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Pressure-informed velocity estimation in a subsonic jet
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This work aims to estimate time-resolved velocity field that is directly associated
with pressure fluctuations in a subsonic round jet. To achieve this goal, synchronous
measurements of the velocity field and in-flow pressure fluctuations were performed at
Mach number 0.3. Two different experiment campaigns were conducted: the first experi-
mental campaign aims to explore the time-resolved dynamics of the axisymmetric velocity
components, and the second experiment focuses on the time-resolved, two-dimensional
velocity estimates on a streamwise plane. Two different methods were utilized to estimate
the input-output relation between velocity and in-flow pressure measurements. A hybrid
approach based on the spectral linear stochastic estimation and the proper orthogonal
decomposition was applied to set up the model in a linear manner, and a wavelet-based filter
was implemented to attenuate the noise level in the cross-correlation functions. In addition,
the pressure-velocity relationship was also described by neural network architectures based
on the multilayer perceptron (MLP) and bidirectional long-short-term memory (LSTM). In
both experimental sets, pressure fluctuations inside the flow are found to be connected
to the streamwise convection of large-scale coherent structures in the flow. A unique
advantage of the bidirectional LSTM method was found among all estimation schemes
and is also reported in this work. The estimation result represents the space-time dynamics
of the turbulent structures that are linked to the pressure wave packets in the flow, and it is
of great importance to understand the noise generation mechanism.

DOI: 10.1103/PhysRevFluids.7.014601

I. INTRODUCTION

The accurate depiction of spatial-temporal activities associated with acoustic sources in subsonic
free jet flows remains a challenging engineering problem in the fluid dynamics and aeroacoustics
communities. Although beam forming experiments [1–3] have shown that the region near the end
of the potential core is of great importance with respect to the noise generation, the time-resolved
(TR) dynamics of the source activities in this region cannot be directly obtained from this approach.
On the other hand, TR measurements from PIV [4,5] and hot-wire rakes [6,7] are capable to reveal
the temporal dynamics of coherent structures in velocity field of the flow. However, the distillation
of the portion of the velocity that directly contributes to the noise generation in the far field is still a
prerequisite to the evaluation of the noise source mechanisms and their control.

Stochastic estimation (SE), first proposed by Adrian [8], is one of the most widely applied
techniques to refine conditional eddies in turbulent flows from some dependent and correlated
inputs. As elucidated in Ref. [9], the goal of this technique is to utilize conditional information about
the flow in an attempt to estimate the correlated portion of the flow at other locations. Pioneering
work to use this techniques to estimate the time dependence of the conditional structures can be
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found in Refs. [10–13] among many others. On the basis of the traditional SE, the combination
of SE with the proper orthogonal decomposition (POD) has also aroused great interest among
researchers. In this modified approach the POD is utilized to provide reduced-order representations
of the complex turbulent flows, and the original problem becomes the estimation of time-varying
POD expansion coefficients [14–18]. In the practical problem of noise generated from turbulent
jets, various types of inputs have been applied in SE to better highlight the source activities inside
the jet shear layer, including the turbulent velocities [19], far-field acoustics [20], and near-field
pressure fluctuations [15,21]. Apart from the above-mentioned attempts, direct measurements of
in-flow pressure fluctuations [22–25] provide a novel opportunity to evaluate the dynamical events
directly related to the pressure fluctuations in the convective turbulent flow. Pressure fluctuations
in a subsonic jet have been experimentally measured and analyzed in Li and Ukeiley [26], in
which time-localized imprints of the wave packets [27–29] were effectively extracted from pressure
fluctuations in the jet shear layer.

With the booming development of computational power, modern machine-leaning (ML) methods
have come into the researcher’s field of vision for a wide range of applications. The potential
of ML-based techniques to solve complex fluid dynamical problems have been expounded in
Refs. [30] and [31]. For the practical problem associated with this work, i.e., the estimation of
TR velocity from sequential inputs at discrete locations, pioneering attempts have been made and
yield encouraging results. In a relevant application to the work reported here Tenney et al. [32]
trained a multilayer perceptron (MLP) to estimate pressure fluctuations in the near field of a
subsonic jet and the MLP outperforms the stochastic estimation with an improvement of accuracy.
In addition, architectures based on the recurrent neural networks (RNNs) [33–35] have also been
proposed to estimate or predict TR flow dynamics with sequential inputs in time. The RNNs
are specialized to reveal the temporal dynamics of the sequential inputs, which includes simple
RNN, long-short-time memory (LSTM), and gated recurrent unit (GRU), etc. These architectures
are highlighted by their time-dependent parameter transmission mechanism and have shown huge
success in relevant tasks involving time-dependent data such as music genre classification [36] and
stock price prediction [37].

This study focuses on the application of experimental measurements of in-flow pressure fluc-
tuations to elucidate the relationship between pressure and velocity in a subsonic axisymmetric
jet. Synchronized measurements of in-flow pressure with low-frame-rate PIV were performed to
reveal the connections between velocity and pressure at the sound-generating region. In addition,
time-resolved estimates of turbulent velocity associated to the in-flow pressure was realized via
SE and ML approaches. A hybrid approach combining SE and POD was adopted in this work,
and a wavelet-based filter was implemented to denoise the cross-correlation functions between
pressure and POD expansion coefficients that were directly calculated from experiments in an
attempt to better highlight the wave-packet structures [27] in the flow. Moreover, two neural network
architectures were also utilized in this work to provide time-resolved estimates of the velocity field
as an alternative approach. Detailed experimental procedure is described in Sec. II, followed by the
introduction of the estimation techniques in Sec. III, which includes the wavelet-filtered stochastic
estimation and two neural network architectures. Section IV reports the main results and a brief
summary in Sec. V concludes the paper.

II. EXPERIMENTAL SETUP

All experiments were carried out in the Anechoic Jet Test Facility at the University of Florida.
Details of this facility in terms of the anechoic room and the recently installed jet facility can be
found in Refs. [38] and [39]. The installed subsonic jet has a convergent nozzle with an exit diameter
of D = 5.08 cm and an area contraction ratio of 9:1. For all experiments in this work, the facility was
operated under the blow-down mode at M = 0.3, which corresponds to a jet exit Reynolds numbers
of ReD = 3.8 × 105. The air supply for the jet was controlled with a Fisher regulating valve coupled
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to a LabVIEW PID controller that allowed the jet exit Mach number to be maintained within 1% of
the desired value throughout a test.

