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The purpose of this article is to analyze the large-scale properties of a Richtmyer–
Meshkov turbulent mixing zone with large density contrasts and small shock Mach
numbers. The main outcome of the study is the expression of a large-scale invariant of
the flow. Its existence is contingent on initial conditions but not on the value of the Atwood
number which measures the density contrast. As opposed to the small Atwood case, this
invariant is not related to the velocity spectrum. Instead, it is given by the value of the
spectrum of the solenoidal component of the momentum at small wave numbers. This
result stems from the conservation of angular momentum in variable-density flows. Despite
this fundamental difference, this invariant still allows to relate the self-similar growth rate
of the mixing zone to the large-scale post-shock initial conditions of the flow. Besides,
when the shock is weak, this relation can be extended to the pre-shock deformation of
the interface. In particular, when the initial interfacial perturbation is limited to small
wavelengths (annular spectrum), the growth rate exponent of the mixing zone is shown
to saturate to a minimum value close to 1/4, independently from the Atwood number. The
different assumptions and predictions of this work are verified by performing implicit large
eddy simulations of a Richtmyer–Meshkov turbulent mixing zone.

DOI: 10.1103/PhysRevFluids.7.014605

I. INTRODUCTION

Turbulent mixing zones generated by the Richtmyer–Meshkov instability [1,2] undergo a self-
similar evolution at late times [3–6]. During this period, the mixing zone width grows as a power
of time, with an exponent � that is of paramount importance for engineering applications. Most
of the studies dedicated to this asymptotic regime have settled upon the idea that the self-similar
properties of the flow, and more particularly the value of �, are controlled by the largest scales of
the turbulent field (see Refs. [3–6] and references therein). The consensus, however, stops short of
specifying how the interplay between large scales and self-similarity occurs and what its outcome
is. Several mechanisms detailing these aspects have thus been proposed over the years. They can be
divided into two broad categories.

In the first one, the flow is decomposed into linear interfacial modes and one follows their evolu-
tion until they reach saturation and give rise to nonlocal structures such as bubbles and spikes. For
example, the just-saturated mode theory [7–10] explains how the growth of the mixing zone and the
value of � are regulated by the linear amplification of modes with wavelengths larger than the size
of the mixing zone. In other instances, nonlinear processes, such as bubble mergers [11] or backscat-
tering energy transfers [12], are argued to be the dominant processes. In the first case, � is found to
depend on initial conditions, whereas, in the second case, its value is predicted to be universal.

In addition to this approach, another line of reasoning has been followed to predict the self-
similar properties of Richtmyer–Meshkov turbulence. Instead of describing the flow in terms of a
collection of elementary structures, the emphasis is put on statistical quantities, and more especially
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on two-point correlations and turbulent spectra. Within this framework, connections with well-
established results of turbulence theory can be drawn. In particular, in Refs. [13–15], the principle of
permanence of large eddies was transposed from the context of decaying homogeneous turbulence
[16–23] to the context of Richtmyer–Meshkov turbulence. This principle details the conditions
under which the large-scale part of the velocity spectrum remains constant. When it is verified,
a large-scale invariant exists. As a result, the self-similar evolution of the flow is prescribed and the
value of � can be determined. Note that the statistical and structural viewpoints are not exclusive
from one another. On the contrary, the two approaches share many common points and bridges can
be built to go from one to the other [15].

Even so, a fundamental hypothesis currently restricts the domain of validity of the principle of
permanence of large eddies in the Richtmyer–Meshkov context: the density contrast of the mixing
zone is required to be small. Indeed, the analysis performed in Refs. [13–15] expressly rests upon
the incompressible Boussinesq approximation. For high-density contrasts, the latter is not valid
anymore, so that the derivations proposed in Ref. [13–15] cannot be upheld. Thus, for Richtmyer–
Meshkov flows with high density contrasts, the question of whether the principle of permanence of
large eddies applies or not remains open.

It turns out that a similar issue has recently been examined in the context of decaying homo-
geneous variable-density turbulence. In this academic setting, it was shown in Ref. [24] that high
density contrasts can be dealt with by looking at the properties of the solenoidal component of the
momentum. By considering the spectrum of this quantity instead of the standard velocity spectrum,
invariant properties of large scales can be put forward. From there, a principle of permanence of
large eddies can be expressed, with only slight modifications with respect to the constant density
case. It is worth stressing that, at first sight, the solenoidal momentum might appear as a somewhat
peculiar variable. But its definition is in fact anchored to the more tangible concept of angular
momentum. The latter notion is at the heart of the analysis of large turbulent scales in constant
density flows [18,20,21]. Its appearance in a variable density context can be viewed as a mere
prolongation of this pre-existing key role.

Given the analogies that already exist between decaying homogeneous turbulence and
Richtmyer–Meshkov mixing zones, the question arises as to whether the results obtained in Ref. [24]
can be transposed to the Richtmyer–Meshkov context. The purpose of this work is to answer this
question. More precisely, our goal is to determine whether the solenoidal momentum spectrum
exhibits invariant properties at large scales for a high-density contrast Richtmyer–Meshkov turbulent
mixing zone. And if this is the case, whether these large-scale properties allow us to determine the
flow evolution in the self-similar regime. To achieve these objectives, we will combine together
two of our previous works: one on Richtmyer–Meshkov turbulence in the Boussinesq limit [15],
the other on variable-density homogeneous turbulence [24]. When presenting the results of this
combination, we have chosen to make the text as self-contained as possible, instead of systematically
deferring the reader to those two earlier works. Even though many elements of Refs. [15,24] are
repeated with some slight variations, this solution still looked preferable compared to a lacunar
presentation of the main concepts.

The remainder of this article unfolds as follows. First, in Sec. II, we briefly present the variable-
density approximation and its corresponding governing equations. Then, in Sec. III, we derive
conditions under which the infrared range of the solenoidal momentum spectrum remains perma-
nent. Furthermore, in Sec. IV, we explain how the initial conditions of the solenoidal momentum
spectrum are tied to the deformation of the interface. This allows us to discuss in Sec. V how
the self-similarity of the flow is influenced by large-scale initial conditions. Finally, elements of
validation are provided in Sec. VI.

II. GOVERNING EQUATIONS

We consider two fluids, with densities ρH and ρL < ρH , initially separated by a sharp interface.
The density contrast between the fluids is possibly large so that the Atwood number At is generally
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FIG. 1. Schematic representation of the unfolding of the Richtmyer–Meshkov instability. The amplitude
of the perturbation in panels (a–d) has been exaggerated to allow for a better visualization of the perturbation.
Besides, the width L in panel (e) is much larger than the height h indicated in panel (a). The two figures are not
up to scale.

not small:

At = ρH − ρL

ρH + ρL
� 1.

A shock is sent towards the interface and crosses it at time tc. Following the impact, the small
perturbations that initially seeded the interface are amplified according to the Richtmyer–Meshkov
mechanism [1,2]. This preliminary phase is marked by strong compressible effects. However, as the
transmitted shock and its reflected wave travel farther and farther from the interface, these effects
fade away until, at time tqi, they can be neglected [25,26]. Eventually, a mixing zone appears and
the flow transitions around time t = tss to a self-similar turbulent state. During the latter phase, the
mixing zone width L evolves as a power of time:

L = L0t�, (1)

with L0 and � two constants. These different steps are illustrated in Fig. 1.
In most of this work, we will focus on the flow dynamics once the quasi-incompressible stage

t > tqi has been reached. Hence, we will hereafter introduce governing equations that are adapted to
this phase. The gap between the flow parameters at t = 0 and at t = tqi will be bridged afterwards,
in Sec. IV.

A. Variable-density equations

The quasi-incompressible stage t > tqi can be described by the so-called “variable-density”
approximation [27–30]. The latter can be thought of as a generalization of the incompressible
Boussinesq approximation to flows having a small Mach number but large density contrasts. It
belongs to the broader family of pseudocompressible approximations [31]. The variable density
approximation can be expressed in terms of the conservation of mass and momentum, with an
additional constraint on the velocity divergence:

∂tρ + ∂ j (ρv j ) = 0, (2a)

∂t (ρvi ) + ∂ j (ρviv j ) = −∂i p − ∂ jσi j, (2b)

∂ jv j = ∂ ja j, (2c)

where ∂ j refers to the partial derivative with respect to the coordinate x j and where ρ is the density,
v the velocity, p the pressure and σ the viscosity tensor:

σi j = −ρνSi j with Si j = ∂ jvi + ∂iv j − 2
3∂kvkδi j and ν the kinematic viscosity.
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The diffusion velocity a accounts for the effects of molecular transport on the density field. It is
defined by

a j = −νc∂ jρ/ρ,

where νc is the diffusion coefficient of the mass fraction c of one of the two fluids being mixed. In
agreement with the “variable-density” approximation, the diffusion coefficients and viscosities are
functions of the density ρ.

B. Divergence-free formulation

The previous expression of the “variable-density” approximation can be reformulated by intro-
ducing a divergence-free velocity field u defined by

u = v − a.

System Eqs. (2) can then be rewritten as

∂tρ + ∂ j (ρu j ) = ∂ j (νc∂ jρ), (3a)

∂t (ρui ) + ∂ j (ρuiu j ) = −∂i p − ∂ j�i j, (3b)

∂ ju j = 0, (3c)

where �i j includes various viscous and diffusive effects:

�i j = σi j + ρaiu j + ρuia j + ρaia j − ρ(ukak + akak − νc∂kak )δi j .

To satisfy the divergence-free condition on the velocity field, the pressure must obey the following
Poisson-like equation:

∂2
j j p − ∂i p

∂iρ

ρ
= −ρ∂2

i j (uiu j ) − ∂2
i j�i j + ∂ j�i j

∂iρ

ρ
. (4)

In the constant density case ρ = Cst, this equation becomes ∂2
j j p = −∂2

i j (ρuiu j + �i j ). By compar-
ing this simplified expression with the full Poisson Eq. (4), one can observe that density variations
have a nonnegligible impact on the pressure field. Furthermore, since pressure is a nonlocal quantity,
modifications induced by local density variations can affect the pressure field over the whole
domain. As discussed in Ref. [24], this nonlocal effect explains how density variations eventually
alter the behavior of large turbulent scales.

C. Angular momentum and solenoidal component of the linear momentum

Two interrelated quantities play a role in the forthcoming analysis of large scales: the angular
momentum of the flow and the solenoidal component of the linear momentum. In a variable-density
flow, angular momentum is tied to the curl of the linear momentum ρu, a quantity that will be
denoted as �:

	i = εi jk∂ j (ρuk ). (5)

with εi jk the Levi-Civita tensor. When density is constant, � is simply proportional to the vorticity
field ω = ∇ ∧ u However, when density varies, the two quantities are in general different � �= ρω.
Furthermore, in the same way the vorticity field ω is connected with the solenoidal component of the
velocity field, the angular momentum � is related to the solenoidal part of the momentum through
a Biot-Savart expression. More precisely, the Helmholtz decomposition of the momentum takes the
form

ρu = s + d with si = εi jk∂ jψk and di = −∂iφ, (6)
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where the scalar and vector potentials φ and ψ obey the following constraints:

∂2
j jψi = −	i and ∂2

j jφ = −∂ j (ρu j ). (7)

The quantities s and d are, respectively, the solenoidal and dilatational components of the momen-
tum. As can be seen from Eq. (7), and notwithstanding boundary conditions, s is fully determined
by the value of the angular momentum �.

The evolution equation of s can be deduced from system Eqs. (3). It takes the form

∂t si + ∂ j (ρuiu j ) = −∂i
 − ∂ j�i j, (8)

where the pseudo-pressure 
 enforces the divergence-free condition on s:

∂2
j j
 = −∂2

i j (ρuiu j + �i j ). (9)

Comparing Eqs. (3b) and (8), we observe that the evolutions of the total momentum ρu and of its
solenoidal component s are similar except for the presence of distinct pressure terms: p in the first
case and 
 in the second one. In Eq. (3b), p ensures that u is solenoidal, while in Eq. (8), 
 ensures
that s is solenoidal. The corresponding Poisson equations for p and 
 exhibit two main differences.
First, the operator acting on 
 in Eq. (9) is a Laplacian, while the one acting on p in Eq. (4) involves
another term depending on the product between the pressure and the density gradient. Second, the
right-hand side of the equation for 
 consists in a term differentiated two times. This “conservative”
form is lost in the equation for p. These two elements incur significant differences in the nonlocal
behavior of p and 
 and by extension in the large-scale properties of ρu and s.

These differences were illustrated in Ref. [24] with a simple example consisting in a single
variable-density eddy. This example underlines why the solenoidal momentum s—and not the ve-
locity field u nor the total momentum ρu—is associated with the existence of large-scale invariants
of the flow.

III. PERMANENCE OF LARGE EDDIES

The principle of permanence of large eddies is one of the cornerstones of the analysis of constant-
density homogeneous turbulence [18,20,21]. This principle, which expresses the conditions under
which the large-scale initial conditions of the flow are preserved, was adapted to the variable-density
context in Ref. [24]. This was achieved by transposing its standard expression, which is based on
the velocity spectrum, to a formulation based on the spectrum of the solenoidal momentum s.

Our purpose in this section is to ascertain that the same transposition can be applied to
Richtmyer–Meshkov turbulence. In particular, we would like to check whether the study of large
eddies proposed in Ref. [15] for small-Atwood Richtmyer–Meshkov turbulence can be transposed
to the high Atwood number limit when considering the spectrum of s.

A. Definition of the spectrum of the solenoidal momentum

Outside the classical framework of homogeneous turbulence, the use of Fourier transforms raises
numerous questions. Here, as in Refs. [24,32], we introduce turbulent spectra that are related to
the Fourier transform of a two-point correlation tensor. In this way, turbulent spectra keep an
interpretation close to the one used in homogeneous turbulence.

To begin with, for any quantity X , we denote by X its ensemble mean and by X ′ = X − X
its fluctuation. We also assume that the flow is inhomogeneous in the direction x3 but remains
statistically homogeneous and axisymmetric in the directions x1 and x2 (see Fig. 1). Then, we
introduce the trace of the two-point centered correlations of s:

Rso(x3, r, t ) = s′
i(x + r/2, t )s′

i(x − r/2, t ).

This two-point correlation depends not only on the separation r but also on the inhomogeneous
coordinate x3. Instead of keeping all the information carried by this correlation, we choose to
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focus solely on its integral over the inhomogeneous direction. We therefore introduce the following
correlation:

Rso(r, t ) = 1

2π

∫
Rso(x3, r, t )dx3.

We then define a three-dimensional spectral density by taking the Fourier transform of the previous
expression:

Qso(k, t ) = 1

(2π )3

∫
e−ık·rRso(r, t )dr. (10)

This spectral density is directly related to the Fourier transform of the fluctuation of s. Indeed, one
can show that

Qso(k, t )δ(k⊥ − k′
⊥) = ŝ′

i(k, t )ŝ′
i
∗
(k′, t ) with k′ = (k′

1, k′
2, k3). (11)

In this expression, we used the subscript ⊥ to refer to the restriction of a given vector to the
homogeneous directions x1 and x2. For instance, one has

k⊥ = (k1, k2) and x⊥ = (x1, x2).

Finally, the modulus spectrum of s is defined by

Qso(k, t ) = k2

2

∮
Qso(k, t )d k̃, (12)

with
∮ ·d k̃ the integral over the unit sphere, k̃ the direction of the wave vector k and k its modulus:

k̃ = k/k and k =
√

kiki.

