphically represented by a barycentric map, in Fig. 18, where the three
corners represent the limit shapes and any realizable �i j should be inside the triangle.

The RSSP method proposes to perturb the Reynolds stress by changing its shape and orientation
within the realizable constraints. The perturbed Reynolds stress, denoted by R̃i j , is thus expressed
as

R̃i j = 2k( δi j/3 + Ṽik Ṽjl �̃kl ). (A3)

To estimate the bounds of a QoI, it has been proposed that one can simply preserve the orientation
Vi j of the Reynolds stress Ri j resulting from a baseline LEV model while perturbing the shape �i j

linearly towards �C1
i j , �C2

i j , and �C3
i j , respectively, as illustrated in Fig. 18 [12,13,15]. The perturbed

eigenvalues and eigenvectors are then given by

�̃i j = (1 − m) �i j + m �
C1/C2/C3
i j , Ṽi j = Vi j, (A4)

where m ∈ [0, 1] is a free parameter controlling the perturbation magnitude. Among all the routes
of perturbing �i j under the realizability constraint, the perturbation linearly towards �C1

i j (or �C3
i j )
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FIG. 18. Principle of the Reynolds-stress-shape-perturbation (RSSP) method represented in the barycentric
map.

as Eq. ((A4) b) is the most effective route to increase (or decrease) the shear stress magnitude in
a parallel shear turbulence as well as the energy production rate P [12,13,15]. These two factors
directly influence the general level of mean momentum transport. Therefore, it is reasonable to
expect that the results of the perturbations towards �C1

i j and �C3
i j will provide bounds for a QoI

related to momentum transport.
For correcting the underestimated energy behind bluff bodies in this paper, we select the

perturbation towards �C1
i j (the most effective route to increase the energy production) and compare

its performance with the DSDL model. The parameter m is set to be 0.5, which is approximately the
largest value that yields a converged steady solution.
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