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Reliably predictive simulation of complex flows requires a level of model sophistication
and robustness exceeding the capabilities of current Reynolds-averaged Navier-Stokes
(RANS) models. The necessary capability can often be provided by well-resolved large
eddy simulation (LES), but, for many flows of interest, such simulations are too com-
putationally intensive to be performed routinely. In principle, hybrid RANS/LES (HRL)
models capable of transitioning through arbitrary levels of modeled and resolved turbu-
lence would ameliorate both RANS deficiencies and LES expense. However, these HRL
approaches have led to a host of unique complications, in addition to those already present
in RANS and LES. This work proposes a modeling approach aimed at overcoming such
challenges. The approach presented here relies on splitting the turbulence model into three
distinct components: two responsible for the standard subgrid model roles of either provid-
ing the unresolved stress or dissipation and a third which reduces the model length scale by
creating resolved turbulence. This formulation renders blending functions unnecessary in
HRL. Further, the split-model approach both reduces the physics-approximation burden on
simple eddy-viscosity-based models and provides convenient flexibility in model selection.
In regions where the resolution is adequate to support additional turbulence, fluctuations
are generated at the smallest locally resolved scales of motion. This active forcing drives
the system towards a balance between RANS and grid-resolved LES for any combination
of resolution and flow while the split-model formulation prevents local disruption to the
total stress. The model is demonstrated on fully developed, incompressible channel flow
and the periodic hill, in which it is shown to produce accurate results and avoid common
HRL shortcomings, such as model stress depletion.
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I. INTRODUCTION

It has long been recognized that current Reynolds-averaged Navier-Stokes (RANS) models are
inadequate for the prediction of complex turbulent flows. On the other hand, sufficiently well-
resolved large-eddy simulation (LES) models provide an accurate representation of turbulence in
many circumstances, but are commonly too expensive to apply in practice. Turbulence modeling
methods that allow for a flexible balance between resolving some of the turbulent fluctuations, as
in LES, and modeling their effect, as in RANS models, offer an attractive compromise between
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these approaches. In particular, by resolving turbulence fluctuations only where RANS models are
deficient, significant improvements in mean flow predictions are possible with minimal sacrifice of
computational efficiency. For instance, RANS models are well known to be inadequate in regions of
flow separation, reattachment, or three-dimensionality in the mean [1–5]. Enabling LES to be active
in such regions will effectively avoid the deficiencies of the RANS models, while also avoiding the
cost of using LES resolution where RANS models are sufficient.

Due to the combination of limited computational resources and the need for high-fidelity
simulations, methods that partially resolve turbulent fluctuations can be expected to remain a
necessity for engineering applications until the turn of the next century [6]. In response, a myriad
of such turbulence modeling techniques have been proposed and developed with varying degrees
of success. The techniques fall into two main categories: wall-modeled large eddy simulation
(WMLES) [7–11], which focuses specifically on relieving the computational expense of resolving
the near-wall layer in an LES, and hybrid RANS/LES (HRL) [12–24], which addresses the more
general objective of employing LES only where RANS is deficient. Despite extensive effort in both
categories, a truly robust and predictive approach remains elusive.

There is a great deal of overlap between WMLES and HRL. For instance, a HRL in which the
RANS model is active only near the wall [15] can be considered a WMLES. To avoid ambiguity
between the two general categories, the taxonomy of Larsson et al. is observed [8]. In WMLES,
LES is active in the entire simulated domain, but with resolution inadequate to resolve the near-wall
layer. Wall models provide the wall stress, and the LES field provides velocity information for the
wall model. In contrast, in HRL, there are distinct regions in which RANS and LES models are
active. The near-wall layer in HRL will generally be treated with RANS, so wall-normal resolution
must be sufficient to capture the layer allowing direct computation of the wall stress. While WMLES
does not require this wall-normal resolution of the viscous wall layer, it does require wall-parallel
resolution as dictated by the LES in the outer layer. Like RANS, HRL has no explicit wall-parallel
resolution requirements in the near-wall layer, other than the need to resolve the geometry and the
mean flow. In effect, the resolution used in an HRL determines the turbulence scales that can be
resolved, if any.

It is this difference in near-wall resolution requirements that primarily defines the strengths of
each method. A RANS model is often sufficiently accurate throughout a boundary layer, generally
failing only when representing the interactions with large detached structures. At least in principle
then, HRL requires the use of LES resolution only in the vicinity of flow features of interest
(e.g., separations). WMLES, on the other hand, requires such resolution throughout the domain.
Nonetheless, WMLES may be more efficient than HRL techniques in turbulent flows that are
so complex that RANS is inadequate everywhere except the thin viscous wall layer. In this case
both techniques would require LES resolution almost everywhere yet, HRL techniques would also
require resolution of the mean velocity in the viscous near-wall layer, while WMLES would not.
This of course assumes that the wall model used in a WMLES is both predictive and does not
require a RANS-quality near-wall grid for complex flows. Fortunately, recent advances in LES
wall modeling [10,11,25,26] appear to be on a path to developing the robust and truly predictive
wall models required for this purpose. Despite this, HRL techniques will continue to be preferable
in many technologically relevant flows, such as most external aerodynamic applications, precisely
because in these flows RANS models are adequate to represent boundary layers over most of a body
surface.

Because of this promise of tractable high fidelity simulation in many important flow scenarios,
HRL has been of great interest to turbulence modelers since its introduction by Spalart [15] and
Speziale [14]. Largely due to the formal similarities in the RANS and filtered Navier-Stokes
equations, most HRL methods are based on the attractive, yet perhaps misleading, prospect of
simply blending between eddy-viscosity-based RANS and LES models in a manner amenable to
implementation in existing CFD code structures. An excellent general review of HRL methods is
presented by Frölich and von Terzi [12]. More focused reviews of detached eddy simulation (DES)
[15] and its variants [27–31], the most ubiquitous HRL approach, are provided by Spalart [32] and,
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for the particular combination of DES with wall functions, by Gritskevich et al. [33]. In general,
HRL methods operate in one of three ways: (1) by reducing the RANS model stress with some
specified function [14] to allow resolved fluctuations to develop, (2) by carrying distinct RANS and
LES models with some blending of the respective modeled stress terms [24], or (3) by carrying a
single model which internally transitions between RANS- and LES-like modes of operation (e.g.,
DES). For all methods, the model transition between RANS and LES modes may be in response to
the local model or flow parameters and a measure of the grid size (“unified” methods) [22,27,34]
or specified ab initio (“interfaced” methods) [18,31,35]. Transition from RANS to LES in unified
methods tends to rely on ad hoc functions requiring tuning for specific flows [e.g., model reduction
factor in the “flow simulation methodology” (FSM) approach [14,36] or delaying function in DDES
[27]]. Because of the need for this tuning, among other issues, the resulting methods may not be
predictive, in general.

Since the publication of the aforementioned review articles, there has been further devel-
opment of HRL techniques. Of particular interest to the developments presented here are the
two-velocity hybrid RANS/LES (TVHRL) [37], the Reynolds-stress-constrained subgrid scale
(RSC-SGS) model [38], the dynamic hybrid RANS/LES (DHRL) [39,40], and the dual-mesh hybrid
RANS/LES (DMHRL) [16] approaches. This family of methods build on the stress decomposition
of Schumann [41] into locally isotropic and inhomogeneous portions where distinct eddy-viscosity
models act on the mean and fluctuating strains. In Schumann’s original work, a transport-based
subgrid model was used for the fluctuating portion while a wall-sensitive velocity-difference model
was used for the mean. The main advantage of this structure was to allow for a more standard
Reynolds stress closures to take over near walls were grid scales become large in comparison to
some characteristic mixing length scale. Thus, this may actually be considered the first hybrid
method. Until recently, mean and fluctuating stress decomposition methods have seen only pure-
LES application [42,43].

The TVHRL [37] method blends distinct RANS and LES models (category 2 above) and builds
on the innovation of [41] to have each model act on a different portion of the resolved strain rate
tensor. In particular, the RANS eddy viscosity acts only on the mean strain rate while the LES
eddy viscosity acts only on the resolved fluctuating strain rate. Additionally, all quantities entering
the RANS model are mean values while a standard Smagorinsky model acts on the fluctuating
portion of the strain. This spitting of the model was designed to allow the resolved turbulent stress
to develop independently from the RANS viscosity. The authors further noted that the portion of
the model acting on the mean is intended to provide the entirety of the subgrid contribution to the
mean stress while the fluctuating portion is to contribute only to the rate of transfer of energy from
the resolved turbulent motions to the unresolved scales. This assumes, however, that the fluctuating
eddy viscosity is uncorrelated with the resolved strain rate magnitude, which is not the case for the
Smagorinsky model as used in that work. Time averaging over many eddy turnovers was used to
establish the mean velocity. The model still made use of an ad hoc hyperbolic tangent length-scale
comparison blending function to switch between RANS and LES models, which can result in drastic
model shifts depending on the local ratio of model-to-grid length scales. Nonetheless, as discussed
further in Sec. III A and Sec. IV, the two velocity model splitting approach is significant and may
indeed be a necessity for any LES based on eddy-viscosity models (EVM), when a non-negligible
portion of the mean turbulent stress must be provided by the model.

The RSC-SGS model [38] eliminated the ad hoc blending used in [37] by directly reduced the
mean-strain contribution, as calculated with either the SA model [44] or the van Driest mixing-
length approximation, to the total stress by subtracting an averaged resolved stress. The dynamic
Smagorinsky model (DSM) [45] was used on the fluctuating strain. However, the fluctuating portion
of the model will again contribute to the mean Reynolds stress due the correlation between the
Smagorinsky model and resolved strain. Without this contribution, the approach will yield the
unaltered RANS stress in expectation. The method also relied on specification of the wall-normal
location where the model transitioned from the “constrained” mixed model to a standard DSM.
Thus, from the hybrid perspective, this would be considered a zonal approach.
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The DHRL method [39,40] extends the two-velocity approach by blending between RANS,
acting only on the mean, and an implicit SGS model (monotonically integrated LES [46]) using
the ratio of resolved turbulent production to the difference between the production resulting from
use of only the RANS model and the production from use of only the SGS model. Thus, the state of
the resolved field is considered in the model blending. Further, both models are active throughout
the entire domain. The DMHRL [16] approach represents the extreme of interfaced methods by
coupling distinct LES and RANS simulations on separate grids. Additional forcing terms are added
to each set of governing equations which enforce consistency of the two simulations in expectation.
In the LES simulation, regions are designated as either RANS or LES regions based on a measure
of the local resolution. In designated LES regions, the difference between the RANS simulation
velocity and time-average LES simulation velocity is used along with a timescale to construct
an artificial forcing acceleration that is added to the RANS simulation. In regions designated as
underresolved in the LES simulation, the difference between the total mean stress, as determined
by the RANS model and the subgrid scale model plus the resolved fluctuations, is added to the LES
simulation to effectively enforce the RANS stress.

Despite extensive modeling developments, hybrid models based on blending between RANS and
LES have not led to generally reliable HRL methods capable of traversing through arbitrary levels of
resolved turbulence. There are two key reasons for this shortcoming. First, HRL models often rely on
passive generation of resolved turbulence in the presence of reduced modeled stress. This approach
necessarily leads to inconsistency between the modeled, resolved, and total turbulent stresses, as
exhibited in regions of modeled stress depletion. This issue is described further in Sec. II A. Second,
most HRL approaches rely on scalar eddy-viscosity models to simultaneously represent both the
unresolved portion of the mean turbulent stress as well as the transfer of energy from the resolved
fluctuations to the subgrid, with the notable exception of the TVHRL method and related approaches
described previously. However, a single eddy viscosity is insufficient for this task, as discussed in
Sec. II B. Additional problems arise due to ad hoc blending approaches, discussed in Sec. II C, and
inappropriate application of transport equations formulated to govern mean turbulence properties in
RANS closure models to fluctuating quantities, as described in Sec. II D.

Here we introduce an HRL method that directly addresses these common issues, which we will
refer to as the “active model split” (AMS) method. The remainder of the paper is organized as
follows. Section II describes in more detail the common HRL deficiencies that AMS is designed
to address. Section III discusses general modeling issues that arise for partial turbulence-resolving
models, and details of AMS are described in Sec. IV. Results of applying AMS in channel flow and
a periodic hill case [47] are evaluated in Sec. V, and in Sec. VI conclusions and opportunities for
further developments are discussed.

II. HYBRID MODELING ISSUES

In this section, we recall several common issues with HRL and propose strategies to either correct
or circumvent them. As this work is primarily focused on a framework for predictive HRL, those
issues inherent to either RANS or LES are not considered here to allow focus on those unique to
hybrid methods. However, as discussed in Sec. III, formulating a robust HRL has led to modeling
concepts applicable to LES in general. The particular hybrid modeling issues addressed here are
those of (1) maintaining consistency between resolved and modeled turbulence, overreliance on
simple eddy-viscosity models, ad hoc RANS to LES blending, and misuse of the RANS transport
models. Many of these issues were first identified in [48] with the exception of the first, which has
been reported on extensively elsewhere [30,33,49,50].

A. Consistency of resolved and modeled turbulence

For any scale-resolving turbulence model to be predictive, the resolved and modeled contribu-
tions to the mean turbulent stress (the Reynolds stress) must be consistent; that is, they should sum
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to the correct total stress. As more turbulence is resolved, the resolved contribution to the Reynolds
stress should increase and the modeled Reynolds stress should decrease by the same amount, until
ultimately all of the Reynolds stress is being carried by resolved turbulence fluctuations as in a DNS.

In typical HRL methods, the ability of the simulation to resolve turbulence fluctuations in
some region is signaled by a reduction in the modeled Reynolds stress. In response, assuming the
mean shear is large enough, natural flow instabilities will then lead to resolved fluctuations. By
construction, such HRL methods must exhibit regions of modeled stress depletion (MSD) [27,32,49]
as the instabilities cannot develop without the total stress being depleted first. In fact, this is the
best case scenario, as it is possible that turbulent regions of flow exist where reducing the model
stress to zero will not result in the development of resolved fluctuations. Simulations by a variety of
researchers with disparate models have shown that some type of active forcing to generate resolved
fluctuations is needed in simulations of mixed levels of resolved turbulence [13,50,51]. It appears
that explicitly introducing resolved fluctuations at a rate consistent with the reduction of modeled
stress is the only way to prevent regions of MSD. Otherwise, common consequences of MSD such as
log-layer mismatch, reduced body forces, premature flow separation, and delayed flow reattachment
will persist in HRL.

Existing forcing methods typically address this issue by generating fluctuations only at a pre-
scribed LES inlet [35,52–54]. In addition to requiring specification of the distinct LES region and the
entire spectrum of locally resolved synthetic turbulent scales and intensities, the LES inlet location
must be sufficiently upstream of the flow features of interest so that the artificial inflow condition
can “heal” to a realistic state. An alternative is to use spatially distributed body forcing to introduce
synthetic turbulence slowly so that the fluctuations maintain a realistic turbulent state through the
entire forcing region. In this way, none of the simulated domain and associated computational cost is
sacrificed to the healing process, which should result in an accurate solution in the entire simulated
domain. Further, the simulation domain size can be reduced or turbulence-resolved regions limited,
since no healing regions are needed,

While it is clear that some forcing is required, the method and form it should take is not. The
problem of introducing turbulent structures in a hybrid simulation requires these structures to be
artificially constructed. While one can make principled estimates of the appropriate strength of the
body forcing based on the smallest resolved scales and the length and timescales of the modeled
turbulence, the structure of the forcing must be prescribed.

Formally, body forcing can be considered a model for the commutator of the filter operator,
denoted with an overbar (·), defining the resolved scales of turbulence and the substantial derivative
in the momentum equation, Ce = Dui/Dt − Dui/Dt , where here the filter operator is the projection
of the turbulent field onto the discrete representation of the numerical solution (a so-called implicit
filter; see [55]). From this perspective, the only way to avoid “making up” fluctuations would be to
have the full DNS solution as a function of time, which would, of course, obviate the LES. However,
formulating the forcing to be as representative of the commutator as possible should result in more
realistic forced fluctuations which can be introduced more rapidly while maintaining a realistic
resolved turbulent state. Improving the prescribed forcing structure will allow the use of shorter
regions of LES resolution upstream of flow features of interest, such as flow separation.

