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Swimmer dynamics in externally driven fluid flows: The role of noise
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We theoretically investigate the effect of random fluctuations on the motion of elongated
microswimmers near hydrodynamic transport barriers in externally driven fluid flows.
Focusing on the two-dimensional hyperbolic flow, we consider the effects of translational
and rotational diffusion as well as tumbling, i.e., sudden jumps in the swimmer orientation.
Regardless of whether diffusion or tumbling are the primary source of fluctuations, we find
that noise significantly increases the probability that a swimmer crosses one-way barriers
in the flow, which block the swimmer from returning to its initial position. We employ an
asymptotic method for calculating the probability density of noisy swimmer trajectories in
a given fluid flow, which produces solutions to the time-dependent Fokker-Planck equation
in the weak-noise limit. This procedure mirrors the semiclassical approximation in quan-
tum mechanics and similarly involves calculating the least-action paths of a Hamiltonian
system derived from the swimmer’s Fokker-Planck equation. Using the semiclassical tech-
nique, we compute (1) the steady-state orientation distribution of swimmers with rotational
diffusion and tumbling and (2) the probability that a diffusive swimmer crosses a one-way
barrier. The semiclassical results compare favorably with Monte Carlo calculations.

DOI: 10.1103/PhysRevFluids.7.014501

I. INTRODUCTION

The advection of self-propelled particles in externally driven fluid flows presents many surprises
when compared to passive advection. Perhaps the biggest surprise is that the transport efficiency of
swimmers does not simply increase as swimming speed increases. For example, when swimmers
are placed in a two-dimensional (2D) oscillating vortex array exhibiting chaotic mixing, faster
swimming does not always lead to faster transport [1,2]. Even in a steady 2D vortex array, swimmer
trapping inside vortices may be enhanced when the particles swim faster, depending on the shape of
the particle [3]. Similarly, transport efficiency does not simply increase as a swimmer’s rotational
diffusivity increases, either. In fact, the opposite occurs in the 2D oscillating vortex array [2,4].
It is reasonable to expect that the more a swimmer’s propulsion direction fluctuates, the smaller
its net displacement in a fixed amount of time, and hence the lower the transport efficiency.
Unexpectedly, however, the presence of both rotational noise and shear flow can effectively trap
swimmers in certain regions, as has been experimentally observed for swimming bacteria [5] and
swimming phytoplankton [6] in a channel flow. While numerous studies have investigated the spatial
distributions of noisy swimmers in a variety of flows [7–11], a basic understanding of how rotational
noise alters swimmer trajectories is lacking. Our objective in this paper is to develop a theory that
quantifies the effect of noise on swimmer dynamics in externally driven fluid flows, especially near
transport barriers.

Recently, transport barriers analogous to separatrices—and the related invariant manifolds—
of passive advection were identified for self-propelled particles in fluid flows [12]. Perfectly
smooth-swimming particles are blocked by so-called swimming invariant manifolds (SwIMs) in
position-orientation space. The SwIMs project to one-way barriers, called SwIM edges, to swimmer
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FIG. 1. Experimental data of swimming B. subtilis bacteria trajectories in a microfluidic hyperbolic flow,
u = (Bx, −By), from Ref. [12]. B = 0.44 s−1. (a) Streamlines of the hyperbolic fluid flow. (b) Smooth-
swimming bacteria. (c) Run-and-tumble bacteria. The vertical blue lines are SwIM edges blocking inward
swimming particles. The horizontal red lines are SwIM edges blocking outward swimming particles. In (b) and
(c), each trajectory is plotted in units of v0/B, where v0 is the individual bacterium’s measured swimming speed.
Every experimentally recorded trajectory is plotted, and the x �→ −x and y �→ −y symmetries have been used
to rectify the trajectories so they all appear to enter from above and exit right.

motion in position space. Swimmers with orientational noise, on the other hand, can cross SwIM
edges, but they are still blocked by one-way barriers known as burning invariant manifolds (BIMs),
which were originally introduced as barriers for propagating chemical reaction fronts in fluid flows
[13,14]. By one-way barriers, we mean that swimmers can pass through a BIM or SwIM edge in
one direction, but not the other. This theory was applied to analyze the experimental trajectories of
smooth-swimming and run-and-tumble Bacillus subtilis bacteria in a microfluidic cross-channel fea-
turing a hyperbolic fluid flow, illustrated in Fig. 1(a). Whereas the run-and-tumble bacteria exhibit
strong rotational noise in the form of sporadic, abrupt changes in swimming direction [Fig. 1(c)], the
smooth-swimming bacteria tend to swim straight in the absence of a flow, with minimal rotational
noise [Fig. 1(b)]. The vertical lines in Figs. 1(b) and 1(c) are the SwIM edges blocking inward
swimming particles, while the horizontal lines are the SwIM edges blocking outward swimming
particles. In the hyperbolic flow, the BIMs coincide exactly with the SwIM edges, and hence these
curves are one-way barriers for both the smooth-swimming and run-and-tumble bacteria. Here all
experimentally recorded trajectories are rectified so they appear to enter the flow from above and
exit to the right. Therefore, there can be no trajectories to the left of the SwIM edge x = −1, beyond
which any trajectory would be swept to the left, as is evident from Figs. 1(b) and 1(c). However, we
observe a gap between the left SwIM edge and the measured trajectories of run-and-tumble bacteria
in Fig. 1(c), compared to the smooth swimmers in Fig. 1(b) that can just graze the left SwIM
edge before swimming off to the right. Because the gap represents a depletion of the density of
trajectories near the SwIM edge relative to the smooth-swimmer case, we refer to it as the depletion
effect. The depletion effect is caused by the orientation fluctuations of the run-and-tumble bacteria.
A run-and-tumble swimmer near this SwIM edge and initially swimming to the right is very likely
to tumble and end up crossing the left SwIM edge, forcing it to escape to the left. At the same
time, we observe that the run-and-tumble bacteria swim much closer to the lower SwIM edge than
their smooth-swimming counterparts. This again is due to tumbling. While smooth swimmers get
aligned with the extensional x direction of the flow and thus cannot swim very far below the line
y = 0, run-and-tumble swimmers can tumble out of alignment and swim towards the lower SwIM
edge. These stark differences between the trajectories of smooth versus run-and-tumble swimmers
have motivated the present work.

In this paper, we show how to calculate the probability of particular noisy swimmer trajectories
in a given fluid flow, taking the hyperbolic flow as a case study. Our approach focuses on computing
solutions to the time-dependent Fokker-Planck equation of a swimmer (alternately known as a
master equation or Smoluchowski equation) in the weak-noise limit [15–19]. This differs from
traditional approaches to the swimmer Fokker-Planck equation, which are focused on the stationary
(time-independent) solution and are in the Eulerian frame of reference [5,8–10]. In contrast, we
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construct a time-dependent swimmer probability density function by following the Lagrangian paths
of a swimmer. This procedure is derived from the weak-noise limit in a manner that is nearly identi-
cal to the semiclassical approximation in quantum mechanics [20], so we refer to it as the semiclas-
sical approximation to the Fokker-Planck equation. We use this approach to quantify the depletion of
noisy swimmers near a BIM, and compare the results of our semiclassical calculations with Monte
Carlo calculations, i.e., direct numerical simulations of the swimmer equations of motion.

The paper is organized as follows. In Sec. II we provide background information on the model
for swimmer motion employed here and the semiclassical approximation to the Fokker-Planck
equation. In Sec. III we review the dynamics of a deterministic smooth swimmer in the hyperbolic
flow, in particular the role of the SwIMs and BIMs. In Sec. IV we compute the position-independent
orientation distributions of a swimmer in the hyperbolic flow, obtaining results analogous to the
orientation distributions of magnetotactic and viscotactic swimmers in external fields [21–23], and
we apply the semiclassical approximation to calculate the orientation distribution of swimmers with
both rotational diffusion and run-and-tumble dynamics. In Sec. V we compare Monte Carlo and
semiclassical calculations of the depletion effect. Concluding remarks are in Sec. VI. In Appendix A
we present a complete derivation of the semiclassical approximation to the Fokker-Planck equation.

II. NOISY SWIMMER DYNAMICS

We consider the motion of an ellipsoidal swimmer in two dimensions, with position r = (x, y)
and orientation n̂ = (cos θ, sin θ ). The stochastic differential equations describing a noisy swimmer
in a fluid flow u(r) are [2,4]

dr = [u(r) + v0n̂]dt +
√

2DT dwr, (1a)

dθ =
[
ω(r)

2
+ αn̂⊥ · E(r)n̂

]
dt +

√
2DR dwθ + dL(ν), (1b)

where ω = ẑ · (∇ × u) is the vorticity, n̂⊥ = (− sin θ, cos θ ), and E = (∇u + ∇uT)/2 is the sym-
metric rate-of-strain tensor. The shape parameter α equals (a2 − 1)/(a2 + 1), where a is the aspect
ratio of the ellipse; α varies from −1 to 1, where α = 0 is a circle, and |α| = 1 is an infinitely
thin rod. Positive (negative) values of α correspond to swimming parallel (perpendicular) to the
major axis. Each equation of (1) contains a deterministic drift term, proportional to dt , and noise
terms. In Eq. (1a) the noise terms are the independent Wiener processes wr = (wx,wy) and account
for translational diffusion with diffusivity DT . Note that for certain swimmers, the strength of the
translational diffusivity along the particle’s major axis may differ from the translational diffusivity
along the minor axis, and their may be additional correlations between translational and rotational
noise [24]. We ignore these issues here for simplicity.

Equation (1b), on the other hand, contains two stochastic terms describing fluctuations in the
swimming direction. We distinguish between two types of rotational noise: rotational diffusion and
tumbling. Rotational diffusion refers to continual random perturbations in the swimmer orientation,
such that in the absence of a flow, the orientation θ would exhibit free diffusion (given by the
Wiener process wθ ) with a rotational diffusivity DR. This can arise due to random fluctuations in
the propulsion force of the swimmer [24,25] or from the thermal fluctuations of the surrounding
fluid. In the former case, the noise mechanism would lead to correlations between translational
and rotational diffusion, but here we neglect those for simplicity. Tumbling refers to the sudden
resetting of θ to a random orientation, independent of its present value, which occurs sporadically
as a Poisson process L(ν) with frequency ν. This kind of sudden, random reorientation is seen in
swimming bacteria in the “run-and-tumble” mode of swimming. In practice, the distribution of new
orientations may depend on the previous value, as is the case for wild-type strains of the swimming
bacteria E. coli [26], but we neglect this here for simplicity. Hence, the new angle after a tumble is
uniformly and randomly distributed between 0 and 2π .
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Our goal in this paper is to estimate the probability of various swimmer trajectories of Eq. (1).
This can certainly be accomplished by Monte Carlo simulations, i.e., direct numerical simulations
of Eq. (1), but we also develop an analytical approach to calculating such probabilities, which is
less computationally costly and provides deeper theoretical insight into the swimmer dynamics. To
study the probability of swimmer trajectories, we investigate the Fokker-Planck equation for the
probability density of the particle P(r, θ, t ) [27],

∂P

∂t
= −∇ · (FP) + ε

2

[
γ

(
∂2P

∂x2
+ ∂2P

∂y2

)
+ ∂2P

∂θ2

]
+ λ

[
−P + 1

2π

∫ 2π

0
P(r, θ ′, t ) dθ ′

]
, (2)

where we have abbreviated the deterministic drift terms from Eq. (1) as F, with

F =
(

ux + v0 cos θ, uy + v0 sin θ,
ω

2
+ αn̂⊥ · En̂

)
. (3)

Here ∇ = (∂/∂x, ∂/∂y, ∂/∂θ ). We have nondimensionalized the coordinates using a length scale L
and velocity scale U , so that

ε = 2DRL
U (4)

is the strength of rotational diffusion, γ = DT /(L2DR) is the ratio of translational diffusion to
rotational diffusion (usually γ < 1), and λ = νL/U is the nondimensional tumbling rate. Note that
the rotational Péclet number is Pe = 2/ε [9]. The first two terms on the right-hand side of Eq. (2)
are the usual drift and diffusion terms. The third term proportional to λ accounts for tumbling, with
the first term in brackets describing the loss of probability due to tumbling out of the present angle,
and the second term describing the gain of probability from the swimmers at all other angles that
have tumbled into the present angle. Equation (2) is difficult to attack in general, so we focus on
special cases where exact or approximate analytical (or semianalytical) solutions may be found.