The integral of the modulus spectrum is linked to the total variance of the solenoidal momentum as
follows: ∫ ∞

0
Qso(k, t )dk = L

2π

〈si
′si

′〉
2

with 〈·〉 = 1

L

∫
· dx3, (13)

where L is the size of the mixing zone. The operator 〈 · 〉 defines a spatial average over the
inhomogeneous direction of the mixing zone.

B. Evolution of the solenoidal momentum spectrum

The solenoidal momentum spectrum being defined, we can now determine its evolution. This
can be done by taking the Fourier transform of Eq. (8) and using expression Eq. (11) relating Qso

to ŝ′. These operations are detailed in Appendix A and yield the following result: For k⊥ �= 0,

∂tQ
so(k, t ) = T(k, t ), (14)

with T(k, t ) = k2
∮

Im[T (k, t )]dSk

and T (k, t )δ(k⊥ − k′
⊥) = kk

[
̂(ρu j )′u′

k + ̂ρu3u′
kδ j3 + �̂ jk

]
(k, t ) ŝ j

′∗(k′, t ).

The structure of this equation is very close to the one obtained in homogeneous turbulence [24].
Moreover, at small wave numbers, the transfer term T, can be simplified under the same set of
assumptions as the one used in homogeneous turbulence. A detailed account of these simplifications
is given in Appendix A. Here, we will simply point out that the dominant part of T at small wave

numbers comes from quadruple correlations of the form ̂(ρua)′u′
b(k, t ) ̂(ρuc)′u′

d (k′, t ′). The latter
can be closed using a distant interaction hypothesis. As illustrated in Fig. 2, if we consider that
the spectral densities of u′ and (ρu)′ have a peak located around a wave number kpeak, then the
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FIG. 2. Schematic representation of the distant interaction hypothesis.

variance of s can be assumed to be transferred preferentially from the region k ∼ kpeak to the small
wave number region k � kpeak. This hypothesis eventually leads to the following evolution of Qso

at small wave numbers (see Appendix A):

for k � kpeak(t ), ∂tQ
so(k, t ) = k4 Tdist(t ) + H.O.T. (15)

In this equation, Tdist(t ) arises from the contribution of distant interaction and depends only on
time. As for the acronym H.O.T., it stands for higher order terms, it is to say for terms stemming for
the next orders of the distant interaction approximation and also from local interactions. In the limit
k → 0, these contributions are negligible compared to k4 Tdist(t ) when the infrared exponents of
the turbulent spectra are greater than 2. Besides, they are negligible with respect to Qso/τt , with τt

the turbulent time, when the infrared exponents are smaller than 2. As a result, they do not play any
role in the forthcoming analysis and need not be detailed here.

C. Permanence of large eddies

Knowing the evolution of Qso, we can now discuss the permanence of large eddies. At time tqi,
when the variable density approximation becomes valid, we assume that the spectrum Qso satisfies

Qso(k, tqi ) = Csokσso , (16)

with Cso a constant. We also assume that

σso > −1.

Else, Qso(k, tqi ) ceases to be integrable at k = 0 and the variance of s becomes infinite (see
Appendix C for a short and speculative discussion about diverging spectra in finite domains). Then,
integrating Eq. (15) yields,

for k � kpeak (t ), Qso(k, t ) = Csokσso + k4
∫ t

tqi

Tdist(t ′)dt ′ + H.O.T.,

where H.O.T. stands for quantities with a scaling steeper than either kσso , k4, or both. Thus, the
comparison of the infrared exponents of the different terms on the right-hand side of this equation
allows to conclude that the following properties are verified in the limit k → 0:

(1) if σso < 4, Qso becomes equal to its initial condition and is consequently permanent,
(2) if σso > 4, the nonlinear backscattering term is dominant so that Qso tends to a spectrum

with an infrared exponent of 4,
(3) if σso = 4, the infrared exponent of Qso is not changed, but the prefactor of Qso varies in

time.
In homogeneous turbulence, the transition between the backscattering and permanent behavior of

large scales is not sharp but occurs within a small interval centered around σso = 4. In practice, the
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permanence of large eddies appears to be verified for infrared exponents below 3.5 and not 4 [23,33–
35]. A similar transitional interval can also be expected for Richtmyer–Meshkov turbulence. Then,
a strict permanence of large eddies is likely to be observed only for infrared exponents verifying

σso � 4 − η,

with η a parameter on the order of 0.5. The current theory cannot predict the precise value of η and
only simulations may provide more information about it.

This series of statements constitutes one of the main result of this work. They express the
principle of permanence of large eddies for Richtmyer–Meshkov flows in the high Atwood variable
density limit. This principle takes the same form as the one obtained in Ref. [15] for Richtmyer–
Meshkov flows in the small Atwood Boussinesq limit, except that the velocity spectrum has been
replaced with the solenoidal momentum spectrum Qso. Besides, it also takes a form similar to the one
obtained in Ref. [24] for variable-density homogeneous turbulence except for the slightly different
definition of the spectrum Qso due to the inhomogeneity of the flow.

IV. INITIAL CONDITIONS

Up to this point, we showed that the large-scale initial condition of Qso, the spectrum of the
solenoidal momentum s, is preserved provided its infrared exponent is smaller than 4 − η. However,
the notion of initial condition is here ambiguous. Indeed, the large-scale analysis of Sec. III applies
to flows obeying the quasi-incompressible variable-density approximation [27–30]. But as explained
in Sec. II, and as summarized in Fig. 1, this approximation is only relevant to Richtmyer–Meshkov
turbulent mixing zones after the shock is sufficiently far to guarantee that compressible and acoustic
effects have become negligible [25,26]. By contrast, these effects play an essential role in the early
stages of the Richtmyer-Meshkov instability. As a result, the variable-density approximation and the
analysis of Sec. III are inadequate to describe these preliminary phases. This observation raises the
question of how can one relate the quasi-incompressible initial state of Qso to the initial properties
of the shock and of the interface it crosses. An answer to this question can be brought in two
steps. First, with t = tc the crossing time of the shock and with t = tqi > tc the beginning of the
quasi-incompressible period, we can look at how Qso(k, tqi ) is related to Qso(k, tc). Then, we can
elaborate on how Qso(k, tc) is related to the shock and interface characteristics. Concerning the first
point, we note that the time tqi marking the beginning of the quasi-incompressible period depends
mostly on the shock intensity. For weaker shocks, the decay of pressure and density perturbations
related to the shock propagation is faster relatively to the linear growth time of the instability [26].
Concerning the second point, we note that vorticity is deposited by the shock at the interface and in
the bulk of the flow. However, the latter contribution becomes negligible when the shock is weak.
Given these elements, and to simplify our analysis, we will limit our attention to shocks weak
enough for the growth of the interface perturbations to be in a linear regime at t = tqi and weak
enough for the vorticity to be deposited predominantly at the interface.

Thus, if MS refers to the shock Mach number then the ensuing discussion on initial conditions is
restricted to the case

MS − 1 � 1. (17)

In practice shocks are considered to be weak up to MS ≈ 1.2. We would like to stress that this
condition does not modify the results which have been obtained in Sec. III and which remain valid
for t > tqi, independently from the value of the shock Mach number.

A. Evolution of Qso from t = tc to t = tqi

Under the weak shock condition Eq. (17), the flow evolves linearly from the shock impact at
t = tc up to the time tqi when the flow becomes quasi-incompressible. Thus, from t = tc to t = tqi,
the linear theory of Wouchuk and coworkers is relevant for describing the flow [25,26]. One of the
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main results obtained by these authors is expressed in Eq. (7) of Ref. [26] and is repeated here for
the sake of completeness:

Eq. (7) of Ref. [26]: ρa f (δv∞
ya − δv0

ya) = ρb f
(
δv∞

yb − δv0
yb

)
,

where, using the notations of Ref. [26], ρa f and ρb f are the densities of the two fluids after the
shock crossing, where δvya and δvya are the velocities parallel to the interface, where the superscript
0 corresponds to the instant just after the shock impact and the superscript ∞ to an asymptotically
long time. This equation can be rewritten by putting the initial and final times on the same sides of
the equalities. This yields

�∞
ρ = �0

ρ, with �ρ = ρb f δvyb − ρa f δvya. (18)

Therefore, Wouchuk and coworkers show that during the linear phase of the Richtmyer-Meshkov
instability �ρ is an invariant quantity and is set by its initial value right after the shock passage. The
quantity �ρ is nothing more than the density-weighted circulation based on the momentum ρu. In
other words, Eq. (18) expresses the conservation of � at the interface during the linear phase of the
flow evolution. Hence, during the linear stage of the Richtmyer-Meshkov instability, one deduces,
in agreement with Ref. [26] and Eq. (18) that

Linear phase: ∂t� = 0. (19)

As detailed in Sec. II, the density-weighted vorticity � directly sets the value of the solenoidal
momentum s [see Eqs. (6) and (7)]. As a result, the latter is also a linear invariant of Richtmyer-
Meshkov turbulence and so is its spectrum Qso:

Linear phase: ∂t s = 0 and ∂tQ
so = 0. (20)

Thus, we can write that

Qso(k, tqi ) = Qso(k, tc). (21)

The value of Qso at the beginning of the quasi-incompressible stage of the flow evolution is equal to
its value just after the shock impact. The idea is now to relate this value to the characteristics of the
shock and of the interface. Before that, let us note that the constancy of � and s in the linear phase
can also be derived by considering directly the evolution equations of � and s. The evolution of s
is given by Eq. (8) while the evolution of � takes the following form:

∂t	i + ul∂l	i = 	 j

ρ
∂ j (ρui ) − 	i

ρ
∂ j (ρu j ) − εi jk

∂ jρ

ρ
∂l (ρukul ) − ∂2

jl (εi jk�kl ). (22)

Neglecting viscous effects, Eqs. (8) and (22) only contain nonlinear quadratic terms. In the frame
moving at the post-shock velocity, and in the linear phase, these quadratic terms become negligible.
This directly leads to Eqs. (19) and (20).

B. Initial value of Qso at t = tc

As already explained, the shock passage creates angular momentum not only at the interface
between the fluids but also in their bulk. However, under the weak shock condition Eq. (17), the
bulk contribution becomes negligible and the flow is fully determined by the angular momentum
deposited at the interface. In the linear regime, this interfacial contribution can be estimated by
using the impulsive approximation first proposed by Richtmyer [1]. An important aspect of this
approximation is that the angular momentum becomes proportional to the cross-product between
the shock normal, x3, and the gradient of density, or equivalently, the gradient of the concentration
c of one of the fluids. The latter condition can be written as

	i(x, tc) = −r	 εi j3 ∂ jc(x, tc),
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or equivalently in spectral space

	̂i(k, tc) = −ı r	 εi j3 k j ĉ(k, tc).

The prefactor r	 is associated with the linear growth rate of the perturbation. For a weak shock,
we can use the following estimate, obtained from the impulsive approximation of the Richtmyer–
Meshkov instability:

r	 = �ρ+�U,

with �ρ+ the difference between the post-shock densities and �U the interface velocity jump due
to the shock. Other more refined estimates could also be used but are not necessary in this work
[36]. Knowing the value of � at the interface, we can determine the expression of the solenoidal
momentum s. Using its definition Eq. (6), we find that

ŝi(k, tc) = ıεi jk
kk

k2
	̂ j (k, tc) = (�ρ+�U )Pi3(k̃) ĉ(k, tc), (23)

where Pi j is the projector on incompressible fields:

Pi j (k̃) = δi j − k̃ik̃ j, (24)

with k̃ = k/k the wave vector direction. Injecting this expression into the definition Eq. (11) of the
spectral correlation Qso, we deduce that

Qso(k, tc) = (�ρ+�U )2Ecc(k, tc)P33(k̃), (25)

where Ecc is the spectral density of the concentration field: Ecc(k, t )δ(k⊥ − k′
⊥) =

ĉ′(k, t )ĉ′∗(k′, t ), with k′ = (k′
1, k′

2, k3).
To close the expression of Qso(k, tc), we need to determine the value of Ecc(k, tc). As shown

in Ref. [15], the latter is directly related to the properties of the interface. More precisely, let us
consider an interface that displays before the shock passage a small displacement with respect to
the position x3 = 0. This displacement is described by the height function h(x⊥), with x⊥ = (x1, x2)
the position in the plane perpendicular to x3 (see Fig. 1). The statistics of h(x⊥) are assumed to be
homogeneous and isotropic, with a zero mean. They are further characterized by the power spectrum
Ph(k⊥) which depends on the 2D planar wave number k⊥. The integral of Ph(k⊥) is by definition
equal to the variance of the perturbation amplitude:

h2 =
∫ ∞

0
Ph(k⊥)dk⊥.

Let us denote by Us the shock celerity, relative to the interface, before interaction and by �U the
interface velocity jump due to the interaction. Just after shock, at t = tc, the interface is compressed
by a factor C = 1 − �U/Us. The interface perturbation at t = tc is then h+(x⊥) = Ch(x⊥) and its
spectrum is

P+
h (k⊥) = C2Ph(k⊥).

Note that this relation is meaningful in the present context because the shock is weak. In that case,
the compression factor C remains close to 1. If a stronger shock had to be considered, the relation
between P+

h and Ph would have to be modified to accommodate for a more accurate impulsive theory
such as the one proposed in Ref. [36].

For a nondiffuse interface, it was shown in Ref. [15] that Ecc(k, tc) and P+
h are related at large

scales by,

for k
√

h2 � 1, Ecc(k, tc) = 1

(2π )3

P+
h (k⊥)

k⊥
. (26)
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The derivation of this result is repeated in Appendix B, with additional elements concerning the case
when the perturbation is Gaussian. Injecting this result into Eq. (25) and integrating over angles, we
obtain the following expression for the solenoidal momentum modulus spectrum:

For k
√

h2 � 1, Qso(k, tc) = k2(C�ρ+�U )2

2(2π )3

∮
Ph(k⊥)

k⊥
P33(k̃)dSk . (27)

Of particular interest to us is the case when Ph obeys a power law at large scales,

for k⊥
√

h2 � 1, Ph(k⊥) = Ckm
⊥, (28)

with C a constant. Then, Eq. (27) becomes,

for k
√

h2 � 1, Qso(k, tc) = γm C (C�ρ+�U )2 km+1, (29)

with γm = [
√

π�((m+3)/2)]/[2(2π )2�((m+4)/2)].
It is worth stressing that these formulas are meaningful as long as h2 remains finite. When the

domain is infinite, Ph must consequently be integrable when k⊥ → 0. In turn, this condition requires
the exponent m to be larger than −1. When the domain is finite, these constraints do not apply and
the case m < −1 can be dealt with. Indeed, there exists a cutoff wave number kc below which all

spectra become null. As a result, provided kc

√
h2 is much smaller than 1, Eqs. (28) and (29) remain

valid in the interval kc

√
h2 � k

√
h2 � 1. Moreover, according to Eq. (29), if m is larger than −2,

then Qso has an infrared exponent larger than −1. Therefore, it remains integrable when k → 0 and

we may consider the properties of Qso in the limit kc

√
h2 → 0 without introducing any divergence.

In particular, the discussion led so far about the permanence of large eddies can be applied without
any change. Thus, under this interpretation, the validity of Eq. (29) can be extended in the limit

kc

√
h2 → 0 to exponents verifying

m > −2.

C. Summary

Combining Eqs. (21) and (29), we deduce that, at the beginning of the quasi-incompressible
phase, the solenoidal momentum spectrum Qso can be expressed as,

for k
√

h2 � 1, Qso(k, tqi ) = Csokσso , with σso = m + 1 and Cso = γm C (C�ρ+�U )2. (30)

It shows that Qso(k, tqi ) obeys a power law at large scales, with an infrared exponent σso and a
prefactor Cso which are directly set by the characteristics of the shock and by the initial interfacial
perturbation. We recall that this expression is valid provided m > −2, or equivalently provided that

σso > −1.