The fluctuating static pressure inside the flow was measured using both a B&K 4138 1/8”
microphone and a GRAS 46DD 1/8” microphone. Each microphone was equipped with an aero-
dynamically shaped nose cone to avoid any contamination from total pressure fluctuations [40].
Although different vendor supplied nose cone configurations were adopted for the two microphones,
in which the B&K nose cone has a sharp tip and a shorter length and the GRAS nose cone has
a longer and blunt leading edge, Soderman and Allen [41] have shown that the installation of
both types of nose cone configurations will generate essentially negligible installation effect at
the frequency range of interest in this work (150 ˜20 kHz). More detailed discussion on in-flow
fluctuating pressure measurements using miniature microphones is available in Li and Ukeiley [26].
In the current work, the microphones were mounted on a 3D-printed, airfoil-shaped strut, which
allowed the microphones to be held at the jet centerline, upper, and lower jet lip lines, respectively,
while generating a minimal disturbance.

To reveal the relationship between pressure and velocity in the flow, pressure fluctuations
were synchronously recorded with velocity measured from PIV, but at different sampling rates of
80004 Hz and 12 Hz, respectively. A 135 mJ dual-cavity Litron Nano Nd:YAG laser with a wave-
length λ = 532 nm was used as the light source to illuminate the seeding particles. The flow was
seeded by an ATI Laskin nozzle aerosol generator, which produced particles with diameters around
0.25 µm, and the ambient air was seeded with a Rosco 1700 fog machine with particle diameters
between 0.25–0.5 µm. Processing the raw images in the current experiments was accomplished
using DaVis 8.3 from LaVision. The raw images were divided into interrogation windows, and
the velocity vectors were calculated through a correlation-based multipass routine with decreasing
interrogation window sizes. The interrogating window size for the final pass was 32 pixel × 32 pixel
with 75% overlap, which leads to a vector resolution of around 500 µm in all experimental sets. The
uncertainty of PIV measurements was implemented in DaVis 8.3 using the method in Ref. [42]. This
algorithm leads to an average uncertainty in the jet shear layer at around 4.8 m/s for cross-stream
stereoscopic measurements and 2.5 m/s for streamwise planar measurements.

Two experimental campaigns were performed in this work. The first experimental set synchro-
nizes stereo PIV with single-point pressure measurements on the jet centerline. The motivation
of this experimental campaign originates from the work of Tinney et al. [15], in which a vol-
umetric, time-resolved estimation of the turbulent velocity in a Mach 0.85 jet was obtained via
stochastic estimation. In Tinney’s work time-resolved pressure inputs were acquired in the upstream
hydrodynamic periphery, which are associated with the emergence of the convecting coherent
structures. Given the ability to directly measure the in-flow fluctuating pressure generated by
large-scale structures, the current experimental set aims to perform TR estimation of velocity
informed from turbulent pressure measured downstream of the estimation field. However, due to
the limited number of microphones that can be placed in the jet, it is not possible to resolve all
dominant azimuthal modes in the jet. On the other hand, the dominance of the axisymmetric mode
has been justified in Refs. [27,28,43,44] with respect to the sound radiation efficiency at shallow
emission angles. Following the argument in Refs. [43,45], the kinematic boundary conditions
will guarantee finite azimuthal mode-0 pressure on the jet centerline and zero pressure for all
higher-order modes. Therefore, as an initial attempt, the advantage of axisymmetry in round jets was
taken by placing the B&K microphone on the jet centerline to capture the temporal dynamics of the
axisymmetric events in pressure. The spatial feature of the axisymmetric velocity can be obtained
from stereo-PIV measurements on multiple cross-stream planes, and the energetic structures can be
extracted in complementary with the application of azimuthal-Fourier POD [15,39] to the mode-0
velocity components. A schematic of the experimental setup is shown in Fig. 1, where the B&K
microphone was placed on the jet centerline at x/D = 8 and PIV measurements were taken on
multiple cross-stream planes between x/D = 4 and 6.5 with a step increment of �x/D = 0.25.
For each streamwise location, 1600 PIV snapshots were recorded synchronously with time-lagged
pressure.
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FIG. 1. Pressure measurements synchronized with stereo PIV on cross-stream planes.

The second experimental set aimed to characterize space-time dynamics of two-dimensional
(2D) velocity fields on a streamwise plane (x-r) across the jet centerline. Planar PIV was utilized to
measure velocity vectors within 3 � x/D � 6.5, |r/D| � 1.2. Both B&K and GRAS microphones
were employed in this measurement campaign and were placed on the upper and lower jet lip
lines (r/D = ±0.5), respectively. As displayed in Fig. 2, the nose cone tips were aligned at
x/D = 6.6, which is just downstream of the velocity field of view. To avoid direct interaction
with laser light sheet, an out-of-plane displacement of 5 mm was implemented to the microphones
during the positioning process, and a total of 8000 PIV images were acquired in this measurement
campaign.

III. ANALYSIS TECHNIQUES

One important goal of this study is to estimate time-resolved velocity fields associated with
pressure fluctuations in the flow informed by non-TR PIV measurements in combination with
TR-pressure signals. A graphical illustration of this procedure is displayed in Fig. 3. As a data-driven
approach, Nt mutually independent velocity snapshots ui(x, tn) and the corresponding time-lagged
pressure signals pk (tn − τ ∼ tn + τ ) were first collected to construct the experimental data set.
Here k represents the kth microphone (k = 1, 2, . . . I) and τ is the maximum time lag. In both
experimental campaigns a fixed time lag τU∞/D = 38 was chosen to guarantee that the dominant
wave-packet structures are preserved in the cross-correlation functions, and U∞ represents jet
exit velocity. To find the reduced-order representation of the velocity field, the proper orthogonal
decomposition (POD) was applied to the measured velocity snapshots. The POD aims to find a
set of orthonormal eigenfunctions such that the ensemble-averaged turbulent kinetic energy in each
mode are optimally ranked [46]. For each velocity snapshot ui at any time t , the snapshot POD will

