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Gradient-based optimization of chaotic acoustics is challenging for a threefold reason:
(i) first-order perturbations grow exponentially in time; (ii) the statistics of the solution
may have a slow convergence; and (iii) the time-averaged acoustic energy may physically
have discontinuous variations, which means that the gradient does not exist for some
design parameters. We develop a versatile optimization method, which finds the design
parameters that minimize time-averaged acoustic cost functionals, and overcomes the three
aforementioned challenges. The method is gradient-free, model-informed, and data-driven
with reservoir computing based on echo state networks. First, we analyze the predictive
capabilities of echo state networks in thermoacoustics both in the short- and long-time
prediction of the dynamics. We find that both fully data-driven and model-informed
architectures are able to learn the chaotic acoustic dynamics, both time-accurately and
statistically. Informing the training with a physical reduced-order model with one acoustic
mode markedly improves the accuracy and robustness of the echo state networks, while
keeping the computational cost low. Echo state networks offer accurate predictions of the
long-time dynamics, which would be otherwise expensive by integrating the governing
equations to evaluate the time-averaged quantity to optimize. Second, we couple echo state
networks with a Bayesian technique to explore the design thermoacoustic parameter space.
The computational method is minimally intrusive because it requires only the initialization
of the physical and hyperparameter optimizers. Third, we find the set of flame parameters
that minimize the time-averaged acoustic energy of chaotic oscillations, which are caused
by the positive feedback with a heat source, such as a flame in gas turbines or rocket
motors. These oscillations are known as thermoacoustic oscillations. The optimal set of
flame parameters is found with the same accuracy as brute-force grid search but with a
convergence rate that is more than one order of magnitude faster. This work opens up new
possibilities for nonintrusive (“hands-off”) optimization of chaotic systems, in which the
cost of generating data, for example, from high-fidelity simulations and experiments, is
high.
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I. INTRODUCTION

When the heat released by a flame is sufficiently in phase with the acoustic waves of a
confined environment, such as a gas turbine, thermoacoustic oscillations can arise [1]. Physically,
thermoacoustic oscillations occur when the thermal power released by the flame, which is converted
into acoustic energy, exceeds fluid mechanic dissipation. In gas turbines and rocket motors, ther-
moacoustic oscillations are unwanted because they can cause structural vibrations, fatigue, noise,
and, if uncontrolled, can shake the device apart. Therefore, the objective of manufacturers is to
design and operate stable devices [2–4]. The preliminary design of thermoacoustic systems is based
on linear analysis, in which the growth rates of infinitesimal oscillations is computed on top of
a time-independent baseline solution. If no growth rate is positive, then the system is linearly
stable [2,5–7]. If the system is linearly unstable, then sensitivity methods, which are based on
gradient computation, have been introduced to answer the practitioners’ question “How can we
change the design parameters to reduce the growth rate of infinitesimal oscillations?” In particular,
adjoint methods proved computationally cheap tools to calculate the gradients of an eigenvalue with
respect to all parameters of interest [7–11] with higher-order corrections [12]. Adjoint gradients
were applied to the optimization of a longitudinal combustor [13] and annular combustors [e.g.,
Refs. 14,15].

Although linear analysis provides valuable information on the system’s stability and sensitivity,
thermoacoustic oscillations are inherently nonlinear. First, the heat release varies nonlinearly with
the acoustics, which perturb the flame dynamics [5,16]. Second, hydrodynamic instabilities (e.g.,
vortex shedding), which are promoted by the geometry of the combustor, can modulate the flame
dynamics and, thus, the heat release rate [17]. Because of these nonlinearities, a thermoacoustic
system may be stable to infinitesimal perturbations (i.e., linearly stable), but finite-amplitude pertur-
bations can trigger sustained oscillations [18], i.e., in the bistable region of a subcritical bifurcation.
These sustained oscillations can be periodic, quasiperiodic or chaotic, as shown in experiments
[19–24] and numerical studies [25–27], to name a few. Among these nonlinear regimes, chaotic
oscillations are the most intractable to optimization [17,28].

Chaotic oscillations are extremely sensitive to infinitesimal perturbations [29], which results in
an exponential growth of infinitesimal perturbations. In other words, the tangent space in unstable1.
Because of this, the calculation of gradients of ergodic averages, i.e., time-averaged quantities of
interest, is intractable with traditional sensitivity methods. This roadblock motivated the develop-
ment of alternative gradient-based methods, which can be grouped into six categories: (i) ensemble
methods [30–32], which average the gradient over an ensemble of short time trajectories; (ii)
probability density methods [33,34], which calculate the gradient from the change in the probability
density function of the chaotic attractor; (iii) unstable periodic orbits [35], which decompose
the chaotic attractor into unstable periodic orbits and compute their gradients; (iv) fluctuation-
dissipation-theorem methods [36–38], which compute the mean linear response of a system to
small changes in external forcing; (v) shadowing methods [39–43], which average over time the
difference between a baseline trajectory and its shadowing trajectory; and (vi) recent developments
on linear response theory [44,45]. In particular, shadowing methods have successfully computed
first-order sensitivities of time-averaged energies in fluid mechanics [46,47]. In thermoacoustics,
shadowing-based gradients were embedded into a gradient update routine for design optimization
[28], in which the time-averaged acoustic energy was minimized by computing the optimal set of
flame parameters. The study highlighted three challenges in gradient-based optimization of chaotic
thermoacoustics. First, thermoacoustic systems physically exhibit an abundance of bifurcations,
across which the time-averaged cost functional being optimized can be discontinuous [17,28].
Second, shadowing-based methods require a number of tangent (i.e., first-order perturbation)
solutions equal to the number of positive Lyapunov exponents [41], which can bear a significant

1In other words, at least one Lyapunov exponent is positive.
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computational cost. Third, the nonlinear dynamics of thermoacoustics can be nonhyperbolic, i.e.,
the covariant Lyapunov basis may become defective [48], for certain design parameters [28]. This
means that gradients cannot be guaranteed to exist for all thermoacoustic design parameters, which
can hinder, and can even prevent, the optimization process via gradient-update. In this paper,
we develop a gradient-free optimization methodology to find the optimal design parameters that
minimize the time-averaged acoustic energy.

In either gradient-based and gradient-free methods, the solution must be integrated sufficiently
long in time (ideally, ad infinitum), such that the quantities of interest (gradient in gradient-based,
and cost functional in gradient-free methods) have converged to within a desired precision2. The
generation of such a time series, however, can carry a high cost. As an alternative to the integration
of the governing equations, we propose the use of a data-driven technique to produce accurate
predictions of the system’s dynamics to generate the required long time series. Such a task naturally
falls within the category of supervised learning for time-dependent systems. In time-dependent
problems, the order by which data is sorted (i.e., time) is of paramount importance. Feed-forward
neural networks are a classic architecture, which works well in regression problems [49], but it
does not naturally include recurrences to accurately learn the temporal correlations. To extend
feed-forward networks to sequential data, recurrent neural networks have an internal state, which is
updated by taking into account both the current input and the previous state. Thus, the sequence
by which data is fed affects the internal state and therefore its output. Within recurrent neural
networks, three architectures are highlighted: (i) long short-term memory networks (LSTM) [50],
(ii) gated recurrent unit networks (GRU) [51], and (iii) echo state networks (ESN) [52,53]. While
the three have been successfully employed to learn and predict time-dependent problems, the ESN
architecture offers an advantage, which is exploited in this paper. Because its output is a linear
combination of the hidden state variables, its training reduces to a least-squares problem, which is
more computationally robust than repeatedly calculating gradients, as in LSTM and GRU networks.
In chaotic learning, ESNs have been recently explored in multiple applications in chaotic systems,
from time-accurate prediction [54,55], to the reconstruction of hidden variables [56–58], or the
calculation of ergodic quantities [59]. In particular, in Huhn and Magri [59], ESNs were employed
in the prediction of the long-time average of a thermoacoustic dynamical system. Moreover, Hart
et al. [60] proved analytically that, under certain conditions, ESNs can approximate the invariant
measure of a dynamical system, which is key to the calculation of accurate statistical quantities.
In this paper, we employ ESNs for the generation of sufficiently long time series, from which the
time-averaged cost functional to be optimized is evaluated. Specifically, we apply this framework to
predict the time-averaged thermoacoustic energy.