Of particular interest is the λ = 0 case, describing nontumbling swimmers or, alternatively, the
evolution of the probability density in between tumble events. In this case we seek asymptotic
solutions in the weak diffusion (ε � 1) limit, which have the WKB form

P(r, θ, t ) ≈ A(r, θ, t ) exp

[
−W (r, θ, t )

ε

]
. (5)

Equation (5) has the same form as the semiclassical approximation to the wave function in quantum
mechanics, and hence we refer to it as the semiclassical approximation. Substituting this approxi-
mation into Eq. (2) with λ = 0 leads to a Hamilton-Jacobi equation for W and a related transport
equation for A.

Here we briefly describe the mathematical theory of approximation (5), while a detailed deriva-
tion and discussion are contained in Appendix A. The solution W to the Hamilton-Jacobi equation
(A11) is related to the classical action accumulated along the trajectories of a particular Hamiltonian
system associated with Eq. (2). The Hamiltonian is given by

H (q, p) = 1
2

[
γ
(
p2

x + p2
y

) + p2
θ

] + p · F(q), (6)

where q = (x, y, θ ) and p = (px, py, pθ ). Equation (6) follows from the Hamiltonian (A12) for a
general Fokker-Planck equation (A2), of which Eq. (2) (with λ = 0) is a special case. The function
W is equivalent to the Onsager-Machlup-Freidlin-Wentzell action function [17,28,29], which arises
in nonequilibrium statistical mechanics [15,16] and rare event modeling [30]. At each point (r, θ ),
the action W (r, θ, t ) can be expressed as an integral along the trajectory of the Hamiltonian system
with Hamiltonian (6) that arrives at that point at time t . This makes Eq. (5) a Lagrangian, as opposed
to Eulerian, description of the probability density. The trajectories associated with the minima of
W , i.e., the minimum-action paths, correspond to the most likely trajectories of a noisy swimmer,
because at lowest order in ε, the probability density (5) is peaked at these points. Hence, finding the
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minimum-action paths is the main focus of most works involving the Onsager-Machlup-Freidlin-
Wentzell action function, including recent work on escape paths of active particles in potential
wells [19]. In contrast, we consider all possible paths, in order to get a global approximation to the
probability density (5).

Throughout the paper, we focus on the hyperbolic flow u = (Bx,−By). Therefore, Eq. (1)
becomes

dx = (x + cos θ ) dt + √
εγ dwx, (7a)

dy = (−y + sin θ ) dt + √
εγ dwy (7b)

dθ = −α sin(2θ ) dt + √
εdwθ + dL(λ). (7c)

We have taken the velocity scale U = v0 and the length scale L = v0/B in the nondimensional
equation (7). The typical values of ε, γ , λ, and α depend on the system being considered. In
the hyperbolic flow experiments leading to Fig. 1, B = 0.44 s−1 [12]. The measured rotational
diffusivity for several species of swimming phytoplankton is DR = 0.15–0.27 rad2/s [6], which in
the hyperbolic flow would yield ε = 0.68–1.2. For wild-type E. coli, which exhibit run-and-tumble
behavior, the rotational diffusivity during runs is DR = 0.06 rad2/s [31] and the tumbling frequency
is approximately ν = 1 s−1 [26], which in the hyperbolic flow would yield ε = 0.27 and λ = 2.3.
Assuming that the translational diffusion for wild-type E. coli is due only to thermal fluctuations so
that DT = 0.2 μm2/s [8] and a swimming speed v0 = 14 μm/s [26], the translational-to-rotational
diffusion ratio would be γ = 0.003. Note that in the hyperbolic flow, ε and λ can always be made
smaller and γ larger by increasing B, the flow strength parameter. We take α = 1 in all numerical
computations, corresponding to the elongated shape of swimming bacteria like E. coli and B. subtilis.
Numerical solutions of Eq. (7) are obtained using the Euler-Maruyama method. Before investigating
the dynamics of noisy swimmers in the hyperbolic flow, we study the deterministic dynamics of
Eq. (7) with ε = 0 and λ = 0.

III. DETERMINISTIC DYNAMICS IN THE HYPERBOLIC FLOW

The deterministic dynamics of Eq. (7) is best understood through the system’s fixed points and
invariant manifolds, previously studied in Ref. [12]. The system possesses four fixed points, which
we refer to as swimming fixed points (SFPs) to distinguish them from the passive fixed points of the
fluid flow. Denoting the phase-space coordinate q = (x, y, θ ), the fixed points are

qout
± =

(
0,±1,±π

2

)
, qin

+ = (1, 0, π ), qin
− = (−1, 0, 0), (8)

illustrated in Fig. 2. Each of the SFPs is a saddle. When α > 0, and in particular when α = 1, the
qout

± fixed points have stable-unstable-unstable (SUU) linear stability, and the qin
± fixed points have

stable-stable-unstable (SSU) linear stability. Hence, the qout
± SFPs possess 2D unstable manifolds,

while the qin
± fixed points possess 2D stable manifolds. We refer to these 2D manifolds as swimming

invariant manifolds (SwIMs), to distinguish them from the invariant manifolds of passive advection
[12].

Taken as a whole, the stable and unstable SwIMs consist of two interlocking S-shaped sheets,
plotted in Fig. 2(a). The stable SwIMs (the blue surface) attached to qin

+ and qin
− share common

boundaries along the lines {(x, y, θ ) | x = 0, θ = ±π} which are the 1D stable manifolds of qout
±

(dark blue lines). Hence, the union of the 2D stable SwIMs with the 1D stable manifolds of qout
± is

a surface [blue surface in Fig. 2(a)] which separates phase space into two pieces. By symmetry, the
same geometric shape can be constructed by taking the union of the unstable SwIMs of qout

± with the
1D unstable manifolds of qin

±, leading to the red surface in Fig. 2(a). The shape of the stable SwIMs
is independent of the y coordinate, and, similarly, the shape of the unstable SwIMs is independent
of the x coordinate. This occurs because in the hyperbolic flow, the xθ equations (7a) and (7c) are
decoupled from y and similarly the yθ equations (7b) and (7c) are decoupled from x. The stable and
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FIG. 2. Phase space structure of a swimmer in the hyperbolic flow, for α = 1. (a) Swimming fixed points
(SFPs) and their invariant manifolds (SwIMs). The red surfaces are the unstable SwIMs of qout

± , and the blue
surfaces are the stable SwIMs of qin

±. The dark blue lines are the 1D stable SwIMs of qout
± . The dark and light

gray planes are constant-θ invariant surfaces which are displayed for visualization purposes. (b) Projection of
swimming fixed points and SwIMs into the xy plane. The black curves are the streamlines of the hyperbolic
flow. The red (blue) lines are the unstable (stable) SwIM edges. The small arrows perpendicular to the SwIM
edges point in the swimming direction.

unstable SwIMs intersect along heteroclinic orbits going from one fixed point to another, indicated
by the yellow curves in Fig. 2(a).

Cross sections of the SwIMs are shown in Fig. 3, along with the phase portraits of the xθ
dynamics and the yθ dynamics. Figure 3(a) shows that swimmers on the left of the stable SwIM
ultimately exit the flow to the left, while swimmers on the right ultimately exit right. Similarly,
the unstable SwIM [Fig. 3(b)] separates swimmers that entered the flow from the top from those
which entered from the bottom. The SwIMs are therefore transport barriers to swimmers in the
hyperbolic flow, because they carve out the xyθ phase space into distinct, qualitatively different
families of trajectories. Importantly, these barriers are nonporous in phase space, meaning no
swimmer trajectory can cross them (in the absence of noise).

On the other hand, in position space, the SwIMs project to one-way barriers, allowing swimmers
to cross in one direction but not the other. Figure 2(b) shows the singularities of the projection of
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-1 -0.5 0 0.5 1

-2
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2

(a) (b)

FIG. 3. Phase portraits of swimmer dynamics in the hyperbolic flow, for α = 1. (a) xθ cross section of the
dynamics. The blue curve is the cross section of the stable SwIM of qin

±. (b) yθ cross section of the dynamics.
The red curve is the cross section of the unstable SwIM of qout

± . In both panels, the solid and dotted gray lines
are cross sections of the stable and unstable constant-θ invariant surfaces, respectively.
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the SwIMs into the xy plane—that is, the folds of the S-shapes which bound the projection of the
2D surfaces into the plane. We refer to these curves as SwIM edges [12]. The stable SwIM edges
at x = ±1 [blue curves in Fig. 2(b)] block inward swimming particles, while allowing outward
swimming particles through. To see this, note that for x = −1, ẋ � 0 for all θ , and for x = 1, ẋ � 0
for all θ , as shown in Fig. 3(a). Along the stable SwIM edges, the outward fluid flow overpowers the
swimmers and they are swept away from the center of the flow. Similarly, the unstable SwIM edges
[red curves in Fig. 2(b)] block outward swimming particles, while inward swimming particles can
pass through them. Here, for y = 1, ẏ � 0, and for y = −1, ẏ � 0. On the unstable SwIM edges, it
is the inward flow which overpowers the swimmers and pushes them towards the center of the flow.

The SwIM edges in the hyperbolic flow coincide exactly with the BIMs—the 1D invariant
manifolds of the SFPs when α = −1 [12,32]. This is important because SwIM edges are only
guaranteed to be one-way barriers for purely deterministic swimmers. BIMs, on the other hand,
have stronger barrier properties, in that they are also one-way barriers for swimmers with rotational
diffusion or run-and-tumble dynamics in the limit of negligible translational diffusion [12]. Thus,
in the hyperbolic flow, the SwIM edges also act as one-way barriers for swimmers with rotational
noise. This explains why the run-and-tumble bacteria in the hyperbolic flow experiment remain
bounded by the unstable SwIM edge at y = −1 in Fig. 1(b). Similarly, the stable SwIM edges act as
points of no return for all swimmers. Once a swimmer swims over a stable SwIM edge, it is unable
to swim back to the center of the flow. This is the origin of the depletion effect we observe when
comparing the smooth-swimming bacteria data [Fig. 1(a)] to the run-and-tumble data [Fig. 1(b)].
The orientation fluctuations of tumbling bacteria make it very likely that a bacterium near the SwIM
edge at x = −1, for example, swims across it, precluding the possibility that it subsequently exits the
flow to the right. Hence, we expect to observe much fewer trajectories of run-and-tumble swimmers
initially near the left SwIM edge and exiting right relative to smooth swimmers, consistent with the
experimental data.