FIG. 2. Pressure measurements synchronized with planar PIV on a streamwise plane.
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FIG. 3. Visualization of PIV recording versus fluctuating pressure measurements, with the goal of estimat-
ing time-resolved velocity fields give pressure inputs. Green frames: PIV snapshots; Yellow frames: velocity
estimates via appropriate input-output models.

provide the following reduced-order, energy-ranked representation following Ref. [47]:

ui(x, t ) ≈
N∑

j=1

φ
( j)
i (x)a( j)(t ), (1)

where φ
( j)
i (x) is the eigenfunction of the jth POD mode, and a( j)(t ) represents the corresponding

POD expansion coefficient. N is the truncation of the first N th POD modes. Since the eigenfunctions
are invariant in time, the original problem is equivalent to the TR estimation of the POD expansion
coefficients â(t ). This problem can be addressed by the proposition of appropriate input-output
models between time-lagged pressure and POD expansion coefficients. Once the models are well
established, they can be deployed to estimate time-varying POD expansion coefficients from pres-
sure inputs, and the results will serve to reconstruct TR-velocity field in combination with spatial
POD eigenfunctions.

In this work two types of models were utilized to estimate the evolution of POD expansion
coefficients in time. The first model is the spectral linear stochastic estimation (SLSE). In addition,
two neural network architectures were also introduced in this work to model the input-output
relationship. Details of both techniques will be presented in the following.

A. Velocity estimation via SLSE-POD

The SLSE-POD is a linear approach, which aims to model the relationship between â and pk (t )
from the following convolution equation:

â( j)(t ) =
∑

k

∫ τ

−τ

h( j)
k (τ ′)pk (t − τ ′)dτ ′. (2)
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Here h( j)
k is the weighting function which requires to be determined from the experimental data set.

Zhang et al. [18] has shown that this linear model is equivalent to the following form after taking
the Fourier transform on both sides of Eq. (2):

A( f ) = H ( f )P( f ). (3)

Here A, H , P are Fourier transforms of â, [h1, . . . , hk]T , [p1, . . . , pk]T , respectively. A ∈ C(N × 1),
H ∈ C(N × I ), and P ∈ C(I × 1). Multiplying the complex conjugate P∗ on both sides of Eq. (3)
and taking the ensemble average E (·) over independent realizations, one will get:

Gpa( f ) = H ( f )Gpp( f ). (4)

Gpp ∈ C(I × I ) is a Hermitian matrix in which diagonal terms are the autospectral density functions
of pressure and off-diagonal terms are the cross-spectral density functions among different sensors.
Gpa ∈ C(N × I ) is the cross spectral density function between pressure and POD coefficients. A
direct solution of Gpa requires time-resolved velocity measurements, which are not available in the
current work. As suggested by Tinney et al. [48], an indirect approach was adopted in this study
from the definition of cross correlation between a and p:

Rap(τ ) = 〈a(tn)p(tn + τ )〉. (5)

Equation (5) indicates that Rap can be computed by orderly shifting the input signals with respect to
each velocity snapshot and ensemble averaging from all realizations. Since for stationary flows
Rpa(τ ) = Rap(−τ ), the cross spectral density function Gpa can be calculated by taking Fourier
transform of Rap(−τ ). Consequently, the optimized weighting function H ( f ) can be determined
from the following expression:

H ( f ) = GpaGpp
−1. (6)

Equation (6) is termed a spectral linear stochastic estimation (SLSE). The core difference
between the time-lagged LSE and the SLSE lies in the fact that the former method minimizes the
mean-squared error in a macro sense while the latter performs a series of least-square regressions
at all frequencies of interest. A thorough discussion of both techniques can be found in Tinney
et al. [48]. Once the linear model H ( f ) is optimized from the training data set, a TR prediction of
the velocity field can be performed using pressure signals of length T from the following equations:

P = FFT(p), (7)

Â( f ) = H ( f )P( f ), (8)

â(t ) = IFFT(Â). (9)

The output of Eq. (9), which is time-resolved estimation of POD expansion coefficients, will be
used in Eq. (1) to get spatial-temporal estimation of the velocity field.

Wavelet-based filtering (WF) of cross-correlation functions

Equation (5) provides an alternative approach to calculate cross correlation between pressure and
POD expansion coefficients from non-TR velocity data. However, in practice extraneous noise will
appear in the calculation of Rap, and will adversely influence the outcome from SE. To attenuate
the noise level, a wavelet-based filter was implemented in this work to zero out the portion of the
cross-correlation function, which possesses a weak or none wave-packet shape. The intermittent
nature of convective eddies in the jet flow, as well as the induced pressure field, motivates the
application of wavelet-based techniques to distill time-localized events, which are highly related to
the passage of coherent structures. Applications of wavelet-based filtering techniques to separate
coherent portion of pressure signals in the jet far field, near field, and flow field can be found in
Refs. [26,49,50] among many other locations. The validity of the wavelet-based filter originated
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FIG. 4. (a) A comparison of original and wavelet-filtered cross-correlation coefficient between the cen-
terline pressure fluctuations at x/D = 8 and the first POD mode of the axisymmetric streamwise velocity at
x/D = 4; (b) same functions in the Fourier domain.

from the fact that if the turbulent velocity (i.e., the dominant POD eigenfunctions) and pressure
fluctuations both possess wavelike behaviors driven by the same coherent events in the flow, the
cross-correlation function between the two quantities should also be dominated by some wave-
packet shape. Hence, a wavelet-based filter can be implemented to preserve the major wavelike
events in the cross-correlation function and effectively reject the noise. The continuous wavelet
transform (CWT) of a time sequence x is defined as a convolution between the original signal and
the wavelet function ψ translated to different scales s:

w(s, t ) =
∫ ∞

−∞
x(τ )ψ∗(

t − τ

s
)dτ. (10)

Here the asterisk (∗) indicates the complex conjugate. Details of the continuous wavelet transform
can be found in Refs. [51,52]. The implementation of the wavelet-based filter starts from the
transformation of Rap(τ ) into the time-scale domain, which will yield complex-valued wavelet
coefficients w(τ, s). Next, a real-valued threshold T is imposed to obtain the filtered wavelet
coefficients w′ such that:

w′(τ, s) =
{
w(τ, s), if |w(τ, s)| > T ;
0, otherwise. (11)