This condition is identical to the one introduced in Sec. III to analyze the permanence of large
eddies. Some conjectures about what may occur when σso < −1 are presented in Appendix C.

It is also worth noting that if we attempted to find the value of the velocity spectrum at t = tqi,
we would face a major difficulty. Indeed, as opposed to s, u is not invariant during the linear phase.
Therefore, even though the velocity spectrum at t = tc can be related to the characteristics of the
initial interface, its value at t = tqi is modified by linear processes and, among others, is dependent
on the arbitrary time interval tqi − tc. This, as already explained, is not the case for s and Qso. Thus,
the solenoidal momentum and its spectrum have remarkable properties not only during the quasi-
incompressible phase of the Richtmyer–Meshkov instability, but also during its linear compressible
phase.
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V. SELF-SIMILAR EVOLUTION

In Sec. IV, we established that the solenoidal momentum spectrum Qso is constant during the
early compressible stage of the Richtmyer–Meshkov instability. In Sec. III, we showed that during
the subsequent stage, the large-scale part of Qso remains invariant if its infrared exponent σso is
smaller than 4 − η. As a result, the post-shock large-scale initial condition of Qso is preserved
throughout the flow evolution, provided its infrared exponent σso is smaller than 4 − η. The aim
of this section is to indicate how the persistence of this initial information influences the self-similar
evolution of the flow, and in particular, how it sets the value of �.

A. Value of �

In this section, we assume that t > tss and that the flow is self-similar, an assumption that has
not been required so far. In particular, we assume that the shape of the spectrum Qso is self-similar
at large and energetic scales. Small scales are not required to obey this condition as long as they
marginally contribute to the integral of Qso over k. More precisely, knowing that [see Eq. (13)]:∫ ∞

0
Qso(k, t )dk = L

2π

〈si
′si

′〉
2

,

we assume that, at least for large and energetic scales,

for k � kpeak (t ), Qso(k, t ) = L(t )

2π

〈si
′si

′〉(t )

2
F [k/kpeak (t )],

where F is a given function defining the self-similar shape of the spectrum. Introducing a small
parameter ε � 1, these assumptions eventually lead us to write that∫ εkpeak

0
Qso(k, t )dk ∝ L

2π

〈si
′si

′〉
2

.

In Sec. III, we saw that when −1 < σso < 4 − η, large eddies are permanent. In that case, we have
Qso(k, t ) = Csokσso in the range k � εkpeak. Therefore, we can write that,

for − 1 < σso < 4 − η,
L

2π

〈si
′si

′〉
2

∝
∫ εkpeak

0
Csokσsodk ∝ kσso+1

peak .

Besides, in the self-similar regime, dimensional arguments allow us to write that

L ∝ k−1
peak ∝ t� and 〈si

′si
′〉 ∝ t2�−2.

As a result, we obtain that,

for − 1 < σso < 4 − η, � = 2

σso + 4
. (31)

Equation (31) is valid when large scales are permanent, i.e., when σso < 4 − η. An important
question is whether this prediction can be extended beyond this condition. For σso > 4, we note that
the infrared exponent of Qso is not constant and eventually tends to 4. Thus, to answer our question,
we only need to consider what happens when σso is in the interval [4 − η, 4]. In this interval, the
permanence of large eddies is not necessarily verified and we cannot derive a strict relation linking
Qso to σso. However, by analogy with the results obtained in homogeneous turbulence, we may
expect that Eq. (31) will still provide a reasonable estimate of �. Moreover, we may expect that
corrections similar to the ones introduced in Refs. [23,24,33–35] can be brought to Eq. (31) to
account for the influence of backscattering transfer terms. The simplest of these corrections consists
in limiting the value of � to the value it reaches for σso = 4 − η [23,24,34]. Knowing that for
σso > 4 the infrared exponent of Qso reverts to 4, this limit value will be reached not only for
4 − η � σso � 4 but also for σso > 4.
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Then, using this particular correction, the following extension of Eq. (31) can be proposed:

for σso > −1, � = 2

min(σso, 4 − η) + 4
� 2

min(σso, 4) + 4
. (32)

This formula is identical to Eq. (31) for σso < 4 − η and predicts that � saturates to a minimum
value:

�min = 1

4 − η/2
for σso � 4 − η.

If η is on the order of 0.5 as in homogeneous turbulence, then this minimum value is on the order of

�min ≈ 0.27 for σso � 3.5.

Note that in our previous study on small Atwood number Richtmyer–Meshkov turbulence [15], η

was denoted by ε. It was found to be close to 0 and a value �min ≈ 0.25 for σso � 4 was found to
be in good agreement with simulations. However, given the uncertainty surrounding the numerical
evaluation of �, it is not evident that the simulations of Ref. [15] were sufficient to discriminate
between the two values of �min and η.

B. Comparison with the small Atwood number regime

Equation (32) can be compared to the value of � derived in the Boussinesq limit in our previous
work [15]. In Ref. [15], the expression of � is formally identical to Eq. (32) except for one important
aspect: � is parameterized by the infrared exponent σvel of the velocity spectrum and not by σso.

In the Boussinesq limit, the velocity and solenoidal momentum spectra are identical so that σso
and σvel are equal. Therefore, the predictions of the present work and of Ref. [15] coincide in this
particular limit. However, when density variations become strong, the two spectra generally differ
and so do their infrared exponents. In general, one has

σso �= σvel.

As shown in Ref. [24], differences as high as 2 can be observed between the two exponents for high
Atwood numbers. As a result, the Boussinesq prediction of �, based on the velocity spectrum and
on σvel, cannot be extended straightforwardly to the high Atwood case. The use of the solenoidal
momentum spectrum appears to be necessary.

The same comment also applies to the expressions of � derived in Refs. [13,14]. These two
works predate [24] and constitute the first instances in which the principle of permanence of large
eddies has been applied to Richtmyer–Meshkov turbulence. They are also based on the Boussinesq
approximation and are formulated by considering the properties of the velocity spectrum. The
corresponding values of � are then expressed as a function of σvel, and are identical to the one
obtained in Ref. [24]. Their extension to the high-Atwood number case would also require the
introduction of the solenoidal momentum s and of its two-point statistics.

C. Comparison with the just-saturated mode and bubble competition theories

Equation (32) of � can be reformulated as a function of the infrared exponent m of the initial
interfacial perturbation. Given Eq. (30), which connects σso and m, we can write that,

for m > −2, � = 2

min(m, mlim ) + 5
, with mlim = 3 − η. (33)

Notwithstanding the value of mlim, this formula is the one already derived in the just-saturated mode
(JSM) theory [8–10,37]. As explained in Ref. [15], this equality is not unexpected. Indeed, the core
assumption of the JSM theory is that interfacial perturbations with long wavelengths keep evolving
in a linear fashion, even during the self-similar regime. Since the linear growth of the amplitude
of a Richtmyer–Meshkov mode is proportional to time, this means that the JSM theory assumes
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that the velocity of these large-scale modes is constant in time. In other words, the JSM theory is
implicitly built upon the idea that there exists a “modal” velocity spectrum which large-scale content
is permanent. This can be seen as another way of formulating the principle of permanence of large
eddies which was used in this work and in Refs. [13–15].

A crucial element of Eq. (33) is the presence of a limit exponent mlim with a value slightly
below 3. In the present theory, this limit exponent has a well defined origin: it arises because of
the existence of a nonlinear backscattering transfer term joining energetic and very large scales.
However, in the JSM approach, nonlinear effects are not accounted for and no limit exponent can
be inferred from the theory itself. Such an exponent has nonetheless been added heuristically in
Ref. [9] with a value close to 3, as in the present work.

As opposed to the JSM approach, the bubble competition theory assumes that the evolution of
the mixing zone is entirely driven by nonlinear events. This theory was adapted to the Richtmyer–
Meshkov context in Ref. [11]. It predicts a unique value of � equal to 0.22. This value can be
understood as a prediction for the minimum of � reached for m � mlim when backscattering transfer
terms are dominant. In that case, it would correspond to a value mlim ≈ 4 or equivalently to σso = 5.
This value is somewhat larger than the exponent σso = 4 associated with backscattering effects in
the present work.

D. Comparison with Haan’s model

Another prediction for the value of � has recently been proposed in Ref. [12]. In this reference,
Haan’s model [38,39] is used to derive an expression of � that turns out to be identical to Eq. (33),
except for the value of mlim. In Ref. [12], the following prediction is made:

Ref. [12] : mlim = 1.

This limit exponent corresponds to a minimum value of � equal to

Ref. [12] : �min = 1/3,

instead of approximately 1/4 in the present work. When cast in the theoretical framework of this
article, this value would suggest the existence of backscattering processes with an infrared exponent
of 2 instead of the value of 4 found in Sec. III. However, as we explain below, this does not appear
to be the case.

Haan’s model describes the evolution of the amplitudes Zk of interfacial modes of wavelength
2π/k. To this end, two steps are followed. First, during the linear and weakly nonlinear phases
of the instability, the value of Zk is computed using the linear impulsive model of Richtmyer
[1], with the addition of small corrections of order O(Z2

k ). These corrections are nonlinear and
couple the different modes together. In particular, distant interactions are partially accounted for
and information can be transferred directly from the peak region of the Zk spectrum to its small
wave number region. This process is akin to the one described in this work and leads to the
emergence of a backscattering nonlinear transfer term at small wave number. A first question arises
as to whether this backscattering effect is identical to the one predicted in Sec. III. As shown
in Appendix D, the answer to this question is no: Haan’s model underestimates backscattering
phenomena and predicts that they scale as k6 instead of k4. This is far from the k2 scaling that
would be required to set �min = 1/3. A reason explaining this difference is the truncation of Haan’s
expansion to the second order. Even for perturbations with small amplitudes, third order terms are
still expected to contribute to the evolution of turbulent spectra on the same level as those retained in
Refs. [38,39]. As emphasized in Refs. [40,41], fourth order terms are a combination not only of the
product of second-order ones but also of third- and first-order ones. Note also that the truncation to
second-order terms is responsible for another unwanted behavior of Haan’s model. Because of this
truncation, nonlinear transfer terms exhibit an Atwood number dependency such that they simply
vanish in the Boussinesq limit. This nonphysical behavior was already noted in Haan’s original
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article [39] and would disappear if third order terms were accounted for. For the minimum value of
�, this means that �min goes from 0 when At → 0 to 1/3 when the Atwood is finite.

Given these different observations, a second question arises concerning the origin of the 1/3
value found in Ref. [12] for Haan’s model. As it appears, the 1/3 value is mostly the result of the
saturation procedure used in the second step of Haan’s model. This second step consists in intro-
ducing a saturation amplitude Zsat (k) beyond which the weakly nonlinear expansion is replaced by
a mean field evolution of Zk , essentially based on dimensional arguments. This saturated evolution
does not involve any explicit nonlinear coupling and does not induce any distant interactions per
se. However, its role is essential for determining how the remaining distant interactions retroact
on the whole spectrum and set the value of �. In this respect, it should be understood that the
weakly nonlinear expansion of Haan is not unique: it is defined up to a O(Z3

k ) term. The latter is
uninmportant in the small Zk limit but this ceases to be true when Zk approaches the saturation
limit. Thus, several expansions, with distinct properties, are possible. And even though they are all
equivalent in the un-saturated regime, each of them can modify the behavior of distant interactions
once saturated modes start appearing. Then, depending on the particular and arbitrary choice made
for this expansion, different values of � can be obtained. An illustration of this property is given in
Appendix D. where it is shown that Haan’s model can predict minimum values of � ranging from
1/4 to 2/3. In Ref. [12], the authors made some choices leading to a value �min = 1/3. But in the
end, these choices are arbitrary and so is the value of �min they obtain.

As a whole, there is a core issue when using Haan’s model in saturated/turbulent flows. Indeed,
the description of the nonlinear mode coupling in Haan’s model is only valid when two conditions
are met: when the amplitude of the considered mode Zk is small and when the main contribution
of the mode coupling comes from small amplitude modes. Whenever distant interactions become
prevalent, this second condition cannot be verified. In that case, mode coupling is dominated by
modes which are larger than the saturation limit and which are by definition not amenable to Haan’s
analysis. This fundamental discrepancy is not resolved by simply changing the evolution of saturated
modes or by suppressing part of their contribution to mode coupling. The action of saturated modes
upon small wave numbers should also be modified.

Independently from all these considerations, there is another issue which is specific to the
application of Haan’s model to Richtmyer–Meshkov turbulence. In Refs. [12,39,42], this particular
configuration is treated after the shock crossing, when there is no more acceleration. By doing
so, part of the nonlinear terms which have been generated by the impulsive acceleration are
unfortunately discarded. The missing terms are necessary to obtain correct infrared exponents just
after the shock passage (see Appendix D). This can however be easily corrected.

VI. VALIDATION

A. Description of the simulations

To validate the results derived in the previous sections, we perform several implicit large eddy
simulations (ILES) with the massively parallel code TRICLADE [43]. The compressible mutimaterial
Euler equations are solved without physical viscosity or diffusivity, with a shock capturing scheme
providing just enough numerical viscosity and diffusivity to ensure stability. No explicit LES
subgrid model is added. More precisely, for this work, the MUSCL-based finite volume Godunov
method referred to as M5 in Ref. [43] is used. It is accurate to fifth order in space and is combined
with a low-storage strong stability preserving Runge-Kutta scheme of third-order time accuracy.
Primitive variables are reconstructed with a monotonicity-preserving (MP) limiter [44]. A Harten-
Lax-van Leer-Contact (HLLC) numerical flux [45] is used at each cell face.

The simulations are performed with the methodology introduced in Ref. [46] for the �-group
study. At initial time, the domain is divided into three subdomains along the x3 axis. The interval
x3 < xshock corresponds to shocked heavy fluid, the interval xshock < x3 < xinterf. + h(x⊥) to un-
shocked heavy fluid, and the interval x3 > xinterf. + h(x⊥) to unshocked light fluid. The shock has
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TABLE I. Main simulation parameters.

Atwood number Shock Mach number Grid resolution Domain size Interface position Shock position
At = 0.67 MS = 1.1 Np = 512 Ldom = 2π xinterf. = 0 xshock = −0.1Ldom

a Mach number MS and induces a velocity jump �U . The gas interface is given an initial velocity
such that, after the shock passage, its mean position is approximately at rest.

This initial configuration is set-up in a domain of size Ldom × Ldom × 2.5Ldom and is discretized
by a grid with Np × Np × 2.5Np cells. The grid size is consequently regular and equal to: �x =
Ldom/NP. The initial position of the interface is set at xinterf. = 0 and the initial position of the shock
is xshock = −0.1Ldom. Table I summarizes the main parameters of the simulations. A small shock
Mach number has been retained in agreement with one of the main assumption of this study. By
contrast, the Atwood number has been set to a high value, corresponding to a ratio between the
heavy and light fluid densities of about 5.

As in the preceding sections, h(x⊥) defines the height of a small perturbation around the interface.

It has a zero-mean h = 0, a root-mean square (RMS) value
√

h2 and a power spectrum Ph(k⊥). The
latter is initialized with the following expression:

Ph(k⊥) = h2k−1
0

2(m+3)/2

�( m+1
2 )

(
k⊥
k0

)m

e−2(k⊥/k0 )2
, (34)

where m is the infrared exponent of Ph and k0 is the approximate peak wave number of the spectrum.
The corresponding peak wavelength is λ0 = 2π/k0. The parameters defining this spectrum are given
in Table II. As can be seen from this table, five simulations are performed, each with a different value
of the infrared exponent m.