There is also evidence that even unrealistic forcing structures may be sufficient to reduce
inconsistencies between modeled and resolved turbulence. For instance, in channel flow, Piomelli
et al. [50] found that introducing a region of broad spectrum, tuned stochastic forcing in a thin region
along the RANS/LES interface region in an HRL eliminated log-layer mismatch in fully developed
channel flow. While this forcing is problem dependent and difficult to implement in general, this
numerical test showed that forcing with random fluctuations in regions of transition from RANS
to LES can address problems related to MSD. The notion of adding user-specified regional body
forcing was further explored by Menter et al. in the SAS-F model [13]. In their work, a broad
spectrum of velocity fluctuations were produced using the random flow generator method (RFG)
[56] and used to construct an acceleration term for each discrete time step. The unique aspect of their
construction is that the basic SAS model form allows for the model to detect the added fluctuations
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and naturally respond by lowering the internal model length scale and corresponding eddy viscosity.
Even so, channel flow results still exhibited log-layer mismatch.

In sum, inconsistency in the resolved and modeled turbulence arise from combinations of reliance
on passive self-generation of resolved turbulence in the presence of reduced modeled stress and
the overarching hybridization strategy that manipulates only the modeled turbulence. In addition
to representing the unresolved contribution to the turbulent stress, a hybrid method should ensure
accurate representation of the total turbulence stress. We propose that body forcing is a necessary
component of an HRL framework and that modeled stress must be reduced only in response to
the presence of locally resolved fluctuations. As presented in Sec. IV D, a body forcing method is
formulated with no explicit time step dependance and a structure that introduces fluctuations only
at the scale of the smallest locally resolved turbulence, thereby reducing the potential corruption
of existing, and presumably realistic, resolved turbulence. Further, no user specification of forcing
regions is necessary.

B. Simple eddy viscosities

The second issue stems from a limitation of simple eddy-viscosity models that has been known in
the context of LES for at least two decades [57], but has been ignored in hybrid model formulations.
HRL requires the model to both make a non-negligible contribution to the unresolved mean
turbulence stress (Reynolds stress) and represent the transfer of energy from the resolved scales of
motion to the modeled subgrid scales. In LES, simple eddy viscosities represent only the latter while
significantly underpredicting the former. Jimenéz and Moser [57] demonstrated that the dynamic
Smagorinsky model produces subgrid stress values that are nearly five times smaller than the true
filtered stress for fully developed channel flow. In these cases, the LES is “well resolved” in that
the contribution of the subgrid turbulence to the mean turbulent shear stress is small, so that the
large relative errors in the mean subgrid shear stress have minimal impact on the mean velocity.
The ability of subgrid models to accurately predict the dissipation but not the momentum transport
has also been observed in experimental measurements of a turbulent plume [58]. The canonical
SGS model test case of homogeneous isotropic turbulence (HIT) further demonstrates this point as
the divergence of the mean stress is zero by homogeneity and any contribution to local stress from
the model is irrelevant. In either of the above cases, the function of the subgrid “stress” model is
only to model the transfer of energy from the resolved to unresolved scales, with no concern for
the mean stress. On the other hand, even for flows where an eddy-viscosity model provides a good
approximation of the total mean stress for RANS, there is no reason to expect the same model to
provide the correct energy transfer for any resolved fluctuations.

The difficulty arises because the statistical characteristics of the mean subgrid stress and the
mean energy transfer are different. The latter is governed by the correlation coefficient between the
subgrid stress and the resolved strain rate tensor, as opposed to the former which is just the mean of
the stress. In filtered turbulence, the correlation coefficient is small (of order 20% or less [57,59]),
but with an eddy-viscosity model, the correlation coefficient is one or nearly so. To get the energy
transfer rate right, it is necessary to reduce the eddy viscosity compared to that needed to get the
magnitude, and the mean, of the subgrid stresses right. Therefore, a simple eddy-viscosity model is
not equipped to model both stress and energy transfer to the subgrid scales, as commonly demanded
in HRL. It seems natural then to divorce these two model functions in HRL. That is, rather than use
a single SGS model, introduce a model primarily responsible for the mean stress, operating only
on the mean gradients, and a model primarily responsible for energy transfer, operating only on
resolved fluctuating gradients. This “model split” approach is presented in Sec. IV.

C. Model blending

Third, the methods used to reduce the model stress in HRL often involve ad hoc blending func-
tions and simplified resolution indicators. Typically, a blending function is specified to internally
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modify a model’s behavior, transition between two separate models, or directly reduce the modeled
Reynolds stress. In all cases, it has a direct effect on the physics of the flow being simulated, and
unintended consequences may arise.

In some methods [22,23], the complexity of determining the correct blending provided the grid,
domain, model, and flow is placed entirely on the user with ab intitio specification of the level of
resolved turbulence. The optimal balance of resolved and modeled turbulence will generally be a
function of space and time making explicit specification by the user difficult.

To avoid this explicit specification, it is more common to construct the blending function based on
a resolution indicator that is intended to determine when and where LES fluctuations can be resolved
based on the local grid and flow. However, commonly used indicators use simplified measures of the
generally anisotropic resolution and resolved turbulence scales, if they make use of information from
the resolved fluctuations at all. For instance, the most commonly used grid length scale, the cube root
of the cell volume [28,60], tends to the smallest cell length scale as the cell aspect ratio increases.
Therefore, it implicitly assumes structures of the smallest grid scale are resolved in every direction,
which overestimates the effective resolution of the grid. From this perspective, grid measures based
on the cell diagonal are preferable. Certainly, with highly anisotropic resolutions common to near-
wall meshes, different definitions will provide different results for any particular combination of grid
and flow. In determining the turbulence length scale, the state of resolved field is often neglected in
favor of turbulence length scales derived from the model. This practice implicitly assumes isotropy
of the resolved scales and consistency between the resolved and unresolved turbulence. However,
the resolved turbulence is generally not isotropic both because the large scales are generally not
isotropic and because anisotropic resolution will necessarily yield anisotropy. Anisotropy of both
the resolution and the resolved turbulence should clearly be accounted for in a resolution indicator.

Ideally, HRL methods should be constructed that eliminate blending entirely. We do so here
with the aforementioned model split approach, which yields two separate models, both active
everywhere in space and time so that no transition functions need be specified. Additionally,
ambiguous grid measures are eliminated by introducing a resolution tensor that represents the
anisotropy of the resolution. Finally, the indicator metric depends on both modeled and resolved
quantities everywhere in the flow.

D. Transport models

The final issue is the use of transport equations formulated to govern mean turbulence properties
for RANS models. These models can dramatically misbehave when used with resolved fluctuations.
This problem is specific to single-model unified HRL approaches based on RANS models, a
class including many common methods (DES [32], PANS [22], and PITM [23]). However, the
fundamental issue has largely been ignored or unrecognized because its symptoms have been
ameliorated with numerical dissipation, coefficient tuning for a particular numerical method and
code, or the averaging of selected terms.

In these HRL methods it is often tacitly assumed that nonlinear source terms in the turbulence
model transport equations, which have been constructed and calibrated to operate on mean quantities
in a RANS model, will perform similarly when applied to fluctuating quantities. Of course, these
terms are themselves models for actual terms in transport equations, and in general, their use with
fluctuating quantities will result in spurious correlations with non-negligible effects on the mean
behavior. For instance, consider the model for the destruction of dissipation in the ε transport
equation [61]

2∂ j∂kui∂ j∂kui ≈ Cε2
ε2

k
, (1)

which is used in all k-ε-based RANS models. The model has little physical justification but after
coefficient tuning, it is functional for RANS in conjunction with models of other unclosed terms.
The impact of applying this model to fluctuations can be seen by expanding 1/k in a Taylor series
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about 1/〈k〉 and retaining up to quadratic terms in k′. The result is〈
ε2

k

〉
≈ 〈ε〉2

〈k〉
(

1 + 〈ε′2〉
〈ε〉2

+ 〈k′2〉
〈k〉2

− 2〈ε′k′〉
〈ε〉〈k〉 − 〈ε′2k′〉

〈ε〉2〈k〉 + 2〈ε′k′2〉
〈ε〉〈k〉2

+ 〈ε′2k′2〉
〈ε〉2〈k〉2

)
. (2)

Thus, the mean destruction of dissipation becomes a direct, and complicated, function of the amount
of resolved turbulence. Even the standard RANS production term, Pk = 2νt 〈S〉2, is a model and
when used with fluctuating quantities will exhibit spurious correlations, depending on the particular
RANS model used to determine νt .

This difficulty would appear to be inconsistent with the fact that transport-based k-SGS models
have been used successfully for some time [60]. However, in those applications, the model length
scale is taken as the grid scale, which results in production and dissipation of kinetic energy that
scale like k1/2 and k3/2, respectively. The stronger dependence of dissipation on k effectively damps
the k fluctuations, minimizing the effects of this problem by effectively adjusting the mean of each
modeled term so that the length scale will remain as prescribed. In a hybrid context, this approach
is not possible due to the lack of an intrinsic model length scale, unless the local simulation is fully
LES or RANS. Among other issues, such an approach implies production scaling with k1/2, which
is entirely incorrect when the SGS length scale is between the integral and grid length scales.

To fully address the problem of using RANS transport models in HRL without resorting to
problem- and numerics-specific coefficient tuning for all nonlinear model terms, such models should
be used to represent mean quantities as a function of only mean quantities, as they were designed
to do. This is not to say that they have no place in HRL, nor that they cannot function as subgrid
models, only that what goes into, and what comes out of, RANS-based transport models must be
expected values.

E. An alternate hybrid modeling formulation

Motivated by the HRL difficulties discussed in Secs. II A–II D, an alternate approach has been
developed. The proposed HRL formulation includes (1) a generalizations of the resolution adequacy
indicator used in DES [15], (2) different models for use in RANS and LES similar to TVHRL and
DHRL though without blending, and (3) forcing to generate resolved fluctuations as in SAS-F [13]
though with a different structure. Referred to as the active model split (AMS) formulation, the
critical features are (1) the use of distinct turbulence models to act on different portions of the
resolved velocity gradient tensor and (2) directly incorporating forcing into the model formulation
so that the modeled stress can be reduced only in response to the local level of resolved turbulence.
Resolved turbulence is continuously generated where indicated by a resolution adequacy parameter
which accounts for the anisotropy in the resolution and resolved velocity field along with the model
quantities. Before presenting this formulation in Sec. IV, we present a simple argument which
motivates a significant change to LES in general and directly leads to a merger of RANS and LES
modes of operation in HRL.

III. GENERAL CONSIDERATIONS FOR TURBULENCE-RESOLVING METHODS

To begin, we argue that the model split approach offers an attractive paradigm for constructing
general turbulence resolving methods. Toward this end, consider the filtered Navier-Stokes equa-
tions:

∂t ui + ∂ j (uiu j ) = −∂i p + ∂ jτ
sgs
i j + ∂ jτ

visc
i j ,

where ui denotes the filtered velocity, p is the filtered pressure, τ visc
i j is the filtered viscous stress, and

τ
sgs
i j = −(uiu j − uiu j ) represents the subgrid stress. It is common to represent the deviatoric part of

the subgrid stress with an eddy-viscosity-based model:

τ
sgs
i j + 2

3 ksgsδi j ≈ 2νsgsSi j, (3)
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where 2ksgs is the trace of −τ
sgs
i j , Si j is the filtered strain rate tensor, νsgs is the eddy viscosity,

and the filter operation has been assumed to commute with differentiation. Of course, this model
form cannot be correct in general, simply because it relates two tensors through a scalar. Further, it
has been shown by a priori tests [57,59] that common eddy-viscosity-based subgrid models (e.g.,
Smagorinsky) do not lead to high correlation between the modeled and actual subgrid stesses.

Fortunately, accurate prediction of the mean flow does not require that (3) hold in an instanta-
neous sense. Instead, it is necessary only to match important statistics involving the subgrid scales.
At a minimum, for general flows, it is necessary that two conditions are satisfied. First, the mean of
the subgrid contribution to the total mean stress anisotropy must be well represented to ensure that
errors are not introduced into the mean momentum balance. This implies that〈

τ
sgs
i j + 2

3 ksgsδi j
〉 ≈ 〈2νsgsSi j〉. (4)

Second, the contribution of the subgrid stress to the mean rate of transfer of energy from the resolved
to the unresolved scales must also be well represented, such that the resolved fluctuations have the
correct energy or 〈

τ
sgs
i j ∂ jui

〉 ≈ 〈2νsgsSi j∂ jui〉. (5)

Other statistics may also be important. For example, one may also wish to correctly capture the
anisotropy of the transfer from the resolved to unresolved turbulence. However, it is sufficient for the
present purposes to consider just (4) and (5), because they are enough to reveal both the deficiencies
of common approaches and one of the major benefits of model splitting.

If a model existed such that (3) were instantaneously true or nearly so, then (4) and (5) would
be satisfied automatically. However, as discussed in Sec. II B, it is known that existing RANS and
LES models do not do a good job at simultaneously predicting both the mean subgrid stress and
the energy transfer rate. Indeed, they are generally not even designed with this goal in mind. RANS
models are built entirely to capture (4). In RANS, since the only “resolved” component is the mean,
an accurately predicted mean stress is sufficient to accurately predict the transfer from resolved to
unresolved, which is just the usual production of TKE. However, once the state is fluctuating, there
is no longer any reason to expect a RANS-like eddy viscosity to give a good prediction of the energy
transfer, even if it is adequate for the mean subgrid stress.

Alternatively, LES models are commonly built for and tested on either homogenous flows, where
the mean subgrid stress does not vary in space and is therefore dynamically insignificant, or for
well-resolved simulations, where the mean subgrid stress is negligible. Thus, common LES models
are calibrated to capture the energy transfer rate, which leads to poor predictions of the mean subgrid
stress, as discussed in Sec. II B. Advanced subgrid models [45,62–64], developed for transitional
and wall-bounded flows, are constructed so the eddy viscosity vanishes where both the resolved and
modeled stress become dynamically insignificant. Again, the model construction does not speak to
the general scenario of both the modeled and total stress being dynamically significant. Successful
application of such models to well-resolved LES has no bearing on HRL.

A. Model splitting

In general turbulence-resolving simulations, one cannot expect to have good LES resolution
everywhere, so at least in some regions of the flow, both (4) and (5) are important. This is especially
true in a HRL as the absence of such a region would mean the simulation is just a regular well-
resolved LES. Further, in the context of HRL methods specifically, there is no reason to expect
an ad hoc blending of models designed to work in the limits of RANS or well-resolved LES will
succeed in simultaneously capturing (4) and (5) in the intermediate regime. Instead, recognizing
these requirements motivates splitting the model into two parts: one aimed at (4) and the second at
(5). In general, these two models need not be based on eddy viscosities. For instance, upwinding
of the convective term is known to introduce numerical diffusivity [65] and could conceivably be
used as the energy transfer portion. But, since one of the aims of this work is to develop an HRL
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which works with existing RANS models, we proceed in the vein of eddy-viscosity models. In this
situation, the goal is to develop two eddy-viscosity-based models, one denoted νs to represent the
mean subgrid stress, 〈

τ
sgs
i j + 2

3 ksgsδi j
〉 ≈ 2νs〈Si j〉, (6)

and a second denoted νe to capture the energy transfer from the resolved fluctuations to unresolved
scales 〈

τ
sgs
i j ∂ ju

>
i

〉 ≈ 〈2νeS>
i j ∂ ju

>
i 〉, (7)

where the greater-than superscript, (·)>, denotes the resolved fluctuation of the quantity about its
mean. Note that the component of production of subgrid energy due to the mean, which is given by
2νs〈Si j〉∂ j〈ui〉, is not part of (7), but if (6) is satisfied, the corresponding modeled production will
also be automatically be correct.