It has been shown in Ref. [49] that the choice of mother wavelets does not alter the major nature
of the filtered signal. In this work, the complex-valued Morlet wavelet function with the angular
frequency ω0 = 6 was selected to better highlight the wave-packet events in the correlation results.
The threshold was empirically selected as T = 0.3 max(|w|), and the filtered cross-correlation
function R′

ap was obtained from the inverse wavelet transform of w′ [51]. An exemplary comparison
between raw and filtered cross-correlation coefficients [see Eq. (19) for definition] is displayed
in Fig. 4(a), from which the filtered function is seen to better highlight the portion of the signal
with prominent wave-packet shape and high correlation level. The comparison is also performed
in the Fourier space in Fig. 4(b), where the cross spectrum is found to be significantly smoothed
between 0.1 � St � 1 after filtering. Although the spectral shape at higher frequencies does not
exhibit significant improvement, the noise amplitude is still significantly brought down. Since
current discussions primarily focus on the coherent structures in the jet shear layer, which governs
the hydrodynamic hump in the low-frequency range, the filtered results remains satisfying and will
be employed in the following discussions.

014601-7



SONGQI LI AND LAWRENCE UKEILEY

FIG. 5. POD coefficient estimation based on the MLP.

B. Velocity estimation via neural networks

For the experimental data set with synchronized streamwise PIV and two-point pressure mea-
surements, two neural network architectures were proposed in this study to establish the connection
between pressure and POD expansion coefficients as an alternative approach. The first NN ar-
chitecture is a many-to-one model, which originates from the multilayer perceptron (MLP) and
the schematic is presented in Fig. 5. For each POD mode m, the input layer collects time-lagged
pressure data from two in-flow microphones (p1

1 ∼ p1
N , p2

1 ∼ p2
N ). The subscripts 1 ∼ N denote the

time-lagged discrete data points and the superscripts 1,2 are the indices of the in-flow microphones.
Two fully connected linear hidden layers are included in the architecture, each contains 1024 hidden
units (N1 = N2 = 1024). In the hidden layers, linear operators are applied to upscale the input data
to a high-dimensional space. The output layer compresses the feature outputs from the last hidden
layer into a 1 × 1 scalar with a nonlinear tanh activation function, which represents the prediction
of the POD expansion coefficient (â(m)

t ).
The second NN architecture is constructed based on the bidirectional long-short-term memory

(LSTM) [53]. An LSTM cell is composed of three gates: an input gate it , an output gate ot , and a
forget gate ft . These gates allow LSTM cells to retain and process information over long periods
of time, hence minimizing the effect of a vanishing gradient [54]. Following the configuration in
Fig. 6(a), an LSTM cell at time t computes the following functions:

it = σ (Wixt + Uiht−1 + bi ), (12)

ft = σ (Wf xt + Uf ht−1 + b f ), (13)

gt = tanh(Wgxt + Ught−1 + bg), (14)

ot = σ (Woxt + Uoht−1 + bo), (15)

ct = ft 
 ct−1 + it 
 gt , (16)

ht = ot 
 tanh(ct ). (17)

In the equations above, xt is the input at time t , ht , and ct are the hidden state and the cell state at
time t . gt is the new memory cell. it , ft , ot are the input, forget, and output gates, respectively. σ

represents the sigmoid function, and 
 denotes the elementwise product. W , U , and b are unknown
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FIG. 6. (a) An LSTM cell at time t ; (b) the architecture to estimate POD coefficient based on bidirectional
LSTM.

parameters, which need to be learned from the training data set. In an LSTM layer the hidden state ht

only receive information from its past states yet the future states are not included. The bidirectional
LSTM [55] overcomes this issue by concatenating the outputs from two LSTM layers of opposite
directions. With this form, outputs from a bidirectional LSTM layer will encompass information
from both past and future states simultaneously.

Taking the advantage of LSTM on handling time sequence inputs, the second NN includes
two bidirectional LSTM layers and a feed-forward output layer, and the schematic is presented
in Fig. 6(b). Pressure signals measured from two microphones at any time t j are concatenated
into a 2 × 1 input vector p′

j = [p1
j, p2

j]
T . The laser burst time ti is indicated by the subscript

i for all variables. In this network, sequentially arranged inputs p′
j ∼ p′

N are fed into the first

bidirectional LSTM layer, which generates a series of hidden state vectors h(1)
1 ∼ h(1)

N . Then the
second bidirectional LSTM layer takes in these vectors and computes the new hidden state vectors
h(2)s in a similar approach. The output sizes of both hidden layers were set to 64. To better highlight
the information around the PIV burst moment which is highly related to the expected output, h(2)

i is
connected to the fully connected output layer to obtain POD coefficient estimates of the mth mode
â(m)

t , in which a linear mapping function as well as a tanh activation function is included in the
output layer.

Both NN architectures were trained based on the minibatch gradient descent optimization [56].
The experimental data set contains the modal expansion coefficients of the leading POD modes from
Ns = 8000 mutually independent velocity snapshots as well as the time-lagged pressure signals.
These samples were randomly shuffled, 80% were used to train the NN models and the rest for
validation. For each mode, pressure and POD coefficients were re-scaled into [−1, 1]. To evaluate
the model performance, estimation results from the training data â(m) were compared to the known
POD coefficients from PIV snapshots during the iterative training process. The mean-squared error
(MSE) loss was utilized as the criterion of the above-mentioned regression problem:

Lm = 1

Ns

Ns∑
i=1

(
a(m)

i − â(m)
i

)2
. (18)

In contrast to the flow direction of the input data, gradients of the loss function were back propagated
from the output layer to the neutral network to optimize the unknown weights and biases in the
architectures. The adaptive moment estimation (ADAM) [57] was chosen as the optimizer, and the
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FIG. 7. Energy distribution of the first five POD modes at x/D = 4.5, 5.5, and 6.5.

initial learning rate was set to 1e-3. Each model was trained with 200 epochs for every POD mode
and the size of every minibatch was set to 64. Models with the best performance on the validation
set were recorded during iterations and were used for the velocity estimation from pressure inputs.
The training process in this study was carried out on a cloud-based platform with four normalized
graphics processor units (NGUs).