Starting from these initial conditions, the simulations are led in two steps. First, the shock
propagates, crosses the interface and travels until it almost reaches the end of the domain. Then,
the simulation is stopped. The central part of the domain, from x3 = −Ldom/2 to x3 = Ldom/2,
is extracted and left as is, while in the two subdomains |x3| > Ldom/2 the density, velocity and
pressure fields are replaced by uniform values. This modified state is then used to initialize a second
simulation which is run until the size of the mixing zone reaches about 1/3 of Ldom. This procedure,
which has been devised in Ref. [46], allows to avoid dealing with the interaction between the shock
and the outlet boundary condition. Such interactions usually lead to the generation of spurious waves
that prevent observing a clear evolution of the mixing zone.

Note that the shock/interface interaction occurs approximately at

tc ≈ 0.03 tref ,

where tref is a reference timescale defined by

tref = λ2
0√

h2At�U
. (35)

As for the beginning of the second step, it occurs approximately at time

t ≈ 0.08 tref .

TABLE II. Parameters of the interface deformation.

RMS height Peak wavelength Infrared exponent√
h2 = 2.5�x λ0 = 2π

k0
= 20�x m ∈ {0, 1, 2, 3, 5}
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(a) Iso-concentrations and velocity spectrum at t/tref = 0.06

(b) Iso-concentrations and velocity spectrum at t/tref ≈ 0.3

(c) Iso-concentrations and velocity spectrum at t/tref ≈ 25

(d) Time evolution of the mixing zone width

FIG. 3. Illustration of the evolution of the simulation with m = 5 (σso = 6). Panels (a–c), left column:
isosurfaces of the concentration field at different times. The concentration levels are varied between 0.1 in blue
(light fluid) and 0.9 in red (heavy fluid). The shock propagates from the bottom towards the top of each image.
Panels (a–c), right column: velocity spectrum at different times. A k−5/3 fiducial is plotted in panel (c). Given
the resolution of the simulation, this is only meant as an indication. Panel (d): Evolution of the mixing zone
width and comparison against a power law. The times at which the iso-concentrations and spectra are plotted
in panels (a–c) are shown in gray.

B. Typical evolution of a simulation

The evolutions of the simulations described above share several common points. To illustrate
these similarities, we focus on the simulation performed with m = 5 and we display in Fig. 3 several
pieces of information related to it. First of all, in the left column of Figs. 3(a)– 3(c), snapshots of the
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(a) Time evolution of the peak values of s′is
′
i and ρ2u′

iu
′
i (b) Time evolution of the profile widths of s′is

′
i and ρ2u′

iu
′
i

FIG. 4. Comparison between the evolutions of the variances of the solenoidal momentum and of the
velocity field for the simulation with m = 1 (σso = 2). The fiducial curves appearing with dashed lines in
the two subfigures are plotted with � = 1/3.

isosurfaces of the concentration field are shown at different times. For the earliest time, the shock has
just crossed the interface and the flow can be thought to still be in its linear phase. The amplitude
of the perturbation remains small with respect to its discernible wavelength. For the second one
[Fig. 3(b)], the flow has reached a nonlinear stage. Structures looking like spikes at the bottom and
bubbles at the top can be clearly distinguished. Besides, a strong asymmetry between the heavy
and light fluids can be noted, as expected from the high density contrast of the simulation. Finally,
the last snapshot [Fig. 3(c)] corresponds to a time where the flow is already tending towards its
self-similar turbulent asymptotic state.

On the right side of these snapshots, the spectrum of the velocity field is shown. One can observe
a transition from a spectrum peaked at high wave numbers around k ≈ k0 [Fig. 3(a)] to a spectrum
peaked at smaller and smaller wave numbers [Fig. 3(c)]. This corresponds to the appearance of larger
and larger turbulent structures. Besides, one can also notice that the peak value of the spectrum is
decreasing. The flow and its kinetic energy are indeed decaying.

The last information shown in Fig. 3 is the evolution of the mixing zone width. The latter is
computed as

L = 6
∫

c(1 − c)dx3. (36)

In Fig. 3(d), one can observe that after a short transient, the simulation approaches a state where L
obeys an approximate power law. An exponent � ≈ 0.25 appears to offer a good fit. The value of
this exponent for the m = 5 simulation and the other ones will be discussed further in Sec. VI F.

Since our analysis is based on the properties of the solenoidal momentum s, it is interesting
to illustrate the typical behavior of its variance s′

is
′
i. To this end, we now focus on the simulation

performed with m = 1 and show in Fig. 4(a) the decay of the peak value of s′
is

′
i. It can be seen that

this peak value decreases approximately as a power law and that the corresponding decay exponent
is close to 2� − 2 with � ≈ 1/3. The latter value is the one expected from Eq. (32). Figure 4(a)
also compares the decay of s′

is
′
i against that of ρ2u′

iu
′
i. The peak values of the two quantities display

significant discrepancies at the start of the flow evolution but end up being very close for t larger
than a few tref . One also notes that s′

is
′
i appears to reach its self-similar evolution earlier than ρ2u′

iu
′
i.

These general remarks can also be extended to Fig. 4(b). This figure compares the widths
of the profiles of s′

is
′
i and ρ2u′

iu
′
i for the simulation with m = 1. These widths are defined
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FIG. 5. Spectrum of the solenoidal component of the momentum at time t/tref = 0.06, just after the shock
passage.

as

Ls =
∫

s′
is

′
idx3

maxx3 (s′
is

′
i )

and Lu =
∫

ρ2u′
iu

′
idx3

maxx3 (ρ2u′
iu

′
i )

.

These two quantities tend to a power-law evolution at large time, with an exponent � close to 1/3.
Besides, after a few tref , their values become close to one another, even though some differences exist
at initial time. While not displayed here, similar observations also apply to the other simulations
performed with different values of m.

Hence, even though their transients are different, one may expect that s′
is

′
i and ρ2u′

iu
′
i, or more

simply u′
iu

′
i, give access to comparable information concerning the self-similar state of the flow. In

this regard, the value of the self-similar exponent � will be discussed by looking at the decay of
u′

iu
′
i and not s′

is
′
i in Sec. VI F. This choice has been made because u′

iu
′
i is a quantity readily available

in most simulation codes. This opens a possibility for cross validations that would be more difficult
to perform with s′

is
′
i.

C. Initial conditions

Equation (30) of Sec. IV states that the post-shock infrared exponent σso of Qso is directly related
to the infrared exponent m of the height spectrum Ph [here defined by Eq. (34)]. To verify this
prediction, we plot in Fig. 5 the value of Qso at time t/tref = 0.06, shortly after the shock passage.
It can be seen that the exponent σso is indeed equal to m + 1 and that for our five simulations
performed with m ∈ {0, 1, 2, 3, 5}, its values are

σso ∈ {1, 2, 3, 4, 6}.
For m = 5, one can see a slight deviation from σso = 6 for the smallest wave numbers. This is
expected since, as shown in Appendix B, a k4 scaling will eventually overtake this k6 component
when k → 0.

D. Nonlinear transfer term

A crucial prediction made in Sec. III concerns the scaling of the nonlinear transfer term T of Qso

appearing in Eq. (14); following Eq. (15), the predominance of distant interactions is such that T

014605-19



OLIVIER SOULARD AND JÉRÔME GRIFFOND

FIG. 6. Absolute value of the transfer term of the solenoidal momentum spectrum at time t/tref = 0.26 for
m = 1 and m = 5 (σso = 2 and σso = 6).

scales as k4 for σso � 2. To verify this prediction, the absolute value of T is displayed in Fig. 6 for
the simulations m = 1 and m = 5 (σso = 2 and σso = 6) at time t = 0.26 tref . A k4 scaling can be
clearly observed at small wave numbers, as expected from the theory.

We recall that the infrared exponent of T eventually sets the minimum value of � when large
eddies are permanent. The observed k4 scaling is associated with a minimum value close to 1/(4 −
η/2). By contrast, to obtain a minimum value equal to 1/3, T would have to scale as k2. Such an
infrared scaling is clearly not observed in our simulations. A further and more direct appraisal of
the value of � is given in Sec. VI F.

E. Permanence of large eddies

The core result of this work, deduced from the assumptions derived in Sec. III, deals with the
permanence of large eddies. For the solenoidal momentum spectrum, large-scale initial conditions
are predicted to be preserved at all times when the infrared exponent verifies s0 < 4 − η, with η a
parameter expected to be on the order of 0.5. Figure 7 shows Qso at different times and for different
σso. It can be seen that for σso � 3, Qso remains constant at small wave numbers. For σso = 3,
a small departure from initial conditions is already observed. For σso = 4, the infrared exponent
remains constant but the prefactor of the infrared power law displays a significant evolution in time.
Finally, for σso = 6, the initial scaling of the spectrum is not preserved. Instead, it is replaced by a
k4 scaling. All these observations are coherent with the principle of permanence of large eddies as
expressed at the end of Sec. III.

Besides, to illustrate that this principle applies to Qso and not to the velocity spectrum E,
traditionally used in constant density flows, we plot in Fig. 8 the value of E at different times for
σso = 2. As can be seen, the initial condition of E is not preserved at large scales despite scaling as
k2. This behavior must be contrasted with the one observed for Qso in Fig. 7(b).

F. Value of �

To conclude this validation, we now turn our attention to the value of �. In Sec. V, we argued
that, whenever large eddies are permanent, the value of � is set by the infrared slope σso of the
solenoidal momentum spectrum. Besides, we also argued that � should reach a minimum value
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(a) σso = 1 (m = 0) (b) σso = 2 (m = 1)

(c) σso = 3 (m = 2) (d) σso = 4 (m = 3)

(e) σso = 6 (m = 5)

FIG. 7. Evolution of the solenoidal momentum spectrum for different σso.

close to 1/(4 − η/2) and set by the infrared exponent of the nonlinear transfer term. These two
predictions are summed up in Eq. (32).

To check these predictions, we compute two instantaneous estimators of the value of �. The first
one, �(1)

simu, is based on the concentration field. More precisely, it measures the growth of the mixing
zone width L defined by Eq. (36) [47]. The second, �

(2)
simu, only involves the fluctuating velocity

field and measures the decay of the turbulent kinetic energy K [48,49]. These two estimators are
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FIG. 8. Evolution of the velocity spectrum for σso = 2 (m = 1).

defined as

�
(1)
simu = 1

1 + β
, with β = − L d2

t2 L

(dt L)2
,

and �
(2)
simu = 2

3
+ t

3

dtK
K , with K = 1

2

∫
u′

iu
′
idx3.

Whenever the flow becomes self-similar, both quantities attain at late times an identical constant
value. It should be emphasized that, as opposed to �(1), �(2) is dependent on the value of the
virtual time origin of the self-similar regime. This dependency influences the transient value of
�(2) but vanishes when time becomes much larger that the absolute value of this time origin. This
information should be kept in mind when interpreting �(2) since a precise estimate of the time origin
is not available.

The evolutions of �
(1)
simu and �

(2)
simu are displayed in Fig. 9. For t � 10tref , plateaus with slow

variations can be observed for the different simulations. This suggests that a self-similar regime is
approximately reached after this time. It can be seen that the extent of these plateaus is shorter for

(a) Time evolution of Θ
(1)
simu (b) Time evolution of Θ

(2)
simu

FIG. 9. Instantaneous measures of the growth exponent �.
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FIG. 10. Comparison between the averaged measures of � (symbols) and Eq. (32) with η = 0.5 (black
thick line). The prediction obtained with η = 0 is also shown with a gray dashed line.

smaller values of σso. Indeed, for simulations with smaller σso, the size of the mixing zone grows
faster and reaches a 1/3 of Ldom earlier. The latter criterion defines the time when simulations are
stopped to avoid confinement effects. It can also be noted that the plateau values of �

(1)
simu and �

(2)
simu

are similar. This indicates that the self-similar properties of the concentration and velocity fields are
compatible with one another. Moreover, while not displayed here, we checked that estimates of �

based on the solenoidal momentum are also coherent with �
(1)
simu and �

(2)
simu [see Figs. 4(a) and 4(b)].

The averaged value of the different plateaus is denoted by 〈�(i)
simu〉 for i = 1, 2 and is computed

as

〈
�

(i)
simu

〉 =
∫ t2

t1
�

(i)
simu(u)du

t2 − t1
,

with t1 = 10tref and t2 the end time of the simulation This time average is compared against the
prediction of � given by Eq. (32) in Fig. 10. A satisfactory agreement is observed. In particular, for
σso � 4, the value of � measured in simulations appears to be close to 1/(4 − η/2) with η = 0.5.
This value is coherent with the infrared exponent σso = 4 of the nonlinear backscattering term
observed in figure 6.

VII. CONCLUSIONS

In this work, we studied the large-scale structure of Richtmyer–Meshkov turbulent mixing zones
with large density contrasts and small turbulent Mach numbers. Following prior results [24], we
focused on the spectrum Qso of the solenoidal component of the momentum. As in decaying homo-
geneous turbulence, we showed that a principle of permanence of large eddies can be expressed in
terms of this spectrum: whenever the infrared exponent σso of Qso is smaller than 4, the small wave
number content of Qso remains constant in time. This property allowed us to express the growth
rate exponent � of the mixing zone as a function of σso, which is related to the infrared exponent
of the initial interfacial perturbation spectrum. For σso smaller than 4, the formula we obtained is
fully equivalent to the one already derived by the just-saturated mode approach [8–10]. For larger
σso, � reaches a minimum value close to 1/4. This minimum is set by the existence of nonlinear
backscattering processes dominated by distant interactions. This prediction was compared against
existing ones and in particular against the value of 1/3 recently obtained in Ref. [12]. The origin of
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the latter value was traced back to the incomplete way distant interactions are dealt with in saturated
mode closures.

To verify the main predictions of this work, we performed implicit large eddy simulations (ILES)
of a large Atwood number Richtmyer–Meshkov turbulent mixing zone. The initial conditions of the
simulations were varied by changing the infrared exponent of the power spectrum of the initial
interface perturbation. The permanence of Qso and the dependency of � on σso were assessed.

As a perspective, this work could be pursued in several directions. For instance, we voluntarily
restricted our attention to initial spectra obeying a power law at large scales. Additional shapes of the
initial spectrum could be studied. A first step in this direction has been taken in Appendix C. Besides,
we also restricted this study to weak shocks. An extension to moderate shocks could be envisioned
by determining the amount of solenoidal momentum deposited in the bulk by the transmitted shock
relaxation.

APPENDIX A: LARGE-SCALE EVOLUTION OF THE SOLENOIDAL MOMENTUM SPECTRUM

In this Appendix, we describe the evolution equation of the spectrum Qso of the solenoidal
component s of the momentum. Then, we explain how this evolution can be closed at small wave
numbers.