The objective of this paper is threefold. First, we propose a versatile gradient-free methodol-
ogy to optimize time-averaged cost functionals. The methodology requires a minimal number of
user-defined parameters, which makes it a minimally intrusive tool. We apply the methodology
to a chaotic thermoacoustic system. Second, we investigate the capability of ESNs of learning
thermoacoustic solutions from small data. Both short- and long-time predictions are analyzed. Third,
we minimize a chaotic thermoacoustic oscillation by finding the optimal set of design parameters.

The paper is structured as follows. Section II presents the general optimization problem with a
focus on the thermoacoustic system. Section III introduces the proposed gradient-free optimization
method, both in general and in particular case of this paper. The method combines the tools of
Sec. IV, which describes Bayesian optimization; and Sec. V, which presents both the traditional
and hybrid echo state networks. Section VI A investigates the short- and long-time predictions of
the ESNs in learning thermoacoustic dynamics. Section VI B applies the framework of Sec. III to
the optimization of a chaotic thermoacoustic system. A final discussion and conclusions end the
paper. We have also included a discussion of the potential cost benefit of the proposed optimization
framework in Appendix C.

2Both converge with t−1/2, where t is time.
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II. PROBLEM FORMULATION AND PHYSICAL MODELS

We consider a nonlinear dynamical system,

dq
dt

= F(q, s), (1)

where q ∈ RNd is the state vector; F : RNd → RNd is a nonlinear operator; s ∈ RNp is a vector of
physical (or design) parameters; and Nd is the number of degrees of freedom of the system. Given
an initial condition, q0, Eq. (1) can be solved to obtain a solution q(t, s). We wish to optimize the
time-average of a cost functional,

〈J 〉(s) = lim
T →∞

1

T

∫ T

0
J [q(t, s), s] dt, (2)

where J is, for example, an energy. Because we consider ergodic systems, 〈J 〉 does not depend on
the initial condition or trajectory, but it depends only on the parameters, s. The goal is to find a set
of parameters, s+, that minimize the time-averaged cost functional in Eq. (2). Mathematically, s+ is
the solution of

min
s

〈J 〉, (3)

G(s) = 0, (4)

H (s) � 0, (5)

where G and H are equality and inequality constraints, respectively. The inequality constraints
guarantee that the physical parameters are searched in a feasible region.

A. Thermoacoustic dynamical system

We consider an acoustic resonator that consists of a tube and a heat source in it. We assume
that the cutoff frequency of the acoustic resonator is sufficiently high such that only longitudinal
acoustics propagate. The mean flow is assumed to have a zero Mach number with a spatially
averaged temperature. The equations that govern the acoustics are the linearized momentum and
energy equations

∂u

∂t
+ ∂ p

∂x
= 0, (6)

∂ p

∂t
+ ∂u

∂x
+ ζ p − q̇δ(x − x f ) = 0, (7)

where u, p, ζ , q̇, δ, and x f are the acoustic velocity, pressure, damping, heat-release rate, Dirac
δ, and flame position, respectively, which are nondimensionalized as in Refs. [28,61]. The axial
coordinate is x ∈ [0, 1], which is nondimensionalized by the tube length. The heat release rate is
given by a modified King’s law [62–65],

q̇(t ) = β{[1 + u(x f , t − τ )]1/2 − 1}, (8)

where β and τ are the heat release intensity and time delay, respectively. The time delay models
the time that the heat release takes to be perturbed by an acoustic perturbation at the base of the
heat source. The solutions are decomposed in Ng acoustic eigenfunctions of the undamped acoustic
system [66], which is also known as Galerkin decomposition,

u(x, t ) =
∑Ng

j=1
η j (t ) cos( jπx), (9)

p(x, t ) = −
∑Ng

j=1
μ j (t ) sin( jπx), (10)
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which results in a system of 2Ng oscillators that are nonlinearly coupled by the heat source

dη j

dt
− jπμ j = 0, (11)

dμ j

dt
+ jπη j + ζ jμ j + 2q̇ sin( jπx f ) = 0, (12)

where ζ j = c1 j + c2 j1/2 is the modal damping, which damps out higher-frequency oscilla-
tions according to physical scaling [67]. Despite its simplicity, the thermoacoustic model in
Eqs. (6)–(8) qualitatively captures complex nonlinear dynamics and bifurcations, as shown in
Refs. [18,28,61,66]. Because we wish to use numerical integrators and echo state networks, which
march from time step n to n + 1, it is convenient to transform the time-delayed problem Eq. (8)
into an initial value problem. To achieve this, we model the advection of a dummy variable v with
velocity τ−1 as [28]

∂v

∂t
+ 1

τ

∂v

∂X
= 0, 0 � X � 1, (13)

v(X = 0, t ) = u f (t ). (14)

The time-delayed velocity is provided by the value of v at the right boundary, i.e., u f (t − τ ) =
v(X = 1, t ). Equation (13) is discretized using Nc + 1 points with a Chebyshev spectral method
[68], which adds Nc degrees of freedom. Thus, these equations define a dynamical system with
a state vector q = [η1, · · · , ηNg, μ1, · · · , μNg, v1, · · · , vNc ]. This model, which is used as a proof
of concept, qualitatively captures the key physics of nonlinear thermoacoustics [28]. The cost
functionals that we wish to obtain and minimize are the time averages of the acoustic energy and
the Rayleigh index [17]

Eac(t ) =
∫ 1

0

1

2

(
u2(t ) + p2(t )

)
dx = 1

4

Ng∑
j=1

[
η2

j (t ) + μ2
j (t )

]
, (15)

IRa(t ) = p f (t )q̇(t ). (16)

The first measures the total energy of the acoustic oscillations, while the second corresponds to the
rate of input energy in the system, which is balanced out over time by the damping. (As shown in
Ref. [28], the two time-averaged cost functionals are one-to-one related to each other, therefore,
we focus on the optimization of the acoustic energy only.) In this work, the following parameters
are fixed: x f = 0.2, c1 = 0.1, and c2 = 0.06 [18]. Unless otherwise specified, we use 10 Galerkin
modes (i.e., Ng = 10) and 11 Chebyshev points (i.e., Nc = 10), which provide a good compromise
between accuracy and computational cost [28]. We solve the equations numerically in time with a
three-stage Runge-Kutta solver [69], with a time step of 0.01 time units.

III. GRADIENT-FREE DESIGN OPTIMIZATION WITH ECHO STATE NETWORKS

We introduce the proposed methodology to optimize a chaotic system with a nonintrusive
approach, using echo state networks. The flowchart in Fig. 1(a) illustrates the method. There are
two optimizers, one for the physical parameters and another for the hyperparameters. The physical
optimizer chooses the next point in the physical space to be evaluated. By integrating the ordinary
differential equations that govern the thermoacoustic dynamics (ODEs), a short amount of data
is generated, which is used to train the network. This mimics data from high-fidelity simulation
or experiments, which is sparse and costly, the objective being to gain as much information as
possible with a minimal number of samples. Then, the hyperparameter optimizer selects the optimal
hyperparameters. With the hyperparameters tuned, the data-driven model (echo state networks in
this case) runs in predictive mode for a user-defined sufficiently long time to obtain the long-time
average of the physical cost functional, which is returned to the physical parameter optimizer. The
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FIG. 1. Optimization chain flowcharts. Human interaction is only required in the initialization (init steps).
The initialization defines the search space, maximum number of evaluations, optimiser parameters, kernel
functions, etc.

only human intervention is at the start of the chain for the initialization of the optimizers. After
initialization (e.g., defining search space, maximum number of evaluations, etc.), the optimization
chain runs on its own. Figure 1(b) depicts the chain of Fig. 1(a) in the present work. In particular, in
this work, the physical optimizer is a Bayesian optimizer using Gaussian process regression (GPR),
with a Matérn 3/2 kernel. Because of the nature of a Gaussian process (Sec. IV A), the dependent
variable (in this case, the acoustic energy, Eac) can be negative. Because a negative acoustic energy
is unphysical, we apply the GPR to the logarithm of the acoustic energy, which means that values
of the acoustic energy are modelled by a log-normal distribution. Hence, the estimates are positive
and the standard deviation is additive in the exponent only. Finally, because of interpretability, we
use the Lowest Confidence Bound (see Sec. IV B) as the acquisition function, with κ = 1.960,
which corresponds to a 95% confidence interval. The ordinary differential equations are integrated
using a three-stage Runge-Kutta scheme [69]. The hyperparameters are also selected via Bayesian
optimization with GPR, but with an RBF kernel and GP-hedge acquisition function. The system
is predicted with a hybrid echo state network model and the cost functional is the time-averaged
acoustic energy, calculated with the prediction from the network. All these concepts are introduced
in the following two sections.