IV. STEADY-STATE ORIENTATION DISTRIBUTIONS IN THE HYPERBOLIC FLOW

Because the θ̇ equation (7c) is independent of x and y, we begin by looking at the effect of
noise on the orientation dynamics alone in the hyperbolic flow. The Fokker-Planck equation for the
probability density P(θ, t ) restricted to the orientation degree of freedom is

∂P

∂t
= − ∂

∂θ
[−α sin(2θ )P] + ε

2

∂2P

∂θ2
+ λ

(
−P + 1

2π

)
. (9)

We focus on the stationary distributions of the θ variable, which are the stationary solutions
(∂P/∂t = 0) of Eq. (9). We first treat the two limiting cases—(1) no tumbling (λ = 0), and (2)
no rotational diffusion (ε = 0)—before proceeding to the case where there is both tumbling and
rotational diffusion. Note that the orientation dynamics of a noisy swimmer in the hyperbolic flow
is very similar to the orientation dynamics of swimmers in other types external fields, such as
magnetotactic swimmers in external magnetic fields [21,22] and swimmers in viscocity gradients
[23]. The main difference here compared to the preceding examples, aside from the source of the
torque on the swimmer, is that Eq. (9) is invariant under the symmetry θ �→ θ + π .

A. Orientation dynamics with rotational diffusion only (λ = 0)

Without tumbling, the θ dynamics is governed by

dθ = −α sin(2θ ) dt + √
ε dwθ . (10)

The deterministic part of the equation has the form of the gradient of a potential V (θ ), meaning
we can write dθ = −(∂V/∂θ ) dt + √

ε dwθ , with V (θ ) = −α cos(2θ )/2. Hence, the dynamics is
equivalent to that of an overdamped particle in the potential V (θ ) with noisy driving. In this case,
the long-time probability distribution of θ evolves towards a stationary state which is peaked at the
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FIG. 4. Stationary θ distributions with α = 1, with no tumbling (a, b) and no rotational diffusion (c, d).
Histograms are Monte Carlo simulations of Eq. (7c), and red curves are the theoretically predicted distributions
given by Eq. (13) for the no-tumbling case and Eq. (19) for the no-diffusion case. Distributions are plotted in
the range θ ∈ (−π/2, π/2). (a) λ = 0, ε = 0.1. (b) λ = 0, ε = 1. (c) ε = 0, λ = 1.6. (d) ε = 0, λ = 5.

potential wells at θ = 0 and θ = π (for α > 0). This probability distribution Pε(θ ) can be found by
solving for the stationary state of Eq. (9) with λ = 0. For gradient systems, the solution is simply
Pε(θ ) ∝ exp[−2V (θ )/ε], which is simple to verify, and hence we have

Pε(θ ) ∝ exp

[
α

ε
cos 2θ

]
. (11)

Clearly, the distribution depends on a single dimensionless parameter,

α

ε
= Bα

2DR
, (12)

which is the ratio of the rate of alignment with the extensional direction of the flow, Bα, to the
intensity of the noise. Normalizing the probability distribution, we obtain

Pε(θ ) =
[

2π I0

(
α

ε

)]−1

exp

[
α

ε
cos 2θ

]
, (13)

where I0(x) is a modified Bessel function of the first kind. The stationary distribution (13) is invariant
under the shift symmetry θ �→ θ + π , as is the underlying stochastic process (10). Equation (13) is
plotted in Figs. 4(a) and 4(b), along with histograms from Monte Carlo simulations of Eq. (10). In
Fig. 4 we map the Monte Carlo data onto the interval θ ∈ (−π/2, π/2) using symmetry and plot
Eq. (13) only in this range. Similar results were previously obtained for magnetotactic swimmers in
an external magnetic field with rotational diffusion [22].
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B. Orientation dynamics with tumbling only (ε = 0)

Here we consider the case of the stationary θ distribution under tumbling only. Every time a
swimmer tumbles, its orientation is drawn from the uniform distribution. If it tumbles at time τ = 0,
then until the next tumble, its probability density P(θ, τ ) evolves according to the Liouville equation

∂P

∂τ
= ∂

∂θ
[α sin(2θ )P], (14)

with the initial condition P(θ, 0) = P0(θ ) = 1/2π . Intuitively, we thus expect that the steady-state
distribution under tumbling only, Pλ(θ ), should consist of the superposition of probability distri-
butions P(θ, τ ) describing the relaxation of θ in between tumbles, weighted by the probability
λe−λτ dτ that the last tumble occurred a time τ in the past. In other words, the stationary probability
distribution must be [33]

Pλ(θ ) = λ

∫ ∞

0
P(θ, τ )e−λτ dτ. (15)

It is straightforward to verify that Eq. (15) is a stationary solution of Eq. (9) with ε = 0.
An explicit solution to Eq. (14) can be obtained using the method of characteristics, because the

θ equation of motion (10) in the absence of noise (ε = 0) can be solved analytically. The expression
for the deterministic trajectory θ∗(t ) is

θ∗(t ) = tan−1(e−2αt tan θ0), (16)

where θ0 = θ (0) is the initial condition, and here it is assumed θ0 ∈ [−π/2, π/2]. This condition
arises due to the use of the tan−1 function; when θ0 is outside this range, this solution needs to be
shifted either up or down by π , depending on θ0. Then the solution to Eq. (14) is

P(θ, τ ) = P0[tan−1(e2ατ tan θ )]
e2ατ

cos2 θ + e4ατ sin2 θ
, (17)

where P0(θ ) = P(θ, 0) is an arbitrary initial orientation distribution (see Appendix B for the
derivation). Again, this form of the solution is valid for θ ∈ [−π/2, π/2], and a shift by π in the
argument of P0 in Eq. (17) adapts the solution to the excluded range of θ .

Next, we obtain the stationary θ distribution Pλ(θ ) under tumbling with rate λ by substituting
Eq. (17) into Eq. (15), with P0 = 1/2π . Rescaling the time in Eq. (15) by the tumbling rate λ, we
obtain a complicated integral that depends on a single dimensionless parameter that we call the
tumbling number Tu,

Tu = λ

2α
= ν

2Bα
. (18)

This is essentially the ratio of the tumbling rate to the relaxation rate of a swimmer’s orientation to
its equilibrium (parallel to the extensional x-direction) in the hyperbolic flow. Note that the latter
relaxation rate is distinct from the relaxation rate of the orientation distribution of a swimmer with
rotational diffusion to the stationary state given by Eq. (13). It is conceivable that this is the more
relevant timescale for defining Tu in the case where we have both tumbling and rotational diffusion.
The stationary distribution Pλ can be shown to be equal to

Pλ(θ ) = Tu

2π

2F1(1, (1 + Tu)/2; (3 + Tu)/2; − cot2 θ )

(1 + Tu) sin2 θ
, (19)

where 2F1(a, b; c; z) is the ordinary hypergeometric function. Like Pε(θ ) [Eq. (13)], Eq. (19) is
invariant under the shift symmetry θ �→ θ + π . To be sure, the hypergeometric function makes the
expression (19) of the tumbling swimmer’s stationary distribution more opaque than its counterpart
for rotational diffusion.

In Figs. 4(c) and 4(d), we plot Eq. (19), superimposed over histograms from numerical simula-
tions of tumbling swimmers in the hyperbolic flow, to obtain a basic intuition for how the distribution
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depends on the parameters. We see an excellent agreement between the theory and simulations. For
sufficiently small tumbling rates such that Tu � 1 in Eq. (18) [Fig. 4(c)], it can be shown that Pλ

is singular at the orientation equilibrium θ = 0 and relatively flat for all other orientations. On the
other hand, for Tu > 1 [Fig. 4(d)], the peak at the equilibrium becomes finite, and the difference
between the probabilities near the stable and unstable equilbria becomes more modest. Again, our
results mirror those obtained for magnetotactic run-and-tumble bacteria in Ref. [22].

C. Orientation distribution with rotational diffusion and tumbling

Having treated the limiting cases of one type of noise versus another, we now seek the stationary
θ distribution of a run-and-tumble swimmer with rotational diffusion, which we denote Pε

λ (θ ).
This requires slightly modifying the approach of Sec. IV B, where the stationary distribution is the
weighted time average of the probability distributions describing relaxation to equilibrium, P(θ, τ )
[see Eq. (15)]. Namely, when we have both tumbling and rotational diffusion, we need to obtain
P(θ, τ ) by solving the time-dependent Fokker-Planck equation

∂P

∂τ
= ∂

∂θ
[α sin(2θ )P] + ε

2

∂2P

∂θ2
, (20)

with initial condition P0(θ ) = 1/2π , instead of the Liouville equation (14). An exact analytical
solution of Eq. (20) is unavailable, so we resort to a short-time, small ε asymptotic approximation
based on the semiclassical techniques detailed in Sec. A 5.

1. Approximation of the Fokker-Planck propagator for small ε

P(θ, τ ) is the probability density of reaching θ at time τ under Eq. (10) with a random initial
condition drawn from a uniform distribution. We approximate P(θ, τ ) by making use of the
semiclassical approximation to the Fokker-Planck equation (20). We note that this distribution can
be expressed as an integral over the propagator K (θ, θ0, τ ), which is the probability distribution of
reaching θ in time τ from a fixed initial condition θ0, as

P(θ, τ ) = 1

2π

∫
K (θ, θ0, τ ) dθ0. (21)

Our strategy is to approximate P(θ, τ ) by approximating K analytically and performing the integral
(21) numerically.

The propagator K can be approximated in the small ε limit using the semiclassical approach
described in Appendix A. In particular, we are satisfied with an approximation valid for short times,
because the long-time behavior of P(θ, τ ) is suppressed in the integral (15) for the steady-state
distribution. Therefore, we make use of the Gaussian approximation of K about a deterministic
trajectory, derived for a general 1D Fokker-Planck equation of the form (20) in Sec. A 5. In this
case, K is peaked around the trajectory θ∗(τ ) initiated at θ0, given by Eq. (16). The final expression
for K follows from Eqs. (A64) and (A65), which after lengthy but straightforward calculations
yields

K (θ, θ0, τ ) ≈
√

1

2πε

∂2R

∂θ2
exp

{
− 1

2ε

∂2R

∂θ2
[θ − θ∗(τ )]2

}
, (22)

where

∂2R

∂θ2
= 4α(e2ατ + e−2ατ tan2 θ0)2

e4ατ + 8ατ tan2 θ0 − e−4ατ tan4 θ0 − 1 + tan4 θ0
. (23)

We illustrate the validity of the approximate probability distribution (22) by comparing the
prediction to numerical simulations of Eq. (10). One comparison is shown in Fig. 5, where at t = 0
we initialized the swimmers with the orientation θ0 = 1.07, not terribly far from the turning point
θ = π/2 ≈ 1.57, with a modest noise strength of ε = 0.25. These parameters were selected to push
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FIG. 5. Time evolution of the propagator K (θ, θ0, t ) for θ0 = 1.07, α = 1, and ε = 0.25. Histograms:
numerical simulations of Eq. (10) with 104 trajectories. Red curves: theoretical prediction given by Eq. (22).

the limits of our approximations; not only do we assume ε is small, but our calculation of K (θ, θ0, τ )
neglects entirely the contributions of paths that cross the turning point at θ = π/2 ≈ 1.57 and relax
to the equilibrium at θ = π instead of θ = 0. Despite these limitations, we see that the approximate
K (θ, θ0, τ ) given by Eq. (22) does a good job both of tracking the center of the distribution of
trajectories and accounting for their spread as a function of time. After some time, the variance of
the approximate distribution (∂2R/∂θ2)−1 saturates and the centroid converges onto θ = 0, yielding
a steady state. This distribution is reasonably close to the numerical one at t = 4. However, we know
that if we continue the numerical simulations for very long times, then eventually the distribution
should approach the exact steady state given by Eq. (13) [Figs. 4(a) and 4(b)]. In contrast to our
approximate distribution, which has only one peak that eventually converges to θ = 0, the true
steady-state distribution is symmetrically peaked about θ = 0 and θ = π . Over long times, this is
achieved as the noise drives some swimmers’ orientations over the potential barriers at θ = ±π/2,
causing them to settle down around θ = π for long times. This process is reflected by the growing
peak in the density of simulated trajectories at θ = π in Figs. 5(c) and 5(d). Our approximate
distribution manifestly neglects this process, because the action associated with such trajectories
is larger than for trajectories near the deterministic path, which are the only trajectories accounted
for in our approximation.