1. Evolution of the fluctuating field

The variable-density system Eq. (3) can be decomposed into a mean and fluctuating part. We
recall that, for any quantity X , we denote its ensemble mean by X and its fluctuation by X ′ =
X − X . We also recall that the flow is statistically homogeneous and axisymmetric in the directions
x⊥ = (x1, x2). Within this setting, ensemble means only depend on the inhomogeneous direction x3,
i.e., the direction along which the shock is propagating (see Fig. 1). Then, averaging system Eqs. (3)
yields

∂tρ + ∂3ρu3 = ∂3(νc∂3ρ), (A1a)

∂t (ρu3) + ∂3(ρu3u3) = −∂3(p + �33), (A1b)

∂3u3 = 0. (A1c)

Given the homogeneity and axisymmety of the flow in the directions x⊥, one has u1 = u2 = 0.
Besides, Eq. (A1c) implies that u3 = 0, since the velocity field tends to 0 at infinity. Hence, one has

u = 0. (A2)

Subtracting system Eqs. (A1) from system Eqs. (3), we obtain the following evolution for the
fluctuating field:

∂tρ
′ + ∂ j (ρ

′u′
j ) = ∂3ρ ′u′

3 − u′
3∂3ρ + ∂ j (νc∂ jρ)′, (A3a)

∂t (ρui )
′ + ∂ j ((ρui )

′u′
j ) = ∂3(ρu3)′u′

3 − ∂ j (u
′
j ρu3δi3 + p′δi j + �′

i j ), (A3b)

∂ ju
′
j = 0. (A3c)

In system Eqs. (A3), we made the unusual choice to work with the fluctuations of the momentum
ρu instead of the Reynolds or Favre fluctuations of the velocity field. The reason is that the
momentum—and more precisely its solenoidal part—plays an important role in the analysis of large
scales.

2. Evolution of the solenoidal momentum spectrum

We recall that the spectrum of the solenoidal momentum and its modulus are defined by Eqs. (11)
and (12). To derive their evolution, we first write the evolution equation for the Fourier transform of
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s. This equation is derived directly from the evolution of the Fourier transform of (ρui )′. Indeed, in
spectral space, both quantities are related by

ŝ′
i(k, t ) = Pi j (k̃)̂(ρu j )′(k, t ), (A4)

where we recall that Pi j (k̃) = δi j − k̃ik̃ j is the projector on incompressible fields and that k̃ = k/k
the direction of k. Thus, applying the Fourier transform to Eq. (A3b) and multiplying the result by
Pi j , we obtain that, for k⊥ = (k1, k2) �= 0,

∂t ŝ′
i = −ıkPi j·k (k̃)

(
̂(ρu j )′u′

k + ̂ρu3u′
kδ j3 + �̂′

jk

)
, (A5)

with the nonsymmetric tensor Pi j·k (k̃) defined by

Pi j·k (k̃) = Pi j (k̃)k̃k .

In the right-hand side of Eq. (A5), one can identify the different source terms of Eq. (A3b), save
for one: the pressure gradient which appears in Eq. (A3b) disappears after selecting the solenoidal
component of (ρui )′. This feature turns out to be crucial for explaining the existence of a large-scale
invariant of Qso and Qso.

Starting from Eq. (11), the following evolution of the spectral density Qso of the solenoidal
momentum s can be derived by

∂tQso(k, t )δ(k⊥ − k′
⊥) = ŝi(k, t )∂t ŝi

∗(k′, t ) + ∂t ŝi(k, t )ŝi
∗(k′, t ).

Besides, integrating Eq. (A5) in time yields

ŝi(k, t ) = ŝi
(0)(k) +

∫ t

tqi

∂t ŝi(k, t ′)dt ′,

with ŝi
(0) the value of ŝi at the time t = tqi marking the beginning of the quasi-incompressible phase.

Combining the two equations, we obtain that

∂tQso(k, t ) = 2Re[T (0)(k, t )] + 2
∫ t

tqi

T (k, t, t ′)dt ′,

with T (0)(k, t )δ(k⊥ − k′
⊥) = ŝi

(0)(k)∂t ŝi
∗(k′, t )

and T (k, t, t ′)δ(k⊥ − k′
⊥) = ∂t ŝi(k, t )∂t ŝi

∗(k′, t ′). (A6)

The component T (k, t, t ′) of the transfer term can be expressed further by substituting ∂t ŝi with its
value given by Eq. (A5):

T (k, t, t ′)δ(k⊥ − k′
⊥)

= k2 Pac(k̃)k̃bk̃d [ ̂(ρua)′u′
b + ̂ρu3u′

bδa3 + �̂′
ab](k, t )[ ̂(ρuc)′u′

d

∗ + ̂ρu3u′
d

∗
δc3 + �̂′

cd

∗
](k′, t ′). (A7)

Finally, the evolution of the spectrum Qso is obtained by integrating Eq. (A6) over the unit sphere:

∂tQ
so(k, t ) = T(k, t ), with T(k, t ) = k2

∮
Re[T (0)(k, t )]d k̃ + k2

∫ t

tqi

∮
T (k, t, t ′)d k̃ dt ′.

(A8)

3. Modeling nonlinear interactions at large scales

We denote by kpeak (t ) the peak wave number of Qso at time t . As in the main text, the expression
“small wave number” or “large scales” refers to scales satisfying the condition

large-scale range ≡ k � kpeak (t ).
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The large-scale evolution of Qso is driven by the nonlinear transfer term T defined by Eq. (A8) and
which is the angular integral of T (0), T . These quantities are not known in terms of second-order
spectral correlations and must be modeled.

a. Initial conditions

To begin with, we assume that the initial value ŝ(0) is uncorrelated with the time derivative of ŝ
at time t . This assumption is of course exact whenever the initial spectrum of s is null in the range
k � kpeak and is a good approximation whenever its value is negligible in this range. For more
general initial conditions, this assumption can be justified by noting that that the time evolution of
s is linked to the properties of energetic scales k ∼ kpeak (t ), as will be explained below, and not to
scales k � kpeak (t ). Hence, a decorrelation between ŝ(0) and ∂t̂ s is expected. Thus, we set,

for k � kpeak (t ), T (0)(k, t ) = 0.

b. Viscous/diffusive effects

Next, we assume that viscous and diffusive effects are negligible at large scales. Consequently,
in the expression of T , we neglect all contributions coming from the viscous/diffusive tensor ̂�.
Hence, T can be simplified as,

for k � kpeak (t ), T (k, t, t ′)δ(k⊥ − k′
⊥)

= k2 Pac(k̃)k̃bk̃d ( ̂(ρua)′u′
b + ̂ρu3u′

bδa3)(k, t )( ̂(ρuc)′u′
d

∗ + ̂ρu3u′
d

∗
δc3)(k′, t ′).

c. Mean velocity contributions

Compared to the homogeneous case [24], additional correlations appear in the expression of T ,
those involving the Fourier transform of the mean velocity ρu3 and of the fluctuating velocity. To

treat these correlations, we propose a simple closure for ̂ρu3u′
i(k, t ). To this end, we re-express this

term as a function of two-dimensional Fourier transforms:

̂ρu3u′
i(k, t ) = 1

2π

∫
e−ık3x3ρu3(x3, t )û′

i
2D

(k⊥, x3, t )dx3,

where û′
i
2D

(k⊥, x3, t ) refers to the 2D Fourier transform of u′
i in the homogeneous directions x⊥ =

(x1, x2), at point x3, at time t and at wave vector k⊥ = (k1, k2). The infinite integral limits of this
expression can be exchanged for finite ones. Indeed, u = 0, so that we have

ρu3 = ρ u3 + ρ ′u′
3 = ρ ′u′

3.

And since the fluctuations of concentration and density are null outside the mixing zone, ρ ′u′
3 is also

null in these regions. Thus, we can write that

̂ρu3u′
i(k, t ) = 1

2π

∫ L/2

−L/2
e−ık3x3ρ ′u′

3(x3, t )û′
i
2D

(k⊥, x3, t )dx3, (A9)

making the arbitrary choice that the mixing zone of width L extends from x3 = −L/2 to x3 = L/2.

The next step consists in relating û′
i
2D

to its 3D counterpart û′
i. To this end, we use the fact that

the vorticity field is null outside the mixing zone. Then, for |x3| > L/2, one has ∂2
j ju

′
i = 0, so that

û′
i
2D

(k⊥, x3, t ) =
{

û′
i
2D

(k⊥, L/2, t )e−k⊥x3 , if x3 > L/2,

û′
i
2D

(k⊥,−L/2, t )ek⊥x3 , if x3 < −L/2.
(A10)

We also need to specify the variations of û′
i
2D

within the mixing zone. Here, we make the assumption

that when k⊥L → 0, û′
i
2D

(k⊥, x3) varies on a length scale on the order of k−1
⊥ in the direction x3.
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This property is verified outside the mixing zone and is extended at its center. Hence, inside the
mixing zone, we write the Taylor-expansion,

for − L/2 � x3 � L/2 and k⊥L � 1, û′
i
2D

(k⊥, x3) = û′
i
2D

(k⊥, 0) + O(k⊥L). (A11)

Combining Eqs. (A10) and (A11) with the definition of the Fourier transform û′
i(k) =

1
2π

∫
e−ık3x3 û′

i
2D

(k⊥, x3)dx3, we obtain that, on first order in kL,

for − L/2 � x3 � L/2 and kL � 1, û′
i
2D

(k⊥, x3, t ) = û′
i(k, t )

πk2

k⊥
. (A12)

The value of û′
i
2D

outside the mixing zone is obtained by multiplying this expression by e±k⊥x3 .
Injecting Eq. (A12) into Eq. (A9) and Taylor-expanding e−ık3x3 in the limit |k3|L � 1, we

eventually obtain that

for kL � 1, ̂ρu3u′
i(k, t ) = k2L

2k⊥
〈ρ ′u′

3〉û′
i(k, t ), (A13)

where 〈 · 〉 is the average over the inhomogeneous direction:〈 · 〉 = 1

L(t )

∫ ∞

−∞
dx3. (A14)

In the expression for T , ̂ρu3u′
i appears with k̃ as a prefactor, in the form k̃b

̂ρu3u′
b. With the proposed

closure, this expression becomes

k̃b
̂ρu3u′

b = k2L

2k⊥
〈ρ ′u′

3〉 k̃bû′
b = 0.

The last equality comes from the solenoidality of u′. To be more accurate, the proposed closure
is the leading term of a series of Taylor expansions. The fact that its contribution is equal to zero

means that k̃b
̂ρu3u′

b is determined by the next order terms. But the leading term of ̂ρu3u′
b, had it not

be perpendicular to k̃, is already much smaller than ̂u′ and would in any case have given a negligible
contribution to T . Hence, there is no need to explicit next order smaller terms that would also be

negligible. Therefore, at small wave numbers, the contribution of ̂ρu3u′
b to the expression of T can

be neglected. The latter quantity then simplifies as,

for k � kpeak (t ), T (k, t, t ′)δ(k⊥ − k′
⊥) = k2 Pac(k̃)k̃bk̃d

̂(ρua)′u′
b(k, t ) ̂(ρuc)′u′

d

∗
(k′, t ′).

d. Fourth-order correlations

Thus, the transfer term T depends on a fourth-order two-time correlation involving convolution
products between the fluctuations of u and ρu. To model this correlation, we assume that the spectra
and cospectra of the fluctuating velocity and momentum u′ and (ρu)′ peak at a wave number close
to kpeak(t ). Then, we assume that the largest contribution of a correlation involving u′ and (ρu)′
comes from a range of wave numbers close to or larger than kpeak (t ), while smaller wave numbers
only provide a marginal contribution. This energy containing range is denoted by

Energy containing range ≡ k � kpeak (t ).

Even more, we assume that, close to kpeak, the amplitudes of the Fourier transforms ̂u′ and ̂(ρu)′ are
much larger than the same amplitudes at k � kpeak. Note that this assumption cannot be verified
if the infrared exponent of the turbulent spectra is equal to or smaller than 2. This limit value
corresponds to a spectral density being constant at large scales and is thus not compatible with
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the existence of a range containing most of the energy. The subsequent analysis is thus limited to
infrared exponents larger than 2.

Applying these assumptions to the fourth-order correlation appearing in the definition of T , we
obtain that,

for k � kpeak (t ), ̂(ρui )′u′
j (k, t ) ̂(ρuk )′u′

l

∗
(k′, t ′)

=
∫∫

Si jkl (p, k−p, q, k′−q; t, t ′)d pdq δ(k⊥ − k′
⊥)

≈
∫∫

p�kpeak (t ),q�kpeak (s)
Si jkl (p, k−p, q, k′ − q; t, t ′)d pdq δ(k⊥ − k′

⊥)

≈
∫∫

p�kpeak (t ),q�kpeak (s)
Si jkl (p,−p, q,−q; t, t ′)d pdq δ(k⊥ − k′

⊥), (A15)

where Si jkl (a, b, c, d; t, t ′)δ(a⊥ + b⊥−c⊥−d⊥)=̂(ρui )′(a, t )û′
j (b, t ) ̂(ρu′

k )
∗
(c, t ′)û′

l

∗
(d, t ′). The

first equality is the definition of the convolution product. The first approximation is a direct
expression of our main assumption and the second one is a Taylor expansion in the limit k � kpeak.
This overall procedure is nothing more than the distant interaction hypothesis usually used to
simplify spectral models like the eddy-damped quasinormal model (EDQNM) [22,50].

The end result here is that ̂(ρui )′u′
j (k, t ) ̂(ρuk )′u′

l

∗
(k′, t ′) only depends on t , t ′ but not on the wave

vector k. Thus, the nonlinear transfer term T can be simplified into the following expression:

for k � kpeak (t ), T (k, t, t ′) = k2 T dist(k̃, t, t ′) + H.O.T., (A16)

with T dist(k̃, t, t ′)δ(k⊥ − k′
⊥) = k2 Pac(k̃)k̃bk̃d

̂(ρua)′u′
b(k, t ) ̂(ρuc)′u′

d

∗
(k′, t ′)

∣∣∣∣
p,q�kpeak

.

The notation · |p,q�kpeak
refers to the restriction of the fourth-order correlations to the energetic range

detailed in Eq. (A15). As explained above, this restriction is independent from the wave number k,
which explains why T dist only depends on k̃ and time. The notation H.O.T. is used to denote the
next orders of the distant interactions as well as the contribution from local interactions. Note that
when the infrared exponent is smaller than 2, these additional terms are not negligible compared
to the k4 contribution. They should in principle be detailed further, for instance by applying a full
EDQNM closure to the variable density system. However, this procedure is beyond the scope of this
article. Its main outcome would be the occurrence of viscous damping terms (see Refs. [22,50]) that
scale as kσso+2 and local terms that scale as k3/2(σso+1). When σso > 2, these contributions are small
compared to the k4 nonlinear component, as expected from the present analysis. However, when
σso < 2, they become dominant. Still, their scaling remains steeper than the initial scaling of Qso.
For this reason, they have a negligible influence over the evolution of Qso and need not be detailed
in this study.

e. Final model

Combining our different assumptions into Eq. (A8), we eventually obtain the following modeled
evolution for Qso at large scales,

for k � kpeak (t ), ∂tQ
so(k, t ) = k4 Tdist(t ) + H.O.T.,

with Tdist(t ) =
∫ t

tqi

∮
T dist(k̃, t, t ′)d k̃ dt ′. (A17)
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As in homogeneous turbulence, nonlinear interactions possess a component scaling as k4 at small
wave numbers. As already noted in Ref. [24], this classical scaling is a recurrent prediction of
turbulence closures in constant density incompressible turbulence, for the nonlinear transfer term of
the velocity spectrum. We stress that it applies here to the transfer term of the solenoidal momentum
spectrum Qso and not of the velocity spectrum E. Besides, the derivation is done here for an
inhomogeneous flow.