IV. RESULTS AND DISCUSSIONS

In the following section the results of the modal analysis of the experimentally measured velocity
fields and pressure informed velocity estimation will be presented.

A. Estimation of axisymmetric velocity from cross-stream PIV and in-flow pressure measurements

As introduced in the previous section, single-point pressure measurements were taken syn-
chronously with stereo PIV on a series of cross-stream planes to investigate the space-time dynamics
of axisymmetric velocity components in the jet. To extract the axisymmetric velocity component
from the PIV snapshots, velocity fields measured under the Cartesian coordinate were first mapped
onto a polar grid such that the axisymmetric velocity (u(0)

x , u(0)
r ) can be extracted accordingly. We

note that although a small portion of the azimuthal velocity component u(0)
θ still exists after the grid

transformation, theoretical work from Batchelor and Gill [45] has shown that the mode-0 azimuthal
velocity should be zero in round jets. Hence the existing azimuthal component are believed to be the
residue introduced from the measurement uncertainty and is excepted from the following analysis.

After obtaining 1600 samples of (u(0)
x , u(0)

r ) at each streamwise location, the azimuthal-Fourier
POD [15,39] was performed to extract the most energetic spatial structures in the radial direction.
The only difference between the azimuthal-Fourier POD and the snapshot POD originates from
an additional weighting factor r in the eigenvalue decomposition problem, and the corresponding
strategy to tackle this problem has been thoroughly explained in Ref. [6].

As suggested by Tinney et al. [15], a 90◦ phase difference exists between the streamwise velocity
and its radial counterpart. To better preserve the phase difference between both velocity compo-
nents and maintain the completeness of the turbulent structures in each direction, the scalar-based
azimuthal-Fourier POD was performed on each velocity component individually. Figure 7 presents
the ensemble-averaged turbulent kinetic energy distribution of the first five POD modes at three
representative axial locations from the streamwise and the radial POD, respectively. Strong mode-1
dominance for both velocity components can be observed at all three streamwise locations, and the
superposition of the first two POD modes takes up around 60% of the energy in the streamwise
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FIG. 8. Streamwise evolution of the first two POD eigenfunctions.

direction and 80% in the radial direction. These results imply that at each cross-stream station, the
dominant spatial features of the axisymmetric turbulent velocity can be effectively captured from
the first few modes of the reduced-order representation, and this property will be utilized to greatly
simplify the computational cost of the stochastic estimation.

Figure 8 shows the shapes of the first two eigenfunctions obtained from the azimuthal-Fourier
POD. The streamwise POD eigenfunctions are seen to evolve along the jet axis while the radial
modes will slightly tilt toward the ambient side at downstream locations. The most energetic
structures of the first streamwise POD mode are mostly concentrated within r/D � 0.5, and the
first radial mode highlights energetic events between r/D = 0.2 ∼ 0.8. Furthermore, the second
streamwise mode represents the convection of some radially compact turbulent structures around the
jet lip line, accompanied by two opposite-signed side lobes at relatively low amplitudes. Meanwhile
the second radial eigenfunction depicts the appearance of injection-ejection events across the jet lip
line.

Since SLSE-POD is a correlation-based technique, the time-lagged cross-correlation coefficients
between the first POD modal expansion coefficients and the in-flow pressure fluctuations (Cap) are
first examined, and the results at x/D = 4, 5, 6 are presented in Fig. 9. Here Cap is defined as:

Cap(τ ) = 〈a(tn)p(tn + τ )〉n

rms(a)rms(p)
. (19)

In an attempt to focus on the coherent, large-scale motions inside the flow, pressure in Fig. 9 was
low-pass filtered at 2000 Hz, which corresponds to a Strouhal number of St ≈ 1. In all instances,
wavelike patterns can be clearly observed from cross-correlation curves, and the correlation level
gradually increases as the velocity measurement plane moves closer to the pressure probe. For both
the first streamwise POD mode and the first radial POD mode, the peak values of |Cap| always
exhibit similar amplitudes at each axial location, and an apparent phase difference of ∼90◦ between
two curves can be clearly identified. This is consistent to the observation in Ref. [58] where the axial
velocity was found to be in antiphase with in-flow pressure fluctuations whereas the radial velocity
was 90◦ out of phase to pressure.

The space-time correlations Cap calculated from all 11 cross-stream measurement planes are
presented in Fig. 10. Since the correlation with higher-order POD modes will decay rapidly, only
results from the first POD mode is shown in the figure. Similar to what has been observed in Fig. 9,
wave-packet structures can be found at all streamwise locations with a nearly uniform convective
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FIG. 9. Cross-correlation coefficients between the first POD expansion coefficients and pressure (Cap) at
x/D = 4, 5, 6. Pressure low passed at 2000 Hz (St ≈ 1).

speed. To quantify this convective behavior, the propagative pattern in Fig. 9 is compared to an
empirical convective speed of Uc = 0.7U∞ [59], which is represented by dashed lines. Both velocity
components yield good agreement with the empirical slope, which indicates that Uc = 0.7U∞ is a
good representation of the convective speed of the axisymmetric wave packets.

After obtaining cross-correlation functions between the POD expansion coefficients and in-
flow pressure fluctuations at all cross-stream planes, the SLSE-POD was employed to obtain
time-resolved estimation of the POD expansion coefficients with the use of the wavelet-based
filter discussed above. Figure 11 presents the time-resolved estimates of the first POD expansion
coefficients from this hybrid strategy. To make the results comparable, the estimation was realized
by using the same pressure signal segment as the unconditional input for both streamwise and radial
estimates. The most dominant feature from the reconstruction is the streamwise propagation of wavy
patterns in time, which confirms that the convective nature of the dominant axisymmetric turbulent
structures can be precisely captured from this correlation-based estimation technique. In addition,
the ∼90◦ phase difference is consistently observed between the streamwise expansion coefficients
and the radial ones. The candidate of the convective speed, Uc = 0.7U∞, is also plotted in the figures
by the dashed lines, which are seen to match well with the slope of the traveling waves. However,
since SLSE-POD grounds on the correlation between pressure and POD expansion coefficients,
the estimation can only extract the portion of the input that is linearly correlated with the output.
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FIG. 10. Evolution of cross-correlation coefficient Cap between the first POD mode and pressure fluctua-
tions. Pressure low passed at 2000 Hz (St ≈ 1) and dashed lines represent an empirical convective speed of
Uc = 0.7U∞.