2. Approximation of the stationary state

We can now compute the stationary orientation distributions of swimmers with both tumbling
and rotational diffusion. To recap, we have an explicit approximation (22) of K (θ, θ0, τ ), the
time-dependent probability distribution of θ for a rotationally diffusing swimmer with orientation θ0

at time t = 0 [which also requires Eqs. (23) and (16) to evaluate]. Thus, we are able to numerically
evaluate our expression (21) for the time-dependent probability distribution P(θ, τ ) of θ for a
rotationally diffusing swimmer with an initially uniform orientation distribution. This initial state
corresponds to the swimmer’s orientation distribution after a tumble. Therefore, we can finally
evaluate Eq. (15) for Pε

λ (θ ), the stationary θ distribution of a tumbling and rotationally diffusing
swimmer.

We proceed by evaluating Eqs. (21) and (15) numerically, and we compare the results with
numerical simulations of tumbling and rotationally diffusing swimmers, i.e., simulations of Eq. (7c).
The results are shown in Fig. 6, with all four possible combinations of ε and λ used in Fig. 4.
Without rotational diffusion [Figs. 4(c) and 4(d)], the distribution peak at θ = 0 is very sharp.
Comparing with the distributions in Fig. 6, we conclude rotational diffusion smooths out these
peaks. We observe good agreement between the stochastic simulations and the semiclassical theory
in all cases. Thus, our semiclassical method for evaluating Pε

λ (θ ) can in principle be used to fit
experimental data, allowing the determination of the effective rotational diffusivity and tumbling
rate of swimmers in the hyperbolic flow.
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FIG. 6. Stationary θ distributions with α = 1, with both tumbling and rotational diffusion. Histograms
are Monte Carlo simulations of Eq. (7c), and red curves are the theoretically predicted distributions given
by the numerical evaluation of Eq. (15) using Eqs. (21) and (22). Distributions are plotted in the range
θ ∈ (−π/2, π/2). (a) ε = 0.1, λ = 1.6. (b) ε = 0.1, λ = 5. (c) ε = 1, λ = 1.6. (d) ε = 1, λ = 5.

V. DEPLETION EFFECT

Here we present Monte Carlo and semiclassical calculations quantifying the depletion effect. We
quantify the depletion effect by calculating the probability Pr(x0) that a swimmer ultimately exits
right with a given initial position −1 < x0 < 1 and a given intensity of the noise. For an x0 near
the BIM x = −1, the signature of the depletion effect is a decreasing Pr(x0) for increasing noise
intensity. A low probability of right-exiting swimmer trajectories initialized near x = −1 would be
consistent with the absence of such trajectories for run-and-tumble bacteria in the experimental data
shown in Fig. 1. Conversely, for an x0 near the BIM x = 1, Pr(x0) should increase with increasing
noise intensity. This is simply due to the symmetry of the hyperbolic flow, which requires that

Pr(−x0) = 1 − Pr(x0). (24)

We focus solely on the dynamics in the xθ plane, because it is independent of the y variable, as
discussed in Sec. III. Hence, Eq. (2) becomes

∂P

∂t
= −∇ · (fP) + ε

2

(
γ

∂2P

∂x2
+ ∂2P

∂θ2

)
+ λ

[
−P + 1

2π

∫ 2π

0
P(x, θ ′, t ) dθ ′

]
, (25)

where

f = (x + cos θ,−α sin(2θ )) (26)

is the drift restricted to the xθ plane. In Eq. (25) and throughout this section, we also take ∇ =
(∂/∂x, ∂/∂θ ).
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We restrict our attention to the case where rotational diffusion dominates translational diffusion,
i.e., γ � 1, and we fix γ = 0.1. When γ = 0, all swimmers which cross the line x = 1 must
ultimately exit right, due to the BIM at x = 1 blocking inward swimming particles. Therefore, the
probability to exit right may be calculated by integrating the probability current through x = 1. We
assume this remains approximately true for small γ . Defining Pr(x0, t ) as the probability that a
swimmer has exited right by time t , we have

Pr(x0, t ) =
∫

x>1
P(x, θ, t ) dx dθ. (27)

Differentiating Eq. (27) with respect to time and using Eq. (25), we obtain the probability current

∂ Pr

∂t
=

∫
x>1

{
−∇ · (fP) + ε

2

(
γ

∂2P

∂x2
+ ∂2P

∂θ2

)
+ λ

[
−P + 1

2π

∫ 2π

0
P(x, θ ′, t ) dθ ′

]}
dx dθ

= −
∫

x>1
∇ · J dx dθ, (28)

where

J =
[

f − ε

2
D∇(ln P)

]
P (29)

is the probability current density excluding tumbling, with

D =
(

γ 0
0 1

)
. (30)

The tumbling contribution in Eq. (28) vanishes upon integration over θ . Using the divergence
theorem, the probability current (28) becomes

∂ Pr

∂t
=

∫ 2π

0
J(1, θ, t ) · x̂ dθ, (31)

and thus the probability to exit right is given by

Pr(x0) =
∫ ∞

0
dt

∫ 2π

0
dθ

{
1 + cos θ − εγ

2

∂

∂x
[ln P(1, θ, t )]

}
P(1, θ, t ). (32)

For γ = 0, Eq. (32) is exact. For small γ > 0, Eq. (32) is an approximation, because swimmers
close to the right-hand side of the BIM may fluctuate over to the left-hand side due to translational
diffusion.

A. Monte Carlo calculations with diffusion or tumbling

Monte Carlo calculations of the swimmer probability to exit right as a function of x0 confirm
that the depletion effect is caused by noise. For each x0, we computed Pr(x0) by integrating Eq. (7)
for 50 000 initial conditions with randomly selected initial orientations θ0 from t = 0 to t = 6. The
probability to exit right, according to Eq. (27), is then the fraction of trajectories for which x > 1 at
the end of the simulation. Figure 7 shows the results for Pr(x0) for swimmers with diffusion only
[λ = 0, Fig. 7(a)] and swimmers with tumbling only [ε = 0, Fig. 7(b)]. For the λ = 0 swimmers,
θ0 was drawn from the stationary distribution Pε(θ0) given by Eq. (13). For the ε = 0 swimmers,
θ0 was drawn from the stationary distribution Pλ(θ0) given by Eq. (19). We also show Pr(x0) for
deterministic swimmers (ε = λ = 0) initialized with a uniform distribution of θ0 in Fig. 7(c). Here
Pr(x0) is obtained by calculating the fraction of trajectories on the right side of the SwIM at a given
x0 [see Fig. 3(a)].

Figure 7 shows that as the intensity of noise increases, Pr(x0) increases for x0 > 0 and decreases
for x0 < 0. This occurs both for swimmers with diffusion only [Fig. 7(a)] and for swimmers with
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FIG. 7. Monte Carlo calculations of swimmer probability to exit right Pr(x0), for α = 1 swimmers
in the hyperbolic flow. (a) λ = 0, γ = 0.1, and ε = 0.1 (©), ε = 0.3 (∗), ε = 0.5 (×), ε = 0.7 (�), and
ε = 0.9 (∇ ). (b) ε = 0 and λ = 0.167 (©), λ = 0.5 (∗), λ = 1 (×), and λ = 2 (�). (c) ε = λ = 0.

tumbling only [Fig. 7(b)], where the intensity of noise effectively increases when the tumbling
frequency λ increases. The reduction of Pr(x0) for x0 < 0 for noisier swimmers is consistent with the
depletion effect observed in the experimental data shown in Fig. 1. For smooth-swimming bacteria
[Fig. 1(a)], which behave like swimmers with weak diffusion, the exit-right probability Pr(x0) is
substantial for most values of x0, even those relatively close to the BIM at x = −1 [Fig. 7(a)].
Therefore, it is not unlikely to observe bacteria trajectories which graze the BIM at x = −1, as we
indeed see in Fig. 1(a). For run-and-tumble bacteria on the other hand [Fig. 1(b)], Pr(x0) is very
small near x0 = −1 for sufficiently large λ [Fig. 7(b)]. Therefore, it is very unlikely to observe
bacteria trajectories that pass near x = −1 and subsequently exit right, explaining the paucity of
trajectories near x = −1 in Fig. 1(b). Because fluctuations can cause the swimmers to cross one-way
barriers in the flow, fluctuations can dramatically impact a swimmer’s ability to navigate a fluid flow.

B. Semiclassical approximation for diffusion

We use the semiclassical approximation to compute Pr(x0) when λ = 0 and investigate how
accurately it matches the Monte Carlo calculations. For the xθ dynamics in the hyperbolic flow,
Hamiltonian (6) becomes

H (x, θ, px, pθ ) = γ
p2

x

2
+ p2

θ

2
+ px(x + cos θ ) − pθα sin(2θ ). (33)

We evaluate Eq. (32) for Pr(x0) using our semiclassical approximation for P(x, θ, t ). This essentially
requires integrating over a subset of trajectories of Eq. (33), which begin at x0 at t = 0 and hit x = 1
at a later time. One advantage of the semiclassical approximation is that this set of trajectories is
independent of ε, so once these trajectories are computed, Eq. (32) can be evaluated for any arbitrary
value of ε. Another advantage is that this set of trajectories provides insight into the actual paths in
xθ space that noisy swimmers take on their way to exiting right.

To illustrate the relationship between the trajectories of Hamiltonian (33) and the noisy trajecto-
ries, we first consider the semiclassical evolution of a probability density initially concentrated at a
single point (x0, θ0). This corresponds to an initial condition

P0(x, θ ) = δ(x − x0)δ(θ − θ0), (34)

which is the initial condition for the propagator of the Fokker-Planck equation [Eq. (A6)]. The semi-
classical solution for such an initial condition [Eq. (A39)] requires one to integrate all trajectories
of Hamiltonian (33) beginning at (x0, θ0), which means considering all possible initial momenta
(px0, pθ0) at that point (Appendix A 1). This 2D surface of initial conditions of the Hamiltonian
system is called a Lagrangian manifold [20]. Along the way, one keeps track of the accumulated
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FIG. 8. Comparison between the minimum-action paths and noisy trajectories (λ = 0, γ = 0.1, ε = 0.0625)
of a swimmer exiting right with an initial condition (x0, θ0 ) = (0.5, 2) (black circle). The black curve is the
deterministic trajectory, which exits left. The solid jagged curves are representative noisy trajectories hitting
x = 1 in time t ≈ 1 (green) and t ≈ 2 (yellow). The dotted curves are the minimum-action paths hitting x =
1 at t = 1 (green) and t = 2 (yellow). They are projections into the xθ plane of solutions to the boundary
value problem seeking the trajectories (x(t ), θ (t ), px (t ), pθ (t )) of Hamiltonian (33) with the specified initial
condition (x0, θ0 ), final position x(t ) = 1, and final momentum pθ (t ) = 0. The blue curve is the stable SwIM
of the swimming fixed point (blue dot).

action R(x, θ, x0, θ0, t ) along each trajectory [Eqs. (A16) and (A19)]. For Hamiltonian (33), the
accumulated action is

R(x, θ, x0, θ0, t ) = 1

2

∫ t

0
[γ px(τ )2 + pθ (τ )2]dτ, (35)

where the integral is along the trajectory connecting (x0, θ0) to (x, θ ) in time t . In the case of the
propagator initial condition, the function W of the semiclassical probability density (5) is simply
equal to the accumulated action, W (x, θ, t ) = R(x, θ, x0, θ0, t ). The exponential dependence of
the semiclassical probability density on W makes the probability density peaked around the local
minima and valleys of W . The Hamiltonian trajectories reaching these minima or valleys can be
thought of as prototypical noisy trajectories.