IV. BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESS REGRESSION

Gaussian process regression offers an estimate of both the mean and standard deviation of the
cost functional. This allows for a more informed choice to be made and for better control of the
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balance between exploration and exploitation (see Sec. IV B). Moreover, it is a global optimization
method, which is advantageous when the cost functional is multimodal. We summarize Gaussian
process regression in Sec. IV A and Bayesian optimization in Sec. IV B.

A. Gaussian process regression

A Gaussian process (GP) is a collection of random variables, any finite number of which have
a joint Gaussian distribution [70]. Here, the random variables are the values of a function on its
domain. In fact, the function is deterministic, but in the context of GPs, its (unknown) values are
modelled as random variables. A GP is specified by its mean function, m(x), usually set to 0, and
the covariance function, often called kernel function, k(x, x′), which are defined as

m(x) = E[ f (x)], (17)

k(x, x′) = E{[ f (x) − m(x)][ f (x′) − m(x′)]}, (18)

where f (x) is the real process and E is the expectation. The Gaussian process is written as

f (x) ∼ GP[m(x), k(x, x′)], (19)

where {(xi, fi )|i = 1, . . . , n} is a collection of n data points, from which we construct the output
vector f and the matrix X , whose columns are the vectors xi. Similarly, we can define f ∗ and X∗
for the n∗ test inputs, i.e., the inputs that we wish to predict. According to the definition of a GP,
prior to any observations, the joint distribution of f and f ∗ is a Gaussian distribution,[

f
f ∗

]
∼ N

(
0,

[
K(X , X ) K(X , X∗)
K(X∗, X ) K(X∗, X∗)

])
, (20)

where, for any X 1 and X 2, K(X 1, X 2) is an n1 × n2 matrix of covariances evaluated for all pairs
of columns (each column being one point) of X 1 and X 2. To include the information from the
observations fi, this distribution is conditioned on the observations [70]

f ∗|X∗, X , f ∼ N (μ∗,�∗), (21)

μ∗ = K(X∗, X )K(X , X )−1 f , (22)

�∗ = K(X∗, X∗) − K(X∗, X )K(X , X )−1K(X , X∗). (23)

If the observations are noisy, with variance σ 2
n , then K is replaced by K + σ 2

n I , where I is the identity
matrix.

In this work, we use two kernel functions, the radial basis function,

k(x, x′) = exp

(
−||x − x′||2

2l2

)
, (24)

and the Matérn 3/2 kernel function,

k(x, x′) =
(

1 +
√

3

l
||x − x′||

)
exp

(
−

√
3

l
||x − x′||

)
, (25)

where || · || is the Euclidean distance and l are tunable length scales, which control the smoothness
of the function being regressed. A large l means that the covariance will be high even for relatively
distant points, x and x′, resulting in a smoother function than that for smaller l . Because we expect
the acoustic energy to be smoother in the physical space [28] than the mean-squared error in the
hyperparameter space [71], we use the RBF kernel for the former and the Matérn kernel for the
latter.
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B. Bayesian optimization

Bayesian optimization is used in this work to select the hyperparameters, and to optimize the
physical parameters such that the acoustic energy of the system is minimal.

Bayesian optimization consists of a loop of three steps:
(1) Observe a point from the optimization domain;
(2) Update the mean, μ∗, and uncertainty, �∗;
(3) Select the next point to observe by finding the minimum of the acquisition function.
The first step simply evaluates the function, f , at the given point x. The second step calculates

the mean and variance of the distribution of Eqs. (22) and (23). Finally, in the third step, the new
point to observe corresponds to the optimum of an acquisition function.

An acquisition function takes into account both the mean and uncertainty and, for any point x,
outputs a value that relates to either or a combination of the two. This provides the probability, or
amount, by which x can improve the current optimum. There are four common acquisition functions:
Probability of improvement (PI), expected improvement (EI), lowest confidence bound (LCB), and
GP-hedge [72]. The first, PI, computes the probability that a candidate x can improve with respect to
the current optimum, prob[ f (x) < f +]. The second, EI, is similar to PI, but weighs the probability
by the potential gain, i.e., it is the expected value of the improvement, E{max[ f + − f (x), 0]}.
Finally, LCB is based on intervals of confidence centered around the mean, [μ − κσ,μ + κσ ]. For
a given value of κ , the interval will cover a certain percentage of the outcomes. For example, with
κ ≈ 1.960, 95% of the outcomes will be contained in the interval, i.e., a 95% confidence interval3.
When the LCB acquisition function is used, one seeks to find x for which the lower bound of the
confidence interval is a minimum, i.e., the x with the smallest lower confidence bound. This means
that κ controls the balance between exploration (exploring unobserved regions of the optimization
space) and exploitation (improving an existing observation by searching close to it), with exploration
being preferred when κ is large (κ multiplies the uncertainty σ ) and exploitation when κ is small.
Finally, GP-hedge [72] overcomes the difficulty of knowing which acquisition function will perform
best by taking the previous three acquisition functions4 and probabilistically picking one of the three
suggestions to sample next. For each acquisition function, the better the means, μ, of the points
suggested in the past, the larger the probability of being chosen. In this paper, we use the LCB
because, although it does not necessarily offer the best performance among the four acquisition
functions, it is simple to compute and, more importantly, it is simple to physically interpret.

V. ECHO STATE NETWORKS

Echo state networks (ESN) [52,53] are recurrent neural networks, which are composed of a set
of nodes that constitute the reservoir. The ESN receives an input signal, l (n) ∈ RNl , and produces an
output signal, ŷ(n) ∈ RNy , where n is the discrete time variable, i.e., t = n �t . Usually Nl = Ny =
Nd , where Nd is the dimension of the system being predicted, such that the network can evolve on
its own. The state of the reservoir is a vector, r, of the states of all units, r j, j ∈ {1, . . . , Nr}. The
reservoir state evolves according to the nonlinear law

r(n) = tanh{W in[l (n); bin] + W r(n − 1)}, (26)

where W in is the input matrix (i.e., W i, j
in is the weight from the jth component of the input to the

ith node) and bin is the input bias, with the semicolon denoting row concatenation. Similarly, in
the recurrency matrix W , the component W i, j is the weight from the jth node to the ith node.
Therefore, W in and W are Nr × Nd and Nr × Nr matrices. The hyperbolic tangent in Eq. (26) is

3For an α% confidence interval, one finds κ such that �(μ + κσ ) − �(μ − κσ ) = α, where � is the
cumulative distribution function of the Gaussian distribution N (μ, σ 2).