Therefore, as the PIV plane moves upstream, the coherency between the downstream pressure and
the POD expansion coefficients is gradually weakened, which will directly lead to an attenuation
of the output amplitude. Hence, the spatial envelope of the axially evolving wave-packet shape can
not be fairly captured from this set of experiments. In order to better describe the TR amplitudes,
more input information from upstream locations might be necessary.

Figures 12 and 13 display the global reconstruction of time-resolved axisymmetric velocity using
the first five POD modes. The space-time evolution of coherent structures can be clearly observed in
the figures across the sequential instances. The size of each eddy is on the order of the jet diameter
D. In addition, the streamwise velocity is oppositely signed across the jet lip line as displayed in
Fig. 12, which is a result of the strong shear events inside the flow.

Figure 14 presents the comparison between the estimated streamwise velocity spectra as well
as the velocity spectra measured from the hot-wire anemometry at three different locations on the
jet centerline. Since the high-frequency content can not be fairly retrieved from wavelet-filtered
cross-correlations, only the low-frequency portion (St < 1) of the estimated spectra are presented.
In general, the velocity spectra from estimation can faithfully reflect the trend of the measured

FIG. 11. Estimation of the space–time dynamics of the mode-1 POD expansion coefficients via SLSE-
POD. Dashed lines represent Uc = 0.7U∞.
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FIG. 12. Five-mode reconstruction of the streamwise turbulent velocity. Velocity is scaled by the jet exit
velocity U∞.

spectra in the range of 0.1 � St � 0.5, which can be described as a broadband hump governed by
large-scale structures. The discrepancy of the overall amplitude between the estimation results and
the measured ones comes from the fact that only the portion of velocity correlated to pressure inputs
will be encompassed in the estimated spectra. The closer the PIV plane is to the pressure probe,
the larger the coherency between the pressure and dominant POD modes, and it will result in less
amplitude discrepancy between measurement and estimation. At St > 0.5, the estimated velocity
spectra exhibit a steeper decaying rate than the real spectra. Since the leading POD modes only
contribute to the large-scaled turbulent structures in the flow, the rolling off of the spectra, which is
dominated by the fine-scale turbulence, can not be well captured from the estimation technique.

B. Estimation of 2D velocity from streamwise PIV and in-flow pressure measurements

In this section experimental results from synchronously measured two-component PIV and
in-flow pressure signals on the upper and lower jet lip lines will be utilized to provide time-resolved,
pressure-informed velocity estimation on the streamwise plane. As a priority to detailed analysis,
pressure spectra from both GRAS and B&K microphones were first examined and results are
displayed in Fig. 15. Although different aerodynamic designs are employed to the nose cones
of the two microphones, careful examination shows high level of consistency with respect to the
spectral shapes from both microphones. The slight discrepancy between the two pressure spectra,
which is less than 2 dB throughout the frequency range shown in the figure, might arise from the

FIG. 13. Five-mode reconstruction of the radial turbulent velocity. Velocity is scaled by the jet exit velocity
U∞.
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FIG. 14. A comparison of the measured streamwise velocity spectra versus spectral estimates from
wavelet-filtered (WF) SLSE-POD on the jet centerline. Velocity spectra are scaled by the jet exit velocity
U∞.

positioning uncertainties of microphones (±0.5 mm in all directions and 1◦ in angle), the different
frequency response characteristics of microphones, and the different aerodynamic design of nose
cones. Furthermore, self-noise induced from one in-flow microphone is not noticed to distort the
pressure spectrum measured from the other microphone, indicating the mutual interaction between
both microphones is negligible compared to the intensive fluctuating pressure level generated by the
jet turbulence.

To extract dominant spatial features from the PIV measurements, the snapshot POD was per-
formed to decompose the two-dimensional velocity vectors into a series of energy-ranked modes.
Figure 16 presents the ensemble-averaged turbulent kinetic energy distribution as well as the
cumulative sum of the first 50 POD modes out of the total of 8000 modes. The energy is seen
to be distributed over a wide range of POD modes in a descending order, and around 55% of the
total energy is contained in the first 50 modes, which will be used to reconstruct the time-resolved
velocity fields from SLSE-POD and machine-learning approaches. Shapes of the streamwise and
radial components of the leading POD modes are presented in Fig. 17 and Fig. 18, respectively.
The positive and negative regions of eigenfunctions in Fig. 17 demonstrates that the most energetic
region under the current field of view concentrates inside the jet shear layer. The first two POD
modes, for example, represent the appearance of large-scale structures spanning between x/D = 5–
6.5. Each of them highlights a structure on one side of the jet axis such that the combination of the
two modes is capable of representing axisymmetric and antisymmetric patterns of the structures at
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FIG. 15. A comparison between pressure spectrum measured from the B&K microphone at x/D = 6.6,
r/D = 0.5 and the one from the GRAS microphone at x/D = 6.6, r/D = −0.5.

the largest scale. Successively, higher-order POD modes are gradually governed by smaller-scaled
features, which are still centered around the jet lip lines. Although none of the leading POD modes
are strictly symmetric or antisymmetric about the jet axis, the combination of the dominant POD
modes is capable to represent turbulent structures with any symmetrical properties in a similar
approach.

The cross-correlation coefficient, Cap, reveals the relationship between the dominant POD
modes and the measured pressure fluctuations and are displayed in Fig. 19. Since the pressure
measurements were performed downstream of the PIV window, the maximum magnitudes of cross
correlation always appear at some positive time lag. In general, the amplitude of the correlation
coefficient is relatively low (less than 0.22), and will gradually decrease for higher-order POD modes
as the dominant spatial structures become smaller-scaled vortices that are less influential to the
pressure on the jet lip lines. Since symmetric properties can not be established from individual POD
modes, correlations with lip-line pressure measurements are not fully symmetric or antisymmetric
as well. One representative example is POD mode 4, in which a clear wavelike pattern with a peak
value around 0.2 can be observed in the correlation with pressure on the upper lip line, however,

FIG. 16. Energy distribution and the cumulative sum of the first 50 POD modes under the current field of
view.
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FIG. 17. Streamwise eigenfunctions of the leading POD modes. (a)–(i) correspond to POD modes 1–9.

the correlation with pressure on the lower lip line is at a low level overwhelmed by the background
noise.