The above relations (6) and (7) suggest the following instantaneous model:

τ
sgs
i j + 2

3 ksgsδi j ≈ 2νs〈Si j〉 + 2νeS>
i j . (8)

In general, due to correlations between the eddy viscosities and the velocity fluctuations, this form
would result in a the contribution from νs to the energy transfer, 2〈νs〈Si j〉∂ ju>

i 〉, and a contribution
from νe to the stress, 2〈νeS>

i j 〉. To eliminate these contributions, we require that both νs and νe not
fluctuate, i.e., they must depend only on mean quantities or be explicitly averaged after construction.
While not disqualifying, such correlations would complicate the roles, and hence the construction,
of the two desired models.

As with (3), there is no reason to believe that (8) represents a good approximation of the
instantaneous subgrid stress, but it has two substantial advantages. First, for flows with a one-
dimensional mean, it gives sufficient flexibility to simultaneously satisfy the two requirements of
predicting the mean subgrid stress and the mean energy transfer rate. For complex three-dimensional
flows, at a minimum, the mean production (〈u′

iu
′
j〉〈Si j〉) and subgrid energy transfer constraints can

be simultaneously satisfied. Second, since νs is responsible for the mean subgrid stress and νe is
responsible for the portion of the energy transfer not associated with the mean, these components
map naturally to existing RANS and LES models, offering a formulation in which the models can
function together simultaneously rather than requiring ad hoc blending.

B. Mean stress scaling

The model split form provides a natural segregation of the model in a partial turbulence-resolving
simulation into “RANS-like” and “LES-like” components that can function simultaneously. How-
ever, it does not give any insight into how these components should scale with the level of resolved
turbulence, which is important to the performance of any practical model. To deduce this scaling,
we apply basic eddy-viscosity arguments to a decomposition of the subgrid stress tensor.

Begin by decomposing the velocity field into its mean and fluctuating parts: ui = 〈ui〉 + u′
i. Fur-

ther, apply the standard triple decomposition: ui = 〈ui〉 + u>
i + u<

i , where u>
i denotes the resolved

fluctuation, and u<
i denotes the subgrid fluctuation, so u′

i = u>
i + u<

i . In this notation, the filtered
field is given by ui = 〈ui〉 + u>

i . In the following, it is assumed that 〈u>
i 〉 = 0, with the result that

〈ui〉 = 〈ui〉. While this does not hold for general filters applied to general fields, one can always
construct a filter that is consistent with this assumption by applying any standard filter to just the
fluctuating field and then adding the mean. Applying this expansion to the true subgrid stress term,
we have

−τ
sgs
i j = B(ui, u j ) = u>

i u<
j +u<

i u>
j + u<

i u<
j + B(〈ui〉, 〈u j〉)+B(〈ui〉, u′

j )+B(u′
i, 〈u j〉)+B(u>

i , u>
j ),
(9)

where B is a generic “breaking operator” given by B(a, c) = ac − ac. The first three terms are those
most commonly considered as constituting the subgrid stress tensor. The four terms on the second
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line written in terms of B arise because of nonidealities that may occur when the mean is not well
resolved in the LES and due to the nonlinear interaction of the resolved fluctuations. The standard
Leonard stress is formed from the combination of B(〈ui〉, 〈u j〉) and B(u>

i , u>
j ) while the “cross”

stress is formed from u>
i u<

j + u<
i u>

j and B(〈ui〉, u′
j ) + B(u′

i, 〈u j〉) [66]. Stress contributions left in
B-form are akin to aliasing errors in the numerical discretization of nonlinear terms, and are often
neglected or explicitly discarded with dealiased numerical approximations. The term B(u>

i , u>
j )

may be of modeling interest to implicitly filtered LES. However, we currently neglect all terms on
the second line of (9) to obtain

−τ
sgs
i j ≈ u>

i u<
j + u<

i u>
j + u<

i u<
j . (10)

To ensure that a turbulence-resolving simulation produces the correct mean flow, it is necessary
that the expected value of the filtered Navier-Stokes equations including the modeled subgrid stress,
is consistent with the RANS equations. In terms of the total convective flux, this requires

〈ui〉〈u j〉 + 〈u′
iu

′
j〉 = 〈uiu j〉 − 〈

τ
sgs
i j

〉
,

which, using the triple decomposition and properties of the filter introduced above, implies that

〈u′
iu

′
j〉 = 〈u>

i u>
j 〉 − 〈

τ
sgs
i j

〉
.

A turbulence-resolving model is an improvement over RANS due to the direct representation of the
resolved Reynolds stress, (u>

i u>
j ), but we are left with the difficulty of modeling the expected value

of the subgrid stress 〈τ sgs
i j 〉:

−〈
τ

sgs
i j

〉 = 〈u>
i u<

j 〉 + 〈u<
i u>

j 〉 + 〈u<
i u<

j 〉.
In the model split paradigm, the mean subgrid stress is modeled separately, which, assuming an
eddy-viscosity form for the model is

〈u>
i u<

j 〉 + 〈u<
i u>

j 〉 + 〈u<
i u<

j 〉 ≈ −2νs〈Si j〉 + 2
3 ksgsδi j . (11)

The objective is then to model νs, and we do so by considering the theoretical basis for a linear
eddy-viscosity model.

Gradient-diffusion models represent the expected convective transport of some conserved fluc-
tuating quantity, φ, by velocity fluctuations through a linear approximation of their covariance
[67–69],

〈u′
iφ

′〉 ≈ −C〈u′
iχ j〉∂ j〈φ〉 = −C〈u′

iu
′
j〉Tφ∂ j〈φ〉, (12)

where χ j is the stochastic displacement of a fluid particle when φ fluctuations become decor-
related with themselves. This decorrelation occurs over a time Tφ , which is defined such that
〈φ′(0)φ′(Tφ )〉/〈φ′2〉 � 1. Alternatively, Tφ may be taken as the the integral timescale of the La-
grangian two-point correlation between the ith and jth velocity components and ensemble averaged
over the Lagrangian particles [69]. However, such a timescale does not ensure the validity of
modeling the fluctuating convective transport of some quantity through its gradient. It seems more
natural for the timescale to be determined from the conserved quantity leading to the substitution
〈u′

iχ j〉 = 〈u′
iu

′
j〉Tφ in (12). Assuming isotropy then yields

〈u′
iφ

′〉 = −C 2
3 〈kc〉δi jTφ∂ j〈φ〉, (13)

which is a standard eddy-viscosity model for the transport of φ, with the eddy viscosity given
by νφ = CkcTφ . Here the subscript “c” indicates that kc is the kinetic energy associated with the
convecting velocity fluctuations and the subscript “φ” that Tφ is the decorrelation time for the
fluctuations of the conserved quantity φ. In LES, we essentially extend this approximation to filtered
quantities and write

u′
iφ

′ = −C 2
3 〈k〉Tφ∂iφ. (14)
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However, u′
iφ

′ is now itself a fluctuating quantity, and there is no reason to expect that the fluctuation
of the model on the right-hand side of (14), which was formulated to represent the expected value,
will match those of u′

iφ
′. Therefore, a subgrid model of the form (14) takes on an implicit dual role.

The equality in (14) is satisfied only in expectation (i.e., 〈u′
iφ

′〉 = −C〈 2
3 〈kc〉Tφ∂iφ〉), while the model

fluctuations, if correlated with fluctuations in the gradient of φ, are responsible for the dissipation
〈φ′2〉 when φ is the momentum. We will proceed with the approximation of (14) and return to its
expected value in due course.

The purpose of this seemingly banal recounting is to highlight a subtlety that is often overlooked
when constructing subgrid stress models. In LES modeling, it is important to consider how the
fluctuations being modeled are defined; that is, whether they are the standard fluctuations about the
mean, as in the Reynolds decomposition (Reynolds fluctuations), or subgrid fluctuations defined
relative to the resolved turbulence in the LES. When the fluctuations of uk and φ are defined in
the same way (i.e., both Reynolds or both subgrid), there are natural choices for kc, Tφ , and the
gradient. For instance, if we were interested in the product of the total fluctuations, e.g., u′

iφ
′,

the approximation is proportional to ktotTtot∂i〈φ〉 where the “tot” subscript indicates values derived
from the total fluctuations. On the other hand, were we concerned with the product of the subgrid
fluctuations, e.g., u<

i φ<, the approximation is proportional to ksgsTsgs∂iφ where the “sgs” subscript
indicates quantities derived from subgrid scale fluctuations. Alternatively, for “mixed” terms, such
as u′

iφ
<, the three quantities forming the model, kc, Tφ , and the gradient of φ, must also be mixed.

In particular, kc is associated with the definition of the convecting velocity fluctuations, Tφ is related
to the definition of fluctuations in the transported quantity (φ), and the gradient is taken of the
complement of the φ fluctuations.

For mixed scale terms, we therefore have

u′
iφ

< ≈ − C 2
3 〈ktot〉Tsgs∂iφ = −C 2

3 〈ktot〉Tsgs(∂i〈φ〉 + ∂iφ
>) (15)

and

u<
i φ′ ≈ − C 2

3 〈ksgs〉Ttot∂i〈φ〉. (16)

Let the level of resolved turbulence be measured by α = ksgs/ktot , assume Ttot = ktot/ε and Tsgs =
ksgs/ε = αTtot , and define a total eddy viscosity as νtot = CktotTtot . Then the possible combinations
of filtered products would be approximated as

u′
iφ

< ≈ − ανtot (∂i〈φ〉 + ∂iφ
>), (17)

u<
i φ′ ≈ − ανtot∂i〈φ〉, (18)

and

u<
i φ< ≈ − α2νtot (∂i〈φ〉 + ∂iφ

>). (19)

To apply these scaling arguments, we rearrange the unresolved stress contributions in (10) as

−τ
sgs
i j = u′

iu
<
j + u<

i u′
j − u<

i u<
j . (20)

The first two terms are transposes of each other so their sum is symmetric, as is of course the third
term. However, a straightforward application (17)–(19) with φ = u j does not yield a symmetric
result for τ sgs. Instead, we take the forms (17)–(19) as guidance and symmetrize the velocity
gradients that appear:

u′
iu

<
j + u<

i u′
j − 2

3 u′
ku<

k δi j ≈ −2ανtot (2〈Si j〉 + S>
i j ), (21)

u<
i u<

j − 1
3 u<

k u<
k δi j ≈ −2α2νtot (〈Si j〉 + S>

i j ). (22)
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Gathering like terms we obtain

τ
sgs
i j − 1

3τ
sgs
kk δi j = 2νs〈Si j〉 + 2νeS>

i j , (23)

where νs = α(2 − α)νtot and νe = α(1 − α)νtot . Thus, from applying simple eddy viscosity argu-
ments to the total subgrid stress tensor, we see that the model split form arises naturally. Further,
this analysis indicates the contribution to the subgrid stress from the mean and fluctuating gradients
do not scale in the same way, i.e., the form τ

sgs
i j − 1

3τ
sgs
kk δi j = 2νt Si j is not generally valid. In

expectation, (23) is simply 〈
τ

sgs
i j − 1

3τ
sgs
kk δi j

〉 = 2νs〈Si j〉, (24)

and the contribution of the model (4) to the Reynolds stress depends only on the mean. On the other
hand, the energy transfer provided by the model (5) arises entirely from the correlation of 〈S>

i j S
>
i j 〉,

scaled by 2νe.
It is quite apparent why this mixed scaling issue has been overlooked. For RANS, it is not an issue

as all scales are the same. Subgrid stress models were patterned off RANS and adopted identical
forms using length scales from the filter width, timescales from the inverse of the filtered velocity
gradient, and the filtered velocity gradient itself. Therefore, such models are directly relevant only
to the subgrid-subgrid term of (Sec. III B), i.e., u<

i u<
j . Further, for filters and projections which

minimize the L2 error of ||u> − u′||, the mixed terms are zero as u>
i and u<

i live in orthogonal
subspaces of the full space of Navier-Stokes solutions. Many numerical method do not satisfy this
requirement. For instance, the second-order finite volume method used in this work (see Sec. V
for more details) most closely approximates box filtering in physical space. With such common
methods, the decomposed velocity fluctuations are not uncorrelated and the above arguments are
relevant. This raises another practical issue. The above arguments made use of α = 〈u<

i u<
i 〉/〈u′

ju
′
j〉.

In a simulation, we have access only to the information of the resolved field and an approximation
of 〈u′

ju
′
j〉 provided by the RANS model. Therefore, we directly have an approximation of only β =

1 − 〈u>
i u>

i 〉/〈u′
ju

′
j〉 or τkk/〈u′

ju
′
j〉. When the mixed terms are nonzero, α and β are not equivalent.

We must then find a relationship between α and β for the particular numerics of the code in use.
In isotropic turbulence at infinite Reynolds number, the Kolmogorov inertial range expression for

the two-point correlation leads to α ∝ β, with the proportionality constant depending on the details
of the filter. However, we need to use this relationship for wall-bounded shear flows, and so here
we estimate α as a function of β by applying box filters of varying size to channel flow fields at
Reτ = 1000 [70], excluding the region y+ < 300 since it is wall and viscous dominated. Averages
were computed over the homogeneous spatial directions and six snapshots in time separated by
two channel flow-throughs. The values of α and β determined at various y locations and for six
different filters sizes were aggregated to determine a single relationship between α and β. In Fig. 1,
to reduce statistical noise, the data were binned by α value to obtain average β’s. We find a simple
relation of α = β1.7 as shown in Fig. 1(a). Clearly, given the difference between the results for
isotropic turbulence and channel flow, the relationship between α and β depends on characteristics
of the turbulence. It will be useful to generalize this relationship to reflect that, but for now, we have
used the relationship inferred from the channel flow DNS. Of interest to the general eddy-viscosity
arguments presented here, we can also examine the total subgrid stress scaling. Figure 1(b) shows
this relation for the box filtered channel shear stress data. The α(2 − α) scaling determined from
the arguments above is consistent with the data and is used in the models discussed here, though
α9/8(2 − α) fits the data slightly better.

IV. ACTIVE MODEL SPLIT HRL

The hybridization strategy proposed here is motivated by deficiencies of previous methods, as
described in Sec. II. To overcome these problems, as described in Sec. III, the total model stress is
split into two separately modeled components, and an appropriate scaling of the mixed stress terms
is incorporated. Further, a stirring force is used to introduce resolved fluctuations where they are
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(a) Relation of subgrid energy definitions (b) Subgrid shear stress scaling

FIG. 1. Subgrid information determined by applying box filters to channel flow DNS data at Reτ = 1000
[70], (a) relationship between α = 〈u<

i u<
i 〉/〈u′

ju
′
j〉 and β = 1 − 〈u>

i u>
i 〉/〈u′

ju
′
j〉 overlaid with α = β1.7 and

(b) ratio of total subgrid shear stress (including mixed terms) and total shear stress, overlaid with α(2 − α).

capable of being resolved. In this “active model split” (AMS) hybridization, the resolved momentum
equation takes the following form:

Dt ui = − 1

ρ
∂i p + ν∂ j∂ jui + ∂ j

(
τ s

i j + τ e
i j

) + Fi,

where ui is the resolved velocity, p is the resolved pressure, τ s
i j is the “mean” subgrid stress, τ e

i j
is the “fluctuating” subgrid stress which results in energy transfer from the resolved to unresolved
scales, and Fi is the forcing. The forcing term subsumes all filter-width commutation errors. The
models for τ s

i j and τ e
i j will be formulated in terms of “pseudomean” quantities (thus the quotation

marks above), which are described in the following subsection before the detailed description of the
hybrid formulation.

A. The pseudomean

The arguments presented in Sec. III have tacitly assumed knowledge of the expected value for
all required quantities. In particular, 〈ui〉 is used to define u>

i and then α and β through the resolved
TKE as 2kres = 〈u>

i u>
i 〉. Additional averaged terms will appear in Sec. IV B and Sec. IV D. Yet

this information is not readily available in LES or HRL, necessitating a method for obtaining mean
quantities. The natural assumption would be that the method for approximating the mean should
be as close to the true expected value as possible, perhaps even warranting solution of a separate
set of RANS mean velocity equations as in [16]. However, it was determined empirically that
using the true mean in the AMS model formulation yields poor simulation results. The difficulty
arises because of the use of an eddy-viscosity model to represent the mixed term u<

i u′
j (23),

which represents the transport of the unresolved fluctuations, u<
i , by the total fluctuations, u′

j .
The total fluctuations include resolved fluctuations with much larger length and timescales than the
unresolved scales. Interactions between these very large resolved scales and the unresolved scales
are poorly described by dissipative processes, as the dominant effect is the large-scale advection
of the unresolved scales. That is, these slowly varying and relatively energetic fluctuations behave
more like an unsteady mean in the context of an eddy-viscosity model (EVM). For this reason,
using a pseudomean that filters out all but the largest and slowest scales of motion when defining
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the resolved fluctuations leads to a more accurate representation of the mean stress and a more
consistent definition of α for the purpose of stress modeling.