4GP-hedge can be applied to any combination of acquisition functions, not only PI, EI and LCB.
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FIG. 2. Schematic of the conventional (without highlighted region) and hybrid echo state networks. The
hybrid echo state network corresponds to a conventional ESN with an additional knowledge-based model (K
box) that feeds the reservoir and the output via the augmented W in and W out matrices. In training, the switch is
horizontal, whereas in prediction, it is vertical.

applied entrywise. Finally, the output is calculated by linear combination of the states of the reservoir
units,

ŷ(n) = W out[r(n); bout], (27)

where W out is the output matrix, of size Nd × Nr , and bout is the (scalar) output bias.
The network is trained to produce an output ŷ that matches the target y by minimizing the mean-

squared error (MSE) [52,53]

MSE = 1

Nt

Nt∑
n=1

||ŷ(n) − y(n)||2
Nd

, (28)

where Nt is the number of (discrete) time steps, and the norm is Euclidean in Rd . In ESNs, both W in

and W are generated once and fixed. In this work, each reservoir node is connected to one input,
which results in every row of W in having only one nonzero entry. The weight of the connections
is sampled from a uniform distribution in the range [−σin, σin], where σin is a scaling parameter.
Hence, W in can be generated by sampling uniformly from the range [−1, 1] and scaling by σin

directly in Eq. (26). Similarly, W is generated by sampling from the uniform distribution in the
range [−1, 1], with each node being on average connected to (1 − sp)Nr other nodes, where sp
is the desired sparseness. The matrix is then scaled to have a desired spectral radius, ρ, which is
typically smaller than unity to satisfy the echo state property [52,53]. A network that satisfies the
echo state property “forgets” an old input after a certain time, which means that, even if starting from
two different states, a network with the echo state property will converge to the same trajectory after
a certain time (provided it is fed by the same input).

Because W in and W are fixed, only the output weights (i.e., the entries of W out) are trained to
solve the minimization problem Eq. (28) with ridge regression

W out = (RT R + γ I)−1RT Y , (29)

where γ is the user-defined Tikhonov factor, which regularises the training. The R and Y matrices
are obtained by row-concatenating the reservoir states and output targets, i.e., the nth row corre-
sponds to the discrete time n. During training mode, the network is operated in open-loop, whereas
in prediction mode, the output of the network is fed to its input (closed-loop), i.e.,

l (n + 1) = ŷ(n), (30)

for the network to evolve autonomously. This corresponds to the schematic of Fig. 2 with the blue
highlighted region removed.
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A. Hybrid echo state network

The hybrid echo state network (hESN) is a variant of the conventional ESN [54]. In the hESN, the
capability of the conventional ESN is complemented by (possibly imperfect) physical knowledge
from a dynamical system, which may be a reduced-order model. The combination of data and model
knowledge achieves higher accuracy, not only in the short time prediction [54,71] but also in the long
time [59]. Figure 2 shows the architecture of an hESN. The network’s input is fed to the reservoir,
as in the conventional ESN, and to the physical knowledge based system (marked K). The output
of the physical system, in turn, is passed to both the reservoir, via W in, and the output, via W out.
Mathematically, Eqs. (26) and (27) are augmented by K,

r(n) = tanh{W in[l (n); bin;K(n)] + W r(n − 1)}, (31)

ŷ(n) = W out[r(n); bout;K(n)], (32)

where the dependence on n is implicit via the input, l (n),

K(n) = K[l (n)]. (33)

Although the hESN can perform better than a conventional ESN of equal size, as shown in
Sec. VI A, it can result in an unstable behavior. In prediction mode, the feedback of the output of
K, via W out, into its own input can create a self-sustaining amplification that diverges to infinity
(see Appendix A). In such cases, validation and test errors are undefined, violating regularity
assumptions (e.g., continuity in the hyperparameter space), which are essential to many optimization
algorithms. We propose three ways of overcoming this issue. The first is error saturation. If the
prediction error becomes greater than a threshold, then the error is set to the threshold. The second
is saturation, where a saturation function is applied to the output of the physical model itself, e.g.,
K → tanh(K), with the tanh taken entrywise (as in the conventional reservoir update equation).
This can be seen as effectively increasing the reservoir by a number of units equal to the dimension
of K, where each of these units is connected to one entry of K only and without repetition. The
drawback is that, due to the saturation, the sensitivity to changes in the output of K is reduced,
which can impact the performance. The third is to eliminate the connection between K and W out,
with the output of K feeding the reservoir only, effectively preventing unbounded growth. We tested
the three suggested methods (result not shown). We found that the first option performed best for
the case under investigation, which is why it is adopted in the remainder of the paper.

B. Hyperparameter selection

The traditional technique for selecting hyperparameters is manual selection, which is dependent
on prior (human) knowledge and experience. However, that does not suit a nonintrusive approach,
which is central to the objective of this work, as explained in Sec. VI B. The simplest nonintrusive
technique is grid search, but it can carry high computational cost [71,73,74]. Furthermore, the
discretization of the hyperparameter space is a delicate matter because, if it is too coarse, the
optimum can be missed; whereas, if it is too fine, the computational cost becomes prohibitive.
Bayesian optimization with Gaussian process regression has been documented to achieve good
performance in hyperparameter tuning of echo state networks [71]. For example, Reinier Maat et al.
[74] found that this technique systematically achieves similar, or lower, values of test error compared
to grid search but with fewer evaluations. In an in-depth examination of training techniques [71]
(e.g., single-shot, cross validation, etc.), it was found that grid search and Bayesian optimization
have similar values of validation error, with Bayesian optimization being more robust and efficient.
In this paper, the hyperparameters are selected by minimizing the validation mean-squared error
(validation MSE), using Bayesian optimization with Gaussian process regression (GPR). We use
the implementation in the scikit-optimize library. The GPR uses a 3/2 Matérn kernel [70] (see
Sec. IV A) and the acquisition function is the GP-hedge (see Sec. IV B). The initial seed points are
generated using a Latin hypercube sampling method. To make it more amenable to optimization,
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FIG. 3. Hyperparameter selection with Bayesian optimization.

we smooth the cost functional with two modifications. First, because the values of the validation
MSE cover multiple orders of magnitude (e.g., 10−6–103), we minimize the logarithm of the MSE.
Second, we cap the error when it is larger than the threshold of 103, as explained in Sec. V A. The
saturation smooths the MSE at these points.

The minimization runs until the MSE is below a target threshold of 3 × 10−2, which was chosen
by trial and error; or the maximum number of calls, 20, has been reached. This value for the
maximum number of calls is sufficiently large for the hyperparameter space to be explored, but
not too large for the computation to become exceedingly expensive. We optimally tune ρ, σin,
which are two hyperparameters that markedly affect the training [71]. The hyperparameter space
is log-uniform, i.e., the optimization tunes the exponents of the hyperparameters,

log10(σin ) ∈ [−2, 2], (34)

log10(ρ) ∈ [−3, 0]. (35)

A log-uniform allows a more efficient exploration of different scales than a linear space. In
particular, ρ is related to the time scale of the dynamics, which can be of different orders of
magnitude for different systems or attractors. In the optimization of Sec. VI B, because the attractor
varies, we also include the Tikhonov factor, γ , as a hyperparameter with log10(γ ) ∈ [−11,−4]. The
process of hyperparameter selection via Bayesian optimization is schematized in Fig. 3.

C. Data normalization

Data normalization is crucial to obtaining good performance [53]. Because different components
of the data vector can have vastly different ranges, a single input scaling factor, σin, can be
insufficient. If the same scaling is applied to variables of different orders of magnitude, then the
tanh might “ignore” one of the variables because of the saturation of values away from 0. In that
case, the information from that variable would be lost.

While various normalizations exist, here we choose the “min-max” normalization, which divides
the data variable by the difference between its maximum and minimum in the time period. For an
unnormalized variable, l̆ , whose time series is {l̆ (0), l̆ (1), . . . }, the normalized variable, l , is given
by

l (n) = l̆ ( j)

max
j

[l̆ ( j)] − min
j

[l̆ ( j)]
, n = 0, 1, . . . . (36)

This normalization forcibly makes l ∈ [−1, 1], which means that all the variables have the same
range. With all the (normalized) variables in the same range, the use of the single scaling factor σin

is justified.
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FIG. 4. Kullback-Leibler divergence, DKL, versus reservoir size. The first and second rows correspond to
the velocity and pressure modes, η j and μ j . The shaded regions correspond to the distributions of DKL arising
from the reservoir realizations. Each dot is a reservoir realization. The solid and dashed lines correspond to the
mean and median. ESN ( ), hESN ( ).