Results of velocity estimation from stochastic estimation and machine-learning approaches will
be discussed in the following. The learning outcome of the two neural networks are first examined
by evaluating the training and validation losses of each POD mode, as presented in Fig. 20. For all
modes, training and validation losses for both the MLP and bidirectional LSTM architectures are
always within the range of 0.04–0.08. However, since the POD expansion coefficients are energy
ranked, errors appearing in the leading POD modes will be more likely to influence the estimation

FIG. 18. Radial eigenfunctions of the leading POD modes. (a)–(i) correspond to POD modes 1–9.
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FIG. 19. Cross-correlation coefficient Cap between POD expansion coefficients and pressure fluctuations.
The B&K microphone is on the upper lip line and the GRAS microphone is on the lower lip line.

results in velocity than higher-order modes. The evaluation of validation losses, which is not directly
involved in the training process, will constitute the generalization error of the training progress.
Validation losses for the both NN schemes are almost identical to each other although errors from
the bidirectional LSTM scheme are always slightly lower comparatively. The pronounced similarity
of loss functions between two neural networks indicates that the primary relationship between POD
expansion coefficients and time-lagged pressure have been effectively captured from both well-
trained networks.

Figure 21 displays pressure-informed estimation of POD expansion coefficients from both NN
architectures for modes 1, 5, 10, 50, respectively. Despite the expansion coefficients for each mode
being scaled into [−1, 1] before training, Fig. 21 manifests that the amplitude of prediction results
will gradually reduce with increased POD modes. This is consistent with the fact that higher POD
modes representing smaller-scaled turbulent structures are less coherent to the pressure fluctuations
in the flow. For POD mode 1 and mode 5, prediction results from MLP and bidirectional LSTM
show remarkable similarity with respect to large scale fluctuations, in which locations of crests and
troughs in time are mostly identical to each other although discrepancies on the amplitudes can

FIG. 20. Evaluation of training and validation losses from both NN architectures.
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FIG. 21. Time-varying estimation of POD modal expansion coefficients.

be observed. Prediction results from both schemes become less similar for higher-order modes,
and the temporal evolution hardly matches each other at mode 50. As a measure of similarity
between estimations from the two NN architectures, time-lagged cross-correlation coefficients
between outputs from both networks are presented in Fig. 22 using the same pressure input. High
correlation levels can be observed for the POD mode 1 and 5, which suggests strong consistency

FIG. 22. Cross-correlation coefficient between estimated expansion coefficients from two machine learning
schemes.
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between estimations of the leading POD modes from both neural network architectures, and the
dominant input-output relation between pressure and the most energetic coherent structures can be
well captured from both trained networks. A decreased correlation level is observed for higher-order
POD modes, in which the correlation level decays from 0.42–0.08 from mode 10 to mode 50.
Since the correlation between pressure and smaller-scaled vortices becomes weaker, the influence
of difference NN architectures to the prediction outcomes starts to dominate and greatly reduces
the similarity level. Nevertheless, the wave-packet shapes, as well as the high symmetricity shown
in the cross-correlation coefficients, both indicate that both NN schemes are able to represent the
dynamics of the leading POD modes (i.e., dominant coherent structures) associated with in-flow
pressure to some extent.

The streamwise velocity spectra estimated from machine learning architectures are compared to
the ones from SLSE-POD, and results at three representative streamwise locations are shown in
Fig. 23. Direct measurements from a hot-wire measurement are also superimposed on the figures.
Given the relatively high noise level between pressure and POD expansion coefficients, the wavelet-
filtered (WF) SLSE-POD is also utilized to generate the spectral estimation from the wavelet-filtered
cross-correlation. For all cases, intensive noise can be observed in the SLSE spectra after St =
0.5, which is caused by the noise contained in the raw cross-correlation functions. Although the
implementation of a wavelet filter is able to attenuate the noise level by several orders of magnitude,
the empirical choice of the filter threshold will impair the rolling off of the spectra and the curves
will stop decaying after St = 1. In contrast, the high-frequency noise is effectively damped in the
spectra predicted from both NN architectures. The bidirectional LSTM spectra always present a
steeper rolling-off rate than the MLP spectra and decay rates from both networks are faster than the
ones from the hot-wire measurements. Since the rolling off of velocity spectra is contributed from
the less-organized fine-scale turbulence, the POD-based NN architectures, which only preserve the
linear combination of the large-scale spatial features to reproduce the flow field, are reasonable to
possess a faster decay than the measured spectra. These facts also confirm the effectiveness for NN
architectures to distill useful information associated with the dominant spatial features from the
pressure inputs.

From St = 0.1–0.6 where large-scale coherent structures are dominant, four estimation tech-
niques are observed to generate similar spectral estimations. The high degree of similarity between
spectral estimates from neural networks and linear stochastic estimations proves that relation
between pressure and the large-scale structures appearing in the low-frequency range is predom-
inantly linear. Spectral densities from SLSE-POD and WF-SLSE-POD are seen to be the closest
to each other, which verifies the assumption that the wavelet-filtering process will preserve the
prevailing wave-packet features from the noisy cross-correlation functions. As for NN architectures,
velocity spectra predicted from the bidirectional LSTM scheme are more consistent to the denoised
WF-SLSE-POD results. Since it has been verified that the WF-SLSE-POD is capable to preserve
the most significant wave-packet features in the input-output models, the similarity between bidirec-
tional LSTM and WF-SLSE-POD demonstrates great advantage of this neural network architecture
given the fact that this method can produce high-quality spectral estimates and no filtering threshold
needs to be determined at the same time in an empirical manner. Such similarity also validates
the general advantage of RNN-based neural networks to effectively handle sequential input data to
extract dominant features.