For example, we consider swimmers exiting right from (x0, θ0) = (0.5, 2), as shown in Fig. 8. For
this initial condition, a deterministic swimmer would exit left, because it is to the left of the SwIM.
Noise allows some of the swimmers to cross over the SwIM and exit right, as illustrated by the two
sample trajectories selected from a Monte Carlo simulation in Fig. 8. We selected one trajectory that
hits x = 1 at t ≈ 1, and a second trajectory that hits at t ≈ 2; aside from these prescribed hitting
times, the trajectories were selected at random. We can calculate the trajectories of the system with
Hamiltonian (33) which hit x = 1 at those same times. There are infinitely many, each hitting with a
different final θ . Out of this set of trajectories, we find the ones which minimize the action at x = 1,
equivalent to the condition

∂W (1, θ, t )

∂θ
= 0 = pθ (t ), (36)

where the last equality follows from Eq. (A13). In other words, for a given t , the minimum-action
trajectory is the one which hits x = 1 with pθ (t ) = 0. Equation (36) is the condition for a valley
of W (x, θ, t ) because it is a local minimum of W with x (and t) held fixed. The minimum-action
trajectories corresponding to the two noisy trajectories are plotted as the dotted curves in Fig. 8.
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TABLE I. Summary of key quantities that appear in the formulas for the semiclassical probability density.

Variable Meaning Appendix references

A Prefactor of probability density (5) Eqs. (A21), (A50)
q q = (x, θ ) = q(z′, t ), projection of Lagrangian manifold into

configuration space, as a function of initial Lagrangian
manifold coordinate z′ = (px0, θ0 ) and time

Eq. (A25a), Sec. A 4 b

∂q/∂z′ Jacobian matrix of the projection q(z′, t ) Eqs. (A26a), (A27)∫ t
0 ∇ · fdτ ∇ · f = 1 − 2α cos(2θ ) for the xθ dynamics in the hyperbolic

flow; integral performed along the Hamiltonian trajectory
Sec. A 2

The resemblance between the noisy paths and the minimum-action paths in Fig. 8 demonstrates
the power of the semiclassical approximation to the Fokker-Planck equation. The deterministic
trajectories underlying the semiclassical approximation predict the paths taken by the noisy system
satisfying specific boundary conditions—in this case going from (x0, θ0) at t = 0 to x = 1 at
specified times t . In the asymptotic ε → 0 limit, the probability density becomes increasingly
concentrated along the minimum-action paths. However, for any finite ε, the probability density
has a finite width around these minimum-action paths, so any actual noisy trajectory will deviate
from the minimum-action path, as seen in Fig. 8. The minimum-action paths are thus prototypical
noisy paths with given boundary conditions, in the sense that they are the peak of the distribution of
noisy trajectories satisfying those boundary conditions. Furthermore, by taking into account the full
set of trajectories of Hamiltonian (33) satisfying the boundary conditions (i.e., not only those in the
valley of the action), one can construct the full probability distribution of trajectories satisfying
the boundary conditions. This requires computing additional quantities along the Hamiltonian
trajectories that are needed to evaluate the probability density prefactor A in Eq. (5) [see Eq. (A32)
and Eq. (A39) for explicit expressions and Table I].

Next, we turn to the semiclassical calculation of Pr(x0), given that the swimmer’s initial ori-
entation θ0 is distributed according to Eq. (13) as in Sec. V A. This requires the solution of the
Fokker-Planck equation (A2) for P(x, θ, t ) with initial condition

P0(x, θ ) = δ(x − x0)

[
2π I0

(
α

ε

)]−1

exp

[
α cos 2θ

ε

]
. (37)

This is a hybrid propagator-WKB initial condition of the form (A9), where, in the notation of Ap-
pendix A, A0 = [2π I0( α

ε
)]−1 and U (θ ) = −α cos 2θ . We use the semiclassical probability density

(A52) to evaluate Eq. (32). This means that for each x0, we must integrate over all Hamiltonian
paths which hit x = 1, with initial conditions on the Lagrangian manifold{

(x0, θ0, px0, pθ0)

∣∣∣∣∀ θ0, px0, pθ0 such that pθ0 = ∂U

∂θ
(θ0)

}
. (38)

Therefore, the initial Lagrangian manifold may be parametrized by the coordinates z′ = (px0, θ0).
The probability current integral (32) becomes

Pr(x0) = 1√
2πε

[
2π I0

(
α

ε

)]−1 ∫ ∞

0
dt

∫
x=1

dθ

[
1 + cos θ + γ

2
px − 1

2
εγ

∂

∂x
(ln A(1, θ, t ))

]
×

∣∣∣∣det
∂q
∂z′

∣∣∣∣−1/2

exp

[
− (U (θ0) + R(1, θ, x0, θ0, t ))

ε
− 1

2

∫ t

0
∇ · f dτ

]
, (39)

where A is given by Eq. (A50) and R is given by Eq. (35). Equation (39) must be integrated over
the set of θ and t values at which the trajectories of Hamiltonian (33) hit x = 1. The meaning of
the new variables introduced in Eq. (39), along with references to Appendix A, is summarized in
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FIG. 9. Integration domain for Eq. (41) for x0 = 0.5. The quantity px0 is the initial condition of the
canonically conjugate momentum to x, and θ0 is the initial orientation of the swimmer. The initial conditions
in the black region eventually hit x = 1, and hence Eq. (41) is integrated over the black region only. Initial
conditions in the white region hit x = −1 instead.

Table I. We make some modifications to Eq. (39) before evaluating it numerically. The integral over
final coordinates (θ, t ) can be converted to an integral over the initial coordinates of the Lagrangian
manifold (px0, θ0) using the Jacobian determinant

dθ dt =
∣∣∣∣∣ det

(
∂q
∂z′

)
Fx + γ px

∣∣∣∣∣d px0 dθ0 =
∣∣∣∣∣ det

(
∂q
∂z′

)
x + cos θ + γ px

∣∣∣∣∣d px0 dθ0. (40)

This converts Eq. (39) into an initial value representation [34,35]. We also neglect the ∂ (ln A)/∂x
term at the end of the first line of Eq. (39), because it is of order ε relative to the other terms. This
means it is of higher order in ε than we account for in our asymptotic expression Eq. (5) [see also
Eq. (A3)], and thus it may be neglected within the framework of the semiclassical approximation.
We must also truncate the range of px0 for numerical evaluation, so we take |px0| < pmax. Last,
Eq. (39) is even in θ0 by symmetry, so we can restrict the domain θ0 ∈ [0, π ] and double the result.
Hence, the final expression that we evaluate numerically is

Pr(x0) ≈ 2√
2πε

[
2π I0

(
α

ε

)]−1 ∫ pmax

−pmax

d px0

∫ π

0
dθ0

1 + cos θ + γ

2 px

|1 + cos θ + γ px|

×
∣∣∣∣det

∂q
∂z′

∣∣∣∣1/2

exp

{
− [U (θ0) + R(1, θ, x0, θ0, t )]

ε
− 1

2

∫ t

0
∇ · fdτ

}
. (41)

The domain for the integral (41) is the set of initial conditions (px0, θ0) that eventually exit right,
i.e., those initial conditions that reach x = 1 at some time t . Figure 9 shows an example integration
domain for x0 = 0.5. We evaluate Eq. (41) numerically using the trapezoidal rule. For each x0, we
discretize the set of initial conditions (px0, θ0) on the Lagrangian manifold (38) with a uniform grid.
We numerically integrate each trajectory until it hits x = 1, up to a maximum integration time of
t = 6, consistent with the corresponding Monte Carlo calculations in Fig. 7(a). We simultaneously
calculate the accumulated action R (Eq. (35)), the integral

∫ ∇ · f dτ , and the Jacobian matrix
∂q/∂z′. This last step requires integrating the tangent flow along the trajectories [Eq. (A27)]. The
integral (41) is then evaluated for a given ε by summing over all the trajectories that hit x = 1, with
all of the quantities in the integrand evaluated at that moment. Note that once the set of trajectories
and all auxiliary quantities are obtained for a given x0, Eq. (41) can be evaluated for an arbitrary ε.
This represents one of the chief advantages of the semiclassical approximation. We take pmax = 60.
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FIG. 10. Comparison of Monte Carlo and semiclassical calculations of Pr(x0), for α = 1, γ = 0.1, and
λ = 0. The solid lines are the semiclassical predictions, while markers are the Monte Carlo calculations. ε =
0.1 (©), ε = 0.3 (∗), ε = 0.5 (×), ε = 0.7 (�), and ε = 0.9 (∇ ).

Including higher values of px0 has a negligible effect on the results, because trajectories with larger
px have a larger accumulated action R [Eq. (35)] and thus are exponentially suppressed in Eq. (41).
Using this approach, we calculate Pr(x0) for a discrete set of values x0 ∈ [0, 1), and we use the
symmetry (24) to get Pr(x0) for x0 ∈ (−1, 0). The results are plotted in Fig. 10.

C. Discussion

For |x0| near 1, we see in Fig. 10 an excellent agreement between the semiclassical predictions
for Pr(x0) and the Monte Carlo simulations. As ε increases from 0.1 to 0.9, we see the semiclassical
predictions overlap with the Monte Carlo simulations for x0 near the BIMs. This is particularly
impressive, because in addition to the small-ε assumption manifest in the semiclassical model, we
have made a couple additional approximations in evaluating Eq. (39). Therefore, by summing over
all Hamiltonian trajectories that exit right, weighted appropriately by the semiclassical probability
density in Eq. (41), we can accurately calculate exit-right probability Pr(x0). The integral (41)
includes all trajectories with a given x0 that exit right, including those which begin to the right
side of the SwIM [Fig. 3(a)] and would have exited right even without noise, as well as those which
begin on the left side of the SwIM and cross it due to fluctuations (Fig. 8).