VI. RESULTS

The training, validation and test lengths are Ntrain = 5000, Nval = 2000 and Ntest = 10000,
respectively. For the chaotic attractor of Sec. VI A 1, this corresponds to approximately 6, 2.4
and 12 Lyapunov times5. To initialize the network, the reservoir state is initialized to 0 and the first
100 iterations are discarded. This ensures that the training of the network is not affected by the
initialization. The physical model of the hESN is the same dynamical system that generates the data
[Eqs. (11) and (12)], but with one Galerkin mode only instead of 10 (i.e., Ng = 1). This mimics a
situation in which data is available from an experiment for which a simple physical model exists.
Alternatively, data can come from a high-fidelity simulation, while K is a reduced-order model
obtained from first principles and approximations.

The reservoir is composed of 400 and 100 nodes in the conventional and hybrid architectures,
respectively. Although the reservoir size is usually chosen by heuristics, such as choosing the largest
one can afford [53], or by human experience, here, for completeness, we show that these values
are optimal for their respective architectures. To analyze the quality of a prediction, we use the
Kullback-Leibler divergence [75],

DKL(P||Q) =
∫

p(x) log

[
p(x)

q(x)

]
dV, (37)

where P and Q are continuous distributions and p and q are the respective probability density
functions. The integral is taken in the phase space of the system. In the Kullback-Leibler divergence,
P refers to a “truth,” against which a “model” Q is being compared, which is suitable for the present
situation, in which the truth is the data generated by the ODEs and the models are the echo state
networks. If Q perfectly matches P, i.e., p(x) = q(x) ∀ x, then DKL = 0, indicating that the larger
DKL, the worse the match. The numerical calculation of Eq. (37) is performed with the empirical
distributions, i.e., via the histograms of P and Q.

Figure 4 shows the variation of DKL with respect to the reservoir size for both the conventional
and hybrid echo state network architectures. For each reservoir size, an ensemble of 10 network

5The leading Lyapunov exponent is approximately 0.12 [59], which means that the Lyapunov time is
approximately 0.12−1.
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TABLE I. Characteristics of the ESN and hESN. sp is the sparseness (i.e., fraction of 0 entries) of W . The
Tikhonov factor is γ = 10−9.

Nr bin bout sp ρ σin

ESN 400 1 1 99% 0.00176 12.2
hESN 100 0 0 97% 0.25760 0.02825

realizations is run, which allows the estimation of a distribution with its mean and spread. This is
shown for the Galerkin modes 1, 2, 3, and 8, with the first three corresponding to the three most
energetic modes and the last being representative of higher-order modes. The hESN performs better
on average than the ESN. In fact, there are only a few realizations of the ESN that outperform
realizations of the hESN. This is not unexpected and is further explored in the next section.
Furthermore, compared to the hESN, the ESN exhibits much larger variability within realizations of
the same size. Analyzing separately, the hESN exhibits low variability in network realizations. The
results also indicate that reservoir size has little, and possibly detrimental, impact on performance,
with the optimal size being 100. This is due to a combination of: (i) the physical model, which
offers estimates of a good quality leaving reduced work to the network; (ii) too many reservoir
nodes, thus training parameters, for the small amount of data used in the training. On the one
hand, at very low numbers of nodes, the network will have high error because it does not have
a sufficient number of parameters to train. On the other hand, at very large numbers of nodes,
there are too many parameters and overfitting becomes a problem. Therefore, a U-shaped curve can
be expected. This shape is barely visible for the hESN because there is only one point, 50, to the
left of the optimum. Notwithstanding, this effect is more visible in the ESN curves, where there
is an improvement as the reservoir size increases. Although both mean and median decrease up to
400, the mean increases from 400 to 500, while the median flattens or slightly decreases. This is
explained by the large variability of the reservoirs of size 500. Therefore, given the similar median
and comparable performances between ESN realizations of sizes 400 and 500, we select 400 nodes
to keep the computational cost minimal. The realizations chosen for the following section are those
closest to the median of selected sizes.

A. Short- and long-time predictions

In this section, we compare the predictive capabilities of both the conventional (ESN) and hybrid
echo state networks (hESN). We fix the physical parameters β = 7.0 and τ = 0.2, which correspond
to a chaotic solution [59]. The physical system [Eqs. (11) and (12)] will be referred to as the “Truth.”
Information about each network, including the optimal hyperparameters, is given in Table I.

On the one hand, in short-time prediction, the objective is to time-accurately reproduce the
dynamics of the system, i.e., starting from some initial condition, the objective is for the difference
between the prediction and the true signals to be minimal for the largest possible time. This task is
covered in Sec. VI A 1. On the other hand, in long-time prediction, the objective is to accurately
reproduce the ergodic properties (statistics) of the system, i.e., the objective is for the difference
between the true attractor (the stationary measure) and the attractor of the echo state networks to
be minimal. Good performance in either task does not necessarily imply good performance in the
other, as can be seen in Sec. VI A 2 (good long-time, but poor short-time performance with the
conventional ESN) and Appendix B (good short-time, but poor long-time performance).

1. Short-time prediction

Figure 5 shows the time series of the first three (velocity) Galerkin modes, for the truth (data from
ODE integration) and closed-loop predictions of the ESN and hESN. These modes are significantly
more energetic than those of higher order because the flame is located at x f = 0.2, which markedly
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FIG. 5. Short-time prediction. Time series of the first three (velocity) Galerkin modes, η1, η2, and η3;
acoustic energy, Eac; Rayleigh index, IRa. Truth ( ), ESN ( ), and hESN ( ).

excites the first modes [28]. All three modes oscillate in a nonperiodic manner, with the peak
frequency increasing with the mode number. Figure 5 also shows the time series of the two cost
functionals, acoustic energy and Rayleigh index. The Rayleigh index oscillates substantially more
than the acoustic energy because the time derivative of the acoustic energy is equal to the sum
of the Rayleigh index and the dissipation from damping [17]. Timewise, the hESN is able to
time-accurately predict these modes for the whole time span shown, whereas the ESN deviates
from the truth signal at t ≈ 10.

As a global metric, we compute the normalized root mean-squared error,

NRMSE(n) =
(

||ŷ(n) − y(n)||2
N−1

∑N
j=1 ||y( j)||2

)1/2

, (38)

which is shown in Fig. 6. The hESN performs better than the ESN. Given a threshold, the pre-
dictability horizon is defined as the time at which the first crossing of the threshold occurs [54,55].
With a threshold of 0.5, the hESN achieves a predictability horizon of 42.1 time units [5.1 Lyapunov
times, compared to 7.5 time units (0.9 Lyapunov times) of the ESN]. The NRMSE is, however,
sensitive to normalization, and cannot discriminate between a time-inaccurate prediction that has
similar dynamics and another that has completely different dynamics. An alternative visualization

FIG. 6. Short-time prediction. Normalized root mean-squared error of the acoustic modes.