Anticipating use of the AMS formulation in complex geometries in which the turbulence is
inhomogeneous, time averaging is used to define the pseudomean, rather than spatial averaging. For
stationary flows and flows with slowly evolving means a causal time average with an exponentially
decaying kernel should be sufficient, and this approach is used here. In this case, the pseudomean
{φ} of a quantity φ evolves according to

dt {φ} = 1

Tave
(φ − {φ}), (25)

where the time constant is proportional to the large-scale turbulent timescale, or Tave = Cφktot/ε. For
all averaged quantities Cφ = 1, with the exception of Pk , the production of turbulent kinetic energy,
due to special circumstances as described in Sec. IV B. The performance of the model appears
somewhat insensitive to the precise value of Cφ , but no attempt has been made to optimize its value
or to determine whether it needs to vary depending on flow characteristics. Using (25) with Cφ of
order one, eliminates all but the lowest frequency fluctuations from the definition of {φ}.

B. Subgrid mean stress model

Following the argument presented in Sec. III B, the deviatoric subgrid contribution to the
unresolved Reynolds stress tensor is assumed to scale with τ s

i j ≈ α(2 − α)τR
i j where α is computed

from the pseudomean resolved turbulent kinetic energy as α = ksgs/ktot = β1.7, β = (1 − kres/ktot ),
kres = 〈u>

i u>
i 〉/2, and τR

i j denotes the Reynolds stress determined by a RANS closure evaluated using
only pseudomean quantities, to be consistent with the arguments outlined in Sec. II D.

Due to the presence of α in the subgrid stress model described above, it is necessary that ktot

be known. This can be obtained from the k-equation of any two-equation RANS model, provided
the resulting k is intended to be representative of ktot. For example “k” in the SST model [71] does
not represent the turbulent kinetic energy in attached boundary layers, but rather is more akin to
3
2v2 where v2 is the wall-normal component of the Reynolds stress tensor. Use of this “k” would be
inconsistent with the current evaluation of the resolved TKE and the AMS approach would perform
poorly near walls. Recall that the velocity fluctuations u′

i = ui − {ui} is defined in terms of {·}, which
is essentially a low-pass temporal filter rather than the expected value. Therefore, u′

i excludes the
low-frequency fluctuations u�

i = {ui} − 〈ui〉. For consistency in the definition of α, ktot is defined
as 〈u′

iu
′
i〉/2, i.e., excluding u�

i contributions. In determining a model equation for ktot , we assume
that cross terms that would be zero if {·} were the true expected value are negligible and arrive
at the usual k equation, with the exception of the convection and production terms (Ck and Pk ,
respectively), which are

Ck = 〈ui〉∂ktot

∂xi
, Pk = −〈u′

iu
′
j{Si j}〉. (26)

Thus, the modeled k-equation from a RANS model can be used, with the exception of the production
and convection terms. In the production term, we use the model for τ s

i j to account for the unresolved
portion of u′

iu
′
j and approximate the expected value by the pseudo mean (25) with Cφ = 4 (signified

as [·]). This yields

Pk = [(
τ s

i j − u>
i u>

j

){Si j}
]
. (27)

For simplicity 〈ui〉 in the convection term is approximated as {ui}, though approximating it as [ui]
would be more consistent. This simplification did not appear to make a significant difference.

C. Energy transfer model

As discussed in Sec. III A, when τ s
i j is not fluctuating, the transfer of energy from resolved to

unresolved turbulence is entirely due to τ e
i j . Traditional LES SGS models primarily function to

014603-15



HAERING, OLIVER, AND MOSER

model this transfer of energy with the majority of the Reynolds stress assumed to be resolved [57].
Accordingly, one can use typical LES SGS model forms for τ e

i j in addition to the scaling argument-
based model presented in Sec. III B. In principle, any standard SGS model can be applied. However,
for typical eddy-viscosity model forms (e.g., Smagorinsky and variants), τ e

i j will contribute to the
mean stress due to nonvanishing correlations between fluctuations in the model viscosity and the
velocity gradient tensor. In this case, these contributions to the mean stress must be accounted for
in the subgrid Reynolds stress formulation described in Sec. III B.

On the other hand, if the eddy viscosity does not fluctuate or if its fluctuations are uncorrelated
with the fluctuating velocity gradient, then 〈τ e

i j〉 = 0 so that τ s
i j and τ e

i j are the mean and fluctuating
parts of the model stress. The AMS formulation can thus be considered a technique to segregate
the mean and fluctuating model stresses so they can be modeled differently, consistent with their
differing roles of representing mean momentum transport and the transfer of energy from resolved
to unresolved turbulence.

Here we use the tensor eddy-viscosity M43 model, which is formulated to account for anisotropy
of the LES resolution [72]. Its coefficients were determined for consistency with second-order finite
volume numerics as described in Appendix A of [72], with the resulting coefficients provided in
Appendix B here. Details of the model formulation are provided in [72] but a modification is
required here. As derived, M43 is an algebraic subgrid model which dissipates at the anisotropic
resolution scales. It is formulated in terms of the mean dissipation rate, which in [72] was prescribed
a priori from knowledge of the forcing energy injection rate in simple forced homogeneous isotropic
turbulence. Here the mean dissipation is determined from the dissipation equation in the RANS
model. In this case, the M43 model becomes a two-equation (k and ε) tensor eddy viscosity model.
Where a non-negligible portion of the total dissipation is resolved, i.e., where ε � ν〈∂ ju>

i ∂ ju>
i 〉 is

not true, the dissipation used in the M43 model should be reduced by the resolved dissipation. This
modification would correctly observe DNS limits. However, when resolutions are relatively coarse,
as is the case with the simulations performed here, the resolved dissipation may be neglected.

D. Active forcing

As discussed in Sec. II A, resolved turbulence can be passively generated only by creating regions
of modeled-stress depletion. Thus, relying on natural self-generation of turbulence fluctuations
inherently requires reducing the fidelity of the model. When the resolved flow includes turbulent
fluctuations the energy cascade will naturally populate additional finer scales of motion as they
can be resolved, if the modeled dissipation is also reduced. However, the near-RANS regions will
not self-generate finer turbulent scales without explicitly disrupting the mean stress. A high-fidelity
hybrid formulation therefore requires a mechanism for generating turbulent fluctuations, and here
we propose a fluctuating body force (active forcing) driven by a resolution metric.

An active forcing formulation requires three ingredients: (1) identification of regions where more
turbulence can be resolved, (2) determination of the rate at which resolved fluctuations should
be introduced, and (3) specification of the structure of the generated velocity fluctuations. Where
finer velocity fluctuations can be resolved, they should be introduced with the length scale of the
smallest resolved turbulence so as not to disrupt existing larger, and presumably accurate, structures.
Conversely, in underresolved regions, τ e

i j will naturally dissipate resolved energy. However, due to
grid and flow inhomogeneity, τ e

i j may not affect this transfer fast enough. Here the forcing scheme
is formulated only to add energy to regions that can resolve more turbulence. A forcing formulation
capable of actively removing energy in underresolved regions would also be useful. Currently, a
modification to τ e

i j , discussed in Appendix B, specifically (B4), partially alleviates the issue of
underresolution. Each of the three necessary forcing components is presented next.

1. Resolution evaluation

Identifying regions where forcing is needed requires evaluating the grid’s ability to resolve more,
or any, of the local turbulent fluctuations. Historically, scalar measures of grid resolution (e.g., cell
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diagonal or volume cube-root) have been compared to a scalar turbulent length scale to make this
assessment. With anisotropic grids and/or turbulence, such measures are incomplete indicators
and generally insufficient. Instead, the evaluation should be based on the locally least-resolved
orientation to ensure adequate resolution in all directions. Naturally, this measure must depend on
both the grid and the flow state.

First, the resolution capacity of the grid is described by the resolution tensor, Mi j , [73] which
characterizes resolution anisotropy. The eigenvalues, λM

i , of Mi j are the resolution scale in ith
principal directions, while its eigenvectors define those directions. Common grid measures are
invariants or eigenvalues of Mi j (e.g., δvol = [det(Mi j )]1/3). Defining a resolution metric based
on Mi j provides a tensorially consistent mechanism to account for resolution anisotropy.

Second, the size and anisotropy of the largest unresolved turbulence scales, which are also
the smallest resolved turbulence scales, can be characterized by the production of unresolved
turbulence and unresolved kinetic energy. This is analogous to the expression of the integral scale as
proportional to k3/2/ε in stationary, homogeneous, isotropic turbulence, since then the dissipation,
ε, is also the rate of production. To represent the anisotropy of the unresolved length scale, we adopt
the ansatz that the tensor representing the inverse unresolved length scale L−1 is given by

L−1
i j = P sgs

i jklR
−3/2
kl , (28)

whereP sgs
i jkl = 1

2 (τik∂ jul + τ jl∂iuk ), (29)

Ri j = 1
2 {u<

i u<
j }, (30)

τi j = τ s
i j + τ e

i j + 2
3βktotδi j. (31)

In (31), the nondeviatoric part, 2
3βktotδi j , is included because it affects the scale anisotropy of the

production, despite the fact that it does not contribute to the production of kinetic energy, and is
therefore often ignored. Note that in (28), the indices of R−3/2 are contracted with the velocity
component indices of P , so that only length scale anisotropy is represented in L.

The ratio ρ(e) of the grid resolution to the smallest resolved scale in the direction defined by the
unit vector e is then given by

ρ(e) = L−1
i j M jkeiek . (32)

Clearly adequate representation of the resolved fluctuations requires that the maximum of this ratio
over all directions be less than some constant, here taken to be one. Also, if the maximum ratio is
significantly less than one, then smaller scale fluctuations can be resolved, indicating that forcing
can be applied to generate such fluctuations.

However, the anisotropy of the unresolved fluctuation covariance Ri j is commonly not available.
In many RANS models, such anisotropy is accounted for only near the wall, often through the use
of wall functions. As discussed by Durbin [74], such wall functions represent the effects of near
wall anisotropy, and in the context of the v2– f model can be seen to scale with the ratio of the
wall-normal velocity variance (v2) to the turbulent kinetic energy. Regardless of the two-equation
RANS model being used, we can thus take the v2- f eddy-viscosity relation as an expression for v2

and determine the anisotropy measure ζ as

ζ = 3v2

2k
= Cζ

νt

kT
, (33)

where Cζ = 7.5, as determined from the coefficients of the v2- f model, and T = k/ε is a turbulent
timescale. Since v2 is an estimate of the minimum eigenvalue of the Reynolds stress, and because
the unresolved velocity covariance is expected to be less anisotropic than the Reynolds stress, the
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following inequality should hold:

max
e

ρ(e) < rM = Cr (ζβktot )
−3/2 max

(
P sgs

ilkkMl j
)
, (34)

where the maximum on the right-hand side refers to the maximum eigenvalue of its tensor argument.
The coefficient Cr is related to how many grid spacings are required to resolve the structures
produced at the model cutoff. With the exception of the study described in Sec. V C we take
this coefficient to be unity. The quantity rM is easily determined, and (34) implies that using it
as a resolution indicator is conservative in the sense that it will indicate that scales resolvable
on the grid are larger than it can actually support. This is the resolution indicator used here. In
particular, when 〈rM〉 < 1, the grid is locally capable of resolving smaller scale fluctuations. When
the grid resolution is isotropic and the turbulence is isotropic and in equilibrium, 〈rM〉 reduces to a
length scale comparison similar to that used by DES [15]. Thus, it can be viewed as an anisotropic
generalization of the DES resolution metric.

2. Forcing structure

In regions where 〈rM〉 < 1, the goal of forcing is to gradually introduce resolved fluctuation,
thereby allowing the forced resolved structures to evolve into actual turbulence without corrupting
the mean. Uniform forcing over some region where 〈rM〉 < 1 is clearly not desirable, as it would
necessarily result in forcing the mean. Instead, we must prescribe the spatial structure of the
acceleration field. Ideally, this artificial structure would retain turbulence characteristics, such as
spatial correlation and intensity, of the largest of the unresolved turbulence. As more turbulence is
added to the resolved field, the characteristics of the largest of the unresolved scales necessarily
changes. The construction of this field as used here is ad hoc. It is presented here as an example,
which was implemented to assess the utility of the greater AMS HRL framework. Improvements
are certainly possible and desirable.

An artificial turbulence-like vortex field is defined based on the structure of a Taylor-Green (TG)
vortex field with variable length scale:

h1(x, t ) = A cos
(
a1xp

1

)
sin

(
a2xp

2

)
sin

(
a3xp

3

)
,

h2(x, t ) = B sin
(
a1xp

1

)
cos

(
a2xp

2

)
sin

(
a3xp

3

)
,

h3(x, t ) = C sin
(
a1xp

1

)
sin

(
a2xp

2

)
cos

(
a3xp

3

)
, (35)

where the magnitudes are somewhat arbitrary and selected such that hihi � 1 with A = 1, B =
−1/3, and C = −2/3. The desired vortex sizes should closely mimic the local length scale at the
implicit cutoff and be resolvable everywhere in the simulation domain. Thus, we select the vortex
scale to be � = min(NLLsgs, δwall ), where Lsgs = (βktot )3/2/ε, δwall is the distance to the wall, and NL

is a constant empirically set to 8. Applying � to (35), we have

ai =
{

π
D(i)

nint
( D(i)

min(�,D(i) )

)
for i direction periodic

π/� otherwise
, (36)

where D(i) is the domain size in periodic directions, “nint” is the nearest integer, and subcripts in
parentheses indicate no summation is implied. This form is designed to ensure periodicity of the h’s
in periodic directions. The TG vortex coordinates, xp

i , are specified to translate with the mean flow
as

xp
i (x, t ) = xi − {ui}t (37)

to provide a degree of temporal correlation in addition to the desired length scale. With the
prescribed structure in hand, we must now determine the appropriate magnitude for the forcing
acceleration.
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3. Forcing magnitude

As previously discussed, the magnitude of the forcing acceleration should be based on the
largest of the unresolved fluctuations. Additionally, the rate of injection of manufactured fluctuations
should be specified by the eddy turnover time of the smallest resolved structures so that the added
fluctuations can be “healed” into realistic turbulence, as they are added, by the resolved turbulence.
Making use of near-wall anisotropy, the target forcing is then defined as

Ftar = CF

√
ζktot√
βT

, (38)

where CF is currently an empirical constant set to 8. Note the
√

β in the denominator of (38)
results from both the velocity and timescale corresponding to the subgrid scales. With the target
acceleration magnitude (38) and structure (35) in hand, additional modifications are necessary to
respect RANS and DNS limits. The RANS limit will be naturally detected by 〈rM〉 while identifying
near-DNS conditions requires an approximation of the local Kolmogorov length scale. With the
information provided by the RANS model, this limit is approximated as

βkol ≈ 3

2

(νε)1/2

ktot
. (39)

Limiters are incorporated in a scaling coefficient, η, as

η = Fr − Dlim, (40)

where Dlim enforces the DNS limit and Fr responds to the resolution evaluation and can thus be
considered both a grid-resolved LES and RANS limiter. In the vicinity of either of these three limits,
the scaling of hi is attenuated to prevent sharp transitions between full and no forcing. Gradual
attenuation is prescribed in the following ad hoc functional forms.