When comparing to the hot-wire measurements, all estimation methods will underestimate
the overall spectral density in general. This is consistent with the fact that only the portion of
velocity associated with pressure inputs can be well reflected from the estimations. The differ-
ence in amplitude will be gradually narrowed down when x moves from 4D to 6D, indicating a
better relation between pressure and velocity can be constructed when the streamwise distance
is confined. For large-scale events at x/D = 4, one may observe that the hump between St =
0.2 and 0.6 on the jet lip line, as well as the broadband event at St < 0.3 on the jet centerline,
are both faithfully reflected from spectral estimations. However, at 5D and 6D downstream, a
discrepancy on the peak location is found on the jet centerline although the broadband events
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FIG. 23. A comparison of velocity spectra from neural networks and stochastic estimations.

between 0.1 < St < 0.3 on the jet lip line can still be fairly captured. For example, at r = 0, the
measured velocity spectrum peaks around St = 0.3 at x/D = 5 and a flattened peak is seen to
form between 0.1 < St < 0.3 at x/D = 6. However, for both stochastic estimations and neural
networks, velocity estimates will peak around St = 0.4 [see Figs. 23(c) and 23(e)]. Since the
centerline velocity estimation is informed by the pressure recorded on the jet lip lines, the spectral
estimations only represent the part of centerline velocity that is related to the pressure fluctuations
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FIG. 24. Instantaneous velocity reconstruction from bidirectional LSTM. White dashed lines depict the jet
potential core.

on lip lines. In other words, the peak location of spectral estimates will not necessarily match
the actual peak location without knowing related information from pressure inputs. The addition
of pressure measurements on the jet axis should be capable to resolve the shift of the peak
location.

Figure 24 shows time-resolved velocity reconstruction from the bidirectional LSTM using the
first 50 POD modes, which corresponds to the portion of the overall velocity field that is associated
with pressure measured downstream. The jet potential core is also depicted in all instances based on
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FIG. 25. 2D vorticity (ω D
U∞ ) of the reconstructed flow field from bidirectional LSTM overlaid by velocity

vectors.

the jet core length of 5.73D. The core length was calculated from the mean velocity profile based on
the definition in Ref. [60]. Figures 24(a) and 24(b) show the temporal evolution of the streamwise
and radial velocity components, respectively. Following the time sequence, the emergence, growth,
and orderly convection of the large-scale structures along the streamwise direction can be clearly
observed inside the jet shear layer in Fig. 24(a), and these structures corresponds to the streamwise
propagation of wavelike patterns in Fig. 24(b) where regularly distributed structures in the radial
direction move oppositely to their neighbors. As these structures move downstream, one can clearly
observe the growth and intensification of the turbulent eddies. A comprehensive evaluation of the
velocity reconstruction is presented in Fig. 25 in which the 2D vorticity, ω = ∇2D × ui is displayed
and velocity vectors are overlaid on top. Before the end of the potential core, the dominant feature is
the growth and streamwise convection of the vortical structures. The appearance of counterrotating
vortex pairs can also be observed inside the jet mixing layer. At the same time, the vorticity is at an
insignificant level inside the potential core, which is typically accepted to be irrotational although
flapping motion can be detected by the end of the jet core. Around the end of the jet core, vortical
structures on both sides of the potential core are merged into some larger structures spanning
across the jet centerline and keep traveling with the flow. These eddies are highlighted not only
by their large sizes but also by the high overall vorticity magnitude. Since this pressure-informed
estimation filters out the part of the flow that is associated with the downstream pressure, these
turbulent structures emerged downstream of the jet core are highly associated with the pressure wave
packets in the flow, which serve as a noise sources propagating to the acoustic far field according to
Ref. [61].

V. CONCLUSIONS

In this study, time-resolved dynamics of turbulent structures inside the jet mixing layer were
estimated based on PIV and downstream in-flow pressure measurements. Stochastic estimation
methods and neural networks were proposed to model the input-output relationship between in-
flow pressure fluctuations and POD expansion coefficients. For the implementation of stochastic
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estimation, a wavelet-based filter was also utilized to extract the dominant wave-packet structures
from the noisy cross-correlation functions obtained from the experiments.

Two sets of experiments were performed in combination with the proposed estimation archi-
tectures. The space-time dynamics of the axisymmetric velocity components was characterized
from cross-stream PIV measurements as well as downstream pressure measurements on the jet
axis. For axisymmetric velocity components, strong mode-1 dominance in space can be observed at
all streamwise locations from the azimuthal-Fourier POD. Cross-correlation between the pressure
and the first POD expansion coefficient shows wavelike behavior in the flow at a convection speed
of 0.7U∞. Time-resolved estimation of the axisymmetric velocity from wavelet-filtered SLSE-POD
reproduce the convective nature of the axisymmetric velocity components. A comparison to the
measured velocity spectra from hot-wire measurements demonstrates the capacity of this hybrid
approach to faithfully reflect the broadband hump in the low-frequency range although a discrepancy
in the overall spectral amplitude is observed.

Pressure measurements on the upper and lower jet lip lines were synchronously performed with
streamwise planar PIV to obtain TR estimates of two-dimensional velocity vectors on a streamwise
plane. The most energetic spatial structures are seen to distribute within a wide range of POD modes,
and the cross-correlation coefficients between lip-line pressure and the dominant POD modes are
at a relatively low level. Stochastic estimations and neural networks were employed to reconstruct
the 2D flow field using the first 50 POD modes. All estimation approaches utilized in this work are
capable of highlighting the broadband peak at low Strouhal numbers in spite of the existence of
amplitude discrepancies compared to the measured spectra. In the comparison of velocity spectra
estimates, the unique advantage of bidirectional LSTM architecture to highlight the broadband
hump as well as attenuating the high-frequency noise is observed. TR velocity reconstruction from
bidirectional LSTM highlights the streamwise convection of the coherent structures inside the jet
mixing layer as well as the formation of larger eddies downstream of the jet potential core. These
results are beneficial to enhance the understanding of the space-time dynamics of the acoustic
sources in the jet flow field, and the resulting velocity field estimates could be used to calculate the
pressure field via Poisson’s equation [62], which allows one to evaluate the pressure wave packets
in the flow.
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