014402-14



GRADIENT-FREE OPTIMIZATION OF CHAOTIC …

FIG. 7. Short-time prediction. Acoustic pressure. The error is defined as �p(t, x) = p̂(t, x) − p(t, x),
where p̂ is the prediction and p is the true pressure field.

of the short-time behavior is given in Fig. 7, which shows the time evolution of the acoustic pressure
in an x-t diagram. The truth panel shows that the flow is unsteady, featuring nonperiodic acoustic
waves propagating inside the domain. Although nonperiodic, there appears to be a dominant
frequency, with roughly five waves in each 10 time units long window, which corresponds to an
approximate period of 2 time units. This is related to the first acoustic eigenfunction. The third
panel, corresponding to the ESN error, shows that the predictability horizon of the ESN is relatively
short, which corroborates the findings of the NRMSE of Fig. 6. However, the dynamics of the ESN
are qualitatively similar to those of the truth. This can be important, because, as shown in Ref. [59],
an ESN can display inaccurate short-time prediction, but can have accurate long-time dynamics.
The findings from the pressure map agree with those of the NRMSE not only for the ESN, but also
for the hESN. The pressure plot of the hESN indicates that it only starts to exhibit significant error
at t ≈ 45, which is similar to the predictability horizon of 42.1 time units found with the NRMSE.
This result further shows that hESN is capable of time-accurate prediction. We remark that such
conclusions do not apply in general to the classes of conventional and hybrid echo state networks
(i.e., an ESN need not perform worse than an hESN). Increasing the reservoir size of the ESN
could yield satisfactory short-time prediction as well. However, the inclusion of model knowledge
significantly improves the performance of an ESN for the same reservoir size.

2. Long-time prediction

In this section, we focus on the ergodic (i.e., long-time) prediction, which is key to this paper.
As previously mentioned, inaccurate short-time (i.e., time-accurate) prediction does not necessarily
imply inaccurate long-time prediction [59]. (Conversely, as shown in Appendix B, accurate short-
time prediction does not necessarily imply accurate long-time prediction either.) We analyze the
predictive capability of the ESN and hESN in the long-time with metrics that are naturally defined
in the statistically stationary regime.

First, we compute the frequency spectra (Fig. 8). The spectra are continuous, which is consistent
with the underlying signal being chaotic. The spectra match satisfactorily, with the largest error
appearing at higher frequencies f � 2, which have a negligible importance because the power of
the signal is concentrated in the lower frequencies. For lower frequencies (inset of Fig. 8), there is a
favorable agreement between the two types of networks and the truth. In particular, both ESN and
hESN match the dominant acoustic frequency and the peak of the true signal, which are close to
the first natural acoustic eigenmode, f = 0.5. This is consistent with the wave number in the x-t
plot of Fig. 7. Analysis of the spectra of the other state variables suggest similar conclusions (result
not shown). We can conclude that echo state networks, both conventional and hybrid, reproduce the
physical system satisfactorily in the time domain.
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FIG. 8. Long-time prediction. Frequency spectrum of the acoustic velocity mode, η1(t ), for Truth ( ), ESN
( ), and hESN ( ).

Second, we compute the probability density functions (PDFs) of the chaotic attractor because
the long-time behavior of a system and its statistics depend on the invariant measure of its attractor.
We compute two-dimensional joint PDFs of the Galerkin modes, i.e., (η1, μ1), (η2, μ2), etc.; and
the one-dimensional PDFs of the individual state variables. These are performed for modes 1, 2, 3,
and 8 (Fig. 9), the first three being the most energetic and the last being representative of the higher
modes. The PDFs are obtained via kernel density estimation [76,77]. Both networks perform well,
with their PDFs matching those of the truth relatively well. However, although the ESN shows a
good agreement with the truth, it is less accurate than the hESN. The difference in performance is
more evident close to the modes of η1 and η2, where the ESN over- and underpredicts the values
of the peaks. This indicates that the invariant measure of the attractor of the dynamical system is
well captured by both the ESN and hESN, with the latter being more accurate. Therefore, both ESN
and hESN predict the long-time statistics of the physical system, with training from relatively small
data.

B. Design optimization

For the physical optimizer, we define the cost functional, 〈Eac〉; the optimization space, β ∈
[7.5, 10.0], τ ∈ [0.1, 0.3]; the acquisition function, LCB with κ = 1.960; the covariance function,
RBF; the number of initial seed points, 4, which should be sufficient to properly initialize the GP;
and the maximum number of evaluations (12, including the seed points), which we find to be a
good compromise between efficacy and efficiency6. Similarly, for the hyperparameter optimiser,
we define the cost functional, validation MSE; optimization space, log10(σin ) ∈ [−2, 2], log10(ρ) ∈
[−3, 0], log10(γ ) ∈ [−11,−4]; the acquisition function, GP-hedge; the covariance function, Matérn
3/2; the number of initial seed points, 5; and the maximum number of evaluations, 25, which include
the seed points. Here, we include the Tikhonov factor as a hyperparameter. The reason is that the
physical optimization evaluates attractors that can vary widely. In this case, adjusting the Tikhonov
factor becomes important because it controls the relative importance of the MSE and the norm
of W out in the training problem, two terms that can vary substantially depending on the attractor.
This is in contrast with Sec. VI A, where only one attractor was learned and predicted. To save on
computational cost, the hyperparameter optimization stops when the error is below the threshold of
3 × 10−2 (Sec. V B). The chain then runs on its own.

6Efficacy here relates to whether the goal is achieved or not, whereas efficiency relates to how costly achieving
the goal was.
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FIG. 9. Long-time prediction. Probability density functions of the acoustic modes 1, 2, 3, and 8. The two-
dimensional joint PDFs correspond to the velocity and pressure variables of the same acoustic mode pair
(η j, μ j ). The one-dimensional PDFs are the marginalizations of the two-dimensional joint PDFs. Truth ( ),
ESN ( ), hESN ( ).

First, the physical optimizer randomly generates seed points. For each of these points, sphys =
(β, τ ), data, {q(0), q(1), . . . }7, is generated by integrating Eqs. (8), (11), and (12). Then, the hyper-
parameter optimizer selects the optimal hyperparameters, s+

hyper = (σ+
in , ρ+, γ +), using Bayesian

optimization. With the optimal hyperparameters (and the corresponding optimal W out), the network
is run in closed-loop, generating a long time series, {ŷ(0), ŷ(1), . . . }, from which the time-averaged
acoustic energy, 〈Eac〉, is computed and returned to the physical optimizer. After the seed points
have been evaluated, the physical optimizer selects the next point by finding the optimum of the
acquisition function, sphys = (β, τ ), which is then evaluated in the same manner as the seed points.
The optimization stops when 12 points (including seed points) have been evaluated.

For comparison, the true cost functional is physically shown in Fig. 10. This chart is generated
by integrating the ODEs on a grid of 11 values of β and 21 of τ . There is a large region of high
acoustic energy, which can be divided into two subregions, each centered around a local maximum,

7Whereas q is defined in equation (1) as continuous in time, here, q is the numerical solution, which is only
defined at discrete times 0, 1, . . . . Thus, slightly abusing notation, we write q(t = n �t ) as q(n), where n is a
discrete time.
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FIG. 10. Time-averaged acoustic energy, 〈Eac〉, versus the flame parameters, β and τ , obtained with a brute-
force grid search. Benchmark solution.

one of which is on the boundary of the domain (β = 7.5 and τ ≈ 0.18). Above this, there exists
a nearly horizontal strip spanning the whole range of β, marked R in Fig. 10, which is where the
optimum from the optimization is likely to be found. Physically, as noted in Huhn and Magri [28],
the time-averaged acoustic energy may be discontinuous at certain flame parameters because the
attractor is structurally unstable. The global minimum found with the grid of Fig. 10 is 〈Eac〉(β ≈
8.25, τ ≈ 0.27) = 15.04.

Figure 11 shows the results of the physical optimization. The three columns correspond to the
mean of the GPR, standard deviation of the GPR, and the acquisition function LCB. The ith row
(starting at 0) corresponds to the state of the optimization after nseed + i evaluations, where nseed

is the number of initial seed points (4 here) used to seed the optimization. It shows the previously
evaluated points, with the most recent being encircled. The minimum of the acquisition function,
and therefore the next point to be evaluated, is marked with a cross in the third column. Each row
in Fig. 11 corresponds to a row of Fig. 12, which contains the time series of the acoustic energy,
the phase plot μ1 versus η1 and the frequency spectrum of η1 of the newly evaluated point. For the
purpose of comparison, we include the true signals.