Overall forcing behavior is controlled through Fr as

Fr = − tanh[1 − min(〈rM〉, 1)−1/2]. (41)

When 〈rM〉 < 1, forcing is activated with Fr → 1. In the vicinity of 〈rM〉 ≈ 1, Fr smoothly goes
to zero. Finally, in RANS and underresolved regions, 〈rM〉 > 1 and so Fr = 0. The DNS limit is
enforced with

Dlim = Fr[tanh(10β̂ ) + 1], (42)

β̂ = (1 − β )/(1 − βkol ) − 1. (43)

Specifically, as DNS resolution is approached, β → βkol, β̂ → 0, and Dlim → Fr . Thus, η also
goes to zero, and the forcing effectively “shuts off” in the limit of DNS resolution. Alternatively,
when β � βkol, Dlim ≈ 0 and the limiter does not affect the forcing. Note that (38) is poorly behaved
in the limit of β → 0. To avoid this, one could replace β in (38) with max(β, βkol ). In the RANS
limit, the structure of hi may be applied everywhere in the domain to affect turbulence generation.
However, with existing turbulent fluctuations, applying a generic acceleration structure, such as hi,
will on average result in both the addition and removal of energy. So the magnitude of hi must be
further modified. This issue is addressed by testing the resolved production due to hi as

P test
F = hiu

>
i , (44)

which will be used to clip (35). With these considerations, the forcing acceleration vector is

Fi =
{

Ftarηhi if P test
F � 0

0 otherwise. (45)

The specification of Fi along with the two model terms (Sec. IV B and Sec. IV C) and the
pseudomean (Sec. IV A) closes the AMS approach. While there are many advantages of the AMS
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hybrid formulation, the model split form introduces new challenges as well. Before presenting
several tests of the new approach, we first briefly discuss these issues.

E. Discussion of AMS formulation

The components of the AMS hybrid RANS/LES approach include a RANS mean stress model, a
subgrid scale dissipation model, underutilized resolution evaluation, active fluctuation forcing, and
computation of the resolved turbulent stress with a causal time average. The resolved mean stress is
used throughout AMS, most notably to scale the RANS stress to the appropriate subgrid scale stress.
All of these components are dynamically and continuously coupled in a single numerical simulation,
on a single grid. There are two critical features of the AMS formulation that are necessary for good
model performance. First, is the explicit separation of the mean stress and dissipation roles of the
subgrid scale turbulence model. This splitting allows the eddy-viscosity models to be tailored to each
role, enabling the overall AMS formulation to remain valid regardless of resolution. It is essentially
an LES that by construction respects both RANS and DNS limits. In particular, in the limit of DNS,
all the model terms (τ s, τ e, and F ) go to zero, leaving only the numerical approximation of the
Navier-Stokes equations.

The second critical feature is that the model hybridization responds only to the turbulence
fluctuations that are resolved, rather than the fluctuations that could be resolved. This ensures that
the modeled mean stress is always consistent with the resolved mean stress, which is important to
avoid common problems in HRL, such a model stress depletion. Many HRL techniques promote
the development of fluctuations where they can be resolved by reducing the modeled stress and
thereby promoting instabilities, but while also disrupting the mean. In AMS, by contrast, resolved
fluctuations are introduced explicitly through forcing when needed. The details of the forcing as
described in Sec. IV D are necessarily ad hoc, as is the promotion of instabilities used in other
approaches, since fluctuation information must be created. Using explicit forcing, however, provides
an opportunity to design the forcing that will allow fluctuations to be introduced as rapidly as
possible while ensuring that they realistically represent their contributions to the mean stress, as
discussed below.

The model split hybridization approach has numerous advantages over traditional HRL methods.
First, following the argument in Sec. IV, blending, which is responsible for many of the difficulties
in HRL, is obviated. Second, it uses the RANS model as designed. The turbulence model state
variables represent mean features of the turbulence, and the governing PDEs depend only on mean,
or pseudomean, quantities. Thus, pathological behaviors of the RANS transport models due to
fluctuating state variables are avoided. Third, the RANS eddy viscosity appearing in τ s

i j makes no
contribution to the dissipation of resolved fluctuations, allowing turbulence at all resolvable scales to
form naturally without being overly dissipated. The AMS formulation will also naturally be inactive
in laminar flow regions. The RANS model that is part of the AMS formulation governs this behavior.
When the RANS model predicts zero or negligible TKE as in a laminar region, the forcing will be
zero and the eddy viscosity will also go to zero. Finally, nearly any combination of base mean and
fluctuating models can be used. Because of this flexibility, advanced models are easily incorporated
and used to treat complex flow and domain features such as the effects of resolution anisotropy with
the M43 model. Since stress anisotropies are mostly carried by the largest of turbulent structures, it is
reasonable to expect that even modestly resolving turbulent kinetic energy will result in significant
improvement over RANS to the representation of total stress anisotropy. Nonetheless, the AMS
approach does present the opportunity to include treatments for stress anisotropy such as explicit
algebraic Reynolds stress models (EARSM) [75].

However, there are several issues demanding future attention beyond the scope of this paper. Per-
haps the most glaring is the specifics of the pseudomean and precisely what large scale fluctuations
should be excluded from the α scaling in the model. This concept, that some of the interactions with
large-scale turbulence should not be modeled with gradient diffusion, is introduced here to both
HRL and LES in general. The degree of exclusion of low-frequency turbulence from the model
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is effectively controlled by the coefficient used in the pseudomean. Another way to approach the
modeled Reynolds stress would be to adopt the form of [38] and simply subtract the deviatoric
portion of the mean resolved stress from the RANS model stress. This method would sidestep some
of the ambiguity in RANS scalar terms but, as formulated, leads to no improvement over basic
RANS behavior in expectation. Nonetheless, this should be explored. Further, the use of the causal
time average results in a lagged response to large-scale unsteadiness and is strictly valid only for
stationary flows. However, similar to the assumptions of unsteady RANS, if the unsteady timescales
are much larger than the largest turbulence timescales and the averaging time, the averaging will
produce an appropriate pseudomean for use in the AMS formulation.

The second main issue is the rudimentary form of the forcing. As discussed in Sec. IV D the
prescribed structure of the synthetic forcing is necessarily ad hoc. The particular method outlined
here has potential drawbacks. Foremost, the resulting Fi is not divergence free. This is a result of
TG fields being divergence-free only when constructed using a uniform overall scaling and vortex
length scale and without clipping. In an incompressible solver, the dilatational portion is projected
out, which alters the structure of the effective forcing. The result is that the forcing can remove
resolved turbulence at some points in space and time. However, on average, the approach does
result in net production of resolved fluctuations where desired. In a compressible solver, the method
may result in spurious acoustic sources. Further, it should be possible to force more strongly, i.e.,
increase the coefficient CF (currently set to 8), if the forcing structure produced fluctuations that
were more consistent with unresolved turbulence in equilibrium with the current ui. The forcing
design described in Sec. IV D is certainly not the best that can be done in this regard. Improving
forcing structure so that forcing strength can be increased would allow the size of the LES-resolved
region upstream of an area of interest to be minimized. However, while the forcing used here is ad
hoc, the AMS approach is not sensitive to the ad hoc characteristics of the forcing. That is, AMS
responds to the presence of resolved turbulence and not to how the turbulence is introduced. As
a result, any new or improved forcing technique can easily be substituted into AMS. Indeed, we
regard the current forcing as a “place holder” to close the overall AMS modeling framework.

The RANS models used for τ s are improved relative to their use in a purely RANS computation
through the inclusion of the resolved stress in the production term. However, for the sake of sim-
plicity, we have not analogously included an explicitly computed resolved contribution ∂ j〈u>

i u>
i u>

j 〉
to the turbulent transport of k (i.e., ∂ j〈u′

iu
′
iu

′
j〉), relying instead on the standard eddy-viscosity model

to represent the entire term. This simplification can lead to local inconsistency between the resolved
and modeled TKE, which we have observed as small regions of negative β where the total TKE is
small. Such negative values were clipped to the Kolmogorov microscale value of β, given by βkol

(39). The results of Sec. V suggest that, at least for the flows considered, this treatment is adequate.
Yet we are essentially discarding useful information by not computing ∂ j〈u>

i u>
i u>

j 〉 explicitly, and
so we expect that doing so would improve the veracity and robustness of the model.

Finally, while we have touted model flexibility as a benefit, we must also caution that different
RANS models may require different stress scalings and a different resolution-adequacy coefficient.
This is an unfortunate side effect of how RANS models function through a series of error cancella-
tions to arrive at a reasonable eddy viscosity for a given mean flow. That is, the scalar terms which
adopt the names of “turbulent kinetic energy,” “turbulent dissipation,” etc., are not, strictly speaking,
models for those terms. In particular the k from one model may be significantly different from the k
from another.

V. AMS PERFORMANCE TESTS

The proposed AMS hybrid formulation is evaluated using an implementation in a branch
of the finite volume incompressible Navier Stokes solver CDP v2.4 [76,77], developed at the
Stanford Center for Turbulence Research. The solver is second-order accurate in time and space
with no upwinding used for convective fluxes in the momentum equation and time advancement
performed with Crank-Nicolson. The convective term is linearized with an Adams-Bashforth
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prediction of the convective velocity. Two base RANS models are considered: Chien’s k-ε [78]
and the “code-friendly” version [79] of the v2- f RANS model [74]. Details of these models are
provided in Appendix A. The energy transfer model is the M43 model [72], which is specified in
Appendix B.

The results presented here include AMS simulations with varying resolutions. However, these
should not be confused with convergence studies in the usual sense of numerical analysis. Indeed,
even the finest resolutions reported here are very coarse by LES standards, with significant contribu-
tions of unresolved scales to the mean stresses, and there are always RANS regions near the walls.
This is the resolution regime in which hybrid methods are intended to operate and standard SGS
models are known to fail. Within this regime, we consider a sequence of AMS models, with different
resolutions, to investigate sensitivities to the resolution. Models with finer resolution will resolve
more of the turbulent fluctuations, relying less on RANS, and so one would generally expect them to
yield more accurate simulations. However, this may not always be true for all quantities. We are most
concerned that the mean velocity be accurately predicted, since its prediction is the most common
objective for HRL in practice, with the expectation that HRL will improve on RANS predictions.
For a HRL formulation to be useful it is important that its results not exhibit extreme sensitivities
to the resolution, and that relevant features of the solution, particularly the mean, improve or at
least not degrade as resolution increases. It is in this context that we examine AMS model results at
different resolutions in the following subsections.

A. Periodic channel

To demonstrate the potential of the proposed hybrid modeling formulation, fully developed,
incompressible, turbulent channel flow at Reτ ≈ 5200 is simulated. DNS data are available for this
case [70] allowing detailed evaluation of the results. It is common for RANS models to perform
very well for channel flow. Therefore, successful hybrid simulations for this case would simply
not degrade RANS mean velocity profiles. This may seem like a rather modest goal; however, the
relatively coarse levels of LES resolution used here place the simulations firmly in a regime where
existing SGS models will fail.

Results are presented in the following three subsections with focus on (1) hybrid steady-state with
varying resolutions, (2) hybrid state evolution in time, and (3) hybrid state evolution in space. The
term “hybrid state” is used to indicate the level of resolved turbulence which, in general, will not be
at a grid-resolved LES levels and will vary in both time and space. We emphasize that evaluation of
HRL in the transition from RANS to the statistically stationary hybrid state, is absolutely critical for
an HRL. While all but one of the flow scenarios considered in this paper employ periodic boundary
conditions, in practice, a HRL will be required to transition in space from a RANS, even if only at
inlet boundaries, to a hybrid LES-RANS state. If this transition behavior is corrupted by the HRL
formulation, the downstream solution may be corrupted.

1. Stationary channel with varying resolution

The domain for the hybrid simulation is 8πδ × 3πδ × 2δ, where δ is the channel half-width;
i.e., identical to the DNS domain in [70]. The base RANS model used is Chien’s k-ε [78] in
which uτ is specified a priori for use in the wall functions based on DNS. A spatially uniform
streamwise body force (mean pressure gradient) was applied throughout the channel, which varied
in time to maintain a constant bulk velocity. Multiple grid resolutions are considered as shown in
Table I. For all resolutions, the wall-normal grid spacing is fixed with Ny = 110, �+

y (wall) ≈ 1,
and �+

y (center) ≈ 345 while the spanwise and streamwise spacing ranges from approximately
700–1500 wall units.

Note that the finest resolution considered here is still some 70 times too coarse to approach
the DNS limit for even Reτ = 180 [70]. Results are obtained using τ s

i j scaling of α(2 − α) as
described in Sec. III B. The hybrid simulation is initialized from a steady-state RANS solution.
Snapshots of the resolved streamwise velocity fields are shown in Fig. 2 to illustrate the difference
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TABLE I. Resolutions used in Reτ ≈ 5200, 8πδ × 3πδ × 2δ periodic channel AMS simulations reported
here. For all simulations Ny = 110 with �+

y (wall) ≈ 1 and �+
y (center) ≈ 345. Grid size reductions in the last

column are reported as the ratio of the DNS [70] grid size to that of the AMS simulations.

Case Nx Nz �+
x �+

z Reduction

Fine 186 70 701 698 84 000
Medium 134 50 973 978 164 000
Coarse 102 39 1278 1253 276 000
Extra coarse 84 32 1552 1528 408 000

in resolved turbulence for each resolution case. Statistically stationary mean velocity and resolution
level (β) profiles are shown in Fig. 3(a). As expected, the basic k-ε RANS model does a good job
of reproducing the mean velocity profile with only a slight underprediction in the buffer layer. For
all resolutions levels, the AMS hybrid formulation also adequately predicts the mean flow with a
very small deviation from the RANS and DNS solution in the center of the channel. As qualitatively
illustrated in Fig. 2, and quantitatively shown by β in Fig. 3, the AMS formulation allows the hybrid
state to evolve to an appropriate level of resolved turbulence, in the sense that the mean is correctly
predicted, for the different grids in each simulation. With each increase in resolution in Table I,
turbulence is resolved further into the log layer while introducing no log-layer mismatch. Naturally,
the most resolved turbulence occurs in the fine case with β as low as 0.4 at the channel center.
For typical LES, β � 0.1 is expected over the entire domain for the model to perform well [57].
The model-splitting formulation presented here retains good performance well past this threshold,
enabling true “coarse” LES. The nearly identical mean profiles for such varied levels of resolved
turbulence is an indication of the robustness of the formulation.

The response of the underlying RANS model to the modified production [Eq. (27)] is shown
Fig. 3(b). Here k determined from the RANS transport equation in the hybrid simulations remains
virtually unchanged from that in the pure RANS model, despite the modified production terms and
the use of the pseudomean velocity in the RANS equations. This confirms that the formulation is
successful in preserving the RANS solution characteristics in the presence of resolved fluctuations.
Ostensibly, it may seem that the RANS k should move towards the DNS value with increasing

FIG. 2. Instantaneous streamwise velocity in an x–y plane in fully developed channel flow at Reτ ≈ 5200
using the Chien k-ε RANS model and the AMS hybrid formulation, with resolutions described in Table I.
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FIG. 3. Mean streamwise velocity in wall units (a) for fully developed channel flow at Reτ ≈ 5200 along
with the fraction of unresolved turbulence β (dashed), and (b) turbulent kinetic energy k+ of the statistically
steady solution. In (b) lines marked with + symbols are k obtained directly from the RANS model while the
unmarked lines are the time-averaged resolved turbulence plus α times the RANS k+. Simulations have been
run for approximately 80 flow-throughs.

resolution; however, RANS models function through a series or error canceling. That is, they are
tuned to produce an appropriate eddy viscosity and not the correct individual scalar quantities whose
name they bare (k, ε, etc.). Thus, changes to the RANS k might actually break the underlying RANS
behavior. Both the RANS k and the turbulent kinetic energy including the resolved fluctuations
( 1

2 〈u>
i u>

i 〉 + βk) remain virtually unchanged. With increasing resolution, the two measures of
TKE do increase towards the DNS values for y+ > 300 due to increased resolved kinetic energy
and resolved production. The fact that these two definitions of TKE are nearly indistinguishable
indicates consistency between the resolved a modeled turbulence. However, resolved TKE must
ultimately approach the DNS as α → 0, that is, as all the fluctuations are resolved. Therefore, the
modeled TKE and resolved TKE may separate with reducing α, which begins to be visible in the
finest resolution case in Fig. 3(b). Such a separation is due to deficiencies in the underlying RANS
model.