As |x0| gets closer to 0, however, the semiclassical predictions begin to deviate from the Monte
Carlo calculations with increasing ε. In particular, Eq. (24) requires that Pr(0) = 0.5, that is, a
swimmer starting in the middle of the flow has an equal probability of going left or right. While the
semiclassical prediction appears consistent with this property for ε = 0.1, as ε increases further,
we see the semiclassical Pr(0) increase above 0.5 in the inset of Fig. 10. This fact, combined
with our use of Eq. (24) to obtain the semiclassical Pr(x0) for x0 < 0, causes the apparent kink
at x0 = 0 in our semiclassical predictions plotted in Fig. 10. We believe that at least part of the
discrepancy between the semiclassical Pr(x0) and the Monte Carlo calculations for x0 close to 0 is
due to the presence of caustics, a technical issue that we have ignored until now. Our semiclassical
approximation assumes the uniqueness of Hamiltonian trajectories that originate on the initial
Lagrangian manifold and go from (x0, θ0) to (x, θ ) in time t . This means, for example, that when
evaluating the accumulated action R(x, θ, x0, θ0, t ) in Eq. (35), there is a unique such trajectory.
The uniqueness is the critical property that makes R a well-defined function. However, uniqueness
is guaranteed only for sufficiently short times, meaning that once t is sufficiently large, there will
be multiple Hamiltonian trajectories connecting the two points. In this case, R becomes multivalued
[36]. Geometrically, the uniqueness breaks down when the evolving Lagrangian manifold develops
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FIG. 11. Fraction of trajectories used in the semiclassical calculation that pass through at least one caustic
before hitting x = 1.

fold singularities, such that when it is projected into q space, parts of the projection overlap with
each other. These overlap regions are the regions where multiple Hamiltonian trajectories can arrive
at a single point. In the context of the semiclassical approximation in quantum mechanics, these
fold singularities are called caustics, and they have been extensively studied (see [20] and references
therein). The formulas for the semiclassical wave function need to be corrected to account for the
occurrence of caustics through the inclusion of a Maslov index, a phase factor that essentially counts
the number of caustics encountered by each trajectory.

We know of no general prescription for dealing with caustics in the semiclassical approximation
to the Fokker-Planck equation, even though they commonly occur. Previously, caustics have been
investigated in the semiclassical formulation of the noise-driven dynamics of a nonlinear oscillator
in two dimensions [37]. When calculating the steady-state probability density of this system, one
must account for switching lines in phase space, i.e., curves on either side of which the least-action
path changes discontinuously due to the presence of multiple Hamiltonian trajectories arriving at
those locations. Near the switching line, where the distinct paths with coincident endpoints have
nearly the same action, the semiclassical probability density needs to account for each of the distinct
paths; in fact, the signature of multiple paths leading to the same point in phase space has been
observed experimentally in a noisy electronic oscillator [16]. Caustics also arise in the theoretical
description of noise-induced transitions in nongradient dynamical systems with metastable fixed
points [38,39]. Specifically, the quasistationary probability densities underlying escape from the
metastable fixed points may be approximated semiclassically, though one must go beyond the
standard WKB approximation in the vicinity of the caustics. It is not obvious how to generalize these
previously obtained results to the noisy dynamics of the swimmer in the hyperbolic flow, because
the swimmer phase space does not possess stable fixed points and is fundamentally transient, i.e.,
time-dependent.

Such a generalization is needed because caustics do indeed occur in the dynamics of noisy
swimmers in the hyperbolic flow. To demonstrate this, we track the number of caustics encountered
by the trajectories underlying our semiclassical calculation of Pr(x0) up until the point that they
hit x = 1. At points where caustics occur, the projection from the Largrangian manifold into q
space is not invertible, meaning the Jacobian determinant det ∂q/∂z′ must be zero at that point.
Thus, we count the number of caustics encountered along a trajectory by tracking zero-crossings
of det ∂q/∂z′. In Fig. 11 we plot the fraction of trajectories used in our numerical semiclassical
approximation that encounter at least one caustic on the way to x = 1. While the fraction of
caustic-crossing trajectories is around 6% or smaller for x0 > 0.5, it rapidly rises to nearly 15%
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as x0 decreases from 0.5 to 0. This trend is reasonable, because caustics only begin to occur after a
sufficiently long time. Trajectories beginning closer to x = 1 will tend to reach it sooner, potentially
before many caustics have occurred. At the same time, in the x0 > 0.5 range, we see good agreement
between the semiclassical and Monte Carlo calculations in Fig. 10, while in the x0 < 0.5 range
we observe a discrepancy with increasing ε. This correlation is evidence that the semiclassical
approximation works well when few trajectories have encountered caustics, while a discrepancy can
be caused by improper treatment of the caustics, which is important when considering sufficiently
long-time processes.

VI. CONCLUSION

To summarize, we have quantified the effect of noise on swimmer dynamics in a steady, two-
dimensional hyperbolic fluid flow. In such a flow, swimmers are ultimately forced to escape to the
left or the right, with their transient dynamics near the passive unstable fixed point determining
which way they go. Without noise, a swimmer’s fate is sealed based on its position relative to the
SwIM in the xθ phase space. With noise, the swimmer’s motion is a stochastic process. We calcu-
lated the steady-state orientation distributions of diffusive, run-and-tumble, or mixed swimmers in
the hyperbolic flow. The fluctuations give some swimmers greater opportunity to cross the SwIM
and exit on the opposite side than they would have without noise. There is, however, a maximal
distance that swimmers can get on either side of the passive fixed point and still be able to swim
back to the other side—this is where the stable BIMs block inward swimming particles.

Fluctuations make it increasingly likely that a swimmer close to one of these BIMs does indeed
end up crossing it, causing irreversible changes to the fluctuating swimmers’ trajectories (assuming
negligible translational diffusion). We quantified this probability using Monte Carlo calculations
and a semiclassical approximation to the swimmer Fokker-Planck equation. The semiclassical
approximation accurately predicts the probability Pr(x0) a swimmer exits right given that it began
at a position x0 relative to the passive fixed point, especially for x0 close to the BIM. It also predicts
the probability distribution of paths that fluctuating swimmers take in phase space given specified
boundary conditions. SwIMs and BIMs are present in nonlinear flows as well, such as alternating
vortex flows [12]. Thus, we expect the depletion effect to occur in the vicinity of the BIMs of such
flows as well.

This study demonstrates the utility of the semiclassical approximation for understanding the
noisy dynamics of a nontrivial active matter system. However, it also reveals a key shortcoming of
the existing semiclassical theory for Fokker-Planck dynamics. In particular, a general approach is
needed for taking into account the occurrence of caustics, i.e., multiple branches of Hamiltonian
paths connecting points in configuration space. While this issue has been examined in a few specific
cases [16,37–39], no general theory is currently available to the best of our knowledge. A procedure
for coherently summing the contributions of multiple paths, similar to the Maslov theory in quantum
mechanics [20,40], would be highly desirable, both for accurate numerical computations and for the
theoretical analysis of most likely noisy paths of a dynamical system.

Finally, the semiclassical approximation may be a valuable tool for analyzing experimental data
of noisy swimmers in fluid flows. For example, with a sufficiently large number of experimentally
recorded trajectories of the type shown in Fig. 1, it would be possible to test the semiclassical
predictions of the exit-right probability Pr(x0). It should also be possible to investigate the distri-
bution of experimentally measured trajectories satisfying specific boundary conditions [37,41]. The
semiclassically predicted distributions may be used to fit the experimental data in order to extract
physical parameters, such as rotational diffusivity and swimmer shape [42].
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APPENDIX A: SEMICLASSICAL APPROXIMATION FOR THE FOKKER-PLANCK EQUATION

We consider the stochastic process in a d-dimensional phase space

dq = [F(q) + εG(q)]dt + √
εC dw, (A1)

where w = (w1,w2, . . . ,wn) is a set of uncorrelated Wiener processes and C is a d × n matrix,
assumed to be constant for simplicity. The G term is included in Eq. (A1) to account for potential
noise-induced drift [17]. The corresponding Fokker-Planck equation for the probability density
P(q, t ) is

∂P

∂t
= −∇ · [(F + εG)P] + 1

2
εD :

∂2P

∂q2
, (A2)

where D = CCT is the diffusion tensor (up to a factor of 2). The diffusion tensor is required to be
positive-definite.

Our goal is to find an approximate solution to Eq. (A2) in the weak-noise (ε � 1) limit. We use
an approach closely related to the semiclassical approximation of quantum mechanics [20], and our
derivation closely follows Ref. [17]. Similar techniques have been applied to stochastic dynamics in
a variety of settings [15,16,18,29,37–39,43]. We consider an asymptotic expansion of the solution

P(q, t ) ≈ exp

[
−

N−1∑
n=0

Sn(q, t )εn−1

]
, (A3)

where N is the maximum number of terms in the expansion and the Sn are functions to be
determined. We restrict our attention to N = 2 and rewrite the solution as

P(q, t ) ≈ A(q, t )e−W (q,t )/ε, (A4)

where W = S0 and A = e−S1 . Equation (A4) constitutes a WKB approximation to Eq. (A2). It is in
the same spirit as the semiclassical approximation to the Schrödinger equation; with the substitution
ε → ih̄, the semiclassical wave function is expressed as ψ = AeiW/h̄. In that case, W is the action
of the classical system associated to the quantum Hamiltonian, and A2 = |ψ |2 is the probability
density of the system. In the Fokker-Planck case, we shall see that W also corresponds to the action
of a particular classical Hamiltonian derived from the Fokker-Planck equation, while A is essentially
a normalization function.

The functions A and W (equivalently the Sn) are determined by substituting Eq. (A3) into
Eq. (A2). This yields the equation

−
N−1∑
n=0

∂Sn

∂t
εn = − (∇ · F)ε + F ·

N−1∑
n=0

∇Snε
n − (∇ · G)ε2 + G ·

N−1∑
n=0

∇Snε
n+1

+ 1

2

[
−

N−1∑
n=0

D :
∂2Sn

∂q2
εn+1 +

N−1∑
n,m=0

∇Sm · D∇Snε
n+m

]
. (A5)

The goal is to equate terms of equal order in ε in Eq. (A5), which leads to equations for the Sn. We
are only interested in the ε0 and the ε1 terms.

The solutions to Eq. (A5) depend on the initial condition P0(q) ≡ P(q, 0). We derive the
solutions for three types of initial conditions. The first is a Dirac δ function centered on an arbitrary
phase-space point q0, where we use the “0” subscript to refer to an initial condition fixed at
some particular value. In this case, the solution is denoted P = K (q, q0, t ), where K is called the
propagator, with initial condition

K (q, q0, 0) = δ(q − q0). (A6)
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The propagator encodes the probability for the system to make a transition from q0 to q in time t .
This fact, combined with the linearity of the Fokker-Planck equation, allows its solution with any
initial probability distribution P0 to be written as

P(q, t ) =
∫

K (q, q0, t )P0(q0) dd q0. (A7)

However, evaluating Eq. (A7) in practice is very computationally costly, which leads us to consider
initial conditions which vary smoothly over some or all of the q coordinates. In particular, we
consider an initial condition already in WKB form (A4) [43]:

P0(q) = A0(q)e−W0(q)/ε. (A8)

Last, we consider initial conditions that are a hybrid between the WKB form (A8) and the propagator
form (A6), of the type

P0(q, q f 0) = δ(q f − q f 0)A0(qk )e−U (qk )/ε. (A9)

Here the variables are split into two groups, q = (q f , qk ), where the q f variables are fixed at a
specific value q f 0 at t = 0 by the δ function in Eq. (A9), while the qk variables are distributed
according to the WKB part of Eq. (A9). We are able to solve for W and A for this hybrid initial
condition in the special case that D is block-diagonal, with one block corresponding to the q f

variables and the other to the qk variables,

D =
(

D f 0d f ×dk

0dk×d f Dk

)
, (A10)

where d f is the size of q f and dk is the size of qk . The equations satisfied by W and A in Eq. (A4) are
the same in each of the three cases, but the solutions must be selected such that the initial condition
is satisfied. In Secs. A 1–A 3, we derive the solutions for the propagator initial condition (A6), and
in Sec. A 4, we derive the solutions for the WKB and hybrid initial conditions.