APPENDIX B: INTERFACE WITH A GAUSSIAN PERTURBATION

We consider an interface centered around the position x3 = 0 and deformed by a perturbation
of height h(x⊥), with x⊥ = (x1, x2) the position in the plane perpendicular to x3 (see Fig. 1). The
perturbation h is assumed to be statistically homogeneous and axisymmetric. We denote by Eh the
spectrum of h and by Ph its modulus spectrum:

Eh(k⊥) = 1

(2π )2

∫∫
e−ık⊥·r⊥h(0)h(x⊥)dx⊥ and Ph(k⊥) = k⊥

∮
Eh(k⊥)d k̃⊥,

with k⊥ = (k1, k2) the 2D wave vector in the plane perpendicular to x3, k⊥ the modulus of k⊥,
k̃⊥ = k⊥/k⊥ its direction, and

∮ ·d k̃⊥ the integration over the unit circle. By definition, the variance
σ 2

h of the perturbation amplitude is given by

σ 2
h = h2 =

∫∫
Eh(k⊥)dk⊥ =

∫ ∞

0
P(k⊥)dk⊥.

Axisymmetry requires Eh to be isotropic, so that

Eh(k⊥) = Eh(k⊥) and Ph(k⊥) = 2πk⊥Eh(k⊥).

For a nondiffuse interface, a concentration field c equal to 1 when x3 > h and to 0 when x3 < h can
be defined:

c(x) = H[x3 − h(x⊥)],

with H the Heaviside function. Taking the 3D Fourier transform of this expression and subtracting
the mean, we obtain that

ĉ′(k) = 1

(2π )3

∫∫
e−ık⊥·x⊥ e−ık3h(x⊥ ) − e−ık3h(x⊥ )

ık3
dx⊥.

As a result, we deduce that, for k⊥ �= 0, the 3D concentration spectrum Ecc(k)δ(k⊥ − k′
⊥) =

ĉ′(k)ĉ′(k′) is equal to

Ecc(k) = 1

(2π )4

1

k2
3

∫∫
e−ık⊥·r⊥ (�∗

�h(k3, r⊥) − |�h|2(k3))dr⊥, (B1)

with ��h(k3, r⊥) = eik3�h and �h(k3) = eik3�h the respective characteristic functions of the two
point separation �h = h(r⊥) − h(0) and of the height h. Equation (B1) was already derived in
Ref. [15] for k⊥ �= 0 and was shown to be sufficient to determine the main properties of Ecc at large
scales, without further hypothesis. However, some useful information can be brought forward if
we assume that h has Gaussian statistics. In that case, the characteristic functions ��h and �h are
Gaussians and we can write that

Ecc(k) = 1

(2π )4

e−k2
3σ 2

h

k2
3

∫∫
e−ık⊥·r⊥ (ek2

3 h(r⊥ )h(0) − 1)dr⊥. (B2)

Integrating this expression over k, we find that∫
Ecc(k)dk = 1

2π

σh√
π

.
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Since
∫

Ecc(k)dk = 1
2π

∫
c′2dx3 and since the absence of mixing entails that c′2 = c(1 − c), we

deduce that, for a Gaussian perturbation, the mixing zone width defined by Eq. (36) is equal to

L = 6
∫

c(1 − c)dx3 = 6√
π

σh. (B3)

This result was derived by other means in Ref. [46].
Since we are studying large scales, we are not interested in expressing the properties of Ecc(k) at

all wave numbers, but only at small ones. Thus, we aim to simplify Eq. (B2) in the limit kσh � 1,
i.e., for both |k3|σh � 1 and k⊥σh � 1. In the limit |k3|σh � 1, the Gaussian term in Eq. (B2) can
be Taylor expanded. Neglecting terms of order higher than (k3σh)4 and using the relation between
Ph and h(0)h(r⊥), one obtains the following result:

For |k3|σh � 1, Ecc(k) = 1

(2π )3

Ph(k⊥)

k⊥
[1 − (k3σh)2] + k2

3

2(2π )4

∫∫
Ph(k′

⊥)

k′
⊥

Ph(|k′
⊥ + k⊥|)

|k′
⊥ + k⊥| dk′

⊥.

(B4)

To simplify further this expression, we assume that Ph is a peaked spectrum with a maximum located
at kpeak. The latter is supposed to be at most on the order of 1/σh:

kpeakσh � 1.

Then, the convolution product appearing in the previous expression can be Taylor expanded in the
limit k⊥σh � 1, in a way reminiscent of the distant interaction approximation used in Sec. III. With
this last assumption, we obtain that,

for kσh � 1, (2π )3Ecc(k) = Ph(k⊥)

k⊥
[1 − (k3σh)2] + A

(
k3

kpeak

)2

σ 2
h

with A = k2
peak

2σ 2
h

∫ ∞

0

Ph(κ )2

κ
dκ. (B5)

The two limits |k3|σh � 1 and k⊥σh � 1 have been combined in the limit kσh � 1 which simul-
taneously imposes both of them. In Ref. [15] and in Sec. IV, only the first term of the right-hand
side of Eq. (B5) is accounted for. This term is indeed predominant in the linear limit kpeakσh → 0
considered in Ref. [15] and in Sec. IV. Nonetheless, it is still interesting to understand how the
second term of Eq. (B5) modifies the shape of the concentration spectrum when kpeakσh is not small.

To this end, let us assume that the spectrum of the interface perturbation is specified at large
scales by the power-law Eq. (28) with C = P0k−m

peak and m = sh − 1:

For k⊥σh � 1, Ph(k⊥) = P0

(
k⊥

kpeak

)sh−1

, (B6)

with P0 a constant and sh − 1 the infrared exponent of Ph.
Before going further, we would like to emphasize that, for sh � 1, the distant approximation used

to derive Eq. (B5) becomes invalid. The spectrum Ph has indeed no maximum at k = kpeak when
sh � 1. As a result, the second-order term of Eq. (B5), the one proportional to A, is not correct any
longer. However, the first order of this expression remains accurate and one can still approximate Ecc

by Ph(k⊥)/[(2π )3k⊥] as done in Ref. [15] and in the main text [Eq. (26)]. As explained in Sec. IV B,
this first-order approximation can even be used for negative values of sh.

This being said, let us assume, in this Appendix, that sh > 1 and that the second-order ap-
proximation Eq. (B5) is valid. Then, substituting the power-law expression of Ph into Eq. (B5),
and keeping only the main orders, we derive that the modulus concentration spectrum, defined by
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Ecc = k2
∮

Ecc(k)d k̃, is given by,

for kσh � 1, (2π )2Ecc(k) = (k/kpeak )sh (P0kpeak )

√
π�(sh/2)

�((sh+1)/2)

+ (k/kpeak )4
P2

0 k4
peak

3

∫ ∞

0

(Ph(κ )/P0)2

κ
dκ. (B7)

When k is infinitely small, the second contribution of the concentration spectrum becomes predomi-
nant over the first one whenever sh > 4. However, when k has a small but finite value, this statement
must be refined by comparing the orders of magnitude of the two terms on the right-hand side of
Eq. (B7). Assuming that P0kpeak ∼ σ 2

h , this comparison leads to the definition of the following wave
number, for sh > 4:

kic = kpeak (kpeakσh)2/(sh−4).

When sh > 4 and kic � kpeak, two ranges can be observed for Ecc(k). In that case, one has

Ecc(k) ∝
{

ksh for kic � k � kpeak,

k4 for k � kic.
(B8)

The value of kic relative to kpeak depends on kpeakσh. When kpeakσh � 1, then kic � kpeak and the
intermediate ksh range will not be observed. By contrast, in the linear limit kpeakσh → 0, only the
intermediate ksh range will be observed. This linear limit is precisely the one considered in Ref. [15]
and Sec. IV and this explains why the k4 contribution of the concentration spectrum has been left
out of the analysis proposed in these two instances.

Another example that is worth mentioning because of its frequent use in simulations is the case
when Ph is an annular spectrum, i.e., a spectrum which is null outside of a bounded interval of
wave numbers. In that case, Ph vanishes alltogether at small wave numbers and only the second
contribution of Eq. (B5) remains. Thus, even though Ph is annular, Ecc(k) is not and displays a k4

scaling at small wave numbers. Besides, the prefactor of this infrared scaling is not universal but
depends on several parameters defining the spectrum. To clarify this point, let us consider an annular
spectrum of the form

Annular spectrum: If kpeak � k � (1 + α)kpeak , then Ph(k⊥) = P0, else Ph(k⊥) = 0.

(B9)

Injecting this definition into Eq. (B5), we derive that the modulus concentration spectrum is given
by,

for kσh � 1,
Ecc(k)∫

Ecc(k)dk/(αkpeak )
= (

k/kpeak
)4 1

6
√

π

(
kpeakσh

)3 ln(1 + α)

α
. (B10)

To obtain this formula, we used the relation αP0kpeak = σ 2
h as well as Eq. (B3). The denominator in

the left-hand side gives an estimate of the peak value of Ecc(k).
The main conclusion drawn from Eq. (B10) is that annular spectra are not all equivalent as far

as large scales are concerned. They all yield a k4 concentration spectrum but the corresponding
prefactor relative to the peak spectrum value varies as a function of two independent parameters:
the aspect ratio of the perturbation kpeakσh and the length of the bounding intervall α. What is
more, for sufficiently high aspect ratios and sufficiently small bounding intervalls, the large-scale
range may even provide a nonnegligible contribution to the variance of concentration. As a result,
depending on these parameters, two simulations initialized with annular perturbation spectra may
yield different flow evolutions. The limit kpeakσh → 0 is required to guarantee that the large-scale
contribution of the concentration spectrum is indeed negligible.
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FIG. 11. Schematic representation of the evolution of Qso when the initial infrared exponent σso is smaller
than −1. Below the cutoff wave number kc, turbulent spectra and their transfer terms are null. This “forbidden”
zone is represented by the grey area in the two subfigures.

APPENDIX C: FURTHER COMMENTS ON INITIAL CONDITIONS

The purpose of this Appendix is to discuss, in a very qualitative and cursory manner, two
issues which have not been dealt with in the main text, but which are sometimes encountered in
the literature. First, we would like to give a hint about what occurs when the initial solenoidal
momentum spectrum has an infrared exponent smaller than −1. Second, we would like to indicate
what may happen when the flow is initialized with a deformation spectrum Ph which is the sum of
a power law at large scales and of an annular spectrum at small scales. These two initial conditions
are, respectively, depicted in Figs. 11 and 12. We stress that the discussion about these two points is
not supported by any simulation or experimental result and remains speculative.

1. Diverging power-law spectrum

In the main text, we restricted our attention to a perturbation height spectrum Ph having an
infrared exponent m larger than −2. We now get rid of this limitation and consider that m < −2.
In that case, the infrared exponent σso of the solenoidal spectrum Qso after the shock crossing is
smaller than −1:

σso < −1.

With this condition, Qso ceases to be integrable when k → 0. To deal with this situation, one has
to introduce a cutoff wave number kc below which all spectra and their transfer terms are null. In
practice, kc corresponds to the size of the simulation domain or to some geometric dimension of
the experimental apparatus. The problem is schematized in Fig. 11 and is fully dependent upon the
truncating.
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FIG. 12. Schematic representation of the spectrum Qso at time tc, just after shock (black line), and at time
τss, just after the potential appearance of a large-scale backscattering spectrum (grey line).
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The main difference with the situation studied in the main text is that the evolution of the
spectrum Qso is now driven by local interactions and, possibly, by distant interactions coming from
the range k � kc. These interactions are expected to generate a Kolmogorov-like inertial range that
will eventually spread from the cutoff wave number kc to the inverse of the Kolmogorov scale
kkol = η−1

kol [see Fig. 11(a)]. Until this propagation is complete, the dissipation of the kinetic energy
can be neglected. Therefore, the total kinetic energy is conserved and, following the arguments of
Refs. [51,52], the mixing zone width grows with an exponent equal to

� = 2
3 .

This exponent may be observed provided the emergence time τc of the inertial range is much larger
than the characteristic time of the linear growth of the instability τlin. The maximum value of τlin is
obtained for k = kc and is equal to

τlin = 1

At kc�U
.

To estimate the time τc, we may simply extrapolate standard results of homogeneous turbulence to
the present case [22]. Then, τc should be on the order of

τc ∼ 1

kcu′
0

,

with u′
0 a characteristic scale of the initial velocity field created at the interface. When the turbulent

spectra are divergent, the integration of a formula such as Eq. (30) leads to u′
0 ∼ √

kcσhAt�U . As a
result, we obtain that

τc ∼ 1

kc
√

kcσhAt�U
= τlin√

kcσh
.

Therefore, in the limit kcσh → 0, τc is much larger than τlin and a self-similar regime with � = 2/3
can be observed. To sum up, we can write that,

for σso < −1 and kcσh → 0, � = 2
3 . (C1)

This result allows us to generalize Eq. (32) as follows, when kcσh → 0:

� =

⎧⎪⎨⎪⎩
1

4−η/2 , σso > 4 − η
2

σso+4 , −1 < σso < 4 − η
2
3 , σso < −1

, (C2)

The first two lines of this equation correspond to Eq. (32), while the last one comes from this
Appendix.

If kcσh is not infinitely small, then after a finite time τc, dissipation starts affecting the flow
evolution and a different self-similar regime is expected. More precisely, after t = τc, the flow is
fully confined [see Fig. 11(b)] and the self-similar regime is dictated by the value of kc and by the
time t . For instance, the turbulent kinetic energy decays as k−2

c t−2 and the turbulence concentration
flux as k−1

c t−1. As for the mixing zone width L, its evolution can be assumed to be driven by the
concentration flux so that ∂t L ∝ k−1

c t−1. Therefore, we deduce

confined regime: L ∼ L0 ln(t/t0),

with L0 and t0 two unknown constants. Note that this confined regime has been discussed in the case
of diverging initial spectra but can also be reached for other types of initial conditions. Note also
that a logarithmic growth of the mixing zone width has already been predicted in confined settings
using bubble merger models [53] and vortex pair models [54,55]. Finally, it is worth stressing that
the study done in the context of homogeneous turbulence in Ref. [56] suggests that the power laws
of the confined regime are hard to attain. Several factors detailed in Ref. [56] entail differences with
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the expected decay laws. Further information about confinement effects in Richtmyer–Meshkov
turbulence can also be found in Ref. [57].

2. Two-range initial spectrum

We now consider an initial deformation of the interface with a spectrum of the form

Ph(k⊥) =

⎧⎪⎨⎪⎩
Ckm

⊥, kc � k⊥ � kpeak

P0/k, kpeak � k⊥ � kpeak (1 + α)

0, elsewhere

. (C3)

In this equation, C and P0 are two constants, kpeak gives the location of the annular spectrum and α

its width, and kc is a cutoff wave number below which all spectra and their transfer terms are null
(see Fig. 12).

After the shock crossing, the solenoidal momentum spectrum Qso can be expressed using
Eqs. (25) and (B1). Its shape is more complicated than a mere two-range spectrum. However,
it still displays a power law at small wave numbers and a bump centered around the interval
[kpeak, kpeak (1 + α)]. Henceforth, for the sake of simplicity, we choose to approximate Qso at t = tc
by

Qso(k, tc) =

⎧⎪⎨⎪⎩
Qls

(
k

kpeak

)σso
, kc � k � kpeak

Qss, kpeak � k � kpeak (1 + α)

0, elsewhere

, (C4)

where, as before,

σso = m + 1.

Within the framework of this analysis, the two constants Qls and Qss need not be precisely defined.
Only their order of magnitude is of interest. The latter can be estimated by assuming that Qso is on
the order of k2Qso taken at the angle θ = π/2. Then, according to Eqs. (B4) and (25), one deduces
that

Qls ∼ (C�ρ+�U )2Ckσso
peak and Qss ∼ (C�ρ+�U )2P0.

These estimates can be rewritten using the perturbation height variances σ 2
ls and σ 2

ss contained,
respectively, by large and small scales:

σ 2
ls =

∫ kpeak

kc

Ph(k⊥)dk⊥ and σ 2
ss =

∫ kpeak (1+α)

kpeak

Ph(k⊥)dk⊥.