By changing the spanwise and streamwise grid spacing, we are also varying the resolution
anisotropy, from 2:1 cell aspect ratios at the center of the channel in the fine case to 20:1 at y+ = 400
in the extra coarse case. The converged steady-state mean profiles for these different degrees
of resolution anisotropy indicate that the resolution adequacy parameter proposed in Sec. IV D
successfully quantifies the turbulence that an anisotropic grid is capable of resolving in the presence
of inhomogeneous mean shear. Further, the use of the M43 model for the energy transfer portion
of the model, and its scaling with the pseudomean ε obtained from the RANS transport equations,
appears to be valid.

2. Channel with temporally evolving hybrid state

The results in the previous section are for stationary hybrid states. In this section, we examine the
temporal development of the hybrid state for the case of the “coarse” resolution. The forcing method
presented in Sec. IV D was formulated with the goal that that hybrid solutions remain valid through
transition from RANS to an arbitrary LES state. For stationary flows, the transient from an initial
field to the final solution is of no consequence. However, for unsteady flows, transition through
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FIG. 4. Snapshots of (left) mean resolution adequacy parameter, 〈rM〉 (34), (middle) magnitude of scaled
forcing vector field, F̂i = Fi/Fc where Fc = 0.25(�x�y�z )−1/3k3/2

tot (45), and (right) resolved streamwise
velocity in x-y planes for the temporally developing hybrid simulation of channel flow at Reτ ≈ 5200. Note
that ktot used to define Fc is a function of wall distance. Only results for the coarse resolution are shown here.
Time since initiation of forcing t/t f is shown, where t f is the flow-through time.

varying turbulence states in time is of prime concern and may continue throughout the duration of a
simulation. The case examined here represents an extreme example of this situation, i.e., transition
from no resolved turbulence to a grid-resolved LES. Such a drastic transition would not actually
occur in most unsteady simulations. The opposite transition from less to more modeled turbulence
is also of interest, but is not considered here.

As previously discussed, the hybridization is driven by forcing. If no forcing is applied, the sim-
ulation would remain a RANS simulation. The process of evaluating the resolution and introducing
resolved turbulence is summarized through the resolution adequacy parameter (34), forcing field
(45), and resolved velocity for the coarse case in Fig. 4. An example of the wall-parallel forcing
field is shown in Fig. 6. Note that by construction, a variable length scale and clipped Taylor-Green
field is not divergence-free. For an incompressible solver, the divergence of the forcing field is
projected out in the pressure solution step so overall behavior of the hybrid method is not affected
by forcing divergence. Thus, for incompressible applications, an additional pressure-Poisson-like
solve is not necessary however, it may be important for compressible solvers.

At t f = 0, forcing is activated, and the state evolves in time from the RANS initial condition to
a statistically stationary hybrid state as shown in the previous section. During the first few steps of
forcing (Fig. 4, t f = 0.0+) a large region with excess resolution is present, indicated by 〈rM〉 < 1,
and shown as blue in the figure. Note that 〈rM〉 is much larger than 1.5 near the wall in regions which
are incapable of resolving turbulence and remain RANS. Coherent, large fluctuations are excited
as the scale of the forcing is the large scale turbulent length scale. Some clipping of the forcing
(44) still occurs due to the approximation of means through time averaging. The local magnitude
of the forcing follows the RANS k profile and the hybrid solution is still nearly identical to the
RANS state at this point. The forcing field is characterized by very long streamwise, but thin wall-
normal, structures. Shortly after (t f = 0.4), some fluctuations become evident and the forcing field
is drastically altered with much shorter streamwise structures. This is due to reduction of the subgrid
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FIG. 5. Mean streamwise velocity for fully developed channel flow at Reτ ≈ 5200 along with the fraction
of unresolved turbulent kinetic energy β (dashed). In (a) the simulation evolves in time from the stationary
RANS solution to the stationary hybrid solution. Numbers in the legend refer to t/t f , the time in flow through
units. In (b) the hybrid simulation evolves in the streamwise direction from the inlet RANS solution to a hybrid
solution. Numbers in the legend refer to x/δ, the down-stream distance normalized by channel half-width.

turbulence length scale [Lsgs ∼ (βktot )3/2/ε] and as a result, the forcing length scale, and to more
local clipping where the prescribed Taylor-Green field would remove energy. By t f = 0.8, distinct
turbulent structures are visible and the overresolved core has been reduced and flanked by bands of
〈rM〉 ≈ 1 extending towards the center of the channel.

FIG. 6. Magnitude of scaled forcing vector field, F̂i = Fi/Fc where Fc = 0.25(�x�y�z )−1/3k3/2
tot , at mul-

tiple wall-parallel planes a t = 0.04 after initiating forcing from the steady RANS solution. Entire spanwise
domain is displayed. Early forcing experiences no clipping yielding large coherent acceleration with the size
of the structures decreasing with proximity to the wall. Note that ktot is dependent on wall distance.
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At t f = 1.6, we begin to see a shortcoming in the current formulation. A grid-resolved LES
region extends through the entire channel (green regions of 〈rM〉 ≈ 1) as intended, however, there
are still small region of slight active forcing and bands of underresolved regions (red regions of
〈rM〉 > 1). This is another artifact of time averaging being used as a surrogate for the true expected
value of rM. That is, small fluctuations in the pseudomean of rM result in local forcing activation
when 〈rM〉 is only slightly less than unity, whereas there is no counterpart when 〈rM〉 is slightly
greater than one. The result, on average, is that excess energy is being continually added to the
small scales. An ad hoc modification to the M43 model coefficient to remove this excess energy
is described in Appendix B [see Eq. (B4)], but, it appears to do so too slowly. The effects of this
underresolution may contribute to the temporary disruption of the mean velocity profiles in Fig. 5(a).
Keeping in mind that the steady state β for the coarse mesh achieves only a minimum of about 0.6
[Fig. 3(a)], we see the resolved field overshoots this value to 0.4 at t f = 1.6. Thus, as indicated by
the red 〈rM〉 > 1 bands in Fig. 4, more resolved turbulence has been added than can be properly
resolved. The blunting of the mean velocity profile in the center of the channel may be a result. After
this overshooting, the field gradually heals with the M43 modification removing excess energy. By
t f = 8, the mean velocity has nearly attained its steady state (Sec. V A 1).

Though we have not performed a rigorous spectral analysis of the resolved velocity field, it
appears that the largest scales of turbulence are not excited until later in the simulation. For
instance, compare the streamwise oscillations at t = 0.4 and t = 8.0 snapshots of Fig. 4. Contrary
to the intended forcing behavior, the largest turbulence scale should be excited at the start of the
simulation, suggesting a potential deficiency in the current forcing structure. This was alluded to
in the previous remark about the wall-normal forcing structure being too small. More interestingly,
because the forcing is apparently not exciting such large scale motions directly, a transfer of energy
to these large scales of motion is necessary. While some of the energy may be coming from the
excited turbulence scales, it may also be transferred directly from the mean. A drain of energy from
the mean would also be consistent with the temporary blunting of the velocity profiles at early time.
The mean then recovers through the action of the applied mean pressure gradient. The structure
of the forcing at early time is plotted in several wall-parallel planes in Fig. 6 in addition to the
wall-normal plane shown in Fig. 5. The prescribed forcing field does result in large structures away
from the wall, but only in the wall-parallel planes. Such granularity in the wall-normal direction
forcing certainly contributes to the largest turbulence structures not being excited. Correcting the
prescribed early forcing structure would likely help reduce the small distortion of the mean during
the forcing.

A potential remedy to the discussed underresolution would be to allow the forcing field to
also remove energy in regions satisfying the conditions α < 1, 〈rM〉 > 1, and P test

F < 1 (44).
Alternatively, and certainly more simply, the coefficient CF (38) could be reduced so that the forcing
is more gradual and there is no healing time necessary to correct the overshoot. Drastic transitions
in time from RANS to grid-resolved LES would not actually occur in a simulation other than during
the initial startup or in some highly unsteady problem. Therefore, such a coefficient reduction may
not be generally necessary for practical application of the AMS method. This viewpoint is supported
by the results of the next section.

3. Channel with spatially evolving hybrid state

Next we consider the case of a hybrid state developing in space. Unlike the previous case
of transition from RANS to LES in time, transition in space will occur in many practical HRL
simulations. That is, one would like to construct a mesh with LES-quality resolution only where
needed, specify only mean inlet velocity and scalar profiles with no resolved turbulence, and rely on
the HRL framework to transition from RANS to LES without any loss of simulation fidelity. Poor
transitional behavior may corrupt the entire solution downstream of the transition region. Therefore,
spatial transition is important to the stationary state and needs to be tested.
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FIG. 7. Inlet (left) and outlet (right) sections of the spatially evolving channel with coarse resolution.
Shown are (top) pseudomean resolution adequacy parameter 〈rM〉, (middle) magnitude of the scale forcing
|F̂ |, and (bottom) resolved streamwise velocity u+

x . Inflow and outflow streamwise sections of 4h, out of the
total 16π , are shown.

In this section, rather than using periodicity in the streamwise direction, a RANS inlet profile
is specified. Again using the resolution of the coarse case, the streamwise length of the domain is
extended to 16π while maintaining the same span and height. The inlet and outlet sections of the
extended channel are shown in Fig. 7 and mean velocity profiles, averaged over specific streamwise
slices, are presented in Fig. 3(b).

Contrary to the temporally developing case, no β overshoot and no LES regions of 〈rM〉 > 1
are present. By the end of the channel, the mean velocity and β have nearly reached the coarse
grid stationary hybrid state. There is still a small overresolved core region at the outlet of the
channel. Further, the midchannel velocity is slightly lower than the DNS and periodic hybrid
simulation. Forcing is most active just at the inlet (x = 0) but it is sustained at low amplitude over
the entire channel length. This early region, x < 1, produces the largest relative drop in β. Such a
rapid addition in resolved turbulence without disruption to the mean is highly desirable for hybrid
applications as it indicates that only small regions of LES resolution upstream of a flow feature of
interest are necessary.

Unfortunately, the relatively slow drop in β after x = π/2 indicate the current forcing formula-
tion is not able to rapidly fill in all resolvable scales. This behavior seems to be particular to the
spatial development case. For instance, after t = 1.6 in the time-developing channel, β has dropped
below 0.5. Based on the bulk velocity, the fluid has traveled just over 12π at this time. However,
after traveling 12π from the RANS inlet in the spatial developing case, β has dropped only to just
under 0.7. Thus, it seems there are subtleties to the current forcing structure that relies on periodicity
in the streamwise direction to be most effective. Nonetheless, the AMS approach is successful in
transitioning a hybrid state from RANS to LES in space. This also indicates that the current CF

value is not excessive for practical applications of AMS.

4. High Reynolds number channel

To conclude our study of basic AMS in channel flow, we consider a much higher Reynolds
number, Reτ = 20 000. We have also exercised AMS in lower Reynolds number cases (Reτ = 180
and 2000, not shown) with results not substantively different than the Reτ = 5200 cases discussed
in the previous sections. However, at higher Reynolds number, we can expect the outer kinetic
energy peak to increase due to additional large scale turbulent structures away from the wall [80].
In general, RANS models do not represent this outer peak well, yet they can still produce excellent
mean velocity profiles with a well-defined log layer. This is a result of the previously mentioned
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FIG. 8. Mean streamwise velocity in wall units (a) for fully developed channel flow at Reτ = 20 000 along
with the fraction of unresolved turbulence β (dashed), and (b) turbulent kinetic energy k+ of the statistically
steady solution. In (b) lines marked with + symbols are k obtained directly from the hybrid RANS model
while the unmarked lines are the time-averaged resolved turbulence plus α times the RANS k+. Simulations
have been run for nearly 100 convective times.

error-cancellation in RANS models. As indicated in Fig. 3, the AMS hybrid formulation improves
the prediction of the outer k-peak, and one might suspect that this improvement could disrupt the
error cancellation in the RANS representation of the subgrid Reynolds stress used in AMS and
thereby affect the mean. At Reτ = 5 200 and the resolutions considered, this improvement is small
and the overall performance of AMS is still excellent.

The largest structures that are responsible for the increase in the outer kinetic energy peak
with increasing with Reynolds number, should be easily resolved in AMS. So, at higher Reynolds
number, AMS will produce larger improvements in the outer kinetic energy peak, making a higher
Reynolds number channel simulation a simple test of whether improving the representation of k
in AMS can degrade the performance of the RANS-based subgrid Reynolds stress model. To this
end, an AMS simulation was performed with the fine resolution of Table I at Reτ = 20 000 but
with the first wall-normal grid point shifted to maintain y+ = 1 for the higher Reτ . Therefore,
the wall-normal resolution in the center of the channel is more coarse than the Reτ = 5200 fine
resolution case. Chien’s k-ε model was found to perform poorly at this Reynolds number in the
near-wall to buffer region. Since we do not expect AMS to improve the simulation this close to
the wall with such a grid, it was necessary to use a different base RANS model for this AMS test.
While there are no DNS or detailed experimental results available at Reτ = 20K , the v2- f model
yields expected mean velocity and is used with AMS here. Mean velocity and k profiles from the
Reτ = 20K simulation are shown in Fig. 8. There is a departure from the log profile from y+ = 200
to y+ = 2000. In comparison with Fig. 3, β is lower in the center of the channel and values below
one extend to lower values of y for the same resolution. This is a direct result of large turbulence
scales which are not present at lower Reynolds number and are resolvable at the current resolution.
The largest deviation from the baseline RANS profiles is in the outer-layer peak in k. This is so for
both k obtained directly from the hybrid RANS k equation and for k determined from the resolved
fluctuations plus α times the hybrid RANS k. While we cannot directly confirm how well the AMS
outer peak corresponds to the true peak, the existence of the peak is already an improvement over
the basic RANS model. As suspected, the increase in k relative to RANS affects the RANS model
for the subgrid Reynolds stress, resulting in a distortion of the mean. Note that the departure starts

014603-29



HAERING, OLIVER, AND MOSER

TABLE II. Resolutions used for periodic hill simulations at Reh ≈ 10 000 reported here. For all simulations
�+

y (wall) ≈ 1 at the bottom surface and �+
y (wall) ≈ 2 at the top, based on the wall shear stress at the top of

the hill. Note that �+
x is an average value as streamwise clustering in the recirculation region is used on all

grids. Grid size reductions are reported in the last column as the ratio of the WRLES [47] grid size to that of
the AMS simulations.

Case Nx Ny Nz �+
x �+

z Reduction

Fine 190 120 40 47 112 14
Medium 140 120 30 63 150 25
Coarse 95 110 20 95 225 62

where k begins to increase relative to baseline RANS and ends at about the location of the outer
peak. The problem with the RANS model for the Reynolds stress is that the large scales responsible
for the outer layer peak in k and for the majority of the Reynolds stress away from the wall also
extend closer to the wall, where they do not carry significant Reynolds stress [80]. As a consequence,
in this intermediate region where the AMS mean velocity departs from expectations, k is not a good
predictor of the Reynolds stress. In baseline RANS this is mitigated by the compensating error
that the outer layer peak in k is absent. In AMS, the improved representation of k will have two
consequences: the hybrid RANS estimate of the turbulent viscosity will be inconsistent; and β will
not adequately represent the contribution of the resolved turbulence to mean momentum transfer.
These results highlight the sensitivities of the AMS formulation to the fidelity of the hybridized
RANS model. To improve this fidelity, it may be fruitful to further modify the hybrid RANS model
to make more use of knowledge of the resolved scales. Another possibility is to reformulate the
hybrid RANS model to represent only the subgrid turbulence or to enrich the representation of the
subgrid Reynolds stress and its dependence on β. These are out of scope for the current paper, but
are important directions for future development.

B. Periodic hill

In the previous channel cases, RANS models perform well, and the simulations demonstrate
that the AMS hybrid framework does not disrupt this performance as resolution varies and hybrid
states evolve. In this section, we move to a case where RANS is known to fail and evaluate
whether the AMS formulation can improve over the RANS results. Flow separation and smooth-wall
reattachment are of great interest in many engineering applications. However, RANS models tend
to incorrectly predict the recirculation region, often delaying reattachment. This leads to erroneous
prediction of critical quantities of interest such as lift and drag. With localized regions of model
deficiency, such flow scenarios are precisely where HRL should be of greatest benefit. The periodic
hill test case geometry consists of a channel with a 2D hill which produces a separation region of
approximately three hill heights. Having been studied both experimentally [47,81] and numerically
[47], this case offers a rare combination of “truth” data as well as established resolution requirements
for accurate simulation of the flow with existing LES models. The periodic hill is therefore an ideal
test case to assess the utility of the AMS framework. In what follows, we therefore present periodic
hill simulation results using both a baseline RANS model and an AMS hybrid formulation.