1. Hamilton-Jacobi equation

From the zeroth order of Eq. (A5), we find W satisfies
∂W

∂t
= −H (q,∇W ), (A11)

H (q, p) = 1

2
p · Dp + p · F(q). (A12)

Equation (A11) is the Hamilton-Jacobi equation for a Hamiltonian system in a phase space of
doubled dimension 2d , with coordinates (q, p) and Hamiltonian H given by Eq. (A12). Here q is
the coordinate of the original stochastic dynamical system (A1), and p is the momentum canonically
conjugate to q. The solution of Eq. (A11) is obtained by using the method of characteristics, which
aims to find solutions of the form W (q(t ), t ) along particular paths (the characteristics) q(t ). For the
case of Eq. (A11), the characteristics turn out to be the projections of trajectories (q(t ), p(t )) of the
Hamiltonian system into configuration space. The relationship between the canonical momentum
and W is

p = ∇W (q, t ). (A13)

The characteristics obey the equations

q̇ = ∂H

∂p
= F(q) + Dp, (A14)

ṗ = −∂H

∂q
= −∂F

∂q
p, (A15)

Ẇ = p · q̇ − H (q, p) = 1

2
p · Dp. (A16)

014501-22



SWIMMER DYNAMICS IN EXTERNALLY DRIVEN FLUID …

The overdots signify the total time derivative d/dt along the characteristics q(t ). In particu-
lar, Ẇ (q(t ), t ) = ∂W/∂t + q̇ · ∂W/∂q. Equations (A14) and (A15) are Hamilton’s equations, and
Eq. (A16) is the differential equation satisfied by the classical action.

The Hamiltonian system Eq. (A14) and (A15) stems from a variational principle, which sheds
light on the physical meaning of the approximation (A3). We define the action functional as the time
integral of (A16) for arbitrary functions of time (q(τ ), p(τ )),

I[q(τ ), p(τ )] =
∫ t

0
[p · q̇ − H (q, p)]dτ. (A17)

The critical points of this action functional are derived from the Euler-Lagrange equations of (A17),
which yield directly Eqs. (A14) and (A15). Therefore, W is simply the value of the action functional
I evaluated at its critical points, up to an additive constant. The phase-space action functional
(A17) can be converted into a configuration space action functional, by going from the Hamiltonian
formulation to the Lagrangian formulation. Assuming D is positive-definite and thus invertible,
Eq. (A14) can be solved for p, yielding p = D−1[q̇ − F(q)]. Using the second equality of Eq. (A16),
we can now eliminate p from Eq. (A17), yielding the configuration space action

Ĩ[q(τ )] = 1

2

∫ t

0
[q̇ − F(q)] · D−1[q̇ − F(q)]dτ. (A18)

Equation (A18) is alternately known as the Onsager-Machlup action functional [28] or the Freidlin-
Wentzell action functional [29]. Because D is positive-definite, Ĩ � 0, with equality only achieved
along the deterministic trajectories satisfying q̇ = F(q). Hence, Ĩ is like a cost functional which
penalizes deviations from the deterministic trajectories. In the case of the propagator initial condi-
tion (A6), the subsequent probability density (A4) is peaked along the deterministic trajectory, and
deviations away from the trajectory due to noise are exponentially suppressed. Furthermore, we can
now see that the approximation implied by Eq. (A4) is that only the critical points of the functional
(A18) contribute to the probability density; all other paths q(τ ) are discarded in this approximation.
This formulation also highlights the link with the path-integral formulation of the Fokker-Planck
equation [44,45].

A useful concept for understanding the time evolution of the semiclassical probability density
(A4) is the Lagrangian manifold [20]. According to Eqs. (A14)–(A16), the action W (q, t ) is
expressed in terms of families of solutions of a Hamiltonian system that, at any instant of time,
lie on the d-dimensional surface in phase space defined by Eq. (A13). Equation (A13) defines a
surface which is a Lagrangian manifold, i.e., a surface in phase space on which the symplectic
2-form vanishes (for more details, see [20]). The time evolution of W (and A, as shown in Sec. A 2)
is thus directly obtained from the time evolution of a properly selected initial Lagrangian manifold
under the Hamiltonian flow. The initial Lagrangian manifold, i.e., a d-dimensional surface in phase
space containing the initial conditions (q′, p′), must be selected so that the initial condition is
satisfied, i.e., limt→0 A(q, t ) exp[−W (q, t )/ε] = P0(q). We use primed variables to refer to the
space of initial conditions. Though Eq. (A13) explicitly gives the relationship between W and the
Lagrangian manifold for times t �= 0, it is ill-defined for any P0(q) for which W is singular in the
t → 0 limit. This occurs when the projection of the initial Lagrangian manifold into configuration
space is singular, which is the case for the propagator and hybrid initial conditions.

For the propagator initial condition (A6), the initial Lagrangian manifold is the phase-space
surface q′ = q0. This means the Lagrangian manifold includes all possible initial momenta p′ ∈
Rd . The projection of this Lagrangian manifold into q space is singular because all points of the
Lagrangian manifold project to the same configuration space point, q0. The solution of Eq. (A11)
in this case is W (q, t ) = R(q, q0, t ), where R is Hamilton’s principal function, given by

R(q, q0, t ) =
∫ t

0
[p(τ ) · q̇(τ ) − H (q(τ ), p(τ ))]dτ, (A19)
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where (q(τ ), p(τ )) is the Hamiltonian path [i.e., solution of Eqs. (A14) and (A15)] going from q0

to q in time t . Equation (A19) clearly follows from Eq. (A16). Because this solution is obtained by
evolving the surface q′ = q0 forward in time, each path has a distinct initial momentum p0. In fact,
p0 may be expressed in terms of q0, q, and t as

p0 = − ∂R

∂q0
(q, q0, t ). (A20)

To prove it, we consider the change in R as we make an infinitesimal change to the initial coordinate
q0, while keeping the final coordinate q and transit time t fixed. We get

R(q, q0 + δq0, t ) − R(q, q0, t ) ≈
∫ t

0

[
δp · q̇ + p · δq̇ − ∂H

∂q
· δq − ∂H

∂p
· δp

]
dτ

= p · δq
∣∣t

0 −
∫ t

0

[
ṗ · δq + ∂H

∂q
· δq

]
dτ

= −p0 · δq0.

In Sec. A 3, we show that Eq. (A19) indeed gives a probability density that satisfies the initial
condition (A6).

All of our arguments make the assumption that there is only one Hamiltonian path going from
q0 to q in time t , so that R is single-valued (for all times t > 0). In general, however, at longer times
there are multiple paths connecting q0 and q in the same time t , with distinct initial momenta
p0. Thus, the action becomes multivalued. This situation also arises in semiclassical quantum
mechanics. In that case, the quantum propagator consists of a sum of terms of the form of Eq. (A4),
one for each branch of solutions, that are stitched together in such a way that the propagator
is continuous [20,40]. We are not aware of a similar procedure for the Fokker-Planck equation.
Thus, we continue to assume that there is a unique characteristic for any (q0, q, t ) and hence, R is
single-valued.

2. Transport equation

Next, we look at the equation arising from the first order terms of Eq. (A5). These lead to a
transport equation for S1, which can be rearranged into a transport equation for A. This results in

Ȧ = −
(

∇ · F − G · ∇W + 1

2
D :

∂2W

∂q2

)
A, (A21)

where we recall Ȧ = dA/dt = ∂A/∂t + q̇ · ∇A, with q̇ given by Eq. (A14). We solve Eq. (A21) by
integrating along the characteristics q(t ) defined be Eqs. (A14)–(A16). Rearranging, we obtain

d (ln A)

dt
= −1

2
∇ · (F + D∇W ) − 1

2
∇ · F + G · ∇W. (A22)

Equation (A22) gives the change of A as one moves along a characteristic path from a point on the
initial Lagrangian manifold, with configuration space coordinate q′, to the terminal coordinate q in
time t . By integration, we obtain

ln

(
A(q, t )

A(q′, 0)

)
= −1

2

∫ t

0
∇ · (F + D∇W ) dτ − 1

2

∫ t

0
∇ · F dτ +

∫ t

0
G · ∇W dτ, (A23)

where the integration on the right-hand side of Eq. (A23) is carried out along the characteristic
path. Equation (A23) applies to any initial Lagrangian manifold, but it must be handled carefully
for initial Lagrangian manifolds with a singular projection, such as the propagator case for which
q′ = q0. The propagator initial condition (A6) is itself singular at q′ = q0, and it turns out that A is
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also singular at this point. We introduce the quantity A0 ≡ A(q0, 0) as a placeholder for now, and it
is properly accounted for in Sec. A 3.

To clarify the first term on the right-hand side of Eq. (A23), we introduce the phase space
functions (q(z′, t ), p(z′, t )). The functions (q(z′, t ), p(z′, t )) express the positions and momenta
(q, p) at time t of Eqs. (A14) and (A15) as a function of their initial coordinate z′ on the Lagrangian
manifold. We allow for an arbitrary parametrization z′ of the initial Lagrangian manifold, and
we express the initial conditions as (q′(z′), p′(z′)). For the propagator initial condition, the initial
Lagrangian manifold can be simply parametrized as

(q′(z′), p′(z′)) = (q0, z′). (A24)

The functions (q, p) can be expressed using the flow functions (Q(q′, p′, t ), P(q′, p′, t )), which map
initial conditions (q′, p′) to their values Q and P at time t and satisfy Hamilton’s equations (A14)
and (A15). It is obvious that

q(z′, t ) = Q(q′(z′), p′(z′), t ), (A25a)

p(z′, t ) = P(q′(z′), p′(z′), t ) = ∇W (q(z′, t ), t ). (A25b)

From Eq. (A25), it follows

∂q
∂z′ = ∂Q

∂q′
∂q′

∂z′ + ∂Q
∂p′

∂p′

∂z′ , (A26a)

∂p
∂z′ = ∂P

∂q′
∂q′

∂z′ + ∂P
∂p′

∂p′

∂z′ . (A26b)

Hence, we can compute the time evolution of the Jacobian matrix ∂q/∂z′ by differentiating
Eq. (A26a) with respect to time. This leads to

d

dt

∂q
∂z′ =

(
d

dt

∂Q
∂q′

)
∂q′

∂z′ +
(

d

dt

∂Q
∂p′

)
∂p′

∂z′

=
(

∂F
∂q

∂Q
∂q′ + D

∂P
∂q′

)
∂q′

∂z′ +
(

∂F
∂q

∂Q
∂p′ + D

∂P
∂p′

)
∂p′

∂z′

= ∂F
∂q

∂q
∂z′ + D

∂p
∂z′

=
[
∂F
∂q

+ D
∂2W

∂q2

]
∂q
∂z′ . (A27)

We obtain the second line of Eq. (A27) by differentiating Eq. (A14) with respect to q′ and p′ and
the third line by applying Eq. (A26). In the fourth line of Eq. (A27), we use

∂p
∂z′ = ∂2W

∂q2

∂q
∂z′ , (A28)

which follows from Eq. (A25b). Next, we find the equation satisfied by D ≡ det ∂q/∂z′, which is

d (ln |D|)
dt

= tr

[(
d

dt

∂q
∂z′

)(
∂q
∂z′

)−1]
= ∇ · (F + D∇W ), (A29)

where we have used Eq. (A27). From this it follows

ln

( |D|
D0

)
=

∫ t

0
∇ · (F + D∇W ) dτ. (A30)
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The right-hand side of Eq. (A30) is the first term that appears in Eq. (A23) up to a factor of −1/2.
In Eq. (A30),

D0 = lim
t→0

∣∣∣∣det
∂q
∂z′

∣∣∣∣. (A31)

For the case of the propagator initial condition, q → q0 as t → 0, independent of z′, and therefore
∂q/∂z′ = 0 in the limit, implying D0 = 0. This is related to the divergence of A as t → 0, so we
keep D0 as a placeholder here and return to this point in Sec. A 3. Using Eq. (A30), we may now
solve Eq. (A23) for A, giving

A(q, t ) = A0
√

D0

∣∣∣∣det
∂q
∂p′

∣∣∣∣−1/2

exp

[
−1

2

∫ t

0
∇ · F dτ +

∫ t

0
G · p dτ

]
, (A32)

where we have replaced z′ by p′ by virtue of Eq. (A24).