One obtains that

Qls ∼ (C�ρ+�U )2 σ 2
ls

A
and Qss ∼ (C�ρ+�U )2 σ 2

ss

ln(1 + α)
, (C5)

with A = 1
σso

[1 − ( kc
kpeak

)σso] if σso �= 0, and A = ln(kpeak/kc) if σso = 0.
Following Eq. (15), the small-scale annular component of the spectrum generates distant inter-

actions which are responsible for a backscattering transfer term Tss scaling as k4 at small wave
numbers:

For k � kpeak, Tss = k4 Tdistss .

The order of magnitude of the prefactor Tdistss can be obtained using simple dimensional arguments.
One finds that

Tdistss ∼ Qss

k4
peak

1

τss
,
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where τss is the characteristic time of small scales. Assuming that the order of magnitude of Tdistss
does not change significantly over a time period of τss, distant interactions eventually produce a
spectrum Qdist

ss over this period which is on the order of,

for k � kpeak, Qdist
ss ∼ Tssτss ∼ Qss

(
k

kpeak

)4

.

Thus, after a time τss and for k � kpeak, Qso is the sum of the large-scale initial condition
Qls(k/kpeak )σso and of the distant interaction spectrum Qdist

ss . The two spectral contributions can
be compared thanks to a wave number kdist defined by

kdist = kpeak

(
Qls

Qss

) 1
4−σso

. (C6)

It can be checked that,

for k � kdist, Qdist
ss � Qls(k/kpeak )σso and, for k � kdist, Qdist

ss � Qls(k/kpeak )σso .

From there, three situations can be distinguished, as illustrated in Fig. 12.
(1) First, for kdist � kc, one has Qso ≈ Qdist

ss ∝ k4 over the whole large-scale range [see
Fig. 12(a)]. Therefore, during the self-similar evolution of the flow, � reaches its minimum value
�min = 1

4−η/2 independently of σso.
(2) Second, for kc � kdist � kpeak, the large-scale range is divided in two subintervals [see

Fig. 12(b)]. For kdist � k � kpeak, one has Qso ≈ Qdist
ss and for kc � k � kdist , one has Qso ≈

Qls(k/kpeak )σso . In that case, � displays two successive values. Until the time when kpeak (t ) ∼ kdist ,
� is equal to �min. After, � tends to its σso-dependent value given by Eq. (32) and its generalization
Eq. (C2). Note that if σso < 4 − η, an increase in � is observed after the transition.

(3) Finally, for kdist � kpeak, one has Qso ≈ Qls(k/kpeak )σso over the whole large-scale range [see
Fig. 12(c)]. In that case, the value of � is given by Eq. (32) and its generalization Eq. (C2).

Using Eq. (C5), these three situations can be reformulated as a function of the perturbation height
variances σ 2

ls and σ 2
ss. More precisely, when σso < 0, and α ∼ 1, one finds that, for k � kpeak:

Qso ≈ Qdist
ss if

σ 2
ls

σ 2
ss

� 1

|σso|
(

kc

kpeak

)4

� 1 and Qso ≈ Qls(k/kpeak )σso

if
σ 2

ls

σ 2
ss

� 1

|σso|
(

kc

kpeak

)−|σso|
� 1

Thus, the conditions for having a pure backscattering spectrum or a preservation of the initial
condition are more stringent than simply having σ 2

ls � σ 2
ss or σ 2

ls � σ 2
ss. By contrast, the two

subinterval situation is obtained for a large interval of values of the ratio σ 2
ls/σ

2
ss and in particular for

σ 2
ls ∼ σ 2

ss.
When σso > 0, the previous conclusions are slightly modified. Indeed, one has, for k � kpeak:

Qso ≈ Qdist
ss if

σ 2
ls

σ 2
ss

� 1

σso

(
kc

kpeak

)4−σso

� 1 and Qso ≈ Qls(k/kpeak )σso if
σ 2

ls

σ 2
ss

� 1.

The conditions for getting a pure backscattering spectrum or a preservation of the initial condition
are less demanding than those obtained for σso < 0. Accordingly, the two subinterval situation is
observed under tighter conditions, and in particular, it does not occur when σ 2

ls ∼ σ 2
ss.

To conclude on this topic, let us note that when kc, kdist , and kpeak are not separated by orders of
magnitude, then no clear power-law range can be identified at large scales. Hence, there is no precise
value of � and probably no well defined self-similar regime. Besides, it is also worth stressing that
it is already very computationally demanding to track the self-similar evolution of a flow with a
single power-law range at large scales. Being able to follow a flow with two large-scale ranges
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would significantly increase the cost of large eddy and direct numerical simulations. This leads us
to stress again the speculative nature of the content of this Appendix. The arguments proposed in it
are not supported by simulations or experiments and should consequently be considered with care.

APPENDIX D: HAAN’S MODEL

In a recent article [12], Haan’s model was used to study the self-similar turbulent regime of mix-
ing zones generated by the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Haan’s model
was first proposed in Refs. [38,39] with the purpose of describing the weakly nonlinear regime
of these two instabilities. It is designed out of two components. The first one is a second-order
expansion allowing us to compute the amplitudes of interfacial modes. It can be applied provided
these amplitudes remain small. The second component is a saturation closure which comes into play
whenever mode amplitudes become too large and cross a given threshold.

Thus, Haan’s expansion and Haan’s saturation closure are two distinct elements which are
stitched together to yield what is usually referred to as Haan’s model [12]. For modes with small
amplitudes, Haan’s expansion is well-posed and yields unambiguous results. However, difficulties
arise whenever the saturation closure becomes active. For weakly nonlinear flows, some of these
difficulties have been pointed out by Haan himself [38,39], while others can be found for instance
in Refs. [40,41]. In this Appendix, we would like to review these difficulties and also to discuss their
impact beyond the weakly nonlinear context, when the flow becomes turbulent and self-similar. The
discussion is restricted to the Richtmyer–Meshkov case.

1. Haan’s second-order expansion

As explained above, Haan’s second-order expansion is one of the two building blocks of Haan’s
model. For modes with small amplitudes, the derivation of this expansion is unequivocal and is
detailed in Ref. [38]. Its expression is recalled in this section when it is applied to the Richtmyer–
Meshkov context. To this end, we consider an interface centered around the coordinate x3 = 0
which is deformed by a perturbation of height h(x⊥, t ), where x⊥ = (x1, x2) (see Fig. 1). The height
function h is decomposed into 2D Fourier modes with a complex amplitude Zk⊥ defined as follows:

Zk⊥ (t ) = ĥ2D(k⊥, t ) = 1

(2π )2

∫
e−ık⊥·x⊥h(x⊥, t )dx⊥.

By assuming that the component of the velocity normal to the interface is continuous, that the inter-
face moves with the fluid and that the pressure field is constant across the interface (notwithstanding
surface tension effects), Haan shows that Zk⊥ obeys the following equation when its modulus |Zk⊥|
is very small:

Z̈k⊥ = At k⊥gZk⊥ + At k⊥
∫

a+b=k⊥

(
ŻaŻbξab + Z̈aZbζab

)
da + O

(
Z3

k⊥

)
,

with ξab = 1

2
− ã · k̃⊥ − 1

2
ã · b̃ and ζab = 1 − ã · k̃⊥. (D1)

In these equations, the notations v and ṽ refer to the norm and direction of a given vector v:
v = √

vivi and ṽ = v/v. Besides, time derivatives have been denoted with dots: Ża = ∂t Za and
Z̈a = ∂2

tt Za. As for g, it refers to the acceleration applied to the flow and can vary with time. For
Richtmyer–Meshkov turbulence, g is chosen impulsive:

g(t ) = �Uδ(t ), (D2)

with �U a velocity jump mimicking the interface velocity jump due to the shock crossing.
In addition, Eq. (D1) is completed by a set of initial conditions. Just before the impulsive

acceleration the interface is assumed to be at rest so that

Żk⊥ (t = 0−) = Ż0−
k⊥ = 0. (D3)
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However, just after the impulsive acceleration, the interface is put in motion, so that

Żk⊥ (t = 0+) = Ż0+
k⊥ �= 0.

The value of Ż0+
k⊥ is a result of the integration of Eq. (D1) and will be determined later. As for the

amplitude Zk⊥ , its evolution is continuous and there is no need to differentiate between its value just
before and just after the impulsive acceleration. Its initial condition will simply be denoted by Z0

k⊥ :

Zk⊥ (t = 0) = Z0
k⊥ .

Of particular interest is the case where the initial spectrum of Zk⊥ obeys a power law at small wave
numbers as in Eqs. (28) or (B6). To simplify the analysis, this power law will be transcribed directly
in terms of the modulus of Zk⊥ : ∣∣Z0

k⊥

∣∣ ∝ kn0
⊥ for k � kpeak, (D4)

with kpeak a given peak wave number. The exponent n0 is directly related to the infrared exponent m
of the power spectrum of the perturbation of Eqs. (28) or (B6) by the relation

n0 = m − 1

2
.

2. Alternative formulations of Haan’s expansion

In Eq. (D1), a O(Z3
k⊥ ) term has been added to recall that the equation derived by Haan is valid up

to terms of order Z3
k⊥ . With this in mind, we can re-express Eq. (D1) as follows. First, we note that

apart from the linear production term, Z̈k⊥ is of order 2. Therefore, one can replace its occurrence in
the convolution product by retaining only this particular contribution. Thus, we can rewrite Eq. (D1)
as

Z̈k⊥ = At k⊥g

(
Zk⊥ + At

∫
a+b=k⊥
aZaZbζab da

)
+ At k⊥

∫
a+b=k⊥
ŻaŻbξab da + O

(
Z3

k⊥

)
. (D5)

This formulation is interesting as it shows explicitly that even if Zk⊥ = 0 at a given time and a
given k⊥, nonlinear interactions will still trigger some form of buoyancy production thanks to the
term involving ζab. Another interest of this formulation is that it can be compared more easily with
the ones used in other references. For instance, in Ref. [12], the following simplification of Haan’s
second-order expansion is proposed in the Richtmyer–Meshkov case:

Haan’s expansion in Ref. [12] : Z̈k⊥ = At k⊥gZk⊥ + At k⊥
∫

a+b=k⊥
ŻaŻbξab da, (D6)

where the value of Żk⊥ in the convolution product is directly replaced by its linear approximation
just after the impulsive acceleration, i.e., by At k⊥�UZ0

k⊥ . Comparing Eqs. (D5) and (D6), one can
see that the nonlinear term involving ζab has been discarded in Ref. [12]. An immediate consequence
is the following. Integrating Eqs. (D5) and (D6) from t = 0− to t = 0+, one finds

Eq. (D6) from this work: Ż0+
k⊥ = At k⊥�U

(
Z0

k⊥ + At

∫
a+b=k⊥
aZ0

a Z0
b ζab da

)
, (D7)

Eq. (D6) from Ref. [12]: Ż0+
k⊥ = At k⊥�UZ0

k⊥ . (D8)

Thus, the nonlinear component of the initial impulse given to the interface is missing in Ref. [12].
This difference is especially striking when considering an initial annular spectrum (i.e., such that
Z0

k⊥ = 0 except in when k⊥ is in a given finite interval centered around kpeak). Then, for k⊥ � kpeak,

Ż0+
k⊥ = 0 according to Ref. [12] even though it is not according to the full version of the nonlinear

expansion. A similar comment applies to other references, such as Refs. [39,42].
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The reformulation of Eq. (D1) can be led further and, to some extent, made arbitrary. Starting
from the relation ŻaŻb = ∂2

tt (ZaZb)/2 − (Z̈aZb + Z̈bZa)/2, we can add the left-hand side of this
equality and subtract its right-hand side to the integrand appearing in Eq. (D1). Furthermore, the
added and subtracted terms can be weighted by an arbitrary function of a and b that will be denoted
by ηab. Finally, after performing these operations, we can convert the second-order derivatives as
we did previously, by neglecting terms of order Z3

k⊥ or higher. As a result, we obtain that Haan’s
expansion can be written as

Z̈k⊥ =At k⊥g

(
Zk⊥ + 1

2
AtGk⊥

)
+ 1

2
At k⊥∂2

ttHk⊥ + At k⊥Ik⊥ + O
(
Z3

k⊥

)
, (D9)

with Gk⊥ =
∫

a+b=k⊥
ZaZb

(
aζab − ηab

a + b

2

)
da, (D10)

Hk⊥ =
∫

a+b=k⊥
ZaZbηab da, (D11)

Ik⊥ =
∫

a+b=k⊥
ŻaŻb(ξab − ηab) da. (D12)

Thus, one can arbitrarily split the nonlinear term of Haan’s expansion into three distinct contribu-
tions: the first one, Gk⊥ , ties buoyancy production and nonlinearities, the second one, Hk⊥ , is written
in a conservative form and involves the second-order time derivative of a convolution product of
Zk⊥ with itself, and the last one, Ik⊥ , is a source term involving the convolution product of Żk⊥ with
itself. With ηab = 0, one suppresses the conservative contribution and finds Eq. (D1). Besides, with
ηab = ξab, the source term Ik⊥ is suppressed while, with ηab = 2a

a+bζab, it is Gk⊥ which is null.
As long as |Zk⊥| is small, the particular choice of ηab is not important: whatever its value, Eq. (D9)

yields an equivalent description of the evolution of Zk⊥ up to terms of order O(Z3
k⊥ ). However, when

|Zk⊥| is not small, the different contributions appearing in its right-hand side cannot be interchanged
any longer. In that case, the particular choice of ηab has consequences on the properties of Haan’s
expansion and on its role in the evaluation �.

3. Value of � in Haan’s model

Haan’s expansion is often used beyond its domain of validity to describe the evolution of weakly
nonlinear flows and even turbulent mixing zones [12]. In that case, Haan’s expansion is stitched
with a saturation closure, examples of which can be found in Refs. [12,39]. More precisely, with
the saturation closure detailed in Ref. [12], three types of modes can be distinguished. First, Haan’s
expansion is used to describe the evolution of small amplitude modes. It is applied when Zk⊥ is
below a threshold, called saturation amplitude and noted Zsat

k⊥ . The latter is generally modeled as
follows:

Zsat
k⊥ = s1k−2

⊥ , (D13)

with s1 a model constant. Second, modes with an amplitude larger than Zsat
k⊥ and smaller than a

second threshold noted Z froz
k⊥ undergo an evolution which is not driven by Haan’s expansion but

is instead closed using dimensional arguments. These modes are called saturated modes and their
upper threshold Z froz

k⊥ is equal to a few times Zsat
k⊥ :

Z froz
k⊥ = s2k−2

⊥ , with s2 > s1. (D14)

Finally, modes with an amplitude larger than this second threshold are frozen: their amplitude
does not evolve in time any longer. This decomposition has been formulated in terms of the
amplitudes Zk⊥ of the modes. It can also be expressed by introducing three distinct spectral ranges: a
nonsaturated small wave number range for k⊥ � ks(t ), a saturated intermediate wave number range
for ks(t ) � k⊥ � k f (t ), and an frozen high-wave-number range for k⊥ � k f (t ).
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At first sight, it would appear that restricting Haan’s expansion to small-amplitude modes
guarantees that it is correctly used. However, this is deceptive: the convolution products in Haan’s
expansion involve modes pertaining to the saturated and frozen ranges, with amplitudes that are
consequently not small. In Ref. [12], this issue is partially addressed by eliminating the frozen
range from convolution products. However, saturated modes remain. Thus, even though it is not
applied to the saturated and frozen ranges, Haan’s expansion is still applied beyond its domain of
validity when used to describe turbulent flows.