Flow over a periodic hill geometry at Reh = 10 600 (where h is the hill height), case UFR 3-30
[82] in the ERCOFTAC database, is simulated. The computational domain consists of a single peak-
to-peak period of the periodic hill in the streamwise direction of dimensions 9.5h × 3.035h × 4.5h.
Periodic boundary conditions are applied in both the streamwise and spanwise directions. The
domain is discretized as shown in Table II with plus units based on the friction velocity at the
peak of the hill, or at x = 0. Simulation grids consist of approximately 0.9, 0.5, and 0.2 million
cells in total. The wall-resolved LES used for comparison [47] uses more than 13 million cells.
As in the channel, a streamwise body force (mean pressure gradient) is required to maintain a
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FIG. 9. Streamwise velocity contours for the periodic hill test case using (a) v2- f RANS and (b–d) AMS
using the coarse through fine grids of Table II. Instantaneous AMS snapshots are shown here to illustrate the
degree of resolved turbulence, mean velocity profiles for AMS are shown in Fig. 10.

constant bulk velocity. In this case it is applied only in the upper portion of the domain (y > 1).
This avoids a nonphysical interaction of the forcing with the inclined hill surfaces. The base RANS
model used for the periodic hill is a slightly modified version of the “code-friendly” [79] v2- f
model [74] [see Appendix A, Eq. (A3)]. Elliptic relaxation RANS models have the advantage of
not requiring wall distance or wall shear stress, making them attractive in simulations of complex
domains with unstructured grids. The low-Re k-ω model [83] would also be a potential candidate
for AMS application to complex geometries as it satisfies the requirements of providing both a
turbulent length and timescale and the model k captures near-wall and log-layer behavior. Contrary
to the channel results, where profiles were simply averaged over planes at a fixed y-location,
profiles presented here are obtained by averaging quantities (Sec. IV) using 50 samples over 20
flow-throughs. The pseudomean was found to be slowly fluctuating even after the simulation was
brought to a quasi-steady state after 20 flow-throughs. Further, the resolved stress as defined through
the pseudomean excludes low-frequency structures (see Sec. IV B). To enable calculation of the
total Reynolds stress to compare with experiments, the resolved stress is calculated directly through
〈uiu j〉 − 〈ui〉〈u j〉. Again, the simulation was initialized from the RANS solution.

Figure 9 shows streamwise velocity contours for both the baseline RANS v2- f model and
an instantaneous field from hybrid simulations for all grids, illustrating the scales of resolved
structures in the hybrid simulation. Comparisons of experimental, LES, RANS, and AMS mean
velocity profiles at various streamwise locations are displayed in Fig. 10. Clearly, AMS improves
RANS predictions, matching experiments and WRLES quite well for all resolutions considered.
Of primary importance to aerodynamic applications is the reattachment point at x ≈ 4. A gradual
improvement of the reattachment length is obtained with increasing resolution for AMS while the
RANS reattachment is delayed downstream to approximately x = 7. There is little difference in
reattachment length between the medium and fine resolutions, indicating consistency of the hybrid
solutions once sufficiently high resolution is achieved. In addition to the reattachment, the hybrid
simulations also improves the streamwise velocity profile nearly everywhere in the domain. In
particular, a drastic improvement is seen in the near-wall region at the top of the hill and everywhere
after the reattachment point on the bottom wall. The fine resolution considered here yields further
improvements near the wall and just past the reattachment point. Similar improvements to the mean
vertical velocity profiles with increasing resolution are also observed. Though the vertical velocity
is improved over nearly all the streamwise locations, at x = 0.5 and 1.0, the hybrid results are nearly
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FIG. 10. Mean streamwise (top) and vertical (bottom) velocity profiles normalized by the bulk velocity, ub,
offset by streamwise location normalized by the hill height, h, for all resolutions in Table II, along with data
from the experiments of [81] and WRLES of [47]. Note that the vertical velocity is multiplied by a factor of
four to enhance visibility.

identical to RANS. The likely reason for this is apparent from examination of the hybrid state in
this region.

Spatial distributions of the fraction of unresolved turbulence energy and the resolution adequacy
parameter are shown in Fig. 11 for the fine grid case. As expected, β = 1.0 in the RANS regions
near the walls. In the large hybrid regions throughout most of the domain β ≈ 0.5 with a minimum
of about 0.3 near the top of the channel. In the recirculation region, β increases to about 0.7 and very
nearly unity in the actual separation shear layer. This is a clear indication that the fine resolution used
here is not sufficient to resolve the fine near-wall structures that propagate into the shear layer. This
is the likely cause of the poor vertical velocity predictions in this region. However, the resolution
used here is sufficient to improve representation of all other flow characteristic, in particular the
separation, indicating resolving fairly large structures is all that is generally necessary for good
prediction of this flow. That is, representing the mixing of high-momentum upper channel fluid with
the recirculation region requires only coarse resolutions.

As expected, rM is very high in RANS regions near the wall. Interestingly, rM varies sig-
nificantly in hybrid regions from just below unity in the recirculation regions, to approximately
unity above the hill, to well above unity (rM ≈ 4) in the center of the channel. As discussed in
Sec. IV D, hybrid regions of rM > 1 indicate locally underresolved turbulent structures. Perhaps

014603-32



ACTIVE MODEL SPLIT HYBRID RANS/LES

FIG. 11. Mean contours of the unresolved turbulence energy fraction β (top) and resolution adequacy rM
(bottom) for the fine resolution simulation.

a combination of the resolved structures in this region being more three-dimensional than those
around the hill, coupled with the fact that the spanwise grid spacing is coarser than the streamwise
and wall-normal resolution, lead to this region of underresolution. However, this does indicate that
the modification to the M43 model [see Appendix B, Eq. (B4)] is not generally sufficient to remove
resolved turbulence as it is convected into underresolved regions. This suggests that introducing
additional terms to the resolution adequacy parameter that are sensitive to the convective gradient of
β or 〈rM〉, may be necessary. Fortunately, the mean flow seems to be tolerant of these underresolved
regions, as we see no local disagreement between the hybrid results and experiments in the mean
velocity profiles. Perhaps this insensitivity is indicative of Cr in (34) being overly restrictive. We
will evaluate this hypothesis in the next section. The local overresolution in the recirculation region
leads to continuous local forcing of resolved structures. The observed distribution of rM indicates
that, for complex geometries and flows, the convection of resolved turbulence leads to a continuous
need to locally remove excess resolved turbulence in some regions while also having to add resolved
fluctuations in others.

Despite the minor discrepancies described above, the AMS formulation yields nearly identical
results to the wall-resolved LES of [47] at a resolution reduction of more than an order of
magnitude and computational costs reduced by a factor of 30 or more due to larger timesteps. These
improvements are a direct result of the model split formulation being capable of providing improved
modeled stress predictions for arbitrary levels of resolved turbulence. This claim is supported by
examining components of the Reynolds stress tensor in Fig. 12. AMS stress profiles generally
show large improvements over RANS. However, some hybrid stress components become excessive.
For instance, the fine resolution results in excesses of 〈u′u′〉 and 〈v′v′〉 in the recirculation region.
The aforementioned sustained local addition of artificial fluctuations in the recirculation region
may contribute to these disagreements. Another possibility is the improved production used in the
RANS model (27) which enhances production of TKE in the separated shear layer from x = 0 to
x = 1. While correct, in the context of the RANS system and its numerous modeling limitations this
may cause an excess in TKE and the observed excesses in both normal stress components in the
vicinity of the shear layer at x = 2, which then diffuses downstream. This is another example of the
limitations imposed by the RANS model on the fidelity of the TKE. Shear stress, 〈u′v′〉, is uniformly
improved with the fine resolution deviating from the experimental values only in the separated shear
layer just after separation at x = 1.

Of course, the periodic hill has been simulated successfully by several other hybrid and bridging
frameworks. Successful simulations have been performed using DDES [84], PANS [85], and PITM
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FIG. 12. Profiles of the mean total (model plus resolved) Reynolds stress components normalized by the
bulk velocity, ub, offset by streamwise location normalized by the hill height, h, for all resolutions in Table II,
along with data from the experiments of [81] and WRLES of [47]. variance (top) vertical velocity variance
(middle) and Reynolds shear stress (bottom). The prime here indicates the total fluctuations, that is, using
fluctuations relative to the true mean. Note amplification by a factor of 10 for visibility.

[86] all at approximately 1 million cell counts using codes with second-order numerics. AMS and
these other hybrid methods are clearly more cost-effective than WRLES (Table II). Note that at
worst only a factor of two more equations are solved in AMS, due to the inclusion of RANS, than in
the dynamic Smagorinsky WRLES of [47], while obviating the dynamic procedure, making AMS
on even the finest grid at least an order of magnitude less costly. But it is appropriate to ask how the
cost of AMS would compare to a WMLES of the same problem. Assuming that the wall model is
valid in the separation, recirculation, and reattachment regions and that it does not require a separate
highly refined grid [10], we can estimate the cost for a WMLES based on resolution requirements
for boundary layers [8,87] in which the streamwise, spanwise, and wall-normal grid sizes should be
no larger than 8%, 2%, and 5% of the boundary layer thickness, respectively. The most restrictive
point is the top of the hill, where δ99 ≈ 0.08h, and for a structured grid, this will set the number of
grid cells in the wall-normal and spanwise directions throughout the domain. Streamwise spacing,
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however, can adjust to the local boundary layer thickness, which is so small for only about 0.5h
in the streamwise direction. Assuming that δ99 ≈ 1h in the remainder of the domain yields a total
required grid of approximately 12 million cells, which is only slightly smaller than that required in
WRLES [47]. The primary driver of this large cell count is the spanwise resolution requirement at
the top of the hill, which, due to the structured grid, is used throughout the domain. If one could use
a grid in which the spanwise and wall-normal resolution varies in the streamwise direction, then the
WMLES grid could be reduced to about 1.6 million cells, which is still larger than the fine AMS
grid in Table II. However, this analysis greatly understates the cost reductions of HRL relative to
WMLES for the types of external flows in which HRL are likely to be applied (e.g., an airfoil or
even aircraft). When applied to such flows, a HRL can represent the turbulent boundary layer over
most of the body with RANS, requiring very coarse LES resolution only in critical regions such as
near separation. In a WMLES, however, LES resolution is needed for all turbulent boundary layers,
which will be orders of magnitude more expensive.

Caveat the slightly excessive normal stress components just after the the separation, the reduced
grid sizes necessary with AMS are encouraging. In addition to revealing an avenue for formulation
improvement, this test case has shown the ability of AMS models to accurately predict complex flow
features at reasonable computational costs. The tolerance of underresolution (Fig. 11) indicates that
perhaps even more coarse resolutions could be used by relaxing the rM requirements. We examine
this possibility next.

C. Sensitivity to resolution parameter

The assumption that Cr = 1 in the evaluation of the available resolution in Eq. (34) has not
been strongly justified to this point. This coefficient essentially indicates how many grid lengths
are necessary to resolve some convecting turbulent structure. Clearly this coefficient should change
depending on the characteristics of the spatial discretization, including the order of accuracy and
dispersion relation [88]. For increasing order of accuracy and decreasing dispersion errors, small
structures approaching the grid scale are effectively better resolved, and hence a lower Cr should be
possible. Determining exact values of Cr for different order methods is beyond the scope this paper.
Motivated by the observed tolerance in the underresolved regions of periodic hill problem, we now
examine the effects of reducing Cr with the second-order finite volume numerics of CDP.

First, consider the coarse resolution channel with Cr = 0.5, 0.2, and 0.1 (Fig. 13). Lowering Cr

from unity to 0.5 results in a drop in the center channel β from just above 0.5 to 0.2 with resolved
turbulence moving towards the wall from y+ ≈ 500 to 100. Only a slight change in the log-layer
slope and middle channel mean velocity are observed. Both measures of the total TKE (modeled and
resolved plus model times β) move toward the DNS value with a small excess TKE at the center
of the channel. However, reducing Cr below 0.5 results in both distortions to the mean velocity
and large errors in TKE. Errors introduced into the TKE are so pronounced that the outer peak is
predicted to be larger than the inner with Cr = 0.1. Thus, it seems the small errors incurred with
Cr = 0.5 may be a tolerable exchange for the increase in resolved turbulence on a given grid, but
moving below Cr = 0.5 does not appear to be acceptable.

Next, we examine the effects of reduced Cr in the more complex case of the periodic hill.
Figure 14 shows how reducing Cr has the same basic effect as increasing the resolution with
Cr = 1. For Cr = 0.5, the reattachment location is well predicted though profiles at x = 6 and 7
still deviate slightly from the experimental data. Contrary to the channel, Cr = 0.2 actually gives
the best prediction of the mean streamwise velocity with values nearly identical to the experiment
and the fine resolution hybrid case with Cr = 1. However, the Reynolds stress components (Fig. 15)
are overpredicted as observed in the channel. This is most pronounced in the prediction of the
streamwise variance where the hybrid profiles are significantly higher than the experimental value
at x = 2, 3, and 4 in the recirculation region. The good mean velocity results for Cr = 0.2 appear to
be a result of error canceling. Again consistent with the channel results, lowering Cr to 0.5 appears
to introduce only small errors in exchange for the most resolved turbulence possible for a given
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FIG. 13. Mean streamwise velocity in wall units (a) for fully developed channel flow at Reτ ≈ 5200 along
with the fraction of unresolved turbulence β (dashed) and (b) turbulent kinetic energy k+ of the statistically
steady solution highlighting the sensitivity to the parameter Cr . In (b) the lines marked with + symbols are k+

obtained directly from the RANS model, while the unmarked lines are the time-averaged resolved turbulence
plus β times the RANS k+. Simulations have been run for approximately 80 flow-throughs.

FIG. 14. Mean streamwise (top) and vertical (bottom) velocity profiles normalized by the bulk velocity, ub,
offset by streamwise location normalized by the hill height, h, for only the coarse grid in Table II using different
Cr values, along with data from the experiments of [81] and WRLES of [47]. of four to enhance visibility.
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FIG. 15. Profiles of the mean total (model plus resolved) Reynolds stress components normalized by the
bulk velocity, ub, offset by streamwise location normalized by the hill height, h, for only the coarse grid in
Table II using different Cr values, along with data from the experiments of [81] and WRLES of [47]. Shown are
the streamwise velocity variance (top) vertical velocity variance (middle) and Reynolds shear stress (bottom).
Note amplification by a factor of 10 for visibility.

resolution. So it would seem that Cr = 1 is too conservative, and the value of 0.5 may be more
appropriate for the numerical schemes used here.

D. Alternative energy transfer models

To this point, we have used the tensor-diffusivity M43 model for the energy transfer portion of the
model split formulation. Though the model has been shown to perform well, many existing RANS-
based codes do not currently support a tensor diffusivity, making implementation and adoption of
the AMS method more difficult. It is therefore useful to investigate the performance of AMS using
more easily implemented models for τ e

i j . The three additional models discussed here are formulated
in terms of expected values so that they do not contribute to mean stress portion of AMS.
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FIG. 16. Mean streamwise velocity in wall units (a) for fully developed channel flow at Reτ ≈ 5200
along with the fraction of unresolved of resolved turbulence β (dashed), and (b) turbulent kinetic energy k+

of the statistically steady solution using different energy transfer models and the fine resolution of Table I.
In (b) the lines marked with + symbols are k+ obtained directly from the RANS model while the unmarked
lines are the time-averaged resolved turbulence plus β times the RANS k+. Simulations have been run for
approximately 80 flow-throughs.