Initially (row i = 0), with 4 seed points, the GPR indicates a two-dimensional dependence on
both β and τ , with clear regions of similar acoustic energy around each of the seed points, especially
the two at the extremes of β. This is because these two points correspond to low and high values of
acoustic energy. The combination of a larger distance in β than in τ between these two points, and
the fact that the other two points, which have low and high values of τ , have similar 〈Eac〉, leads the
fit of the GPR to place a larger weight on β than τ . In terms of dynamics, the optimum of the seed
points is a chaotic attractor, as shown in the first row of Fig. 12.

The agreement between truth and hESN is favorable. Furthermore, the time series remains below
the dashed line, which corresponds to the previous optimum, showing that this design is the optimum
of the seed points. As expected, the uncertainty is lower in regions centered around evaluated points.
The dependence on τ is substantially reduced after the evaluation of the first selected point (i = 1),
a design that is close to the current optimum, not only in distance in the design space, but also in
time-averaged acoustic energy (Fig. 12). The perceived small dependence on τ and relatively strong
dependence on β, in conjunction with low estimated uncertainty, makes the acquisition function
discard approximately three quarters of the optimization domain, corresponding approximately to
the upper three quarters of the range of β (Fig. 11, i = 1, third column). With uncertainty low
almost everywhere, its highest values are found close to the corners of the design space, where
the distance from the sampled points is maximal. Moreover, given that the GPR indicates positive
dependence of the cost functional on β and slightly negative dependence on τ , the minimum of the
acquisition function is naturally found at the upper left corner, where β is minimal and τ maximal.
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FIG. 11. Optimization history. The first and second columns show the mean and standard deviation of the
GPR. Seed points and previously evaluated points are marked with white circles and diamonds, respectively.
The current optimum is blue and the last evaluated point is encircled. The third column shows the acquisition
function, LCB, the minimum of which is the next point to be evaluated (cross).
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FIG. 12. Evaluated points during optimization. The columns correspond to the last fifth of the time series
of the acoustic energy; the phase plot of the first acoustic mode (μ1 vs η1); and the frequency spectrum of
the first acoustic velocity mode, η1. Rows with thick spines correspond to a new optimum. The time-averaged
acoustic energy of the current optimum is shown for reference as a horizontal dashed gray line.
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This point (i = 2), in contrast with the estimate prior to its evaluation, is in a region of moderately
high acoustic energy (Fig. 10). This can be verified in Fig. 12, which shows that this combination
of β and τ corresponds to a limit cycle whose instantaneous acoustic energy never drops below the
time-averaged acoustic energy of the current optimal design. The new data updates the GPR, which
now exhibits moderate uncertainty throughout the domain, except relatively close to previously
evaluated points (i = 2 row, second column). While the dependence on β remains, the dependence
on τ increases and is no longer monotonic. With moderately high uncertainty away from the points,
and with low mean in a small region only around the current optimum, the acquisition function
selects a point where the two regions (high uncertainty, low mean) “meet”. The new design point,
however, has very high acoustic energy (row i = 3 of Fig. 12), as it belongs to the area surrounding
the leftmost of the two peaks of high acoustic energy (Fig. 10). This newly acquired information
strongly contrasts with the prior estimate of the GPR. Naturally, this is because of the sharp variation
of acoustic energy at the lower edge of the region R. A small variation of parameters from the
current optimum resulted in high variation of the cost functional. As such, uncertainty is now high
everywhere, except close to previously sampled points. At i = 4, the acquisition function chooses
a point close to the current optimum, which is a clear evidence of exploitation. This design results
in chaotic dynamics, similarly to the current optimum, but it does not produce lower time-averaged
acoustic energy. Thus, it is not a new optimum. With three points (and the left boundary) enclosing
the current optimum, there is little advantage in continuing exploiting. Switching to exploration, the
new point (i = 5) is relatively far from the current optimum. Once again, it is at the intersection of
low mean and high uncertainty, since that combination minimises the acquisition function. While
the new design does not improve the optimum, it does provide crucial new information. Because its
acoustic energy is low, the region of low mean expands with the updated GPR. This new expansion
provides space to exploit. Thus, a new design (i = 6) relatively close to the previous is selected.
This new design offers lower time-averaged acoustic energy than the current optimum, i.e., the
optimization found a new optimum. The new optimal design represents an improvement of 8.4%
with respect to the previous optimum. In the GPR, not only has a new optimum been found, but the
region of low mean is now larger. Thus, at i = 7, the most recently selected design further expands
the spread of points into higher β and higher τ . Similarly to the last design, a new optimum is found,
this one offering a further 11.4% reduction of acoustic energy. Finally, the last design (i = 8), despite
being close to the previous two optima, does not further improve the cost functional. It is likely that
this design is above the upper boundary of the region R in Fig. 10. Had the optimization continued to
run, it is possible the optimum could have been slightly improved. However, the maximum number
of evaluations was reached. Furthermore, the optimum of the optimization, found with 12 design
evaluations (4 seed points plus 8 selected points), 〈Eac〉(β ≈ 8.31, τ ≈ 0.27) = 14.68, is slightly
better than that found with a brute-force grid search (Fig. 10), 〈Eac〉(β ≈ 8.25, τ ≈ 0.27) = 15.04,
which needed 231 evaluations. A larger number of evaluations would likely have been a relatively
poor trade-off between design improvement (i.e., decrease in cost functional) and computational
cost.

Figure 13 shows the convergence of the optimization procedure, i.e., the current optimum versus
the number of points evaluated for three values of κ .

The largest value of κ , 2.576, favors exploration the most. This results in quickly, in the second
optimization step, finding a design that improves on the best seed point. However, because of its
tendency to explore, it does not try to exploit and locally improve its current optimum as much.
Hence why there is a large spread of points for κ = 2.576 in Fig. 14, which shows the last state
of the optimization for the same three values of κ of Fig. 13. In contrast, κ = 0.967, the lowest
of the three, will seek to mostly exploit. The various designs concentrated in a small region are
evidence of this. Unsurprisingly, this does not produce a better design than the optimal seed point.
Finally, κ = 1.960, used in the optimization of Figs. 11 and 12, navigates between these two lines,
exploration and exploitation, unsuccessfully trying to exploit initially, finding a new optimum with
exploration and subsequently improving the recent optimum by exploiting its surrounding region.
In conclusion, the larger κ is, the larger the spread of points, which shows the influence that this
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FIG. 13. Time-averaged acoustic energy, 〈Eac〉, versus number of points evaluated, for three values κ:
0.967, 1.960, and 2.576; corresponding to 67, 95, and 99% confidence intervals.

parameter has on the balance between exploration and exploitation. In this optimization problem,
the initially chosen value of κ = 1.960 seems to offer the best performance among the three.

VII. CONCLUSIONS

Gradient-based design optimization of chaotic acoustics is notably challenging for a threefold
reason. First, first-order perturbations grow exponentially in time, which makes the computation of
the gradients with respect to the design parameters ill-posed. Second, the statistics of the solution
may have a slow convergence, which makes the time integration of the equations computationally
expensive. Third, chaotic acoustic systems may have discontinuous variations of the time-averaged
energy [28], which means that the gradient may not exist for all design parameters. In this paper, we
develop an optimization method to find the design parameters that minimize time-averaged acoustic
cost functionals. The method is gradient-free, with Bayesian sampling; model-informed, with a
reduced-order acoustic model; and data-driven, with reservoir computing.