To illustrate the ambiguities that ensue, let us introduce the axisymmetric spectrum of Zk⊥ and
its integral Z2:

Z2 = 2π

∫
k⊥EZ (k⊥)dk⊥ with EZ (k⊥)δ(k⊥ + k′

⊥) = Zk⊥Zk′
⊥ .

The variance Z2 is used as the main (often the sole) diagnostic of Haan’s turbulence model.
Indeed, when the mixing zone is turbulent, the interface separating the fluids is multivalued so
that Zk⊥ cannot be associated any longer with the Fourier transform of the height of a single-valued
perturbation. Nonetheless, the integral of the spectrum of Zk⊥ still gives access to a characteristic
length. The latter is then generally said to correspond to the size of the mixing zone L:

L ∝
√

Z2.

Thus, when Haan’s model is used in the turbulent regime, Zk⊥ has become a proxy for computing L
and does not appear to bear any physical meaning beyond this purpose.

The contribution to Z2 from wave numbers smaller than K is denoted by Z2
K and defined by

Z2
K = 2π

∫ K

0
k⊥EZ (k⊥)dk⊥.

In the self-similar regime, we assume that Z2 and its large-scale contribution share the same time
evolution. In other words, we assume that,

for
K

ks
= ε � 1, Z2

K ∝ Z2 ∝ t2�.

With this hypothesis, we can analyze the self-similar properties of the flow by looking at the
properties of the spectrum EZ at small wave numbers. Integrating Eq. (D9) and dropping third-order
terms, we deduce that

for
k⊥
ks

� 1, Zk⊥ = Z0
k⊥ + At�Uk⊥t

(
Z0

k⊥ + 1

2
AtG0

k⊥

)
+ 1

2
At k⊥

(
Hk⊥ − H0

k⊥

)
+ At k⊥

∫ t

0

∫ t ′

0
Ik⊥ (t ′′)dt ′′dt ′. (D15)

As a result, the spectrum of Zk⊥ takes the following form at small wave numbers,

for
k⊥
ks

� 1, EZ (k⊥) = E0
Z (k⊥)(1 + At�Uk⊥t )2 + 1

4
A4

t �U 2E0
GG(k⊥)k2

⊥t2 + 1

4
A2

t EHH (k⊥, t )k2
⊥

+ A2
t EII (k⊥, t )k2

⊥ + cross terms, (D16)

where E0
Z is the initial value of EZ and where E0

GG, EHH , and EII are, respectively, the spectra of

G0
k⊥ , Hk⊥ − H0

k⊥ , and
∫ t

0

∫ t ′

0 Ik⊥ (t ′′)dt ′′dt ′. In the definitions of Gk⊥ , Hk⊥ , and Ik⊥ , we introduced an
arbitrary parameter ηab. Here, we would like to specify it as follows:

ηab = 2a

a + b

[
ζab − η0

(
k⊥
a

)ση
]
.
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With this particular definition, a distant interaction approximation of the spectra E0
GG, EHH , and EII

yields,

for
k⊥
ks

� 1, E0
GG = CGk2ση

⊥ , EHH = CH (t )k0
⊥, and EII = CI (t )k2 min(ση,1)

⊥ ,

where the coefficients CH (t ) and CI (t ) depend on the most energetic scales of the spectrum and
undergo a self-similar evolution. Using these expressions, integrating the spectrum up to K (t ) =
εks(t ) and assuming that t is large, we find that,

for
K

ks
= ε � 1,

Z2
K

2π
= A2

t �U 2 C

m + 3
K (t )m+3t2 + 1

4
A4

t �U 2 CG

4 + 2ση

K (t )4+2ση t2

+ 1

4
A2

t CH (t )K (t )4 + A2
t

CI (t )

4 + 2 min(ση, 1)
K (t )4+2 min(ση,1) + cross terms. (D17)

In the self-similar regime, the left-hand side is proportional to t2�. Besides, the coefficients CH (t )
and CI (t ) evolve self-similarly and so does K (t ). Then, dimensional analysis implies that the last two
terms of the right-hand side are also proportional to t2�. As for the first two terms on the right-hand
side, they are, respectively, proportional to t2−(m+3)� and to t2−(4+2ση )�. Therefore, we find that

� = 2

min(m, mhaan ) + 5
, with mhaan = 1 + 2ση.

Thus, the minimum value of � in Haan’s model depends on the arbitrary expression given to its
associated second-order expansion. In our case, the value of �min depends on the arbitrary parameter
ση:

�min = 1

3 + ση

.

For ση = −3/2, we obtain �min = 2/3, for ση = 0, we obtain �min = 1/3, for ση = 1, we obtain
�min = 1/4, and for ση = 2, we obtain �min = 1/5.

The main conclusion is that, by itself, Haan’s model is not sufficient to predict the limit value
of �. The fundamental reason is that Haan’s expansion is ill posed whenever modes with large
amplitudes are involved. This is necessarily the case when distant interactions dominate nonlinear
interactions. Unfortunately, these distant interactions are precisely the ones which determine the
value of �min.

Note that the arbitrary decomposition that we introduced in Eq. (D9) is only one among many
others. For instance, in Eq. (D5) one could also have made the substitution Żk⊥ = αŻk⊥ + (1 −
α)At�Uk⊥Z0

k⊥ with α another arbitrary parameter. This substitution is valid up to O(Z3
k⊥ ) in Haan’s

expansion and would lead to different values of �min. Note also that several authors [12] choose
to prevent modes from contributing to nonlinear convolution products and to distant interactions,
shortly after they have saturated. Again, there are several ways of enforcing this condition, each
leading to different values of �.

4. Solenoidal momentum

In this subsection and the next one, we leave aside Haan’s turbulent model and the value of �.
We turn our focus back on the properties of Haan’s expansion within its rightful domain of validity.
Our aim is to derive the evolution equation of the solenoidal momentum s associated with Haan’s
expansion. To this end, we use the fact that Haan’s expansion is derived by assuming that the velocity
u is potential below and above the interface x3 = h(x⊥). Following Haan, we denote by φH and φL

the velocity potentials in the upper and lower fluids, and by ρH and ρL the corresponding densities.
Then, with H the Heaviside function, we can write that the momentum is given by

ρu = −ρH∇φH H[x3 − h(x⊥)] − ρL∇φLH[h(x⊥) − x3]. (D18)
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The 2D Fourier transforms of these potentials are defined by

φ̂2D
H (k⊥, x3) = 1

(2π )2

∫
e−ık⊥·x⊥φH (x)dx⊥ and φ̂2D

L (k⊥, x3) = 1

(2π )2

∫
e−ık⊥·x⊥φH (x)dx⊥.

To satisfy the incompressible relations ∇2φH = ∇2φL = 0, Haan proposes the following x3-
dependency for these transforms:

φ̂2D
H (k⊥, x3) = ϕH (k⊥)e−k⊥x3 and φ̂2D

L (k⊥, x3) = ϕL(k⊥)ek⊥x3 . (D19)

The fact that the interface moves with the fluid and that the normal velocity is continuous implies
that the two functions ϕH and ϕL are related to the perturbation amplitude Zk⊥ as follows:

ϕH (k⊥) = Żk⊥

k⊥
+ 〈ϕ〉 + O

(
Z3

k⊥

)
and ϕL(k⊥) = − Żk⊥

k⊥
+ 〈ϕ〉 + O

(
Z3

k⊥

)
, (D20)

with 〈ϕ〉 = ϕH + ϕL

2
= k̃⊥ ·

∫
a+b=k⊥
b̃ ŻbZa da. (D21)

The properties of the velocity potentials being specified, we can now turn our attention to the
evaluation of the solenoidal component of the momentum s. The fluctuating part of s is defined
in spectral space by Eq. (A4) and its full version is given by a similar equation:

ŝi(k, t ) = Pi j (k̃)ρ̂u j (k, t ),

where we used 3D Fourier transforms and where Pi j is defined by Eq. (24).
Introducing the alternative notation TF2D and TF3D for the 2D and 3D Fourier transforms, we

can combine Eq. (D18) with the definition of ŝ to obtain

ŝi = Pi jTF3D(−∂ j{ρHφH H[x3 − h(x⊥)] + ρLφLH[h(x⊥) − x3]}
+ (ρHφH − ρLφL )(δ j3 − ∂ jh)δ[x3 − h(x⊥)]).

The first group of terms on the right-hand side being a gradient, its Fourier transform is proportional
to ık j . As a result, it vanishes when multiplied by Pi j . Thus, the term proportional to the Dirac
function is the only one contributing to ŝi. Separating the integration over x3 and x⊥, we can then
write that

ŝi = Pi jTF2D

{
1

2π

∫
e−ık3x3 (ρHφH − ρLφL )(δ j3 − ∂ jh)δ[x3 − h(x⊥)]dx3

}
= Pi j

2π
TF2D[e−ık3h(ρHφH − ρLφL )|x3=h(δ j3 − ∂ jh)].

Following the procedure proposed by Haan, we Taylor expand this expression and retain terms of
order 2 in h and φ. This yields

ŝi = Pi j

2π
TF2D[(δ j3 − ∂ jh − ık3hδ j3)(ρHφH − ρLφL )|x3=0 + δ j3h∂3(ρHφH − ρLφL )|x3=0] + H.O.T.,

(D22)

with H.O.T. referring to higher-order terms. Besides, according to Eq. (D19), we have

TF2D[(ρHφH − ρLφL )|x3=0] = ρHϕH − ρLϕL and TF2D[∂3(ρHφH − ρLφL )|x3=0]

= −k⊥(ρHϕH + ρLϕL ).

Then, according to Eq. (D20), we deduce that

TF2D[(ρHφH − ρLφL )|x3=0] = 2〈ρ〉
(

Żk⊥

k⊥
+ At 〈ϕ〉

)
+ O

(
Z3

k⊥

)
(D23)
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and TF2D[∂3(ρHφH − ρLφL )|x3=0] = −2〈ρ〉k⊥

(
At

Żk⊥

k⊥
+ 〈ϕ〉

)
+ O

(
Z3

k⊥

)
, (D24)

with 〈ρ〉 = (ρH + ρL )/2. Injecting these expressions into the convolution products appearing in
Eq. (D22), we obtain that

π〈
ρ
〉 ŝi = Pi3

(
Żk⊥

k⊥
− At

∫
a+b=k⊥
ŻaZbζab da

)
+ ıPi j

∫
a+b=k⊥
ã j ŻaZb da + O

(
Z3

k⊥

)
. (D25)

Taking the time derivative of this expression and replacing the value of Z̈k⊥ by Eq. (D5), we derive
the following evolution equation for s:

π〈
ρ
〉∂t̂ si = At gPi3

(
Zk⊥ − ı

2
k3

∫
a+b=k⊥
ZaZb da

)
− 1

2
At Pi3

∫
a+b=k⊥
ŻaŻb(1 + ã · b̃) da + ıPi j

∫
a+b=k⊥
ã j ŻaŻb da

+ O
(
Z3

k⊥

)
. (D26)

This equation is valid whether the acceleration g is impulsive or not. When g is impulsive, the
evolution of s can be expressed by separating its post-shock initial condition and evolution:

For t = 0+,
π〈
ρ
〉 ŝi = At�UPi3

(
Z0

k⊥ − ı

2
k3

∫
a+b=k⊥
Z0

a Z0
b da

)
+ O

(
Z3

k⊥

)
, (D27)

for t � 0+,
π〈
ρ
〉∂t̂ si = −1

2
At Pi3

∫
a+b=k⊥
ŻaŻb(1 + ã · b̃) da + ıPi j

∫
a+b=k⊥
ã j ŻaŻb da + O

(
Z3

k⊥

)
. (D28)

As previously mentioned, a term is missing in the expansion used in Ref. [12]. This missing term
leaves the post-shock evolution of s unchanged. However, it affects the value of the post-shock initial
condition. Instead of the correct expression, Eq. (D27), the following erroneous one is obtained:

For t = 0+,
π〈
ρ
〉 ŝi = At�UPi3

(
Z0

k⊥ − ı

2
k3

∫
a+b=k⊥
Z0

a Z0
b da − At

∫
a+b=k⊥
aZ0

a Z0
b ζab da

)
. (D29)

A cancellation does not take place and an additional term wrongly appears. As will be seen below,
this additional term modifies the small wave number asymptotic of s(t = 0+).

5. Permanence of large-eddies for Haan’s expansion

We now consider a spectrum peaked at k⊥ = kpeak, as in Eq. (D4), and we expand the different
relations we obtained for k � kpeak using a distant interaction hypothesis. The following large-scale
evolution of s is then derived from Eq. (D28), by assuming that the modulus of Zk⊥ is isotropic and
that Zk⊥ is differentiable:

For t � 0+ and k � kpeak,
π〈
ρ
〉∂t̂ si = k2Si(k̃, t ) + O

(
Z3

k⊥

)
, (D30)

with Si(k̃, t ) = −π

4
At Pi3

k2
⊥

k2

∫
a∼kpeak

|Ża|2
a

da + ıPi j
k⊥,kk⊥,l

k2

∫
a∼kpeak

ã j ãk

a
Ża∂al Ż

∗
a da. (D31)

Then, if we considered that this expression did not come from a Taylor expansion, the evolution of
the spectrum Qso of s would take the following form:

∂tQ
so = k6 Thaan(t ), (D32)

with Thaan(t )δ(k⊥ − k′
⊥) = ∫ t

0

∮
Si(k̃, t )S∗

i (k̃
′
, t ′)dSkdt ′. Therefore, we would predict a backscat-

tering term with an infrared exponent of 6, larger than the value of 4 derived in Eq. (15). As a
consequence, large eddies would be permanent up to an infrared exponent of 6 instead of 4.
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However, the right-hand side of Eq. (D30) corresponds to the second-order term of a Taylor
expansion and yields a fourth order term in the evolution Eq. (D32) of Qso. The issue here is that
other fourth order terms are not accounted for in this equation: those involving the product of the
first and third orders of Zk⊥ . Therefore, the comparison between Eqs. (15) and (D32) suggests that
the discarded third order quantities of Haan’s expansion are responsible for the main scaling of
the nonlinear backscattering term driving the evolution of Qso, while second-order quantities only
yield a subdominant backscattering contribution. It is worth stressing that the missing contribution
of third-order terms has already been pointed out in Refs. [40,41], where a full description of these
terms is proposed.

In any case, the nonlinear terms retained in Haan’s truncated expansion do not appear to create
a k2 scaling for Qso. The conditions required to obtain a minimum value of � equal to 1/3 are
consequently not provided by Haan’s truncated expansion. This aspect is mentioned because a 1/3
minimum value has been predicted using Haan’s saturation closure in Ref. [12]. As we saw in the
previous subsections, this prediction is actually not a result of Haan’s expansion. Instead, it is linked
to the way this expansion is bridged with saturated and frozen modes.

As a final note, the initial spectrum associated with Eq. (D27) for an initial spectrum obeying
a power law at small wave numbers [Eq. (D4)] is almost the same as the one already given in
Appendix B. Differences arising again from the neglect of third order quantities are nonetheless
present. Still, at small wave numbers, the initial condition Eq. (D27) agrees with Eq. (29). By
contrast, because of the term neglected in Ref. [12], the initial condition associated with Eq. (D29)
would take the form, for k � kpeak, Qso(k, t = 0+) = Csokσso + O(k2), where σso and Cso are
defined as in Eq. (30). As a result, with the model used in Ref. [12], initial spectra with an infrared
exponent larger than 2 would not be allowed, leading to the wrong prediction �min = 1/3. This is
of course not the case, as explained in Appendix B.
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