The first such model (labeled α-based) was introduced in Sec. III B. Based on expanding the
total sugbrid term in light of arguments leading to eddy viscosity formulations, it was suggested
that the fluctuating gradient contribution to the model should scale with α as α(1 − α)νtotS>

i j
[see Eq. (23)], where νtot is the RANS eddy viscosity. This α dependence has the correct RANS
and DNS limits, since it vanishes where there are no resolved fluctuations (α = 1) and where
all turbulence is resolved (α = 0). The second simple energy transfer model (iM43 for isotropic
M43) is an isotropic version of the M43 model, with the length scale defined as the cell diagonal,
i.e., νe = C(M)ε1/3δ

4/3
diag where δdiag = (Mi jM ji )1/2. Finally, the third model (iSGET for implicit

subgrid energy transfer) is not formulated in terms of an explicit eddy viscosity. It is well known
that first-order upwinding of the convection term results in numerical dissipation. Motivated by the
streamwise-upwind Petrov-Galerkin (SUPG) method [65], we introduce upwinding depending on
a cell-Reynolds number, but in this case the Reynolds number is based on the subgrid turbulence
intensity, as determined from βktot (see Appendix C for details).

Results for these alternative models are presented in Fig. 16 for the fully developed channel.
Here the fine resolution defined in Table I is used because the energy transfer models are most
important with higher levels of resolved turbulence. The previously presented M43 results are also
included for comparison. While the anisotropic M43 model performs the best, both the α-based and
iSGET models also perform well. The α-based model produces only a slight deviation from the
log law centered around y+ ≈ 300, while iSGET slightly distorts the mean velocity profile above
y+ ≈ 2000. Interestingly, the α-based model results in the least resolved turbulence and iSGET
resolves significantly more turbulence above y+ ≈ 2000. The likely reason for the latter is that
we have not counted the numerical dissipation as part of the production of subgrid energy in the
definition of rM in Eq. 34. This is an inconsistency in the implementation of iSGET into AMS,
which would need to be corrected by calculating the mean rate of numerical dissipation introduced
by the upwinding. Many CFD codes, including CDP used here, are not instrumented for this. The
relatively good results obtained using this incomplete integration of iSGET into AMS suggest that
implementing the numerical dissipation diagnostics required to complete the AMS integration may
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be worthwhile. Perhaps correcting this would also improve the slight mean velocity distortion. The
good results with iSGET also confirm that the AMS formulation can be used even with implicit
LES models for the energy transfer. However, the iM43 model performs poorly, with a significant
shift in the log layer due to overprediction of the wall shear stress. The reason for this is clear from
the turbulent kinetic energy. While the other models produce similar ktot profiles, the iM43 results
in ktot values that are far too high for y+ � 1000. The higher turbulence levels enhance momentum
transfer towards the wall, increasing the wall shear stress. Thus, it appears the M43 model does
require the anisotropic form to perform well.

From the perspective of both flexibility in model selection and implementation of AMS, these
results are encouraging. The α-based model piggy-backs on the mean stress portion of the split
model while iSGET simply exploits commonly used numerical approximations. Neither model
requires a tensor diffusivity. As mentioned above, both these models are formulated in terms of
expected values of eddy viscosity or cell Reynolds number so they do not contribute to the mean
stress. In AMS, using energy transfer models with fluctuating eddy viscosities, e.g., Smagorinsky,
Vreman, WALE, etc., or a fluctuating cell Re in implicit methods, would require that the contribution
of the energy transfer term to the mean stress be computed, and the mean stress model adjusted
accordingly.

VI. CONCLUSIONS

The deficiencies of RANS models in representing complex flow features like separation, and
the expense of using LES to represent, for example, broad expanses of a boundary layer, make a
hybridization of these two model paradigms (HRL) compelling. Unfortunately, active development
of such HRL for more than 20 years has not resulted in widely applicable robust and accurate
HRL models. As detailed in Sec. II, there are four interrelated deficiencies common to most HRL
formulations that appear responsible for this state of affairs: first is the use of a single eddy viscosity
to represent both the mean subgrid stress and the transfer of energy to the small scales; second
is the blending of RANS and LES models to hybridize them; third is the application of RANS-based
transport models to fluctuating quantities; and last is reliance on passive self-generation of resolved
turbulence fluctuations when such fluctuations need to be introduced. These deficiencies lead to
common HRL failure modes, such as log-layer mismatch and model stress depletion.

The active model split (AMS) hybrid formulation described in Sec. IV was developed specifically
to eliminate these deficiencies. It does so by “splitting” the model into separate models to represent
the mean subgrid stress and the transfer of energy to the unresolved scales, and by actively stirring
where necessary to produce resolved fluctuations. The model splitting eliminates the overloading
of a single eddy viscosity with two roles, since separate models are used for mean stress and
energy transfer. It also eliminates blending because the model is essentially LES everywhere, with
a consistent model for the mean subgrid stress. This allows LES to be used with much coarser
resolution than would otherwise be required, since it is not necessary for the subgrid contribution to
the mean stress to be negligible, which is important since in HRL there will generally be regions of
very coarse LES. Further, model splitting allows RANS models to be used as designed, only for the
mean stress and acting only on average quantities. Finally, active stirring explicitly eliminates the
need for fluctuations to develop due to natural instabilities of the mean.

The model split formulation does not just address challenges in hybrid RANS LES modeling,
it also addresses similar challenges in LES. In particular, by eliminating the need for the resolved
fluctuations to carry the majority of the Reynolds stress, model splitting reduces the resolution
requirements for LES of inhomogeneous turbulent flows. Further, by reverting to RANS if the
LES resolution is not sufficient to represent near-wall fluctuations, the model splitting formulation
provides a natural wall representation for LES, as demonstrated in the channel results reported
in Sec. V A. One can argue then that model splitting like that described here is how LES should
generally be performed.

014603-39



HAERING, OLIVER, AND MOSER

The model tests in channel flow and the periodic hill indicate that the AMS formulation has
indeed addressed the primary shortcomings of HRL models. In the channel flow, it produces
generally consistent results for horizontal resolution ranging over a factor of at least 2.2, showing
both resolution independence and a lack of log-layer mismatch. Further, the AMS solution remains
consistent as the model transitions from RANS to LES in either time or space. In the more complex
periodic hill case, in which RANS performs poorly due to flow separation, the AMS formulation
produces mean velocity in good agreement with both experiments and wall-resolved LES, with a
grid that is up to 60 times smaller than the LES. These test results suggest that the AMS approach
is a solution to the common hybrid modeling issues identified above and successfully eliminates
hybridization artifacts such as modeled-stress depletion. Evaluations of the AMS formulation in
more complex flow scenarios are clearly warranted. These should include common aerodynamic
test cases with varying degrees of smooth wall separation and reattachment, and flows that are
unsteady in the mean.

While the model test results are quite good, the AMS solutions are not perfect. Further, there are
several details that must be specified to complete the definition of a particular AMS implementation.
For the model and tests presented here, these details were described in Sec. IV and are summarized
in Appendixes A and B, but further investigation and refinements would clearly be useful. The most
significant of these are listed here.

(1) Forcing formulation: The forcing formulation described in Sec. IV D is an ad hoc place
holder and has shortcomings. A formulation that is more realistic in structure, does not need to be
clipped, has a more controllable energy injection rate and can extract resolved energy when needed
would be a great improvement. Such improvements could allow more rapid transitions from RANS
to LES.

(2) Resolution inhomogeneity: As is well known, when LES resolution is inhomogeneous, the
filter operator that defines the resolved scales and the spatial derivative operator do not commute.
When there is a mean flow through the inhomogeneous grid, the commutator represents the transfer
of energy between resolved and unresolved fluctuations, as needed as the resolution changes.
This generally goes unmodeled, and its effects are particularly acute with HRL because hybrid
simulations are commonly done with strongly inhomogeneous grids; indeed, that is the objective.
Thus, the commutator needs to be modeled, and the forcing formulating may be useful in this regard.

(3) Energy transfer model: As discussed in Sec. IV C, the M43 model has been used here to
represent energy transfer to the unresolved scales. It accounts for the effects of resolution anisotropy,
but not turbulence anisotropy. In complex turbulent flows typical of HRL applications, turbulence is
expected to be highly anisotropic and LES resolution is generally coarse, so the subgrid turbulence
is anisotropic too. Energy transfer models that account for turbulence and grid anisotropy are thus
needed.

(4) Pseudomean definition: The pseudomean is defined in Sec. IV A as a causal temporal
filter with a time constant determined by the turbulence timescale k/ε. However, neither the filter
definition or the averaging timescale have been carefully investigated, so refinements are likely to
be appropriate. For example, in the presence of a mean velocity, the convective turbulent timescale
k3/2/(ε|〈u〉|) is also relevant. The appropriate averaging timescale is of some importance because,
as discussed in Sec. IV B, the interactions of the largest turbulent scales with the subgrid are poorly
described by gradient transport models, so these largest scale fluctuations are best included in the
pseudomean. Finally, the interaction of the pseudomean time averaging with mean unsteadiness
needs to be investigated.

These opportunities for further refinement are essentially to improve the LES component of the
AMS formulation. Despite the need for some refinements, by addressing the primary shortcomings
of most HRL formulations, AMS provides a framework for robust, predictive, and cost-effective
simulation complex turbulent flows.

014603-40



ACTIVE MODEL SPLIT HYBRID RANS/LES

TABLE III. Terms for generic RANS transport model (A1) for Chien k and ε RANS model.

φ k ε

Pφ Eq. 27 Cε1 f1
Pk
T

Dφ ε + 2ν k
δ2
w

Cε2 f2
ε

T + 2ν ε

δ2
w

e−0.5δ+

κφ ν + νt ν + νt
1.3

φwall 0 0
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APPENDIX A: RANS MODEL DETAILS

For completeness, the models used in the presented results are defined here. In Sec. V A Chien’s
k-ε model is used for basic channel flow. A modified version of the “code-friendly” variant [79] of
Durbin’s v2- f model [74] is used in Sec. V B for the periodic hill case. Note that we have considered
only incompressible flow here, and the density is assumed to be unity everywhere. Further, the
mean strain magnitude, 〈S〉 = (〈Si j〉〈Si j〉)1/2, is used and not the fluctuating strain magnitude. The
associated equations for turbulent kinetic energy, k, turbulent dissipation rate, ε, minimum turbulent
stress component, v2, and the redistribution rate, f , can be expressed with the generic form

∂tφ + 〈ui〉∂iφ = Pφ − Dφ + ∂k (∂kκφφ), (A1)

with each term provided in Tables III and IV. The Chien wall treatment is in terms of δ+, which is
defined in terms of the distance to the wall δw and the mean wall shear stress at the nearest wall:

δ+ = δw
uτ

ν
,

uτ = √
τw,

TABLE IV. Terms for generic RANS transport model (A1) for v2- f RANS model. The “1” subscript for
the εwall boundary condition indicates the values at the first wall-normal grid point. ∗Note there is no unsteady
or convective term in the elliptic f -equation.

φ k ε v2 f ∗

Pφ Eq. (27) Cε1
Pk
T k f − 1

(CLL)2 {Rf [ v2

k (C1 − 6) − 2
3 (C1 − 1)] − C2

Pk
k }

Dφ ε Cε2
ε

T 6 v2

k ε
f

(CLL)2

κφ ν + νt ν + νt
1.3 ν + νt 1

φwall 0 2ν( k
δ2
w

)1 0 0
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TABLE V. Eddy viscosity terms for Chien and v2- f RANS model.

Model Cμ ζ T

Chien 0.09 fμ max ( k
ε
, 6

√
ν

ε
)

v2- f 0.2 v2

k min ( max ( k
ε
, 6

√
ν

ε
), 0.6k√

6Cμv2〈S〉 )

τw = ν∂n〈u〉x;

however, the channel flows presented here have been normalized so that uτ = 1. Eddy viscosities
for each model can be expressed as νt = CμζkT with terms as shown in Table V. Additional Chien
wall functions are

fμ = 1 − e−0.0115δ+
,

f1 = 1,

f2 = 1 − 0.4
1.8 e− Re2

T
36 ,

where the turbulent Reynolds number is ReT = k2/(νε). Finally, the following coefficients close
Chien’s model:

Cε1 = 1.35, Cε2 = 1.8.

The length scale used in the f -equation for v2- f is given by

L = max

(
min

(k3/2

ε
,

k3/2

√
6Cμv2〈S〉

)
,Cη

ν3/4

ε1/4

)
, (A2)

and an additional timescale modification is made here with

R f = min
( 1

T
,
〈S〉
3

)
, (A3)

which was observed to not affect basic RANS behavior but to be necessary for use with AMS.
Without this modification, v2 becomes excessive in hybrid simulations. The general applicability of
this modification deserves further study. The model is complete with the following coefficients:

Cη = 70,C1 = 1.4,C2 = 0.3, CL = 0.23,

Cε1 = 1.4[1 + 0.005(k/v2)1/2], Cε2 = 1.9.

APPENDIX B: M43 MODEL DETAILS

The M43 model is discussed in detail elsewhere [72]. In short, a tensor eddy viscosity is used to
describe the dissipation anisotropy resulting from anisotropic filtering implied by the resolution. In
this way, unrealistic spectral energy pile-ups in coarse grid directions are avoided and the resolved
stress is not corrupted by commonly used stretched grids. The model assumes the unresolved
turbulence is in the Kolmogorov inertial range. Here we make the addition of a resolution adequacy
modifier and present the model form and provide coefficients appropriate for the second-order finite
volume numerics used in this work. The purpose of the modifier is to sensitize the model to potential
local underresolution, i.e., rM > 1. The basic M43 model, with the resolution adequacy modifier,
is

νE
i j = f (rM)C(M)ε1/3M4/3

i j , (B1)
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TABLE VI. Values of the fitting coefficients in (B3) based on the fitting method outlined in [72] as applied
to second-order finite volume numerics.

C◦
M 0.11

c00 0.9719
c10 0.06559
c01 0.07110
c20 0.04992
c11 −0.05690
c02 0.09797
c30 −0.01559
c21 0.002004
c12 0.002177
c03 0.03423
c40 0.001219
c31 0.0004179
c22 0.0004211
c13 0.001224
c04 0.003695

where the resolution tensor, Mi j has been discussed in Sec. IV, M4/3 is determined by raising the
eigenvalues of M to the 4/3 power, and the dissipation is taken directly from the RANS transport
models. Use of the total ε is not strictly correct, as it should be the subgrid dissipation, i.e., the
total less 2ν〈∂ ju>

i ∂ ju>
i 〉. However, for the coarse LES considered here, the resolved dissipation is

negligible. With an anisotropic diffusivity, the general expression for the energy transfer part of the
subgrid stress in the model split formulation takes the form

τ e
i j = νE

ik∂ku>
j + νE

jk∂ku>
i − 2

3νE
mnS>

mnδi j . (B2)

Let λM
3 be the smallest eigenvalue of M and λM

1 the largest. The coefficient C is a function of the
eigenvalues of M as

C(M) = C◦
M

4∑
i=0

4−i∑
j=0

ci jx
iy j, (B3)

where x = ln(r), y = ln[sin(2θ )], r2 = (λM̂
1 )2 + (λM̂

2 )2 and θ = cos−1(λM̂
1 /r). Coefficients appro-

priate for second-order finite volume numerics are provided in Table VI. Finally, the overall scaling
is modified as a function of the resolution adequacy as

f (rM) = max ( min (〈rM〉2, 30), 1). (B4)

This modification is motivated by the fact that rM is a length scale ratio. When rM > 1 while
resolved fluctuations are not zero, the simulation is locally underresolved by an amount indicated
by rM. Thus, the length scales in the M43 eddy viscosity are modified by this length scale ratio.
However, it is essentially ad hoc. A more principled formulation is needed.

APPENDIX C: UPWINDING-BASED ENERGY TRANSFER MODEL

The upwinding performed in Sec. V D for the iSGET model is based on SUPG [65] with an
upwinding weight of the form

w = 1

tanh(Re f )
− 1

Re f
, (C1)
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which is used to determine face values for the finite-volume approximation of convective term
gradient. When w is 0, a central-difference approximation is recovered, whereas w = 1 results
in first-order upwinding. However, instead of using a cell Reynolds number based on convection
velocity, here we define the cell Reynolds number for each grid face as

Re f = u<
rms|s|
ν

, (C2)

where u<
rms = (2/3βktot )1/2 is the subgrid turbulence intensity, and |s| is the distance between face-

sharing cell centers.
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