First, we analyze the predictive capabilities of reservoir computing based on echo state networks.
Both fully data-driven and model-informed architectures are considered. In the short-time predic-
tion, model-informed networks can time-accurately predict the chaotic pressure oscillations beyond
the predictability time (the Lyapunov time). For the same reservoir size, informing the training
with a cheap model extends the prediction from ∼1 Lyapunov time to ∼5 Lyapunov times. In the
long-time prediction, we show that echo state networks accurately reproduce the statistics of chaotic
acoustic attractors. The hyperparameters are automatically tuned by using Bayesian optimization,
which provides a consistently good performance across different architectures, reservoir sizes and
data. With accurate predictions at a lower computational cost, the long-time series are generated

FIG. 14. Final state of optimization with three values of κ: 0.967, 1.960, and 2.576; corresponding to 67,
95, and 99% confidence intervals. This shows the effect of κ in the balance between exploration vs exploitation.
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FIG. 15. Divergence of the prediction of a hybrid echo state network. This is obtained with the configu-
ration detailed in Sec. V B and σin = 4.23 and ρ = 0.9. Other combinations of hyperparameters and physical
parameters may result in similar behavior.

to obtain the time-averaged acoustic energy that is being optimized. Second, we couple echo state
networks with a Bayesian technique based on Gaussian processes to explore the design parameter
space. The computational method is minimally intrusive because it requires only the initialization
of the physical and hyperparameter optimizers; e.g., a factor to balance the exploration versus
exploitation of the sampling; and the reservoir size. Third, we apply the computational method to the
minimization of the time-averaged acoustic energy of chaotic oscillations. We focus on the acoustics
that is excited by a heat source, which is relevant to thermoacoustic oscillations in propulsion and
power generation. The design parameters that are changed during the optimization are the flame
intensity and time delay. Nonetheless, the method can tackle other physical parameters. Starting
from five random designs with energetic chaotic oscillations, we find an optimal set of parameters
in eight iterations. This optimum is practically equal to the optimum found by brute-force grid
search, which needs 231 evaluations. The thermoacoustic system shows a variety of solutions
and bifurcations during the optimization update (e.g., limit cycles, strange attractors), which are
accurately learnt by the echo state networks. This is because the echo state network learns the
physical temporal correlations of the acoustic modes through the sparse recurrent dynamics of the
reservoir.

This work opens up new possibilities for the optimization of chaotic systems, in which the cost
of generating data, for example, from high-fidelity simulations and experiments, is high.
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APPENDIX A: DIVERGENCE OF HYBRID ECHO STATE NETWORK

Unlike conventional echo state networks, whose output is bounded (though the bound can be very
far from the attractor), due to the feedback from the output of K to its own input via W out, hybrid
echo state networks may diverge to infinity. This can be seen in Fig. 15. However, it should be noted
that this behavior is not necessarily a function of the physical parameters or hyperparameters only.
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A certain fixed combination of hyperparameters may result in both divergence and nondivergence
depending on the physical parameters. Similarly, for fixed physical parameters, changing the
hyperparameters may result in divergence or not. This is not an issue with the training method
(ridge regression), but the complex combination of training and validation time series, realizations
of W in and W , values of σin and ρ, Tikhonov factor γ , model K and its numerical scheme, etc.
Furthermore, K can be stable (i.e., its solution is stable), but the hybrid echo state network using it
can be unstable. In fact, that is the case of Fig. 15, where, if K evolved on its own, then a limit cycle
arises. It is the (linear) transformation due to the output weights W out that changes the output of K,
which is then fed back to K itself, that can make the whole system unstable.

A very succinct example, where we omit the reservoir nodes for simplicity, is

K(y) = (1 − λ)y, (A1)

where 0 < λ < 1 is a physical parameter. If left to evolve on its own, i.e.,

y(n + 1) = K[y(n)] = (1 − λ)y(n), (A2)

then y will converge to 0. However, in the hybrid echo state network framework, we have instead

y(n + 1) = K[Wouty(n)] = Wout (1 − λ)y(n). (A3)

For y to converge to 0, we must have

Wout <
1

1 − λ
. (A4)

If Wout does not verify this condition, then the system will diverge, despite K being stable.

APPENDIX B: ACCURATE SHORT-TIME AND INACCURATE LONG-TIME PREDICTION

Here, we use a short example based on the Lorenz system [29] to show that accurate short-time
prediction does not necessarily mean accurate long-time prediction. The Lorenz system is a three-
dimensional system,

dxL

dt
= σL(yL − xL ), (B1)

dyL

dt
= xL(ρL − zL ) − yL, (B2)

dzL

dt
= xLyL − βLzL, (B3)

where σL, ρL, and βL are parameters, often equal to 10, 28, 8/3, which is a combination that
produces chaotic motion. This system is numerically integrated with time step 0.01 to generate
training, validation, and test data. For this example, we use an echo state network with 100 nodes
with no biases. The network is trained and validated on datasets of length 500, using Bayesian
optimization. Figure 16 shows the NRMSE and (long-time) phase plot for the Lorenz system. The
NRMSE remains below the threshold of 0.2 until t ≈ 2.87, which corresponds to approximately
2.6 Lyapunov times (leading Lyapunov exponent of approximately 0.9). Thus, the ESN predicts
the system relatively well in the short time. However, the phase plot shows a completely different
behavior between prediction and data in the long time. In this case in particular, the network has no
biases (i.e., bin = bout = 0), in which case the reservoir evolves according to

r(n) = tanh[W̃ r(n − 1)], (B4)

where W̃ = W + W inW out [59]. This means that taking some reservoir state r(n − 1), and flipping
its sign, i.e., r′(n − 1) = −r(n − 1), one gets r′(n) = −r(n). Thus, either the ESN admits two
attractors symmetric of each other, or admits one symmetric attractor, which is the case here. In
conclusion, accurate short time prediction does not necessarily imply accurate long-time prediction.
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FIG. 16. Lorenz system. Time series of NRMSE and phase plot zL vs xL .

APPENDIX C: COMPUTATIONAL COST OF THE METHOD

The optimization framework in this paper (i.e., the “chain”) was demonstrated on a relatively
low-dimensional system. In this particular case, the echo state network (and everything it involves)
could have been foregone and Bayesian optimization applied directly to the result of the (longer
run) ODEs. However, the application in this work is a proof of concept and not an example of
computational gains. These are meant to be achieved in larger-scale systems, such as high-fidelity
simulations. The cost of the method is

Nopt (NtrainCODE + Ctrain + NtestCESN), (C1)

where Nopt is the number of optimization steps in the physical domain, Ntrain is the number of
training timesteps, CODE is the cost per timestep of solving the ODEs, Ctrain is the cost of training
the network (including the hyperparameters), Ntest is the number of test timesteps, and CESN is the
cost of per timestep of the closed-loop ESN. However, applying Bayesian optimization directly to
the ODEs instead would have a cost of

NoptNtestCODE. (C2)

For there to be a cost benefit

Nopt (NtrainCODE + Ctrain + NtestCESN) < NoptNtestCODE (C3)

must be verified. Thus, each term must be analyzed. The most expensive operation is training the
network, Ctrain, which scales with O(N3

x ) due to the matrix inversion. If the number of nodes, Nx,
is proportional to the dimension of the dynamical system, Nd , then this cost becomes O(N3

d ). This
operation only happens once (per hyperparameter combination), though. Once it is performed, the
largest cost is the closed-loop ESN simulation at O(NxNd ) ∼ O(N2

d ) per timestep. However, the
cost of a timestep in a numerical simulation (ODE) can scale with O(N2

d ) or O(N3
d ), depending on

the numerical scheme. This would put it at a similar scaling to the networks. Therefore, it would
seem hard for Eq. (C3) to be verified. However, the goal is not to apply the technique directly to
a high-fidelity simulation, but to a lower resolution of its results. While a certain number of grid
points may be needed for an accurate simulation, after obtaining the results, only a subset of these
points is required for the accurate computation of the cost functional. In other words, not all points
are needed. Thus, the full state vector need not be computed/predicted. For example, if there is a
downsample of 10 to 1 in every direction of a 3D high-fidelity simulation, then there is a 1000-fold
reduction in Nd , 10002 in output cost and 10003 in training cost; compared to predicting the full state
vector of a high-fidelity simulation. In such a case, the training data generation via a high-fidelity
simulation would be the most expensive step, as we assume in the paper, which would also mean
that the RHS of Eq. (C3) would be much larger than the LHS. Additionally, as remarked before,
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this approach also suits an experimental framework where running the experiment for a sufficiently
long time might be expensive.
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