3. Normalization of the propagator

To fix the value of the constant A0
√

D0, we must consider the limit t → 0 and impose the initial
condition (A6). In this limit we have the estimates

q − q0

t
≈ F(q0) + Dp′, (A33)

R ≈ 1

2t
(q − q0) · D−1(q − q0). (A34)

Solving Eq. (A33) for q, we find

∂q
∂p′ = Dt, (A35)

det
∂q
∂p′ = t d det D. (A36)

Hence, the semiclassical propagator in this limit becomes

K (q, q0, t → 0) ≈ A0
√

D0(det D)−1/2t−d/2 exp

[
− 1

2εt
(q − q0) · D−1(q − q0)

]
. (A37)

Equation (A37) is a Gaussian approximation to the δ function initial condition (A6), which ap-
proaches the δ function in the t → 0 limit. Therefore, the solutions for W and A satisfy the initial
condition, provided that

A0
√

D0 = (2πε)−d/2, (A38)

so that the Gaussian is properly normalized. The final semiclassical expression for the propagator is

K (q, q0, t ) ≈ 1

(2πε)d/2

∣∣∣∣det
∂q
∂p′

∣∣∣∣−1/2

exp

[
−1

ε
R(q, q0, t ) − 1

2

∫ t

0
∇ · F dτ +

∫ t

0
G · p dτ

]
.

(A39)

4. Solutions for WKB and hybrid initial conditions

a. WKB initial condition

For the WKB initial condition (A8), the initial Lagrangian manifold is the surface defined by

p′ = ∂W0

∂q′ (q′). (A40)
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We parametrize the Lagrangian manifold by

(q′(z′), p′(z′)) =
(

z′,
∂W0

∂q′ (z′)
)

, (A41)

and let the phase space functions be (q(z′, t ), p(z′, t )). The position coordinate part of this function
is assumed to be invertible, so that the initial configuration space coordinate can be expressed as
q0 = q0(q, t ). Then the solution to Eq. (A11) is [20,36]

W (q, t ) = W0(q0(q, t )) + R(q, q0(q, t ), t ), (A42)

where R is evaluated along the Hamiltonian trajectory with initial coordinate q0(q, t ) and initial
momentum given by Eq. (A40) evaluated at q0(q, t ).

The solution to the transport equation (A21) is almost identical to the propagator initial condition
case. The main differences are the parametrization of the Lagrangian manifold (A41) and the
specific initial condition A(q, 0) = A0(q). Taking these into account, we obtain

A(q, t ) = A0(q0(q, t ))

∣∣∣∣det
∂q
∂q′

∣∣∣∣−1/2

exp

[
−1

2

∫ t

0
∇ · Fdτ +

∫ t

0
G · p dτ

]
. (A43)

The final expression for the semiclassical probability density is

P(q, t ) ≈ A0(q0)

∣∣∣∣det
∂q
∂q′

∣∣∣∣−1/2

exp

[
− [W0(q0) + R(q, q0, t )]

ε
− 1

2

∫ t

0
∇ · F dτ +

∫ t

0
G · p dτ

]
.

(A44)

b. Hybrid initial condition

For the hybrid initial condition (A9), the initial Lagrangian manifold is the surface defined by

q′
f = q f 0, (A45)

p′
k = ∂U

∂qk
(q′

k ). (A46)

We parametrize the Lagrangian manifold by the coordinates z′ ≡ (p′
f , q′

k ), and let the phase
space functions be (q(z′, t ), p(z′, t )). We assume an inverse to q(z′, t ) exists, which we denote
(p f 0, qk0) = z0 = z0(q, q f 0, t ). Then, the solution to the Hamilton-Jacobi equation is

W (q, t ) = U (qk0) + R(q, q0, t ), (A47)

where q0 = (q f 0, qk0(q, q f 0, t )), and the initial momentum of the trajectory terminating at q at time
t is

p f 0(q, q f 0, t ) = − ∂R

∂q f 0
(q, q0, t ), (A48)

pk0(q, q f 0, t ) = ∂U

∂qk
(qk0). (A49)

Solving the transport equation is again similar to the propagator case. The quantity det ∂q/∂z′
still satisfies Eq. (A29), while in Eq. (A23) we write A(q′, 0) = A0(q′

k )A∗, where A∗ is a placeholder
constant. We therefore obtain

A(q, t ) = A∗
√

D0A0(qk0(q, q f 0, t ))

∣∣∣∣det
∂q
∂z′

∣∣∣∣−1/2

exp

[
−1

2

∫
∇ · F dτ +

∫ t

0
G · p dτ

]
. (A50)

Taking the t → 0 limit of the full solution and forcing it to satisfy the initial condition (A9) leads to

A∗
√

D0 = (2πε)−d f /2. (A51)
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Thus, the full semiclassical probability density is

P(q, t ) = 1

(2πε)d f /2
A0(qk0)

∣∣∣∣det
∂q
∂z′

∣∣∣∣−1/2

× exp

[
− (U (qk0) + R(q, q0, t ))

ε
− 1

2

∫
∇ · F dτ +

∫ t

0
G · p dτ

]
. (A52)

5. Gaussian approximation to the semiclassical propagator: 1D case

For sufficiently small noise and times, it is useful to approximate the semiclassical propagator
as a Gaussian centered on the deterministic trajectory q∗(t ). Because of the exponential form of
Eq. (A39), for short times and small noise, the most important part to capture is the part near the
absolute minimum of the action R(q, q0, t ) = 0, which due to Eq. (A18), occurs at the deterministic
solution q = q∗(t ). We illustrate the approximation for the 1D case for simplicity, so that q → q
and F → F , and we let the diffusion tensor D → 1 and G → 0. Thus, Hamilton’s equations become

q̇ = F + p, (A53)

ṗ = −p
dF

dq
. (A54)

We expand K about q∗ as follows:

K (q, q0, t ) ≈ A(q∗) exp

[
− 1

2ε

∂2R

∂q2
(q − q∗)2

]
, (A55)

where

A(q∗) = 1√
2πε

∣∣∣∣ ∂q

∂ p′

∣∣∣∣−1/2

exp

[
−1

2

∫ t

0

dF

dq
dτ

]
. (A56)

In Eq. (A56) the Jacobian matrix and integral are evaluated along the deterministic trajectory q∗(t ),
so that A(q∗) is a function of time. Equation (A55) thus constitutes a Gaussian approximation to the
propagator, which would be properly normalized provided that√

∂2R

∂q2
=

∣∣∣∣ ∂q

∂ p′

∣∣∣∣−1/2

exp

[
−1

2

∫ t

0

dF

dq
dτ

]
. (A57)

Next, we show that this is indeed the case.
Recalling that p = ∂R/∂q, we have that

∂2R

∂q2
= ∂ p

∂q
. (A58)

We now rewrite Eq. (A58) in terms of partial derivatives with respect to the initial conditions (q′, p′),
which we can then compute using the tangent flow equations of Eqs. (A53) and (A54). Using the
chain rule, we obtain

∂ p

∂q
= ∂ p

∂ p′

(
∂q

∂ p′

)−1

. (A59)

The quantity ∂ p/∂ p′ satisfies

d

dt

∂ p

∂ p′ = −p
d2F

dq2

∂q

∂ p′ − dF

dq

∂ p

∂ p′ , (A60)
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with initial condition ∂ p/∂ p′(0) = 1. Along the deterministic trajectory however, p = 0 for all time,
so the first term of Eq. (A60) vanishes. Therefore, we obtain

∂ p

∂ p′ = exp

[
−

∫ t

0

dF

dq
dτ

]
. (A61)

Combining Eqs. (A58), (A59), and (A61), we see that Eq. (A57) is almost proved. We need only
verify that ∂q/∂ p′ � 0 for all time. This quantity satisfies

d

dt

∂q

∂ p′ = dF

dq

∂q

∂ p′ + ∂ p

∂ p′ , (A62)

with initial condition ∂q/∂ p′(0) = 0. Using Eq. (A61), we obtain

∂q

∂ p′ = exp

[∫ t

0

dF

dq
dτ

] ∫ t

0
exp

[
−2

∫ τ ′

0

dF

dq
dτ ′′

]
dτ ′. (A63)

Because Eq. (A63) consists of products and sums of exponentials, which are all positive, we have
∂q/∂ p′ � 0. Thus, Eq. (A57) is proved.

Combining the results, we obtain the following expression for the Gaussian approximation to the
propagator:

K (q, q0, t ) =
√

1

2πε

∂2R

∂q2
exp

[
− 1

2ε

∂2R

∂q2
(q − q∗)2

]
, (A64)

where

∂2R

∂q2
= exp

[
−2

∫ t

0

dF

dq
dτ

]{∫ t

0
exp

[
−2

∫ τ ′

0

dF

dq
dτ ′′

]
dτ ′

}−1

. (A65)

APPENDIX B: SOLUTION TO THE LIOUVILLE EQUATION

We derive the solution to Eq. (14), rewritten here as

∂P

∂τ
− α sin(2θ )

∂P

∂θ
= 2α cos(2θ )P. (B1)

The method of characteristics seeks a solution P(θ (τ ), τ ), where the characteristics θ (τ ) satisfy

dθ

dτ
= −α sin(2θ ) (B2)

and are explicitly given by Eq. (16). Taking the total time derivative of P(θ (τ ), τ ) and using
Eq. (B1), we get

dP

dτ
= 2α cos(2θ (τ ))P. (B3)

We use the identity cos 2θ = (1 − tan2 θ )/(1 + tan2 θ ), substitute tan(θ (τ )) = e−2ατ tan θ0 [from
Eq. (16)] and move P to the left-hand side of Eq. (B3), which yields

d (ln P)

dτ
= 2α

1 − e−4ατ tan2 θ0

1 + e−4ατ tan2 θ0
. (B4)

Integrating both sides yields

ln
P(θ, τ )

P0(θ0)
= 1

2
ln

[
e4ατ + 2 tan2 θ0 + e−4ατ tan4 θ0

(1 + tan2 θ0)2

]
. (B5)
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Finally, we solve Eq. (16) for tan θ0 and θ0 in terms of θ and τ , substitute these into Eq. (B5), and
solve for P(θ, τ ), which yields

P(θ, τ ) = P0(tan−1(e2ατ tan θ ))
e2ατ

cos2 θ + e4ατ sin2 θ
. (B6)
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